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Lecture 8
Maximum Likelihood Estimation and Inference

Abstract: We discuss maximum likelihood estimation and testing. We show
that the MLE is consistent, asymptotically normal and attains the Cramer-Rao
lower bound. We then introduce the classical likelihood ratio, Lagrange multiplier
and Wald tests and show their asymptotic equivalence.

Likelihood is the central concept in statistical modelling and inference. Fisher coined
the term ’likelihood’ in 1921 to distinguish the method of maximum likelihood from the
Bayesian or inverse probability argument. Uncertainty is pervasive in the real world,
and statistics is the only branch of science that puts systematic effort into dealing with
uncertainty. Statistics is suited to problems with inherent uncertainty due to limited
information; it does not aim to remove uncertainty, but in many cases it merely quantifies
it; uncertainty can remain even after an analysis is finished.

But how do we go from observed data to statements about the parameter of interest?
The degree of certainty in an inductive conclusion is typically stronger than the degree
in the data constituent, and the truth quality of the conclusion improves as we use more
and more data. However, a single new item of information can destroy a carefully crafted
conclusion; this aspect of inductive inference is ideal for mystery novels or courtroom
dramas, but it can be a bane for practicing statisticians.

Data can be collected from observational studies rather than controlled experiments.

Example 1. If we let X be the number of germinated seeds in n and θ ∈ (0, 1) be the
probability that a seed germinates, the probability of X = x germinations in n trial is
given by

fX(x; θ) = P (X = x) =

(
n

x

)
θx(1− θ)n−x. (1)

(i) Suppose 100 seeds are planted and 10 seeds germinate. The information about θ is
given by the likelihood function

L(θ) = P (X = 10) =

(
100

x

)
θx(1− θ)100−x. (2)

(ii) Suppose 100 seeds were planted and it is known only that less than 10 seeds germi-
nated. The exact number of germinating seeds is unknown. Then the information about
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θ is given by the likelihood function

L(θ) = P (X ≤ 10) =
10∑
x=0

(
100

x

)
θx(1− θ)100−x. (3)

Example 2. To estimate the number of carps (N) living in a small lake, the Department
of Fisheries tags N1 = 25 of them. Later on it captures n = 60 carps, and finds n1 = 5

tagged and n2 = 55 untagged ones. Assuming the carps were caught at random, the
likelihood of N can be computed based on the hypergeometric probability:

P (n1) =

(
N1

n1

)(
N −N1

n− n1

)
(
N

n

) (4)

so that

L(N) = P (n1 = 5) =

(
25

5

)(
N − 25

55

)
(
N

60

) (5)

The mle is given by
N1

N̂
=

n1

n
=

25

N̂
=

5

60
(6)

or N̂ = 300.

Let z = {zi, i = 1, ..., n} be a random sample from a distribution with density function
f(z; θ), where θ = (θ1, ..., θp)

′ is a p vector of parameters. For example, f could be a
normal density and θ = (µ, σ2). The assumed random sampling process implies that the
observations are i.i.d., so the joint probability density of the n× 1 vector z is given by

f(z; θ) =
n∏

i=1

f(zi; θ).

This density may be interpreted as the probability that we observe a sample given a
parameter vector θ. The idea of maximum likelihood estimation is to find θ that maximizes
the probability that we have observed the sample at hand. The likelihood function is given
by

Ln(θ) = f(z; θ) =
n∏

i=1

f(zi; θ).

The difference between the likelihood function Ln(θ) and the joint density function f(z; θ)

is purely conceptual. The joint density f(z; θ) treats θ as known and assigns probabilities
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as z varies. The likelihood function Ln(θ) on the other hand, treats z as known and
assigns the probability of observing z as θ varies. It is natural then to seek the θ that
maximizes Ln(θ), that is, the maximum likelihood estimator (MLE) is defined by

θ̂n = argmax
θ∈Θ

Ln(θ),

where Θ is a compact subset of Rp. To simplify computations it is customary to work
with the normalized (average) log-likelihood function given by

ℓn(θ) ≡
1

n
logLn(θ) =

1

n

n∑
i=1

log f(zi; θ).

Clearly, the maximizer of Ln(θ), also maximizes ℓn(θ).
We also define the (p× 1) score vector by

sn(θ) =
1

n

n∑
i=1

∇θ log f(zi; θ) =
∂ℓn(θ)

∂θ
=

[∂ℓn(θ)
∂θ1

, ...,
∂ℓn(θ)

∂θp

]′
and the (p× p) Hessian matrix by

Hn(θ) =
1

n

n∑
i=1

∇θθ′ log f(zi; θ) =
∂2ℓn(θ)

∂θ∂θ′
=



∂2ℓn(θ)

∂θ1

∂2ℓn(θ)

∂θ1∂θ2
· · · ∂2ℓn(θ)

∂θ1∂θp
∂2ℓn(θ)

∂θ2∂θ1

∂2ℓn(θ)

∂θ22
· · · ∂2ℓn(θ)

∂θ2∂θp
... ... . . . ...

∂2ℓn(θ)

∂θp∂θ1

∂2ℓn(θ)

∂θp∂θ2
· · · ∂2ℓn(θ)

∂θ2p


.

Note that by the invariance of the order of partial differentiation, the Hessian matrix is
symmetric about its diagonal.

The population analogues of these quantities are the population log-likelihood

ℓ(θ) = plim ℓn(θ) = Ez[ℓn(θ)] = Ez[log f(z; θ)]

the population score

s(θ) = ∇θℓ(θ) = plim sn(θ) = Ez[∇θℓn(θ)] = Ez[∇θ log f(z; θ)]

and the population Hessian,

H(θ) = ∇θθ′ℓ(θ) = plim Hn(θ) = Ez[∇θθ′ℓn(θ)] = Ez[∇θ∇θ′ log f(z; θ)]

We will show that ℓ(θ) is maximized at θ0, that s(θ0) = 0, and H(θ0) is negative semi-
definite.

If ℓn(θ) is smooth in θ, the MLE θ̂n must satisfy the first order condition

sn(θ̂n) = 0,
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as well as, the second order condition that

Hn(θ̂n) is negative semi-definite.

If, in addition, ℓn(θ) is globally concave, we can compute the MLE by a Newton-Raphson
iteration:

1. Specify an initial value θ[0] ∈ Θ ⊂ Rp.
2. Given θ[i], compute θ[i+1] = θ[i] − [Hn(θ[i])]

−1sn(θ[i]).
3. Iterate until convergence, i.e. until ||θ[i+1] − θ[i]|| < ε.

The (p×1) vector [Hn(θ[i])]
−1sn(θ[i]) is called a Newton step; its sign specifies the direction

in which we should move, while its absolute magnitude gives the size of the step to be taken
towards this direction. If ℓn(θ) is exactly quadratic in θ the Newton-Raphson iteration
will converge in one step, which is the same as saying that the MLE has a closed-form
solution.

Example 3. (Normal Likelihood). Let z = {zi, i = 1, ..., n} be a random sample from a
normal distribution with unknown mean µ and unknown variance σ2. Then θ = (µ, σ2)′

and

logLn(µ, σ
2) =

n∑
i=1

log

{
1√
2πσ2

exp
{
− (zi − µ)2

2σ2

}}

=
n∑

i=1

{
−1

2
log(2π)− 1

2
log(σ2)− (zi − µ)2

2σ2

}

= −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(zi − µ)2

µ,σ2

∝ −n

2
log(σ2)− 1

2σ2

n∑
i=1

(zi − µ)2.

The notation µ,σ2

∝ means that the last line is “proportional-in-parameters” to the previous
line, so the maximizer of the two functions is the same. In particular, adding/subtracting
constants or multiplying/dividing by constants (where by the word ”constants” we mean
quantities that do not contain θ) leaves the maximizer unaffected. The score vector is
given by

sn(µ, σ
2) =

 ∂ℓn(µ, σ
2)

∂µ
∂ℓn(µ, σ

2)

∂σ2

 =


1

σ2

n∑
i=1

(zi − µ)

− n

2σ2
+

1

2σ4

n∑
i=1

(zi − µ)2

 ,
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and the Hessian matrix is given by

Hn(µ, σ
2; y) =


∂2ℓn(µ, σ

2)

∂µ2

∂2ℓn(µ, σ
2)

∂µ∂σ2

∂2ℓn(µ, σ
2)

∂σ2∂µ

∂2ℓn(µ, σ
2)

∂(σ2)2



=


− n

σ2
− 1

σ4

n∑
i=1

(zi − µ)

− 1

σ4

n∑
i=1

(zi − µ)
n

2σ4
− 1

σ6

n∑
i=1

(zi − µ)2

 ,

and

EHn(µ, σ
2; y) =

 − n

σ2
0

0 − n

2σ4

 .

