
 1 

Chapter	1		
Empirical	 Input–Output	 Representations	 and	
Transmutations	of	Actual	Economies	

	
Abstract	This	chapter	maps	the	structure	of	the	empirical	input–output	representations	of	actual	
economies,	i.e.	the	Supply	and	Use	Tables	and	the	Symmetric	Input–Output	Tables,	and	critically	
evaluates	the	methods	that	have	been	proposed	to	convert	the	former	into	the	latter.	It	is	argued	
that	(i)	all	conversion	methods	rest	on	the	groundless	assumption	that	single	production,	and	not	
joint	 production,	 characterizes	 the	 economic	 structure	 of	 the	 real	 world;	 and	 (ii)	 a	 consistent	
approach	is	the	straightforward	treatment	of	the	Supply	and	Use	Tables	on	the	basis	of	general	joint	
production	models	inspired	by	the	von	Neumann	and	Sraffa	contributions.	

Keywords	Input–output	analysis	•	 Joint	production	•	Supply	and	use	tables	•	Symmetric	input–
output	tables	•	von	Neumann–Sraffa-based	analysis	
	
1.1	Introduction	
	
The	representation	of	actual	economies	 in	 terms	of	 input–output	relationships,	
where	the	inter-dependency	amongst	the	different	production	activities	plays	a	
central	role,	dates	back	to	the	Tableau	Économique	of	François	Quesnay	(1972).	In	
this	table,	Quesnay	distinguished	two	productive	sectors	(primary	production	and	
manufacturing)	 and	 three	 social	 classes,	 i.e.	 the	 “productive	 class”	 (classe	
productive),	which	 is	 involved	 in	primary	production;	 the	 “sterile	 class”	 (classe	
stérile),	involved	in	manufacturing;	and	the	class	of	proprietors	of	land	and	natural	
resources	(classe	propriétaire).	The	modern	representation	of	actual	economies	
and	the	development	of	input–output	analysis	as	a	distinct	area	of	economics	was	
introduced	by	Wassily	Leontief	(1936),	who	constructed	the	tableau	économique	
or,	in	modern	terms,	the	input–output	table	for	the	economy	of	the	United	States	
of	America.1		
	 During	 the	 last	 decades,	 there	 has	 been	 a	 significant	 development,	 both	
theoretically	and	empirically,	of	input–output	analysis,	and,	today,	input–output	
tables	constitute	part	of	the	national	accounting	systems	for	most	countries.	The	
most	known	form	of	input–output	tables,	and	the	most	widely	used	in	empirical	
studies,	 are	 the	 so-called	 Symmetric	 Input–Output	 Tables	 (SIOTs).	 SIOTs	
represent	the	intersectoral	relationships	of	an	economy	in	which	the	number	of	
products	equals	the	number	of	production	activities	and	each	product	is	produced	
by	only	one	production	activity;	therefore,	SIOTs	rule	out,	by	construction,	joint	
production.	On	the	other	hand,	a	less	often	used	form	of	input–output	tables,	for	
empirical	applications,	are	the	Supply	and	Use	Tables	(SUTs),	which	constitute	a	
pair	of	tables:	one	describes	the	production	of	goods	and	services	by	the	different	
industries	(Supply	Table),	and	the	other	describes	the	use	of	goods	and	services	
by	the	different	industries	(Use	Table).	Contrary	to	the	structure	of	the	SIOTs,	in	

 
1	For	a	review	of	the	contributions	to	the	foundation	of	input–output	analysis	from	the	Physiocrats	
to	Piero	Sraffa,	see	Kurz	et	al.	(1998).	For	the	Tableau	Économique,	also	see	Marx	([1878]	1977).	
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the	SUTs,	there	are	industries	that	produce	more	than	one	product	and	products	
that	are	produced	by	more	than	one	industry;	therefore,	these	tables	do	not	rule	
out	joint	production.	Furthermore,	SUTs	constitute	the	core	of	the	modern	system	
of	national	accounting	and	also	the	basis	for	the	derivation	of	SIOTs	under	specific	
assumptions.		

This	 chapter	 (i)	 presents	 the	 basic	 characteristics	 of	 both	 the	 SUTs	 and	
SIOTs;	(ii)	critically	reviews	the	methods	that	have	been	proposed	to	convert	SUTs	
into	SIOTs;	and	(iii)	exposes	the	essential	ideas	of	the	von	Neumann–Sraffa-based	
approach	on	joint	production	as	a	preferable	approach	to	treat	SUTs.	Section	1.2	
presents	the	basic	structure	of	the	SUTs.	Section	1.3	presents	the	basic	structure	
of	the	SIOTs.	Section	1.4	critically	reviews	and	evaluates	the	methods	that	have	
been	proposed	to	convert	SUTs	into	SIOTs.	Section	1.5	presents	the	essential	ideas	
of	the	von	Neumann–Sraffa-	based	approach	on	joint	production	as	a	way	to	treat	
SUTs.	Finally,	Sect.	1.6	concludes.	
	
1.2	The	Supply	and	Use	Tables	
	
In	1968	System	of	National	Accounts,	United	Nations	introduced	the	supply	and	
use	 framework	 in	the	compilation	of	national	accounts	(United	Nations	1968).2	
This	 framework	 forms	 the	basis	 for	 the	most	detailed	description	of	a	national	
economy,	 providing	 information	 about	 the	 supply	 and	 demand	 side	 of	 the	
economic	system	as	well	as	its	relations	with	other	national	economies.	The	core	
of	the	supply	and	use	framework	consists	of	a	pair	of	tables,	known	as	the	Supply	
and	 Use	 Tables	 (SUTs	 hereafter).	 The	 SUTs	 describe	 the	 flows	 of	 goods	 and	
services	produced	by	the	different	industries	of	a	national	economy,	the	flows	of	
goods	 and	 services	 with	 the	 rest	 of	 the	 world,	 the	 structure	 of	 the	 cost	 of	
production	of	each	industry,	the	income	generated	in	the	production	processes,	
and	the	final	uses	in	the	economy.	The	SUTs	provide	detailed	information	not	only	
regarding	the	inter-dependencies	amongst	the	various	industries	of	the	national	
economy	but	 also	 on	 basic	macroeconomic	 aggregates,	 such	 as	 gross	 domestic	
product,	 value	 added,	 total	 and	 intermediate	 consumption,	 capital	 formation,	
exports,	and	imports.	
	 The	 supply	 table	describes	 the	production	of	 goods	 and	 services	 by	 the	
different	 industries,	 distinguishing	 domestic	 supply	 from	 imports	 per	 product.	
The	part	of	the	supply	table	that	describes	domestic	production	of	the	different	
industries	is	called	the	“make	matrix”	of	the	economy.	A	simplistic	supply	table,	
describing	the	production	of	two	commodities	by	two	industries	is	shown	in	Table	
1.1.	Thus,	the	make	matrix,	 	of	this	particular	economy	is	of	dimensions	

.3	
 

2	What	follows	draws	on	Soklis	(2005;	2012,	Chap.	4). 
3	In	general,	the	SUTs	need	not	be	“square”,	i.e.	the	number	of	goods	and	services	produced	need	
not	be	equal	to	the	producing	industries	(see,	e.g.	Eurostat	2008,	p.	325;	United	Nations	1999,	p.	

M ≡ [Mij ]

2× 2
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Table	1.1	Simplistic	Supply	Table	
												Industries	
	
Products	

Industry	1	 Industry	2	
	

Total	 Imports	 Total	Supply		

Product	1	
	 	

	 	 	

Product	2	
	 	

	 	 	

Total	 	 	 	
	

	

	
	 Each	row	of	the	make	matrix	gives	the	quantities	(in	money	terms)	of	each	
product	 produced	 by	 the	 different	 industries,	 while	 each	 column	 gives	 the	
quantities	of	the	different	products	produced	by	each	industry.	Thus,	 	denotes	

the	quantity	of	product	 	produced	by	industry	 .	The	on-diagonal	elements	of	
the	make	matrix	describe	the	so-called	“primary	(or	characteristic)	product”	of	
each	 industry	 and	 the	 off-diagonal	 elements	 describe	 the	 so-called	 “secondary	
products”,	where	the	“primary	product”	of	an	industry	is	defined	as	the	output	of	
that	 industry	 that	 comprises	 the	 primary	 source	 of	 revenues.	 The	 column	 of	
imports	gives	 the	quantities	of	 total	 imports	of	each	commodity,	while	 the	 last	
column	 of	 the	 supply	 table	 gives	 the	 total	 supply	 of	 the	 economy	 (domestic	
production	 plus	 imports)	 of	 each	 commodity.	 The	 last	 row	of	 the	 supply	 table	
gives	the	total	output	of	each	industry,	the	total	imports	and	the	total	supply	in	the	

economy.	Thus,	 	denotes	 the	 imports	of	product	 ;	 	 the	 total	 supply	of	

product	 	in	the	economy;		and	 	the	total	supply	in	the	economy.	
The	 use	 table	 describes	 the	 use	 of	 goods	 and	 services	 by	 the	 different	

industries,	the	income	generation	per	production	activity,	and	the	final	uses	of	the	
production	per	category	of	final	demand.	The	part	of	the	use	table	that	describes	
intermediate	consumption	by	product	and	by	industry	is	called	the	“use	matrix”	
of	the	economy.	A	simplistic	use	table,	describing	the	uses	of	two	commodities	by	
two	 industries	 is	 shown	 in	 Table	 1.2.	 Thus,	 the	 use	 matrix,	 	 of	 this	

particular	economy	is	of	dimensions	 .	
	

 
86).	Nevertheless,	in	what	follows	we	assume,	for	simplicity’s	sake,	that	the	make	and	use	matrices	
are	square.	
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Table	1.2	Simplistic	Use	Table	
												Industries	
	
Products	

Industry	1	 Industry	2	 Total	 Final	Uses	 Total	Uses		

Product	1	 	 	
	 	 	

Product	2	 	 	
	 	 	

Total	
Intermediate	
Consumption	

	 	 	 	 	

Value	Added	 	 	 	

Total	Output		 	 	 	

	
	 Each	row	of	 the	use	matrix	gives	 the	quantities	 (in	money	 terms)	of	each	
product	used	by	the	different	industries,	while	each	column	gives	the	quantities	of	
the	different	products	used	by	each	industry.	Thus,	 	denotes	the	quantity	of	

product	 	used	by	industry	 .	The	column	of	final	uses	gives	the	uses	of	products	
for	final	consumption,	gross	capital	formation	and	exports,	while	the	row	of	value	
added	 gives	 the	 components	 of	 value	 added	 per	 industry,	 i.e.	 compensation	 of	
employees,	other	net	taxes	on	production,	consumption	of	 fixed	capital	and	net	
operating	 surplus.	 The	 last	 column	 of	 the	 use	 table	 gives	 the	 total	 uses	
(intermediate	consumption	plus	final	uses)	by	product,	while	the	last	row	of	the	
table	 shows	 the	 total	 inputs	 (intermediate	 consumption	 plus	 value	 added)	 by	
industry	and,	therefore,	is	identified	with	the	money	value	of	the	total	output	of	
each	industry.	Thus,	 	denotes	the	quantity	of	product	 	used	for	final	demand;	

	the	total	use	of	product	 	in	the	economy;	 	the	value	added	in	industry	

;	 	the	total	output	of	industry	 ;	and	 	the	total	uses	in	the	economy	(all	

data	are	expressed	in	monetary	units).	
By	construction	of	 the	SUTs,	 the	 following	 identities	hold	 for	 the	supply	

table	

	 		 (1.1)	

	 		 (1.2)	

From	identities	(1.1)	and	(1.2)	it	follows	that	it	is	also	holds 
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	 		 (1.3)	

By	construction	of	the	SUTs,	the	following	identities	hold	for	the	use	table		

	 		 (1.4)	

	 		 (1.5)	

	 		 (1.6)	

From	identities	(1.4)	and	(1.5)	it	follows	that	it	also	holds 

	 		 (1.7)	

The	supply	and	the	use	tables	are	connected	through	the	following	identity	
	 		 (1.8)	
By	taking	into	account	identities	(1.1)	and	(1.4),	identity	(1.8)	can	be	re-written	
as 

	 		 (1.9)	

Thus,	taking	into	account	identities	(1.3)	and	(1.7),	it	also	holds	
   
The	supply	and	the	use	tables	are	also	connected	through	the	following	identity	

	 		 	

or,	by	taking	into	account	identity	(1.6),	

	 		 (1.10)	

The	identities	(1.9)	and	(1.10)	can	be	re-written	in	vector–matrix	terms	as	
follows	
	 		 (1.11)	

	 		 (1.12)	

where	 	is	the	make	matrix;	 	is	the	vector	of	

imports;	 	is	the	use	matrix;	 	is	the	vector	of	final	
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demand;	 	is	the	value	added	vector;	 	the	column	summation	

vector;	and	the	superscript	“ ”	denotes	the	transpose.	
	 From	 the	 previous,	 it	 follows	 that	 SUTs	 constitute	 a	 general	 accounting	
framework	that	allows	statistical	authorities	to	enter	basic	economic	data	in	the	
exact	structure	in	which	they	are	observed.	It	is	interesting	to	note	that	despite	
the	fact	that	SUTs	give	a	very	detailed	“picture”	of	the	actual	economies,	they	are	
rarely	 used	 in	 input–output	 applications	 in	 the	 form	presented	 above.4	 On	 the	
other	 hand,	 the	 usual	 basis	 for	 input–output	 applications	 are	 the	 Symmetric	
Input–Output	Tables	 (SIOTs	hereafter).	The	main	difference	between	SUTs	and	
SIOTs	is	that	in	the	SUTs	(SIOTs)	there	are	(are	no)	industries	that	produce	more	
than	one	commodity	and	(nor)	commodities	that	are	produced	by	more	than	one	
industry.	Thus,	 the	SUTs	(SIOTs)	allow	for	(exclude)	 joint	production	activities,	
which	constitute	a	central	characteristic	of	the	actual	economic	world.5	In	the	next	
section	we	present	the	main	characteristics	of	the	SIOTs.	
	
1.3	The	Symmetric	Input–Output	Tables	
	
The	 SIOTs	 are	 constructed	 on	 the	 basis	 of	 assumptions	 on	 the	 relationships	
between	inputs	and	outputs	that	have	been	recorded	in	the	SUTs.6	The	alternative	
assumptions	 that	 have	 been	 proposed	 to	 convert	 SUTs	 into	 SIOTs	 will	 be	
analytically	 discussed	 in	 Sect.	 1.4.	 Depending	 on	 the	 assumptions	 used	 to	
construct	 SIOTs,	 the	 derived	 input–output	 table	 can	 either	 describe	 the	
relationships	amongst	the	products	of	a	national	economy	(“product-by-product”	
SIOTs)	or	the	relationships	amongst	the	industries	of	the	economy	(“industry-by-
industry”	 SIOTs).	 The	 choice	 between	 the	 construction	 of	 product-by-product	
tables	 or	 industry-by-industry	 tables	 depends	 on	 the	 analytical	 purposes	 that	
these	tables	are	intended	to	be	used.	Industry-by-industry	SIOTs	are	considered	
to	be	closer	to	statistical	sources	and	actual	market	transactions,	while	product-
by-product	SIOTs	are	considered	as	more	homogenous	in	terms	of	cost	structures	
and	production	activities	 (see,	e.g.	Eurostat	2008,	p.	24).	The	part	of	 the	SIOTs	
table	that	describes	intermediate	consumption	either	by	product	or	by	industry	is	
called	 the	 “Transactions	Matrix”	 or	 the	 “Matrix	 of	 Intermediate	 Inputs”	 of	 the	
economy.	A	simplistic	product-by-product	SIOT	for	an	economy	producing	only	

 
4	Exceptions	can	be	found	in	Mariolis	and	Soklis	(2007;	2010;	2018);	Mariolis	et	al.	(2018);	Soklis	
(2006;	2011;	2012;	2015).	Also	see	Chaps.	5,	7	and	9	of	this	book.		
5	It	has	to	be	noted	that	some	of	the	secondary	products	that	appear	in	the	SUTs	may	result	from	
statistical	 classification.	 Therefore,	 these	 products	 do	 not	 correspond	with	 the	 notion	 of	 joint	
production	(see,	e.g.	United	Nations	1999,	p.	77).	However,	this	fact	by	no	means	undermine	the	
empirical	importance	of	joint	production	(see,	e.g.	Baumgärtner	et	al.	2006;	Faber	et	al.	1998;	Kurz	
2006;	Steedman	1984).	
6 What	follows	draws	on	Soklis	(2012,	Chap.	3). 
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two	products	is	shown	in	Table	1.3.7	Thus,	the	transactions	matrix,	 	of	this	

particular	economy	is	of	dimensions	 .	
	