The MLE is obtained by solving the 2× 2 system of equations defined by the score

1

σ̂2
n

n∑
i=1

(zi − µ̂n) = 0

− n

σ̂2
n

+
1

2σ̂4
n

n∑
i=1

(zi − µ̂n)
2 = 0.

Since the log-likelihood is exactly quadratic in (µ, σ2), the score is linear in them, and we
get the closed-form solutions

µ̂n =
1

n

n∑
i=1

zi, σ̂2
n =

1

n

n∑
i=1

(zi − µ̂n)
2.

Note that while the MLE of µ is simply the sample mean, the MLE of σ2 is not the usual
unbiased estimator ŝ2n = (n− 1)−1

∑n
i=1(zi − µ̂n)

2.

Example 4. (Bernoulli Likelihood). Let z = {zi, i = 1, ..., n} be a random sample from
a Bernoulli distribution with parameter p. This is a single parameter family with θ = p,
and the log-likelihood is given by

ℓn(p) =
n∑

i=1

log[pzi(1− p)1−zi ]

=
n∑

i=1

zi log(p) + (1− zi) log(1− p).
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Figure 1

The likelihood for p0 = .5 generated from the sample (0, 0, 1, 0, 1, 1, 0, 0, 1, 0) is plotted in
Figure 1. The score is given by

sn(p) =
dℓn(p)

dp
=

n∑
i=1

zi
p
− 1− zi

1− p
=

1

p(1− p)

( n∑
i=1

zi − np
)
=

zn − p

p(1− p)
,

and the Hessian is given by

Hn(p) =
d2ℓn(p)

dp2
=

2znp− zn − p2

p2(1− p)2
.

Setting the score equal to zero we obtain the MLE

sn(p̂n) = 0 ⇒ p̂n = zn,

and evaluating the Hessian at p̂ we get the curvature of the likelihood around p̂.

Hn(p̂n) = − p̂n(1− p̂n)

p̂2n(1− p̂n)2
= − 1

p̂n(1− p̂n)
.

For the example likelihood plotted above, p̂n = .4 and Hn(p̂n) = −1/.16 = −6.25.

Unfortunately, likelihoods are not always globally concave. If ℓn(θ) is not globally
concave the Newton-Raphson iteration will converge to a local extremum that may be a
local maximum or even a local minimum! It is then prudent to repeat the procedure for
several starting values and compare the values of the likelihood at the final estimates, in
the hope that one of them will be the global maximum.
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Figure 2

Example 5. (Cauchy Likelihood) Let z = {zi, i = 1, ..., n} be a random sample from a
Cauchy distribution with parameter µ. The log-likelihood is given by

ℓn(µ) =
n∑

i=1

log
( 1

π[1 + (zi − µ)2]

)
µ∝ −

n∑
i=1

log[1 + (zi − µ)2].

The likelihood for µ0 = 0 generated from the sample (−8,−2, 3, 10) is plotted in Figure
2. This likelihood has several local maxima and minima and our simple Newton-Raphson
procedure will have trouble locating the global maximum at µ̂ = −1.88.

1. Consistency and Asymptotic Normality of the MLE

Why is maximizing the sample likelihood a reasonable esimation strategy? Under minor
regulatory conditions we will show that the MLE is consistent, asymptotically normal and
asymptotically efficient (minimum variance). Our argument will be developed along the
following lines:

1. First, we will show that the population likelihood ℓ(θ) = plimℓn(θ) = E[ℓn(θ)] is
maximized at the true population parameter vector θ0, i.e. that

θ0 = argmax
θ∈Θ

ℓ(θ).

We say that the likelihood identifies θ0. This is a crucial result without which
likelihoods would be useless.

2. We will next argue that, by the Law of Large Numbers (LLN), the sample likeli-
hood ℓn(θ) converges to the population likelihood ℓ(θ) uniformly over θ ∈ Θ, that
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is
ℓn(θ)

p→ ℓ(θ) for all θ ∈ Θ, as n → ∞.

3. Our next step will be to use the Continuous Mapping Theorem (CMT) to assert
that since the argmax functional is continuous, the maximizer of ℓn(θ) converges
in probability to the maximizer of ℓ(θ), that is, our result in step 2 and the CMT
imply that as n → ∞

θ̂n = argmax
θ∈Θ

ℓn(θ)
p→ θ0 = argmax

θ∈Θ
ℓ(θ).

4. Having established the consistency of θ̂n, we will then concentrate our attention to
the asymptotic behavior of the sample likelihood ℓn(θ) in small neighborhoods of
θ0. Using a Taylor series expansion of the score sn(θ) around θ0 we will arrive at an
asymptotic linearity expression for the normalized random variable

√
n(θ̂n − θ0).

The Central Limit Theorem (CLT) and the Law of Large Numbers (LLN) will
then yield the asymptotic normality of the MLE.

5. Our last step will be to show that the MLE is “optimal” in the sense that it’s
variance attains the Cramer-Rao Lower Bound (CRLB). This will be done by
showing that, for likelihoods (and likelihoods only), the sandwich variance term
reduces to a single term.

The first theorem we present proves that, under minor regulatory conditions, the ex-
pected (population) likelihood ℓ(θ) is maximized at the true parameter vector θ0.

Theorem 1. (Identification of θ0). Suppose that {zi, i = 1, ..., n} is an i.i.d. sample from
a distribution with p.d.f. f(z|θ0) and

(A.1) (Parameter Space). θ0 ∈ Θ and Θ is a compact subset of Rp.
(A.2) (Density Identification). For every θ ̸= θ0 in Θ, f(z; θ) ̸= f(z; θ0); and
(A.3) (Absolute Integrability). For all θ ∈ Θ, E[| log f(z; θ)|] < ∞.

Then ℓ(θ) ≡ E[log f(z; θ)] has a unique maximum at θ0.

Proof: For any θ ∈ Θ,

ℓ(θ0)− ℓ(θ) = E
[
− log

f(z; θ)

f(z; θ0)

]
> − logE

[ f(z; θ)

f(z; θ0)

]
by Jensen’s inequality

= − log

∫
f(z; θ)

f(z; θ0)
f(z; θ0)dz

= − log 1 = 0.
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The second theorem proves consistency of the MLE.

Theorem 2. (Consistency of the MLE). In addition to (A.1)-(A.3), assume that
(A.4) (Smoothness) ℓ(θ) is continuous at each θ ∈ Θ with probability one.

Then ℓn(θ)
p→ ℓ(θ) uniformly over θ ∈ Θ, and θ̂n

p→ θ0.

Proof: We shall take as given that ℓn(θ)
p→ ℓ(θ) uniformly in θ ∈ Θ, and prove only

that this uniform convergence, Theorem 1, and our assumptions imply the consistency of
θ̂n. This is the (in)famous “3 epsilons” proof. Since θ̂n maximizes ℓn(θ), for any ϵ > 0 we
have that with probability approaching 1 (w.p.a.1),

(A) ℓn(θ̂n) > ℓn(θ0)− ϵ/3.

In addition, by the uniform convergence in probability of ℓn(θ) to ℓ(θ), we have that
w.p.a.1

(B) ℓ(θ̂n) > ℓn(θ̂n)− ϵ/3,

and that w.p.a.1
(C) ℓn(θ0) > ℓ(θ0)− ϵ/3.

Therefore w.p.a.1,

ℓ(θ̂n) > ℓn(θ̂n)− ϵ/3 > ℓn(θ0)− 2ϵ/3 > ℓ(θ0)− ϵ,

where the first inequality follows from (B), the second from (A), and the third from
(C). Thus, for any ϵ > 0, ℓ(θ̂n) > ℓ(θ0) − ϵ w.p.a.1. Let N be any open subset of Θ

containing θ0. Since N is open, its complement N c is closed, and since Θ is compact (and
therefore, by the Heine-Borel Theorem, closed and bounded), Θ∩N c is also compact. The
compactness of Θ ∩N c, Theorem 1, and (A.4), yield that supθ∈Θ∩N c ℓ(θ) ≡ ℓ(θ∗) < ℓ(θ0)

for some θ∗ ∈ Θ∩N c, since a continuous real-valued function defined on a compact set is
bounded and acheives maximum and minimum values1. Thus, choosing ϵ = ℓ(θ0)− ℓ(θ∗),
it follows that w.p.a.1 ℓ(θ̂n) > ℓ(θ∗), and hence θ̂n ∈ N w.p.a.1.