Table	1.3	Simplistic	Symmetric	Input–Output	Table	

	
	
	
	
	
	
	
	
	
	
	
	 Each	row	of	the	SIOTs	gives	the	quantities	(in	money	terms)	of	each	product	
used	in	the	production	of	the	other	products	of	the	economy,	while	each	column	
gives	 the	 quantities	 of	 the	 different	 products	 used	 in	 the	 production	 of	 each	
product.	Thus,	 	denotes	the	quantity	of	product	 	used	in	the	production	of	

product	 .	 The	 column	 of	 final	 uses	 gives	 the	 uses	 of	 products	 for	 final	

 
7	What	follows	can	easily	be	extended	in	the	case	of	industry-by-industry	SIOTs	without	affecting	
our	main	arguments.		
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Product	1	 	 	 	 	 	

Product	2	 	 	 	 	 	
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Value	Added	 	 	 	

Total	Output		 	 	 	

Imports	 	 	
	

Total	Supply	 	 	 	
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consumption,	gross	capital	formation	and	exports,	while	the	row	of	value	added	
gives	 the	 components	of	 value	 added	per	homogeneous	unit	 of	 production,	 i.e.	
compensation	of	employees,	other	net	taxes	on	production,	consumption	of	fixed	
capital	and	net	operating	surplus.	The	last	column	of	the	SIOTs	gives	the	total	uses	
(intermediate	consumption	plus	final	uses)	by	product,	while	the	last	row	of	the	
table	 shows	 the	 total	 supply	 in	 the	 economy,	 i.e.	 total	 output	per	product	plus	
imports.	Thus,	 	denotes	the	quantity	of	product	 	used	for	final	demand;	 	

the	total	use	of	product	 	in	the	economy;	 	the	value	added	in	the	production	of	

product	 ;	 	the	total	output	of	product	 ;		 		the	imports	of	product	 ;	

		the	total	supply	of	product	 ;	 	the	total	uses	in	the	economy;	and	 	the	
total	supply	in	the	economy	(all	data	are	expressed	in	monetary	units).		
	 By	construction	of	the	SIOTs,	the	following	identities	hold	

	 		 (1.13)	

	 		 (1.14)	

	 		 (1.15)	

	 		 (1.16)	

	 		 (1.17)	

   (1.18) 

From	identities	(1.14),	(1.17)	and	(1.18),	it	follows	that	
	 		 	
From	identities	(1.13),	(1.16)	and	(1.18),	it	also	follows	that	

	 		 (1.19)	

The	identities	(1.15)	and	(1.19)	can	be	re-written	in	vector–matrix	terms	as	
follows8	

    

    

 
8	The	transpose	of	an	 	vector	 		is	denoted	by	 ,	the	diagonal	matrix	formed	from	the	

elements	of	 	is	denoted	by	 ,	and	 	denotes	the	summation	vector,	i.e.	 .	
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where	 	is	the	total	output	vector;	and	 	is	the	matrix	of	

intermediate	inputs.	
From	the	previous,	it	follows	that	the	SIOTs	describe	an	economy	in	which	

each	production	process	produces	only	one	product	and	each	product	is	produced	
by	only	one	production	process.	Thus,	the	SIOTs	correspond	to	an	economic	world	
of	 single	 production.	 As	 it	 has	 already	 been	mentioned,	 those	 tables	 of	 single	
production	are	derived	from	the	SUTs,	which	allow	for	joint	production	activities,	
on	 the	 basis	 of	 specific	 assumptions	 on	 the	 relationships	 between	 inputs	 and	
outputs.	The	alternative	assumptions	that	have	been	proposed	to	convert	SUTs	
into	SIOTs	are	discussed	in	the	next	section.	
	
1.4	Conversion	of	Supply	and	Use	Tables	into	Symmetric	Input–
Output	Tables	
	
1.4.1	Methods	Converting	Supply	and	Use	Tables	into	Product-by-
Product	Symmetric	Input–Output	Tables	
	
Since	the	introduction	of	SUTs	to	the	System	of	National	Accounts,	there	has	been	
an	ongoing	discussion	on	how	these	tables	can	be	converted	into	single	production	
tables	 (i.e.	SIOTs).9	Most	of	 the	discussion	has	been	 focused	on	 two	alternative	
assumptions	 for	dealing	with	 the	problem	at	hand:	 (i)	 the	Product	Technology	
Assumption	(PTA	hereafter);	and	(ii)	the	Industry	Technology	Assumption	(ITA	
hereafter).	

Leaving	aside,	for	simplicity’s	sake,	the	imports	of	the	economy,	then,	the	
SUTs	described	by	identities	(1.11)	and	(1.12)	reduces	to	the	following	equations		

   (1.20) 

   (1.21) 

The	 conversion	 methods	 try	 to	 transform	 Eqs.	 1.20	 and	 1.21	 into	 a	 single	
production	system	(SIOTs)	described	by	the	following	equations	

	 	 (1.22)		

	 		 (1.23)	

where	 ,	 	 is	 the	 technical	 coefficients	 matrix	 that	 is	

derived	from	the	conversion	of	SUTs	into	SIOTs,	and	 ,	 	are	the	transformed	
vectors	of	final	demand	and	value	added,	respectively.	It	should	be	clear	that	the	

 
9	What	follows	draws	on	Mariolis	(2008);	Soklis	(2009;	2012,	Chap.	4).	

x =
X1
X2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Z =
Z11 Z12
Z21 Z22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Me = Ue + f

eTM = eTU + vT

x = Ze + f *

xT = eTZ+ v*T

Z ≡ [A(U,M)  x] A(U,M)
*f v*T
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conversion	 of	 SUTs	 into	 SIOTs	 is	meaningful	 only	 in	 the	 case	where	 the	make	
matrix,	 ,	is	non-diagonal,	i.e.	there	are	industries	with	secondary	production.	In	
the	case	where	there	is	no	secondary	production	in	the	economy,	i.e.	the	matrix	
	is	diagonal,	then	the	system	of	Eqs.	1.20	and	1.21	is	equivalent	to	the	system	of	

Eqs.	 1.22	 and	 1.23.	 Hence,	 the	 purpose	 of	 the	 conversion	 methods	 presented	
below	is,	by	definition,	the	elimination	of	secondary	production	in	the	economic	
system.		
	
1.4.1.1	The	Product	Technology	Assumption	
	
The	PTA	assumes	that	each	industry	produces	only	the	total	output	of	the	product	
that	is	primary	to	that	industry	and	that	each	product	has	its	own	input	structure,	
irrespective	of	the	industry	that	produces	it.	In	formal	terms,	it	is	assumed	that	
(see,	e.g.	van	Rijckeghem	1967;	United	Nations	1968,	p.	49)10	

	 		 (1.24)	
and	
	 	 (1.25)		

Equation	1.24	entails	that	

	 		 (1.26)	
Post-multiplying	Eq.	1.26	by	the	summation	vector	gives	

	 		 (1.27)	
Substituting	Eqs.	1.25	and	1.27	into	Eq.	1.20	yields	

	 	 (1.28)		
Thus,	 from	Eqs.	1.28	and	1.22	 it	 follows	 that	 .	 From	Eqs.	1.26	and	1.21	 it	
follows	that	

	 		 (1.29)	

Post-multiplying	Eq.	1.29	by	 	gives	

	 	 (1.30)		
Substituting	Eq.	1.25	into	Eq.	1.30	we	obtain	

	 		 (1.31)	

From	Eqs.	1.31,	1.23	and	1.25	it	follows	that	 .	Hence,	under	the	
PTA,	the	joint	production	system	described	by	Eqs.	1.20	and	1.21	is	converted	into	
the	single	production	system	described	by	the	following	equations	

   (1.32) 

	and		

 
10	The	origins	of	this	method	can	be	found	in	Edmonston	(1952,	p.	567).	

M

M

A(U,Μ) = U[eTM!]−1[eTM!]Μ−1 = UΜ−1

x =Μe

U = A(U,M)M

Ue = A(U,M)Me

x = A(U,M)x + f
f * = f

eTM = eTA(U,M)M + vT

M−1[Me!]

eT[Me!]= eTA(U,M)[Me!]+ vTM−1[Me!]