Consistency is a global property. To establish it, we needed to look at the asymptotic
behavior of the sample criterion function (here the sample likelihood) over all θ ∈ Θ.
Once we establish it, however, we need not worry any more about the behavior of the
criterion function away from θ0. Since θ̂n converges to θ0 as n becomes large, the only thing
about the likelihood that is relevant asymptotically is it’s behavior around θ0. Asymptotic
normality is a local property, and we will prove it by studying the local behavior of the
likelihood via a Taylor series expansion of the score around θ0.

Expanding sn(θ̂n) = ∇θℓn(θ̂n) around θ0 we obtain

0 =
1

n

n∑
i=1

∇θ log f(zi; θ0) +

[
1

n

n∑
i=1

∇θθ′ log f(zi; θn)

]
(θ̂n − θ0)

1See, for example, section 2.2 of Pugh C. C. (2002), Real Mathematical Analysis, Springer.
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where θn is a 1 × p vector that is element-wise between θ̂n and θ0. Solving for (θ̂n − θ0)

we obtain

(θ̂n − θ0) = −

[
1

n

n∑
i=1

∇θθ′ log f(zi; θn)

]−1
1

n

n∑
i=1

∇θ log f(zi; θ0),

and multiplying both sides with
√
n we get

√
n(θ̂n − θ0) = −

[
1

n

n∑
i=1

∇θθ′ log f(zi; θn)

]−1
1√
n

n∑
i=1

∇θ log f(zi; θ0).

By the Weak Law of Large Numbers and the Continuous Mapping Theorem, the first
term in the rhs converges in probability to H(θ0)

−1 = Ez[∇θθ′ℓn(θ0)]
−1. Also, by the

Central Limit Theorem, the second term converges to a normal random variable with
mean E[∇θℓn(θ0)] = 0 (see Theorem 1) and variance I(θ0) = Ez[∇θℓn(θ0)∇θℓn(θ0)

′].
Therefore,

√
n(θ̂n − θ0)

d→ −H(θ0)
−1N

(
0, I(θ0)

)
∼ N

(
0, H(θ0)

−1I(θ0)H(θ0)
−1
)
.

The outer product of the population score

I(θ) = Ez[∇θℓn(θ0)∇θℓn(θ)
′] = ∇θℓ(θ)∇θℓ(θ)

′ = s(θ)s(θ)′

plays an important role and is call the information matrix. The last step is to show
that the MLE attains the Cramer-Rao Lower Bound. But this is a direct result of the
information matrix equality.

Theorem 3. (Information Matrix Equality)
Under the conditions stated in the next theorem,

I(θ) = −H(θ).

Proof: Since f is a density ∫
f(z; θ)dz = 1.

Differentiating with respect to θ we obtain

0 =

∫
∇θf(z; θ)dz

=

∫
1

f(z; θ)
[∇θf(z; θ)]f(z; θ)dz

=

∫
[∇θ log f(z; θ)]f(z; θ)dz.
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Differentiating again with respect to θ′ we obtain

0 =

∫
[∇θθ′ log f(z; θ)]f(z; θ) + [∇θ log f(z; θ)][∇θf(z; θ)]

′dz

=

∫
[∇θθ′ log f(z; θ)]f(z; θ)dz +

∫
[∇θ log f(z; θ)]

1

f(z; θ)
[∇θf(z; θ)]

′f(z; θ)dz

=

∫
[∇θθ′ log f(z; θ)]f(z; θ)dz +

∫
[∇θ log f(z; θ)][∇θ log f(z; θ)]

′f(z; θ)dz

≡ E[∇θθ′ℓ(θ)] + E[∇θℓ(θ)∇θℓ(θ)
′].

Therefore, E[∇θθ′ℓ(θ)] = −E[∇θℓ(θ)∇θℓ(θ)
′].

This result means that we can reduce the sandwich in the variance of the MLE to a
single term. Variances of the sandwich form are never optimal, while single-term variances
are always optimal. The following theorem states the final result.

Theorem 4. (Asymptotic Normality and Efficiency of the MLE).
In addition to A.1-A5, assume that

(A.6) (Parameter Space) θ0 belongs to the interior of Θ.
(A.7) (Differentiability) ℓn(θ) is three times continuously differentiable in

√
n−neighborhoods

of θ0.
(A.8) (Regularity) For all θ ∈ Θ, the p× p matrix I(θ) = E[∇θℓn(θ)∇θℓn(θ)

′] is finite
and positive definite.

Then, as n → ∞
√
n(θ̂n − θ0)

d→ Np

(
0, I(θ0)

−1
)
.

Proof: See Chapter 5, Theorems 5.3 and 5.4, of Knight Keith (1999), Mathematical
Statistics, Crc Pr Inc.

This result can be used to construct asymptotically valid confidence intervals for θ0. In
particular, a (1− α) confidence interval for θ0 is given by

θ̂n ± zα/2[I(θ̂n)
−1/2/

√
n].

Example 6. (Bernoulli Likelihood, continued). Consider again the Bernoulli likelihood.
Taking the expectation of the sample Hessian evaluated at p0 we obtain

H(p0) = E[Hn(p0)] = E
[2zp0 − z − p20

p20(1− p0)2

]
= − p0(1− p0)

p20(1− p0)2
= − 1

p0(1− p0)
.

Checking the validity of the information matrix equality in this case

I(p0) = E[sn(p0)
2] = E

{[ (z − p0)

p(1− p0)

]2}
=

Var(z)
p20(1− p0)2

=
p0(1− p0)

p20(1− p0)2
=

1

p0(1− p0)
,
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we see that indeed H(p0) = −I(p0). Theorem 2 yields that p̂ = z
p→ p0, while Theorem 4

gives
√
n(p̂n − p0)

d→ N
(
0, p0(1− p0)

)
.

The asymptotic variance may be estimated by p̂(1 − p̂), so an asymptotic (1 − α) confi-
dence interval for p0 is given by p̂ ± zα/2

√
p̂(1− p̂)/n. In terms of our sample, n = 10,

p̂ = .4, I(p̂n)
−1 = .16, and a 95% asymptotic confidence interval for p is given by

.4± 1.96(
√

.16/10).

Example 7. (Cauchy Likelihood, continued).

The information matrix equality is also useful for computational purposes. It suggests
that we could replace the Hessian in the Newton-Raphson iteration by the outer product
of the score. This idea yields the BHHH algorithm. Let

Sn(θ) =
1

n



∂ℓn(θ; z1)

∂θ1

∂ℓn(θ; z1)

∂θ2
· · · ∂ℓn(θ; z1)

∂θp
∂ℓn(θ; z2)

∂θ1

∂ℓn(θ; z2)

∂θ2
· · · ∂ℓn(θ; z2)

∂θp
... ... . . . ...

∂ℓn(θ; zn)

∂θ1

∂ℓn(θ; zn)

∂θ2
· · · ∂ℓn(θ; zn)

∂θp


.

be the n× p matrix of partial derivatives evaluated at each observation {zi, i = 1, ..., n}.
Clearly then, the sample score sn(θ) is the sum of each column of Sn(θ), i.e., if we let
1 = (1, ..., 1)′ be an n× 1 vector of ones, and S

(j)
n (θ) be jth column of Sn(θ), j = 1, ..., p,

then
sn(θ) =

(
1′S(1)

n (θ), ..., 1′S(p)
n (θ)

)′
.

The sample outer product of the score is the p× p matrix given by

In(θ) = Sn(θ)
′Sn(θ).

The BHHH algorithm is:
1. Specify an initial value θ[0] ∈ Θ ⊂ Rp.
2. Given θ[i], compute θ[i+1] = θ[i] + In(θ[i])

−1sn(θ[i]).
3. Iterate until convergence, i.e. until ||θ[i+1] − θ[i]|| < ε.