T T T 1ˆ ˆ( , ) -= +x e A U M x v M x
v*T =  vTM−1[Me!]

Me = A(U,M)Me + f
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	 	 		 (1.33)	
	
1.4.1.2	The	Industry	Technology	Assumption	
	
The	ITA	assumes	that	each	industry	produces	only	the	total	output	of	the	product	
that	is	primary	to	that	industry	and	that	has	the	same	input	requirements	for	any	
unit	of	output.	In	that	case,	the	input	structure	of	each	product	depends	on	what	
industry	produces	it.	In	formal	terms,	it	is	assumed	that	(see,	e.g.	United	Nations	
1968,	pp.	49–50)	

	 		 (1.34)	
and	
   (1.35) 

Equation	1.34	entails	that	

	 		 (1.36)	
Post-multiplying	Eq.	1.36	by	the	summation	vector	gives	

   (1.37)	 

Substituting	Eqs.	1.35	and	1.37	into	Eq.	1.20	yields	

	 		 (1.38)		

From	Eqs.	1.38	and	1.22	it	follows	that	 .	Substituting	Eq.	1.36	into	Eq.	1.21	
yields	

	 	 (1.39)		

Post-multiplying	Eq.	1.39	by	 	gives	

	 		 (1.40)	
Substituting	Eq.	1.35	into	Eq.	1.40	we	obtain11	

	 		 (1.41)	

From	Eqs.	1.41	and	1.23	it	follows	that	 .	Hence,	under	the	ITA,	
the	joint	production	system	described	by	Eqs.	1.20	and	1.21	is	converted	into	the	
single	production	system	described	by	the	following	equations	

   (1.42) 

and	

	 		 (1.43)	
	
1.4.1.3	The	By-Product	Method	

 
11	Note	that	 .	

[Me]T = eTA(U,M)[Me!]+ vTM−1[Me!]

A(U,Μ) = U[eTΜ!]−1ΜT[Μe!]−1

x =Me

U = A(U,M)[Me!][MT]−1[eTM!]

Ue = A(U,M)Me

x = A(U,M)x + f

f * = f

eTM = eTA(U,M)[Me!][MT]−1[eTM!]+ vT

[eTM!]−1MT

eTM[eTM!]−1MT = eTA(U,M)[Me!]+ vT[eTM!]−1MT

ΖT T T T 1 Tˆ( , ) [ ]-= +x e A U M x v e M M

v*T = vT[eTM!]−1MT

Me = A(U,M)Me + f

[Me]T = eTA(U,M)[Me!]+ vT[eTM!]−1MT

eTM(eTM! )−1MT = eTMT = (Me)T
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The	 by-product	 method	 (Stone	 1961,	 pp.	 39–41)	 assumes	 that	 all	 secondary	
products	 are	 “by-products”	 and	 that	 can	 be	 treated	 as	 negative	 inputs	 of	 the	

industries	that	they	are	actually	produced.12	The	make	matrix	splits	into	 	and	

,	where	 	is	the	diagonal	matrix	that	describes	the	primary	products	of	each	

industry	and	 	is	the	off-diagonal	matrix	that	describes	the	secondary	products	
of	each	industry.	Thus,	it	holds	

	 	 (1.44)		
In	mathematical	terms,	the	by-product	method	assumes	that	(see,	e.g.	ten	Raa	et	
al.	1984,	p.	88)	

	 	 (1.45)	
and	

	 	 (1.46)		
Equation	1.45	entails	that		 	

	 		 (1.47)	
Combining	Eqs.	1.44	and	1.20	gives	

	 	 (1.48)		
Substituting	Eqs.	1.46	and	1.47	into	Eq.	1.48	yields	

	 		 (1.49)	

From	Eqs.	1.22	and	1.49	it	follows	that	 .	Combining	Eqs.	1.44	and	1.21	gives	

	 		 (1.50)	
Substituting	Eq.	1.45	into	Eq.	1.50	yields	 	 	

	 		 (1.51)	
Substituting	Eq.	1.46	into	Eq.	1.51	yields13	

	 		 (1.52)	

From	Eqs.	1.52	and	1.23	it	follows	that	 .	Thus,	it	follows	that,	under	the	
by-product	method,	the	joint	production	system	described	by	Eqs.	1.20	and	1.21	
is	converted	into	the	single	production	system	described	by	the	equations		

	 		
and		

 
12	By-products	are	defined	as	products	 that	are	 technologically	 linked	 to	 the	production	of	 the	
primary	product	 of	 the	 industry	where	 it	 is	 actually	produced	 (Stone	1961,	 p.	 39).	 The	 inputs	
needed	for	their	production	are	considered	to	be	“low”	in	relation	to	the	primary	product	of	the	
industry	where	they	are	produced	(United	Nations	1999,	p.	77;	Viet	1994).	
13	Note	that	 	and	 .	

M1

Μ2 M1

Μ2

Μ ≡M1 +Μ2

A(U,Μ) = [U −Μ2]M1
−1

x =M1e

U −Μ2 = A(U,Μ)M1

1 2( )= - +M e U Μ e f

x = A(U,M)x + f

f * = f
eTM1 = e

T[U −M2]+ v
T

eTM1 = e
TA(U,M)M1 + v

T

T T Tˆ( , )= +x e A U M x v

v*T = vT

1 1( , )= +M e A U M M e f

T T
1 1[ ]=e M M e M1 = [M1e

!]
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1.4.1.4	Mixed	Technology	Assumptions	
	
Mixed	 Technology	 Assumptions	 were	 suggested	 by	 Gigantes	 and	Matuszweski	
(1968)	and	were	incorporated	in	the	1968	System	of	National	Accounts	(United	
Nations	1968,	p.	50).	This	conversion	method	assumes	that	a	part	of	the	secondary	
products	 should	 be	 treated	 using	 the	 PTA	 and	 the	 remaining	 part	 should	 be	

treated	using	the	ITA.	The	make	matrix	splits	into	the	matrices	 	and	 	and	

it	 is	assumed	 that	 	 includes	output	 that	 fits	 the	PTA	whereas	 	 includes	
output	that	fits	the	ITA.	Thus,	it	holds	

	 		 (1.53)	
Following	Armstrong	(1975),	we	assume	that	
	 		 	
and	
    

where	 	is	the	technical	coefficients	matrix	for	outputs	included	in	 ,	while	

	 is	 the	 technical	 coefficients	matrix	 for	 outputs	 included	 in	 .	 Then,	 the	
technical	coefficients	matrix	of	the	economy	is	given	by14	

  	  

where	 .	It	can	be	seen	that	if	 ,	then	 ,	

which	 is	 the	 PTA.	 On	 the	 other	 hand,	 if	 ,	 then	

,	which	is	the	ITA.	
	 On	the	basis	of	their	critique	to	the	ITA,	ten	Raa	et	al.	(1984)	constructed	
an	alternative	mixed	technology	model,	assuming	that	 	includes	output	that	fits	
the	by-product	assumption.	In	mathematical	terms,	it	is	assumed	that	

	 		 (1.54)	
and	

	 		 (1.55)	
Equation	1.54	entails	that	

	 		 (1.56)	
Combining	Eqs.	1.53	and	1.20	gives	

 
14	 For	 alternative	ways	of	 calculating	 the	 technical	 coefficients	matrix,	 using	mixed	 technology	
assumptions,	see	Armstrong	(1975,	pp.	74–76);	Gigantes	(1970,	pp.	284–290).	
	

T T T
1 1[ ] ( , )= +M e e A U M M v

M1 M2

M1 M2

M ≡M1 +M2

A1 = U[M
Te!]−1[M1

Te!]M1
−1

A2 = U[M
Te!]−1M2

T[M2e
!]−1

A1 M1

A2 M2

A(U,Μ) = A1[I −D]+A2D

D ≡ [Μ2e
!][Μe!]−1 M2 = 0 A(U,M) = A1 = UM

−1

M1 = 0

A(U,M) = A2 = U[e
TΜ!]−1ΜT[Μe!]−1

M2

A(U,M) = [U −M2]M1
−1

x =M1e

U −M2 = A(U,M)M1
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	 		 (1.57)	
Substituting	Eqs.	1.55	and	1.56	into	Eq.	1.57	yields	

 	 (1.58)	 

From	Eqs.	1.58	and	1.22	it	follows	that	 .	Combining	Eqs.	1.53	and	1.21	gives	

	 		 (1.59)	
Substituting	Eq.	1.56	into	Eq.	1.59	yields	

	 		 (1.60)	

Post-multiplying	Eq.	1.60	by	 	we	obtain	

	 	 (1.61)		
Substituting	Eq.	1.55	into	Eq.	1.61	yields	
	 	 (1.62)		

From	Eqs.	1.62,	1.55	and	1.23	it	follows	that	 .	Thus,	it	follows	that,	
under	the	mixed	technology	model	introduced	by	ten	Raa	et	al.	(1984),	the	joint	
production	system	described	by	Eqs.	1.20	and	1.21	 is	converted	 into	the	single	
production	system	described	by		

	 		
and		

	 	
	
1.4.1.5	The	Transfer	Method	
	
The	Transfer	method	was	proposed	by	Stone	(1961,	pp.	39–41)	as	an	alternative	
method	 to	 treat	by-products.	This	method	 treats	 secondary	products	as	 if	 they	
were	bought	by	the	industry	where	they	are	“primary”	and	added	to	the	output	of	
that	industry.	In	formal	terms,	it	is	assumed	that	(see,	e.g.	Jansen	and	ten	Raa	1990,	
p.	215)	

	 	 (1.63)	
and	
	 		 (1.64)	

where	 	 is	 the	diagonal	matrix	 that	 describes	 the	primary	products	 of	 each	

industry	and	 	is	the	off-diagonal	matrix	that	describes	the	secondary	products	
of	each	industry.	Equation	1.64	entails	that	
	 	 (1.65)		

Adding	 	to	both	sides	of	Eq.	1.20	we	obtain	

M1e = [U −M2]e + f

x = A(U,M)x + f

f * = f
eTM1 = e

T[U −M2]+ v
T

eTΜ1 = e
TA(U,Μ)Μ1 + v

T

Μ1
−1[Μ1e
!]

eT[Μ1e
!]= eTA(U,Μ)[Μ1e

!]+ vTΜ1
−1[Μ1e
!]

T T T 1
1ˆ ˆ( , ) -= +x e A U Μ x v Μ x

v*T = vTM1
−1[M1e
!]

M1e = A(U,M)M1e + f

[M1e]
T = eTA(U,M)[M1e

!]+ vTM1
−1[M1e
!]

x = [M +M2
T]e

A(U,M) = [U +M2
T][[eTM!]+ [Me!]−M1]

−1

M1

M2

U +M2
T = A(U,M)[[eTM!]+ [Me!]−M 1]

M2
Te
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	 		 (1.66)	
Substituting	Eq.	1.65	into	Eq.	1.66	yields	
	 		
or15	 	 	

	 		 (1.67)	
Substituting	Eq.	1.63	into	Eq.	1.67	gives	

	 	 (1.68)		

From	Eqs.	1.68	and	1.22	it	follows	that	 .	Adding	 	to	both	sides	of	Eq.	
1.21	we	obtain	

	 	 (1.69)		
Substituting	Eq.	1.65	into	Eq.	1.69	yields	
	 					
or	

	 		 (1.70)	

From	Eqs.	1.70	and	1.23	it	follows	that	 .	Hence,	it	follows	that,	under	the	
transfer	method,	the	joint	production	system	described	by	Eqs.	1.20	and	1.21	is	
converted	into	the	single	production	system	described	by	

	 		
and		
	 	
	
1.4.1.6	The	ESA	Method	
	
The	ESA	(European	System	of	Integrated	Economic	Accounts)	method	(Eurostat	
1979,	pp.	116–117)	recommends	that	secondary	products	should	be	treated	as	if	
they	were	produced	by	the	industries	were	these	products	are	primary.	In	formal	
terms,	it	is	assumed	that	(see,	e.g.	Viet	1994,	pp.	38–40)	
   (1.71)	 

and		

	 		 (1.72)	
Equation	1.72	entails	that	

	 		 (1.73)	
Substituting	Eq.	1.73	into	Eq.	1.20	yields	

 
15	Note	that	 .	

[M +M2
T]e = [U +M2

T]e + f

[M +M2
T]e = A(U,M)[[eTM!]+ [Me!]−M1]e + f

[M +M2
T]e = A(U,M)[M +M2

T]e + f

x = A(U,M)x + f

f * = f eTM2
T

eT[M +M2
T]= eT[U +M2

T]+ vT

eT[M +M2
T]= eTA(U,M)[[eTM!]+ [Me!]−M1]+ v

T

T T Tˆ( , )= +x e A U M x v

v*T = vT

[M +M2
T]e = A(U,M)[M +M2

T]e + f

[[M +M2
T]e]T = eTA(U,M)[[M +M2

T]e!]+ vT

x =Μe

A(U,Μ) = U[Μe!]−1

U = A(U,M)[Me!]

[eTM!]+ [Me!]−M1 = [M +M2
T!]e
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   (1.74) 

Substituting	Eq.	1.71	into	Eq.	1.74	gives	

   (1.75) 

From	Eqs.	1.75	and	1.22	it	follows	that	 .	Substituting	Eq.	1.73	into	Eq.	1.21	
yields	

	 		 (1.76)	

Adding	 	to	both	sides	of	Eq.	1.76	and	after	rearrangement	we	obtain	

	 		 (1.77)	
Substituting	Eq.	1.71	into	Eq.	1.77	yields	

	 		 (1.78)	

From	Eqs.	1.78	and	1.23	it	follows	that	 .	Consequently,	with	
the	use	of	the	ESA	method,	the	joint	production	system	described	by	Eqs.	1.20	and	
1.21	is	converted	into	the	single	production	system	described	by	the	equations	

   

and		

	 		
	
1.4.1.7	The	Lump-Sum	Method	
	
The	Lump-Sum	(or	Aggregation)	Method	(Office	of	Statistical	Standards	1974,	p.	
116)	treats	secondary	products	as	if	they	were	produced	as	a	primary	product	of	
the	industry	that	they	are	actually	produced.	In	formal	terms,	it	is	assumed	that	
(see,	e.g.	Fukui	and	Seneta	1985,	p.	177)	

   (1.79) 

and		

	 		 (1.80)	
Equation	1.80	entails	that	

	 		 (1.81)	
Substituting	Eq.	1.81	into	Eq.	1.20	yields	

   (1.82) 

Adding	 	to	both	sides	of	Eq.	1.82	and	after	rearrangement	we	obtain	

   (1.83) 

Substituting	Eq.	1.79	into	Eq.	1.83	yields	

Me = A(U,M)Me + f

x = A(U,M)x + f

f * = f

eTM = eTA(U,M)[Me!]+ vT

[Me]T

[Me]T = eTA(U,M)[Me!]+ vT + [Me]T − eTM

T T T T Tˆ( , ) [ ]= + + -x e A U M x v Me e M
v*T = vT + [Me]T − eTM

Me = A(U,M)Me + f

[Me]T = eTA(U,M)[Me!]+ vT + [Me]T − eTM

x =MTe

A(U,M) = U[MTe!]−1

U = A(U,M)[MTe!]