Note the plus sign in front of the outer product of the score in step 2 (recall that H(θ) =

−J(θ)). The BH3 algorithm saves us the trouble of deriving the Hessian, but it is only
applicable with likelihoods.
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Finally, we present a result, called the delta method, that allows us to derive the as-
ymptotic distribution of any smooth function g(θ) of θ. For instance, in the ellipticity of
the earth example, we were interested in the parameter η = β1/β2 (β2 ̸= 0). This pa-
rameter is a smooth but non-linear function of the β’s, so our discussion regarding linear
transformations of the parameters in a previous lecture does not apply.

Theorem 5. (Delta Method) If
√
n(θ̂n − θ0)

d→ Np(0,Σ), and g(·) is a smooth m × 1

vector function of θ, then
√
n
(
g(θ̂)− g(θ0)

)
d→ Nm

(
0, G(θ0)ΣG(θ0)

′
)
,

where G(θ) = ∇θg(θ).

Proof: Expanding g(θ̂n) around θ0 we obtain

g(θ̂n) = g(θ0) +∇θg(θn)(θ̂n − θ0)

where θn is between θ̂n and θ0. Rearranging and rescaling we obtain
√
n
(
g(θ̂n)− g(θ0)

)
= ∇θg(θn)

√
n(θ̂n − θ0).

The result now follows from (a) the asymptotic distribution of
√
n(θ̂n − θ0), (b) the fact

that since θ̂n
p→ θ0 and θn is stuck between them, θn

p→ θ0 also, and (c) the continuous
mapping theorem that implies that ∇θg(θn)

p→ ∇θg(θ0) ≡ G(θ0).

This result is not particular to MLE’s, but applies to any consistent estimator with an
asymptotically normal distribution. It says that even when the function g is nonlinear
in θ, asymptotically only the linear part of it’s expansion around θ0 is important for
inference! This is a direct result of the consistency of θ̂n which implies that, for large n,
θ̂n is close to θ0, and the fact that, at least locally, smooth functions behave like linear
ones.

2. Maximum Likelihood Estimation Under Equality Restrictions

Now consider the problem of estimating θ under the restriction

g(θ) = 0

where g(θ) is a m× 1 vector function of the p× 1 vector θ, m ≤ p, such that the m× p

matrix of first partial derivatives of g, G(θ) = ∇θg(θ), is of full rank. For example, if g(θ)
is linear in θ, we can write g(θ) = Rθ− r, where R is a m× p matrix of rank m, and r is
an m vector. In this case G(θ) = R.

The restricted maximum likelihood estimator (RMLE) given by

θ̃n = argmax
θ,λ

ℓn(θ)− λ′g(θ)
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where λ is an m× 1 vector of Lagrange multipliers.

Theorem 6. Let assumptions A1-A8 hold and write
√
n(θ̂n − θ0)

d→ Np

(
0, I(θ0)

−1
)

for the asymptotic distribution of the unrestricted MLE θ̂n. Then, if g(θ0) = 0 and
G(θ) = ∇θg(θ) is of full rank, θ̃n

p→ θ0 and
√
n(θ̃n − θ0)

d→ Np

(
0, Ĩ(θ0)

−1
)

where

Ĩ(θ0)
−1 = I(θ0)

−1 − I(θ0)
−1G(θ0)

′[G(θ0)I(θ0)
−1G(θ0)]

−1G(θ0)I(θ0)
−1.

Furthermore, λ̃n
p→ 0, and

√
n λ̃n

d→ Nm

(
0, G(θ0)I(θ0)

−1G(θ0)
′) .

Proof: We will prove a stronger result, namely the joint asymptotic distribution θ̃n
and λ̃n. The marginals given in the Theorem will then follow directly. Differentiating we
obtain the FOC’s

∇θℓn(θ̃n)− λ̃′
n∇θg(θ̃n) = 0

g(θ̃n) = 0.

Expanding ∇θℓn(θ̃n) and g(θ̃n) around θ0 we obtain

∇θℓn(θ0) +
[
∇θθ′ℓ(θn)

]
(θ̃n − θ0)− λ̃′

n∇θg(θ̃n) = 0

g(θ0) +∇θg(θn)(θ̃n − θ0) = 0

Setting g(θ0) = 0, we rewrite this system as

sn(θ0) +Hn(θn)(θ̃n − θ0)− λ̃′
nG(θ̃n) = 0

G(θn)(θ̃n − θ0) = 0

In matrix notation the system is,[
Hn(θn) G(θ̃n)

′

G(θn) 0

][
(θ̃n − θ0)

λ̃n

]
=

[
−sn(θ0)

0

]
.

It follows that

√
n

[
(θ̃n − θ0)

λ̃n

]
p→

[
H(θ0) G(θ0)

′

G(θ0) 0

]−1 [
−
√
nsn(θ0)

0

]
.

The result now follows from observing that
√
nsn(θ0)

d→ N(0, I(θ0)
−1), and Lemma 5.1

regarding the inversion of partitioned matrices.
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The result in Theorem 6 applies to any asymptotically normal estimator. If
√
n(θ̂n −

θ0)
d→ Np(0, V ), then

√
n(θ̃n − θ0)

d→ Np(0, Ṽ ), where Ṽ = V − V G′[GV G]−1GV , and all
quantities that depend on θ are evaluated at θ = θ0. See the appendix of Manski and
MacFadden (1981).

Example 8. (Restricted Least Squares) Consider least squares estimation under linear
restrictions. Let β̃ denote the Restricted Least Squares (RLS) estimator. Then

β̃ − β = (X ′X)−1X ′u+ (X ′X)−1R′[R(X ′X)−1R′]−1(r −Rβ −R(X ′X)−1X ′u)

= (X ′X)−1X ′u− (X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1X ′u

=
[
I − (X ′X)−1R′[R(X ′X)−1R′]−1R

]
(X ′X)−1X ′u.

The variance of β̃ is now given by

V (β̃) = σ2
u

[
I − (X ′X)−1R′[R(X ′X)−1R′]−1R

]
(X ′X)−1

[
I −R′[R(X ′X)−1R′]−1R(X ′X)−1

]
= σ2

u(X
′X)−1 − (X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1.

This is of the form of J̃(θ0)−1 in Theorem 6, with J(θ0)
−1 = σ2

u(X
′X)−1 and G(θ0) = R.

In fact, we can write
V (β̃) = σ̃2

u(X
′X)−1

where
σ̃2
u = σ2

u − (X ′X)−1R′[R(X ′X)−1R′]−1R,

is the error variance under the restriction. Clearly, σ̃2
u < σ2

u.

3. Testing Using the Likelihood

Finally, consider the problem of testing the hypothesis

H0 : g(θ0) = 0

against the alternative
H1 : g(θ0) ̸= 0

where g(·) is a m × 1 vector function of the p × 1 vector θ, m ≤ p. For example, if g(θ)
is linear in θ we can write g(θ) = Rθ − r, where R is a m × p(m < p) matrix of known
constants and r is a m× 1 known vector.

The test statistics are defined as

ξLR = 2n[ℓn(θ̂n)− ℓn(θ̃n)]

ξW = ng(θ̂n)
′[G(θ̂n)

′In(θ̂n)
−1G(θ̂n)]

−1g(θ̂n)

ξLM = nsn(θ̃n)
′In(θ̃n)

−1sn(θ̃n)



16 Lecture 8

where, as before, θ̂n and θ̃n are the unrestricted and restricted estimates, respectively.
The Likelihood Ratio test statistic ξLR compares the values of the likelihood at the two

estimates. Since imposing a restriction in estimation can only decrease the likelihood, it is
clear that ℓ(θ̂n) ≥ ℓ(θ̃n). If imposing the restriction g(θ) = 0 does not affect the likelihood
very much, we say that the data are compatible with the null and we accept it. On the
other hand, if ℓ(θ̃n) is much smaller than ℓ(θ̂n), then the restriction puts an undue strain
on the data, and we should reject the null.

The Wald test statistic ξW , on the other hand, is based on the distance between g(θ̂n),
the value of the restriction evaluated at the unrestricted estimate, from zero, which is the
value of g(θ0) under the null. If we find that g(θ̂n) differs from the zero vector by a lot, we
could interpret this as evidence against the null, while if it happens to be close to zero,
then the null seems reasonable and we should accept it.

Finally, the Lagrange Multiplier statistic ξLM is based on the slope of the likelihood (as
measured by the score) at the restricted estimate θ̃n. The slope of the likelihood at the
unrestricted estimate θ̂n is by definition zero, so if we find that the slope at θ̃n is much
bigger than zero, it would cast doubt on the null. If, on the other hand, we find that the
slope of the likelihood at θ̃n is close to zero, we would be inclined to accept the null.