Me = A(U,M)MTe + f

MTe
MTe = A(U,M)MTe + f + [MT −M]e
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	 		 (1.84)	
From	Eqs.	1.84	and	1.22	it	follows	that	 .	Substituting	Eq.	1.81	
into	Eq.	1.21	gives	

	 		 (1.85)	
Combining	Eqs.	1.79	and	1.85	yields16	

	 		 (1.86)	

From	Eqs.	 1.86	 and	 1.23	 it	 follows	 that	 .	 Hence,	 under	 the	 Lump-Sum	
Method,	the	joint	production	system	described	by	Eqs.	1.20	and	1.21	is	converted	
into	the	single	production	system	described	by	the	equations		

	 		
and	

	 	
	
1.4.1.8	The	Redefinition	Method	
	
The	 Redefinition	 method	 is	 used	 to	 move	 outputs	 and	 inputs	 of	 secondary	
products,	 that	 have	 distinctive	 production	 processes	 compared	 to	 those	 of	 the	
primary	products	 of	 each	 industry,	 to	 the	 industries	where	 these	products	 are	
primary	(see,	e.g.	Viet	1994,	p.	40).	This	method	is	most	suitable	to	be	applied	for	
secondary	 products	 that	 have	 production	 processes	 similar	 to	 the	 respective	
production	 processes	 of	 the	 industries	 where	 these	 products	 are	 primary.	
Nevertheless,	 this	 method	 needs	 additional	 data	 on	 the	 production	 of	 the	
secondary	products	that	are	not	always	available	(see,	e.g.	United	Nations	1999,	p.	
81).17	
	 	
1.4.2	Methods	Converting	Supply	and	Use	Tables	into	Industry-by-
Industry	Symmetric	Input–Output	Tables	
	
The	conversion	methods	presented	so	far	derive	SIOTs	where	the	dimensions	of	
the	derived	matrix	of	 intermediate	 inputs	and,	hence,	 the	 technical	 coefficients	

matrix,	 ,	is	product-by-product,	i.e.	represents	the	transactions	amongst	
the	different	products	of	the	economy.	However,	following	conjugated	procedures	
with	 those	 previously	 presented	 we	 may	 convert	 SUTs	 into	 SIOTs	 where	 the	
dimensions	of	the	derived	matrix	of	intermediate	inputs	is	industry-by-industry,	
i.e.	represents	the	transactions	amongst	the	different	industries	of	the	economy.	

 
16	Note	that	 .		
17	For	a	presentation	of	the	results	that	the	Redefinition	method	yielded	in	the	case	of	the	USA	
input-output	tables	for	the	year	1992,	see	Guo	et	al.	(2002,	pp.	11–13).	

x = A(U,M)x + f + [MT −M]e
f * = f + [MT −M]e

eTM = eTA(U,M)[MTe!]+ vT

T T Tˆ( , )= +x e A U M x v

v*T = vT

MTe = A(U,M)MTe + f + [MT −M]e

[MTe]T = eTA(U,M)[MTe!]+ vT

A(U,Μ)

eTM = (MTe)T
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In	what	 follows	we	present	 two	such	conversion	methods,	known	as	 the	Fixed	
Industry	Sales	Assumption	(FISA	hereafter)	and	Fixed	Product	Sales	Assumption	
(FPSA	hereafter),	respectively.		
	
1.4.2.1	The	Fixed	Industry	Sales	Assumption	
	
The	FISA	treats	secondary	products	as	if	they	were	produced	as	a	primary	product	
of	the	industry	that	they	are	actually	produced	and	assumes	that	each	industry	has	
its	 own	 sales	 structure,	 irrespective	 of	 its	 product	 mix.	 In	 formal	 terms,	 it	 is	
assumed	that	

	 		 (1.87)	
and		

   (1.88) 

Equation	1.87	entails	that	

	 		 (1.89)	
Substituting	Eqs.	1.88	and	1.89	into	Eq.	1.21	yields	

	 		
or	

	 		 (1.90)	

From	Eqs.	1.90	and	1.23	it	follows	that	 .	Substituting	Eq.	1.89	into	Eq.	1.20	
yields	

	 		 (1.91)	

Pre-multiplying	Eq.	1.91	by	 	and	taking	into	account	Eq.	1.88,	we	obtain	

	 		 (1.92)	

From	Eqs.	1.92	and	1.22	it	follows	that	 .	Hence,	under	the	FISA,	the	
joint	 production	 system	described	 by	 Eqs.	 1.20	 and	 1.21	 is	 converted	 into	 the	
single	production	system	described	by	the	following	equations		

	 		 (1.93)	
and		

	 	 (1.94)		
Comparing	Eqs.	1.32	and	1.33	with	Eqs.	1.93	and	1.94,	i.e.	the	single	production	
system	derived	under	the	PTA	with	the	single	production	system	derived	under	
the	FISA,	it	follows	that	

	 		

	 		

A(U,Μ) = [eTM!]Μ−1U[eTM!]−1

x =MTe

U =M[eTM!]−1A(U,M)[eTM!]

xT = eTM[eTM!]−1A(U,M)  x + vT

T T Tˆ( , )= +x e A U M x v

v*T = vT

Me =M[eTM!]−1A(U,M)[eTM!]e + f

[eTM!]M−1

x = A(U,M)x + [eTM!]M−1f

f * = [eTM!]M−1f

MTe = A(U,M)MTe + [eTM!]M−1f

eTM = eTA(U,M)[eTM!]+ vT

A I (U,M) = SAC(U,M)S
−1

fI
* = SfC

*
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and	

	 		

where	 ,	 while	 	 ( ),	 	 ( ),	 	 (

)	 and	 	 ( )	 is	 the	 technical	 coefficients	matrix,	 the	 transformed	
vector	of	final	demand,	the	transformed	vector	of	value	added	coefficients	and	the	
transformed	vector	of	value	added,	respectively,	derived	under	the	FISA	(PTA).	
These	relationships	imply	that	the	FISA	(PTA)	can	be	derived	from	PTA	(FISA)	via	
a	similarity	transformation.	
	
1.4.2.2	The	Fixed	Product	Sales	Assumption	
	
The	 FPSA	 treats	 secondary	 products	 as	 if	 they	 were	 produced	 as	 a	 primary	
product	of	 the	 industry	 that	 they	are	actually	produced	and	assumes	 that	each	
product	 has	 its	 own	 market	 shares	 independent	 of	 the	 industry	 where	 it	 is	
produced.	In	formal	terms,	it	is	assumed	that	

	 		 (1.95)	
and		

   (1.96) 

Equation	1.95	entails	that	

	 		 (1.97)	
Substituting	Eqs.	1.96	and	1.97	into	Eq.	1.21	yields	

	 		
or	

	 		 	
or	

	 		 (1.98)	

From	Eqs.	1.98	and	1.23	it	follows	that	 .	Substituting	Eq.	1.97	into	Eq.	1.20	
yields		

	 		 (1.99)	

Pre-multiplying	Eq.	1.99	by	 	and	taking	into	account	Eq.	1.96,	we	obtain	

	 		 (1.100)	

From	Eqs.	1.100	and	1.22	it	follows	that	 .	Hence,	under	the	FPSA,	
the	joint	production	system	described	by	Eqs.	1.20	and	1.21	is	converted	into	the	
single	production	system	described	by	the	following	equations		

πΙ
*Τ = πC

*ΤS−1

x I = SxC
S ≡ [eTM!]M−1 A I (U,M) AC(U,M) fI

* fC
* * * 1

Iˆ[ ]T T -
I Iºπ v x

* * 1
C C Cˆ[ ]T T -ºπ v x x I xC

A(U,Μ) =ΜT[Μe!]−1U[eTΜ!]−1

x =MTe

U = [Me!][MT]−1A(U,M)[eTM!]

xT = eT[Me!][MT]−1A(U,M)  x + vT

T T T T 1 Tˆ[ ] ( , )-= +x e M M A U M x v

T T Tˆ( , )= +x e A U M x v

v*T = vT

Me = [Me!][MT]−1A(U,M)[eTM!]e + f

MT[Me!]−1

x = A(U,M)x +MT[Me!]−1f

f * =MT[Me!]−1f
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	 		 (1.101)	
and		

	 		 (1.102)	
Comparing	Eqs.	1.42	and	1.43	with	Eqs.	1.101	and	1.102,	i.e.	the	single	production	
system	derived	under	the	ITA	with	the	single	production	system	derived	under	
the	FPSA,	it	follows	that	

	 		

	 		

	 		
and	

	 		

where	 ,	 while	 	 ( ),	 	 ( ),	 	 (

)	 and	 	 ( )	 is	 the	 technical	 coefficients	matrix,	 the	 transformed	
vector	of	final	demand,	the	transformed	vector	of	value	added	coefficients	and	the	
transformed	vector	of	value	added,	respectively,	derived	under	the	FPSA	(ITA).	
These	relationships	imply	that	the	FPSA	(ITA)	can	be	derived	from	ITA	(FISA)	via	
a	similarity	transformation.	
	