Example 9. Assume there is only one parameter in the model, so that p = 1, and
consider the null hypothesis H0 : θ = θ0. Figure 3 plots ℓn(θ) against θ. It is clear that
ξLR is based on the distance AB, ξW on the distance CD and ξLM on the slope of the
line EF . If the null hypothesis is correct, all three quantities should be close to zero for
sufficiently large samples. For similar expositions see Buse (1982) and Engle (1984).

Another geometrical interpretation, which provides even more insight, is suggested by
Pagan (1981). Consider Figure 4, where sn(θ) is plotted against θ. The unrestricted
MLE, θ̂n, is obtained by setting sn(θ) = 0, i.e., at point B. It is easily seen that

ℓn(θ̂)− ℓn(θ0) =

∫ θ̂

θ0

sn(θ)dθ = area(ABC).

Hence, ξLR = 2[ℓn(θ̂)− ℓ(θ0)] = 2area(ABC). Furthermore, as g(θ) = θ − θ0 and G(θ) =

1, we have ξW = (θ̂n − θ0)I(θ̂n). An estimate of I(θ̂n) is given by −∇θθ′ℓn(θ̂n), i.e.,
AD/AB. Hence, ξW = (AB)2AD/AB = 2area(ABD). Finally, the LM statistic depends
on sn(θ0), which is AC. Using −∇θθ′ℓn(θ0) as an estimate of In(θ0), we obtain ξLM =

(AC)2AE/AC = 2area(AEC).
Three comments are worth making:

(i) Since the three tests are based on three different quantities, they may yield con-
flicting inferences if the same critical value is used.

(ii) The LM test depends only on sn(θ0) and the slope of sn(θ) at θ0. We can draw
many lines through C with the same slope at C, the dotted line being an example.
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Figure 3. A graphical interpretation of the three classical test statistics
due to Buse (1982).

Figure 4. Another graphical interpretation of the three classical test sta-
tistics based on the score sn(θ) due to Pagan (1981).

This implies there may be other likelihood functions (alternative hypotheses)
with the same slope at θ0 giving rise to the same LM statistic. We call this the
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invariance property of the LM test. Alternative hypotheses giving rise to the same
LM test are said to be equivalent.

(iii) The variance estimate of the LM statistic can be estimated in a number of ways
which are asymptotically equivalent. This leads to different versions of test sta-
tistics with different properties in small samples.

But what do we mean by “close” and “almost zero”? In order to implement a test we
need exact critical values that if our statistics exceed should lead us to reject the null.
The following theorem tells us that χ2

m,α is the correct critical value for all three likelihood
tests.

Theorem 7. Under the null, the three statistics are asymptotically equivalent and dis-
tributed as χ2

m.

Thus our decision rule is to reject the null if the ξLR, ξW , or ξLM statistics exceed χ2
m,α.

Asymptotically, the decision of all three test statistics will be the same, so at least in large
samples it shouldn’t matter which one we employ. In finite samples, however, they may
disagree.

So, how do we decide which one to use? Since all three tests are asymptotically equiv-
alent, and since our justification for using them is only valid in large samples, there is
no theoretical reason to prefer one over the others. Therefore, people usually employ the
statistic that is the most convenient to estimate. To implement the Wald test we only
need θ̂n, i.e. it is enough to have estimates of the unrestricted model (estimation under
the alternative). On the other hand, the LM test requires the restricted estimates θ̃n, so
to implement it we will need to first compute the likelihood under the null. The LR test,
finally, needs both the restricted and unrestricted estimates, and it is thus the hardest to
implement. In applications, unrestricted estimation is usually the simplest, so the Wald
test is a favorite among practitioners.

Example 10. (Multinomial Distribution and Pearson’s Goodness-of-Fit Test) Consider a
multinomial distribution with p classes and let the probability that an observation belongs
to the jth class be θj, such that

∑p
j=1 θj = 1. Given a random sample of n observations,

we denote the frequency of the jth class by nj, so that
∑p

j=1 nj = n. The likelihood is
given by

Ln(y; θ) =
n!

n1!n2! · · ·np!
θn1
1 θn2

2 · · · θnp
p = n!

p∏
j=1

θ
nj

j

nj!
,
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where, y = (n1, n2, ..., np)
′ and θ = (θ1, θ2, ..., θp)

′. The LR, W, and LM statistics for
testing the hypothesis

H0 : θj = θj0, j = 1, ..., p, [θj0 > 0,

p∑
j=1

θj0 = 1]

are given by

ξLR = 2

p∑
j=1

nj log

(
nj

nθj0

)
,

ξW =

p∑
j=1

(nj − nθj0)
2

nj

,

and

ξLM =

p∑
j=1

(nj − nθj0)
2

nθj0
.

Note that the LM statistic is simply the classical Pearson goodness-of-fit test statistic.
As an application, consider the digits of π and assume we wish to test the hypothesis

that they all occur with the same frequency. Let θj, j = 1, ..., 10 be the frequency of each
of the digits 0 through 9, and write the null as

H0 : θj =
1

10
, j = 1, ..., 10.

The first 10,000 digits of π yield the following table,

j : 0 1 2 3 4 5 6 7 8 9

nj : 968 1026 1021 975 1012 1046 1021 969 948 1014

The test statistics along with their p-values from the χ2
10 distribution are:

ξLR ξW ξLM
statistic 9.357 9.424 9.328

p-value .501 .508 .499

The null is accepted by all three tests.

Example 11. (Least Squares Estimation) See Johnston and DiNardo (pp. 142-151).
Consider the linear regression model y = Xβ+u with normal errors, and assume we wish
to test the linear in β restriction

H0 : g(β) ≡ Rβ − r = 0,
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where R is a m × p (m < p) matrix of known constants and r is a m × 1 known vector.
The likelihood ratio test statistic is given by

ξLR = 2[ℓ(θ̂)− ℓ(θ̃)]

= n[log(ũ′ũ)− log(û′û)]

= n log
(
1 +

ũ′ũ− û′û

û′û

)
.

The Wald test statistic is given by

ξW = (Rβ̂ − r)′[RJ(β0)
−1R′]−1(Rβ̂ − r)

=
(Rβ̂ − r)′[R(X ′X)−1R′]−1(Rβ̂ − r)

σ̂2

=
n(ũ′ũ− û′û)

û′û
,

and the Lagrange multiplier test statistic is

ξLM =
n(ũ′ũ− û′û)

ũ′ũ

= nR2
a.

where R2
a is the R-squared of the auxiliary regression of ũ on X. All of these statistics are

asymptotically distributed as χ2
m. See Johnston and DiNardo (pp. 142-151) for details.

4. Profile Likelihood

It often happens that the parameter vector θ can be partitioned into two subsets θ =

(θ1, θ2) Given the joint likelihood L(θ, η) the profile likelihood of θ is

L(θ) = max
η

L(θ, η),

where the maximization over η is performed at each fixed value of θ. Note that this is
not the same as the estimated likelihood L(θ, η̂), the likelihood evaluated at the mle of η.
In general, at each fixed θ, the maximizer of the above problem is a function of θ, say
η̂(θ) and the profile likelihood is L(θ) = L(θ, η̂(θ)). If η is well estimated (i.e., η̂ has a
small s.e.), the estimated likelihood L(θ, η̂) and the profile likelihood L(θ, η̂(θ)) will be
close. Otherwise, there will be significant differences. In any case, inference should be
based only on the profile likelihood, since it takes into account the uncertainty about η,
as opposed to the estimated likelihood that treats η as ‘fixed’ to its mle value without
uncertainty.
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Therefore, the set {
θ,

L(θ)

L(θ̂)
> e−

1
2
χ2
p,(1−α)

}
is a 100(1− α)% confidence region for θ.

Example 12. Suppose x1, ..., xn is and iid sample from N(µ, σ2) with both parameters
µ and σ2 unknown. The likelihood function of (µ, σ2) is given by

L(µ, σ2) =

(
1√
2πσ2

)n

exp

{
− 1

2σ2

∑
i

(xi − µ)2

}
.

At each fixed µ the mle of σ2 is given by

σ̂2(µ) =
1

n

∑
i

(xi − µ)2,

so the profile likelihood of µ is given by

L(µ) = constant × [σ̂2(µ)]−n/2.

This is not the same as the estimated likelihood

L(µ, σ̂2) = constant × exp

{
− 1

2σ̂2

∑
i

(xi − µ)2

}
,

the slice of L(µ, σ2) at σ2 = σ̂2. The two will be close if σ2 is estimated with a small s.e..
In any case, the profile likelihood is always wider than the estimated one, as it accounts
for the uncertaintly over σ2 too.

Fow example, suppose we observe

4.1. Low-Dose Aspirin Consumption and the Risk of a Heart Attack. In a land-
mark study of the preventive benefits of low-dose daily aspirin consumption for healthy
individuals (Steering Committee of the Physicians Health Study Research Group 1989),
a total of 22,071 healthy physicians were randomized to either aspirin or placebo groups,
and were followed for an average of 5 years. The number of heart attacks and strokes
during follow-up are shown in Table 1.

The main medical question is statistical: is aspirin beneficial? Obviously, there were
fewer heart attacks in the aspirin group that the placebo group, 139 versun 239, but we
face question: is the evidence in favor of low-dose daily aspirin usage strong enough? The
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Table 1. The number of heart attacks and strokes during follow-up in the
Physician’s Health Study.

Heart
Group Attacks Strokes Total
Aspirin 139 119 11,037
Placebo 239 98 11,034
Total 378 217 22,071

side effects, as measured by the number of strokes, were greater in the aspirin group,
although 119 versus 98 are not as convincing a s the benefit.

Suppose we express the benefit of aspirine as a relative risk

139/11, 037

239/11, 034
= 0.581.

A relative risk of 1 indicates that aspirin is not beneficial, while a value much less than
1 indicates a benefit. Is 0.581 ‘far enough’ from 1? Answering such a question requires a
stocastic model that describes the data we observe.

Assume that the number numer of heart attacks in the aspirin group, xa, follows
binomial(na, θa), while the number of heart attacks in the placebo group, xp, follows
binomial(np, θp), and that xa and xp are independent. The likelihood in terms of the
parameters (θa, θp) is given by

L(θa, θp) = e−naθa
(naθa)

xa

xa!
e−npθp

(npθp)
xp

xp!

= constant × e−(naθa+npθp)θxa
a θxp

p .

Changing variables to θ = θa/θp and θp the likelihood becomes

L(θ, θp) = constant × e−θp(naθ+np)θxaθxa+xp
p .

Differenting w.r.t. θp we get ,

∂L(θ, θp)

∂θp
= −(naθ + np)e

−θp(naθ+np)θxaθxa+xp
p + e−θp(naθ+np)θxa(xa + xp)θ

xa+xp−1
p

= e−θp(naθ+np)θxa [(xa + xp)θ
xa+xp−1
p − (naθ + np)θ

xa+xp
p ].

Setting this equal to 0 we obtain the mle of θp as a function of θ,

e−θ̂p(naθ+np)θxa [(xa + xp)θ̂
xa+xp−1
p − (naθ + np)θ̂

xa+xp
p ] = 0

⇒ (xa + xp)θ̂
xa+xp−1
p = (naθ + np)θ̂

xa+xp
p

⇒ θ̂p(θ) =
xa + xp

naθ + np

.
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Substituting this back to the likelihood, we obtain the profile likelihood of θ,

L(θ) = constant × e−(xa+xp)θxa

(
xa + xp

naθ + np

)xa+xp

= constant × θxa

(naθ + np)xa+xp
.

Differenting w.r.t. θ we get

dL(θ)

dθ
=

d

dθ

[
θxa(naθ + np)

−(xa+xp)
]

= xaθ
xa−1(naθ + np)

−(xa+xp) − θxa(xa + xp)(naθ + np)
−(xa+xp)−1na.

Setting the derivative equal to 0, we obtain the mle of the relative risk θ,

xa

θ̂
=

na(xa + xp)

naθ̂ + np

⇒ θ̂

xa

=
θ̂ + np/na

xa + xp

⇒ θ̂

[
1

xa

− 1

xa + xp

]
=

np/na

xa + xp

⇒ θ̂ =
np/na

xp/xa

⇒ θ̂ =
xa/na

xp/np

,

as expected. We have already computed this to be θ̂ = 0.581. Evaluating the profile
likelihood at the mle, we obtain

Lmax = L(θ̂) =

(
xa + xp

xa

)xa
(
xa + xp

xp/np

)xp

.

Setting the constant in the profile likelihood equal to the inverse of this quantity we obtain
the normalized profile likelihood that ranges from 0 to 1,

L(θ) =
1

Lmax

× θxa

(naθ + np)xa+xp

=

(
naθ

xa

)xa
(
np

xp

)xp
(

xa + xp

naθ + np

)xa+xp

,

which we can now use to do inference about θ.
Figure 5(a) graphs the profile likelihood for heart attacks. Using a 15% cut-off value we

find that a 95% approximate CI for θ is given by (0.471, 0.714). We see that the relative
risk is significantly less than 1 at the 5% level, and conclude that low-dose daily aspirin
consumption significantly reduces the risk of a heart attack.
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The exact same analysis yieds that the relative risk of a stroke is
119/11, 037

98/11, 034
= 1.214.

Although this is greater than 1, the approximate 95% CI obtained from the profile likeli-
hood for strokes, presented in Figure 5(b), is (0.932, 1.586), so the relative risk of strokes is
not significantly different from 1 at the 5% level. We conclude that daily low-dose apirin
consumption significantly reduces the relative risk of a heart attack, without affecting
significantly the relative risk of a stroke.

The R code used to produce Figure 5 is given below.
par(mfrow=c(1,2))

# Heart Attacks
Like <- function(theta){

L <- 0
L <- (11037*theta/(11037*theta+11034))^139 *

(1-(11037*theta/(11037*theta+11034)))^239
return(L)
}

thetahat <- (139/11037)/(239/11034)
thetahat
Like(thetahat)
thetaval <- seq(0.2,1,.001)
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Lval <- Like(thetaval)/Like(thetahat)
plot(thetaval, Lval,type="l",xlab=expression(theta),ylab=expression(L(theta)),

main="(a) Heart Attacks")
abline(h=0.15)
abline(v=0.472,lty=2)
abline(v=0.714,lty=2)
cbind(thetaval,round(Lval,3))

# Strokes
Like <- function(theta){

L <- 0
L <- (11037*theta/(11037*theta+11034))^119 *

(1-(11037*theta/(11037*theta+11034)))^98
return(L)
}

thetahat <- (119/11037)/(98/11034)
thetahat
Like(thetahat)
thetaval <- seq(0.65,2,.001)
Lval <- Like(thetaval)/Like(thetahat)
plot(thetaval, Lval,type="l",xlab=expression(theta),ylab=expression(L(theta)),

main="(b) Strokes")
abline(h=0.15)
abline(v=0.932,lty=2)
abline(v=1.586,lty=2)
cbind(thetaval,round(Lval,3))

5. Numerical Optimization of the Likelihood

To compute the mle by Newton-Raphson iterations we need to be able to compute the
sample score sn(θ) and the sample Hessian Hn(θ) at any given θ ∈ Θ. Often, analytic
expression of these quantities can easily be derived by differentiating the likelihood. If,
however, analytic expressions are too hard to derive, or we are just too lazy to do the
work, we can always resort to numerical derivatives.

Numerical derivatives exploit the definition of a derivative. The derivative of a function
f(x) at a point x0 is given by

f ′(x0) = lim
h→0

f(x0 + h/2)− f(x0 − h/2)

h
,
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so for h small,

f ′(x0) ≈
f(x0 + h/2)− f(x0 − h/2)

h
.

Similarly, the second derivative is approximated by

f ′′(x0) ≈

f(x0 + h)− f(x0)

h
− f(x0)− f(x0 − h)

h
h

=
f(x0 + h) + f(x0 − h)− 2f(x0)

h2
.

Similar arguments produce the following approximate formulae for partial derivatives,

∂f(x0, y0)

∂x
≈ f(x0 + h/2, y0)− f(x0 − h/2, y0)

h
,

∂f(x0, y0)

∂y
≈ f(x0, y0 + h/2)− f(x0, y0 − h/2)

h

and
∂f(x0, y0)

∂x∂y
≈ [f(x0 + h/2, y0 + h/2)− f(x0 + h/2, y0 − h/2)]

h2

− [f(x0 − h/2, y0 + h/2)− f(x0 − h/2, y0 − h/2)]

h2
.