1.4.3	Evaluation	of	the	Conversion	Methods		
	
The	 next	 issue	 that	 comes	 up	 is	which	 of	 the	 conversion	methods	 is	 the	most	
suitable	for	the	problem	at	hand.	Since	there	were	not	any	objective	criteria	to	test	
the	consistency	of	the	various	methods,	Jansen	and	ten	Raa	(1990)	developed	four	
desirable	properties	or,	alternative,	axioms	that	the	various	methods	converting	
SUTs	into	product-by-product	SIOTs	should	fulfill.	These	properties	are:	
(i).	The	“material	balance	property”	or,	in	formal	terms,			
  	 

This	 property	 implies	 that	 the	 requirements	 needed	 to	 produce	 the	 output	
should	be	equal	to	the	actual	inputs	of	the	economy.	

(ii).	The	“financial	balance	property”	or,	in	formal	terms,			
  	  

This	property	implies	that	the	input	cost	of	the	output	should	be	equal	to	the	
cost	of	the	actual	inputs.	

(iii).	The	“price	invariance	property”	or,	in	formal	terms,		
	 ,	 	

MTe = A(U,M)MTe +MT[Me!]−1f

eTM = eTA(U,M)[eTM!]+ vT

A I (U,M) = SAC(U,M)S
−1

fI
* = SfC

*

πΙ
*Τ = πC

*ΤS−1

x I = SxC
S ≡MT[Me!]−1 A I (U,M) AC(U,M) fI

* fC
* * * 1

Iˆ[ ]T T -
I Iºπ v x

* * 1
C C Cˆ[ ]T T -ºπ v x x I xC

A(U,Μ)Μe =
 
Ue

eTA(U,Μ)Μ = eTU

1
b b b bˆ ˆ ˆ ˆ( , ) ( , ) -=A p U p M p A U M p ∀pb > 0
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where	 	 is	 the	price	vector	 relative	 to	 the	base-year	prices.	This	property	
implies	 that	 whatever	 the	 base-year	 price	 is,	 the	 corresponding	 technical	
coefficients	matrix	should	be	similar	to	the	matrix	 .		

(iv).	The	“scale	invariance	property”	or,	in	formal	terms,				
	 ,	 			

This	 property	 guarantees	 that	 the	 technical	 coefficients	 matrix	 does	 not	
depend	on	the	activity	levels	of	the	economy.	

Jansen	 and	 ten	 Raa	 (1990)	 proved	 that:	 (i)	 the	 PTA	 fulfils	 all	 the	 desirable	
properties;	(ii)	the	ITA	fulfils	only	the	material	balance	property”;18	(iii)	the	by-
product	method	and	the	mixed	technology	model,	constructed	by	ten	Raa	et	al.	
(1984),	fulfil	the	price	and	scale	invariance	properties;	(iv)	the	transfer	method	
does	not	fulfil	any	of	the	properties;	(v)	the	ESA	method	fulfils	the	material	balance	
and	price	 invariance	properties;	 and	 (vi)	 the	 lump-sum	method	 fulfils	only	 the	
scale	invariance	property.	
	 Following	Jansen	and	ten	Raa	(1990),	Rueda-Cantuche	and	ten	Raa	(2009)	
developed	 four	 desirable	 properties	 that	 the	 conversion	 methods	 that	 derive	
industry-by-industry	 SIOTs	 should	 fulfill,	 which	 are	 conjugated	 to	 those	
developed	by	Jansen	and	ten	Raa	(1990)	for	the	conversion	methods	that	derive	
product-by-product	SIOTs.	These	properties	are:	
(i).	The	material	balance	property:	
	 			
(ii).	The	financial	balance	property:	
	 		 	
(iii).	The	price	invariance	property:	
	 ,	 	
(iv).	The	scale	invariance	property:		
	 ,		 		
Rueda-Cantuche	and	ten	Raa	(2009)	proved	that	the	FISA	fulfils	all	the	desirable	
properties,	while	the	FPSA	fulfils	only	the	financial	balance	property.	

Thus,	it	is	concluded	that	only	the	PTA	and	the	FISA	fulfil	all	the	desirable	
properties.	However,	both	the	PTA	and	the	FISA	can	be	criticized	because	(i)	they	
cannot	 be	 applied	 to	 the	 case	 of	 rectangular	 SUTs;19	 and	 (ii)	 the	 technical	
coefficients	 matrix	 that	 is	 derived	 from	 these	 methods	 is	 possible	 to	 contain	
negative	 elements.	 In	 order	 to	 overcome	 the	 problem	 of	 negative	 coefficients,	
there	 have	 been	 proposed	 various	 procedures	 for	 removing	 the	 negative	
coefficients	that	may	appear	in	the	technical	coefficients	matrix.20	A	well-known	

 
18	 ten	Raa	et	al.	 (1984)	had	shown	that	 the	technical	coefficients	matrix	derived	under	the	 ITA	
depends	on	the	base	year	prices.	In	other	words,	they	had	proved	that	the	ITA	does	not	fulfil	the	
price	invariance	property.		
19	That	is	because	those	methods	require	the	inversion	of	the	make	matrix.	
20	For	a	detailed	review	of	the	available	methods	to	remove	negative	coefficients,	see	ten	Raa	and	
Rueda-Cantuche	(2005,	pp.	4–13).	

pb

A(U,M)

ˆ ˆ( , ) ( , )=A Us Ms A U M ∀s > 0

M[eTM!]−1A(U,Μ)[eTM!]e =
 
Ue

eTM[eTM!]−1A(U,Μ)[eTM!]= eTU

Ζ Ζ ΖT 1 T 1
b b b bˆ ˆ ˆ( , ) [ ] ( , )[ ][ ]- -=A p U p M p M e M A U M e M p M ∀pb > 0

ˆ ˆ( , ) ( , )=A Us Ms A U M ∀s > 0
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method	is	that	proposed	by	Almon	(1970;	2000),	which	consists	of	an	iterative	
procedure	 of	 changes	 in	 the	 technical	 coefficients	 matrix	 that	 converges	 to	 a	
(semi-)positive	matrix,	but	convergence	is	guaranteed	only	if	more	than	half	of	the	
production	 of	 each	 commodity	 is	 in	 its	 primary	 industry.	 However,	 Almon’s	
method	has	been	criticized	for	being	without	economic	justification	(see	ten	Raa	
et	 al.	 1984,	 p.	 93;	 ten	 Raa	 and	 Rueda-Cantuche	 2013).	 Alternatively,	 mixed	
technology	models	are	often	used	in	order	to	overcome	the	problem	of	negative	
coefficients	 (see,	e.g.	Armstrong	1975).	Nevertheless,	mixed	 technology	models	
cannot	 guarantee	 the	 derivation	 of	 a	 technical	 coefficients	 matrix	 with	 non-
negative	coefficients.	Moreover,	de	Mesnard	(2011)	has	pointed	out	that	even	in	
the	case	where	the	technical	coefficients	matrix	derived	from	PTA	or	FISA	is	non-
negative,	both	methods	should	be	rejected	as	economically	irrelevant.			
	 On	the	basis	of	the	previous	analysis	it	can	be	concluded	that	none	of	the	
conversion	 methods	 can	 guarantee	 (i)	 consistency	 with	 the	 requirements	 of	
input–output	 analysis;	 and	 (ii)	 economically	 acceptable	 results.	We	may	 find	 a	
way	 out	 of	 that	 problem	 by	 accepting	 that	 we	 live	 in	 a	 world	 where	 joint	
production	economic	activities	are	common	and	by	making	use	of	general	 joint	
production	models	inspired	by	von	Neumann	(1937;	1945)	and	Sraffa	(1960).	In	
the	next	section	we	present	the	essential	ideas	of	the	von	Neumann–Sraffa-based	
approach	to	the	case	of	joint	production	as	a	preferable	approach	to	treat	SUTs.21	
	