To achieve accurate approximations, function evaluations should be done in double
precision (16 significant digits), and h should be chosen carefully. Letting δ be the machine
precision, Press et. al. (1997) suggest choosing h according to the rule

h(x0) ∼ δ1/3|x0|.

This formula adjusts h for each x0. This, however, does not seem necessary, so we will
only use a constant h given by h ∼ δ1/3. For example, when evaluations of f are done in
double precision we have δ = 10−16, and h = δ1/3 = 10−5 = .00001 approximately.

Intuition suggests that the second derivative should be approximable with only half
the accuracy of the first one, so a larger h should be used. In theory, the same h can
be used for both first and second derivatives: the numerator of f ′′(x0) can be written
as (f(x0 + h) − f(x0)) + (f(x0 − h) − f(x0)), and since each of these quantities can be
approximated with the same accuracy as f ′(x0), it follows that the same h can be used
in both approximations. In practise, however, second derivatives are indeed harder to
estimate and it is advisable that a larger h be used (e.g. h = 10−4). Of course, nothing
prevents us from picking different h’s for different derivatives: although the formulas above
are written in terms of a single h, we are free to vary it as we please (e.g. choose h = 10−5

for first derivatives and h = 10−4 for second ones). The following simple example will
demonstrate the issues at hand.



Maximum Likelihood Estimation and Inference 27

Example 13. Suppose we wish to numerically approximate the derivative of f(x) =

exp(x) at x0 = 2, which is equal to f ′(2) = exp(2) ≈ 7.389056098930650 (up to 16 digits).
Using double precision in our calculations (16 significant digits), we obtain the following
numerical estimates of f ′(x0) for various choices of h :

h Numericalf ′(2) Absolute Error
10−1 7.392135257174780 0.003079158244129

10−2 7.389086886702770 0.000030787772117

10−3 7.389056406808870 0.000000307878219

10−4 7.389056102002910 0.000000003072261

10−5 7.389056098805470 0.000000000125183

10−6 7.389056100315370 0.000000001384721

10−7 7.389056104756260 0.000000005825612

10−8 7.389056122519830 0.000000023589180

10−9 7.389056477791200 0.000000378860548

10−10 7.389058254148040 0.000002155217388

10−11 7.389022727011250 0.000033371919400

10−12 7.389644451905040 0.000588352974390

10−13 7.398526236102040 0.009470137171392

10−14 7.371880883511040 0.017175215419612

10−15 6.217248937900880 1.171807161029770

10−16 0.000000000000000 7.389056098930650

10−17 0.000000000000000 7.389056098930650

The absolute error decreases up to h = 10−5 and then increases again. Happily, however,
h’s between 10−4 and 10−8 produce reasonably accurate results (accurate up to the 7th
decimal place), so any choice of h in this range would work acceptably here. As we would
expect, the numerical derivative vanishes for h ≤ 10−16, since these h’s exceed the machine
precision.

Turning now to the numerical approximation of the second derivative of f(x) at x0 =

2, we again have f ′′(2) = exp(2) ≈ 7.389056098930650, and we obtain the following
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approximation results for various choices of h :

h Numericalf ′′(2) Absolute Error
10−1 7.395215698561940 0.006159599631289

10−2 7.389117674598820 0.000061575668171

10−3 7.389056715823020 0.000000616892367

10−4 7.389056122519830 0.000000023589182

10−5 7.389040490579640 0.000015608351005

10−6 7.389644451905040 0.000588352974389

10−7 7.105427357601000 0.283628741329652

10−8 0.000000000000000 7.389056098930650

10−9 0.000000000000000 7.389056098930650

We see that the absolute error is now minimized at h = 10−4, and although h = 10−5 also
produces reasonable results, the performance of the approximation deteriorates rapidly
thereafter. Indeed, the approximation vanishes at h ≥ 10−8, which is in keeping with our
intuition that the overall approximation has only half the accuracy of the first derivative
approximation which vanishes at h ≥ 10−16. We conclude that, although theory is not
incorrect in allowing the same h for both first and second derivatives, prudence requires
a larger h in the approximation of the second derivative.

To apply numerical derivatives to the likelihood function, write the sample score as the
p vector sn(θ) = [sin(θ)]i=1,...,p, and approximate its elements by

sin(θ) ≈
ℓn(θ1, ..., θi + h/2, ..., θp)− ℓn(θ1, ..., θi − h/2, ..., θp)

h
.

Similarly, let Hn(θ) = [hi,j
n (θ)]i,j=1,...,p, be the p× p sample Hessian matrix, and approxi-

mate its elements by

hi,j
n (θ) ≈ 1

h2
{[ℓn(θ1, ..., θi + h/2, ..., θj + h/2, ..., θp)− ℓn(θ1, ..., θi + h/2, ..., θj − h/2, ..., θp)]

−[ℓn(θ1, ..., θi − h/2, ..., θj + h/2, ..., θp)− ℓn(θ1, ..., θi − h/2, ..., θj − h/2, ..., θp)]}.

Assuming that the log-likelihood is globally concave, the mle θ̂n can now be computed
by Newton-Raphson iterations, and the variance-covariance of θ̂n may be computed by
Var(θ̂n) = [−Hn(θ̂n)]

−1.

6. Application: Testing the Uniformity of the Lottery

Johnson and Klotz (1993) considered the problem of testing the uniformity of the draws
of Lotto America using a sample of n = 200 lotteries contacted form February 8, 1989 to
January 5, 1991. The data for these lotteries are given in Table 1 of their paper. In each
lottery m = 6 numbers are drawn, without replacement, from an urn containing p = 54
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numbers. Letting θ = (θ1, θ2, ..., θp)
′ be the p vector of probabilities for each of the p

numbers, we wish to test the hypothesis that θj = 1/p, j = 1, ..., p.
The fact that the m numbers of each lottery are drawn without replacement makes the

binomial distribution inappropriate in this application. Instead, the probability of a draw
X = (xi1, xi2, ..., xim) is given by

P [X = (xi1, xi2, ..., xim); θ] = θxi1
× θxi2

1− θxi1

× θxi3

1− θxi1
− θxi2

×

· · · × θxim

1− θxi1
− · · · − θxi(m−1)

.

The likelihood of n lotteries is, therefore, given by

Ln(θ; x) =
n∏

i=1

P [X = (xi1, xi2, ..., xim); θ],

and the log-likelihood is

ℓn(θ; x) =
n∑

i=1

logP [X = (xi1, xi2, ..., xim); θ].

The mle is defined as

θ̂n = argmax
θ∈(0,1)p

ℓn(θ; x), s.t.
p∑

j=1

θj = 1.

We impose the summing-up constraint by maximizing with respect to the first p − 1

elements of θ and then setting θp = 1−
∑p−1

j=1 θj.
Note that we use the un-normalized log-likelihood (we have not divided by n), and like-

wise, we will use the un-normalized score and Hessian. The reason is that according to
Theorem 4 the variance-covariance of θ̂n can be estimated by [Hn(θ̂n)]

−1/n = [nHn(θ̂n)]
−1,

so if we do not normalize we can use the second derivative directly. In what follows, there-
fore, sn and Hn will be the first and second derivatives of the un-normalized likelihood,
i.e. they will be n times the quantities we worked with above. With this new definitions,
the test statistics become

ξLR = 2[ℓn(θ̂n)− ℓn(θ̃n)]

ξW = g(θ̂n)
′[G(θ̂n)

′In(θ̂n)
−1G(θ̂n)]

−1g(θ̂n)

ξLM = sn(θ̃n)
′In(θ̃n)

−1sn(θ̃n)

where, as before, θ̂n and θ̃n are the unrestricted and restricted estimates, respectively.
Although this log-likelihood is globally concave, analytical expressions for the score vec-

tor and the Hessian matrix are very complicated. We, therefore, approximate numerically
sn and Hn and then apply Newton-Raphson iterations to compute the mle. The S code,
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initialized at θ[j0] = 1/p = 1/54, converged in 6 steps and approximately 42 minutes (7
minutes/iteration) on a 2.50 GHz Dell Latitude laptop running on Windows XP:

iteration time started log-likelihood
0 18 : 32 −4729.238 (at θj = 1/54)

1 18 : 38 −4702.306

2 18 : 45 −4696.547

3 18 : 52 −4695.497

4 18 : 59 −4695.382

5 19 : 05 −4695.380

6 19 : 12 −4695.380 (at the mle)

Execution time can be reduced considerably if Fortran or C were used. S, like most
higher-level languages, is slow on iterations, and since θ is a large vector here, many itera-
tions are needed to approximate the score and especially the Hessian. Also, S for Windows
is configured to use only half of the available CPU, so as other applications can run si-
multaneously. Accordingly, execution is slowed down to half speed.

Standard errors of the first 53 θ’s are computed as the square root of the diagonal of
the 53× 53 matrix [−Hn(θ̂n)]

−1. The standard error of θ̂54 was computed by

σ̂(θ̂54) =

√
e′[−Hn(θ̂n)]−1e ,

where e is a 53×1 vector of ones.The estimates along with their standard errors are given
in Table 1.

In order to test the uniformity hypothesis

H0 : θj0 = 1/p, j = 1, ..., p,

Johnson and Klotz (1993) use the LR test. From our results above we get

ξLR = 2[ℓ(θ̂n)− ℓ(θ0)] = 2(4, 729.238− 4, 695.380) = 67.715.

For this null, ξLR
a∼ χ2

53, so we find that the p-value of the test is equal to .08403. Thus,
we accept the null at the 5% level, but we reject it at the 10%. Johnson and Klotz (1993)
report only the LR test. We can, however, easily implement all three. The test statistics
and their p-values from the χ2

53 distribution are:

ξLR ξW ξLM
statistic 67.715 76.531 69.484

p-value .08403 .01889 .06386

We see that the LM and Wald tests yield even less support for the null. Notably, the
Wald test rejects the null even at the 5% level.

Johnson and Klotz (1993) conclude that “the moderate evidence for non-uniformity is
a result of the mechanical mixing process, in which balls enter the urn in sequence (always
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Table 2

j θ̂jn σ̂(θ̂jn) j θ̂jn σ̂(θ̂jn) j θ̂jn σ̂(θ̂jn)

1 .02615 .00464 19 .02368 .00443 37 .01840 .00389

2 .02018 .00408 20 .01124 .00299 38 .01992 .00403

3 .03106 .00510 21 .00975 .00280 39 .01976 .00400

4 .02701 .00471 22 .01136 .00302 40 .02069 .00410

5 .01480 .00346 23 .01576 .00359 41 .01400 .00337

6 .01410 .00340 24 .01917 .00396 42 .02175 .00422

7 .02371 .00443 25 .02267 .00432 43 .02264 .00431

8 .01974 .00399 26 .01923 .00397 44 .01658 .00368

9 .02099 .00416 27 .01801 .00381 45 .02489 .00457

10 .02095 .00415 28 .01835 .00388 46 .01999 .00404

11 .01922 .00397 29 .01308 .00325 47 .01147 .00305

12 .01308 .00325 30 .02348 .00439 48 .01722 .00373

13 .02280 .00434 31 .01742 .00377 49 .01566 .00357

14 .01400 .00337 32 .01912 .00395 50 .01733 .00375

15 .01409 .00339 33 .01733 .00375 51 .01392 .00335

16 .02227 .00432 34 .01645 .00365 52 .01760 .00381

17 .02552 .00460 35 .01983 .00401 53 .01823 .00385

18 .01302 .00323 36 .01572 .00358 54 .01560 .00355
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Figure 6

the same), are mixed, and then are drawn out at the bottom. Roughly, smaller-numbered



32 Lecture 8

balls appear to have slightly higher odds of selection because they fall to the bottom first.”
Figure 5 plots θj against j. The dotted line is the expectation θj = 1/54, while the two
solid lines are the linear regressions of θj (a) on j and (b) on j, j2 and j3 (i.e. a spline).
There is substantial evidence that small numbers are picked with probability greater than
1/54, middle numbers are picked with probability equal to 1/54, and large numbers are
picked with probability less than 1/54. We conclude that Lottery America at the time
(early 1990’s) needed to improve the mixing process inside the urn.

The R code used here is given below.
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01 # Ref: Johnson R., and Klotz J., (1993) "Estimating Hot Numbers and
02 # Testing Uniformity for the Lottery", JASA, vol. 88, pp. 662-668.
03
04 Like <- function(p){
05 L <- 0
06 for (i in 1:n){
07 L <- L + log(
08 p[X[i,1]] *
09 p[X[i,2]]/(1-p[X[i,1]]) *
10 p[X[i,3]]/(1-p[X[i,1]]-p[X[i,2]]) *
11 p[X[i,4]]/(1-p[X[i,1]]-p[X[i,2]]-p[X[i,3]]) *
12 p[X[i,5]]/(1-p[X[i,1]]-p[X[i,2]]-p[X[i,3]]-p[X[i,4]]) *
13 p[X[i,6]]/(1-p[X[i,1]]-p[X[i,2]]-p[X[i,3]]-p[X[i,4]]-p[X[i,5]]) )
14 }
15 return(L)
16 }
17
18 X <- t(matrix(c(
19 06, 01, 38, 05, 11, 30,
20 40, 37, 51, 04, 19, 30,
21 40, 49, 09, 17, 41, 33,
22 ......................
23 26, 20, 12, 32, 39, 35
24 ),6,200))
25
26 n <- length(X[,1])
27 p <- rep(1/54,54)
28 print(Like(p))
29
30 diff <- 100
31 while(diff > 0.0001){
32 h <- 0.00001
33 S <- rep(0,53)
34 for(j in 1:53){
35 pv1 <- p
36 pv2 <- p
37 pv1[j] <- pv1[j] + h/2
38 pv1[54] <- 1-sum(pv1[1:53])
39 pv2[j] <- pv2[j] - h/2
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40 pv2[54] <- 1-sum(pv2[1:53])
41 S[j] <- (Like(pv1)-Like(pv2))/h
42 }
43 h <- 0.0001
44 H <- matrix(0,53,53)
45 for(i in 1:53){
46 for(j in 1:53){
47 pv1 <- p
48 pv2 <- p
49 pv3 <- p
50 pv4 <- p
51 pv1[i] <- pv1[i] + h/2
52 pv1[j] <- pv1[j] + h/2
53 pv1[54] <- 1-sum(pv1[1:53])
54 pv2[i] <- pv2[i] + h/2
55 pv2[j] <- pv2[j] - h/2
56 pv2[54] <- 1-sum(pv2[1:53])
57 pv3[i] <- pv3[i] - h/2
58 pv3[j] <- pv3[j] + h/2
59 pv3[54] <- 1-sum(pv3[1:53])
60 pv4[i] <- pv4[i] - h/2
61 pv4[j] <- pv4[j] - h/2
62 pv4[54] <- 1-sum(pv4[1:53])
63 H[i,j] <- ((Like(pv1)-Like(pv2))-(Like(pv3)-Like(pv4)))/(h^2)
64 }
65 }
66 pn <- p[1:53] - solve(H) %*% S # Newton step
67 pn <- c(pn,1-sum(pn))
68 print(pn)
69 print(Like(pn))
70 diff <- abs(Like(p)-Like(pn))
71 p <- pn
72 }
73
74 sd <- c(sqrt(diag(solve(-H))),0)
75 print(cbind(p,sd))
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By shape of likelihood, the news were told.

– William Shakespeare,
King Henry IV, Act 1, Scene 1.

“You haven’t told me yet,” said Lady Nuttal, ”What it is your fiance does
for a living.”

“He’s a statistician,” replied Lamia, with an annoying sense of being on
the defensive.

Lady Nuttal was obviously taken aback. It had not occurred to her that
statisticians entered into normal social relationships. The species, she would
have surmised, was perpetuated in some collateral manner, like mules.

“But Aunt Sara, it’s a very interesting profession,” said Lamia warmly.
“I don’t doubt it,” said her aunt, who obviously doubted it very much.

“To express anything important in mere figures is so plainly impossible
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that there must be endless scope for well-paid advice on how to do it. But
don’t you think that life with a statistician would be rather, shall we say,
humdrum?”

Lamia was silent. She felt reluctant to discuss the surprising depth of
emotional possibility which she had discovered below Edward’s numerical
veneer.

“It’s not the figures themselves,” she said finally, “It’s what you do with
them that matters.”

K.A.C. Mandeville, The Undoing of Lamia Gurdleneck