1.5	The	von	Neumann–Sraffa-Based	Approach	
	
A	square	linear	system	of	joint	production	à la von	Neumann–Sraffa	is	defined	by	
the	pair	 ,	where	 	is	the	output	matrix	and	 	is	the	input	matrix	(both	 	
and	 	are	expressed	in	physical	terms).	Also,	let	 	be	the	vector	of	final	demand	
(in	physical	terms),	 	be	the	vector	of	value	added	coefficients,	 	be	the	vector	
of	activity	levels,	and	 	be	the	vector	of	market	prices.	Then	we	can	write	
   (1.103) 

and	 	

   (1.104) 

The	above	system	is	said	to	be	strictly	viable	if	it	can	produce	a	physical	net	surplus	
of	any	commodity	or,	in	formal	terms,	
	 ,	 	

 
21	For	a	detailed	exposition	of	the	von	Neumann–Sraffa-based	analysis	and	the	connection	between	
the	works	of	von	Neumann	and	Sraffa,	see	Kurz	and	Salvadori	(1995,	Chap.	8	and	pp.	403–426;	
2001).	

{B,A} B A B
A d

π y
p

By = Ay + d

pTB = pTA + πT

∃y ≥ 0 [B −A]y > 0
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A	system	 	is	said	to	be	strictly	profitable	if	there	exists	a	price	vector	 	for	
which	all	industries	are	profitable,	or,	in	formal	terms,22	
	 	,	 	
A	commodity	 	is	said	to	be	separately	producible	if	it	is	possible	to	produce	a	net	
output	consisting	of	a	unit	of	that	commodity	alone	with	a	nonnegative	vector	of	
activity	levels	or,	in	formal	terms,	
	 ,	 	

where	 	is	a	vector	whose	 th	element	is	equal	to	1	and	all	other	elements	are	
equal	 to	 zero.	 A	 system	 	 is	 said	 to	 be	 all-productive	 if	 all	 products	 are	
separately	producible	or,	in	formal	terms,	
	 	,	 ,	 	

Thus,	 if	 	 is	 all-productive	 then	 	 (and	 vice	 versa).	 A	 process,	

within	a	system	 ,	is	called	indispensable	if	it	has	to	be	activated	whatever	net	
output	 is	 to	 be	 produced.	 An	 all-productive	 system	 whose	 processes	 are	 all	

indispensable	is	called	all-engaging.	Formally,	the	system	 	is	all-engaging	iff	
the	following	two	properties	hold	

	 ,	 		

   

Thus,	if	 	is	all-engaging	then	 	(and	vice	versa).	As	is	well	known,	
the	concepts	of	“all-productive”	(“all-engaging”)	systems	correspond	with	systems	
that	 retain	all	 the	essential	properties	of	 reducible	 (irreducible)	 single-product	
systems.23	
	 We	now	return	to	the	actual	economic	system	described	by	the	make	and	

use	matrices,	i.e.	the	pair	 .	The	make	and	use	matrices	can	be	rewritten	as	

	 		 (1.105)	
and		

	 		 (1.106)	
Analogously,	the	vectors	of	final	demand	and	value	added	can	be	rewritten	as	

	 		 (1.107)	
and		 	 	 	 	 	

	 		 (1.108)	

 
22	In	the	case	of	joint	production,	the	conditions	of	viability	and	profitability	are	not	equivalent	(see	
Bidard	1986,	pp.	55–56).	It	need	hardly	be	said	that,	in	general,	none	of	the	usual	laws	of	single	
production	systems	hold	true	in	the	case	of	joint	production	(see	Bidard	1997;	Steedman	1982).	
23	See	Bidard	(1996);	Kurz	and	Salvadori	(1995,	pp.	238–240);	Schefold	(1978).	
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Now,	we	assume	that	the	physical	unit	of	measurement	of	each	product	is	that	unit	
which	is	worth	of	a	monetary	unit,	i.e.	it	holds	
   (1.109) 

Substituting	Eqs.	1.105,	1.106,	1.107	and	1.109	into	Eq.	1.20	we	obtain	

	 		
or		

	 		 (1.110)	
Finally,	substituting	Eqs.	1.105,	1.106,	1.108	and	1.109	into	Eq.	1.21	we	obtain	

	 		
or	

   (1.111) 

Thus,	it	follows	that	Eq.	1.110	is	equivalent	to	Eq.	1.103	and,	by	taking	into	account	
Eq.	1.109,	it	follows	that	Eq.	1.111	is	equivalent	to	Eq.	1.104.		Consequently,	the	
system	described	by	the	make	and	use	matrices	can	be	considered	as	the	empirical	
counterpart	of	a	 joint	production	system	à la von	Neumann–Sraffa.	Namely,	the	
make	matrix,	 ,	can	be	considered	as	the	counterpart	of	the	output	matrix,	 ,	
and	the	use	matrix,	 ,	can	be	considered	as	the	counterpart	of	the	matrix	 	(also	
see	Bidard	and	Erreygers	1998,	pp.	434–436).	Therefore,	an	actual	economy	will	

be	 said	 to	 be	 all-productive	 (all-engaging)	 when	 it	 holds	 	 (

).24	
The	conversion	methods	try	to	transform	the	system	described	by	the	pair	

of	matrices	 	 into	 the	 single	 production	 system	 described	 by	 the	 pair	 of	
matrices	 .	This	means	that	all	conversion	methods	assume,	implicitly	
or	otherwise,	that	the	there	is	a	single	production	system	“hidden”,	i.e.	not	directly	
observable,	in	the	SUTs.	However,	this	is	a	groundless	assumption.	The	awareness	
of	joint	product	processes	has	been	already	familiar	to	classical	economists,	such	
as	Adam	Smith	(1776,	Book	1,	Chap.	11).25	For	instance,	Jevons	([1871]	1888,	Chap.	
5)	points	out	that	the	cases	of	joint	production	form	the	general	rule,	to	which	it	is	
difficult	 to	 find	 important	 exceptions,	 while	 similar	 points	 have	 been	 stressed	
more	 recently	 (see	 Baumgärtner	 et	 al.	 2006;	 Faber	 et	 al.	 1998;	 Kurz	 2006;	
Steedman	1984).	Contrary	to	the	approach	imposed	by	the	conversion	(namely,	
transmutation)	 methods,	 the	 von	 Neumann–Sraffa-based	 analysis	 of	 joint	
production	constitutes	a	straightforward	approach,	i.e.	it	does	not	rule	out	joint	
production,	 which	 is	 not	 based	 on	 any	 of	 the	 restrictive	 (and	 debatable)	
assumptions	of	the	conversion	methods.		

 
24	The	relevant	empirical	 investigation	so	 far	has	shown	that	none	of	 the	actual	 systems	 is	all-
productive	(see	Chaps.	5,	7	and	9).	
25	For	a	review	of	the	contributions	of	classical	and	early	neoclassical	economists	to	the	analysis	of	
joint	production,	see	Kurz	(1986).	
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To	sum	up,	given	that	(i)	the	pair	 	can	be	considered	as	the	empirical	

counterpart	of	the	pair	 ;	and	(ii)	joint	production	constitutes	the	empirically	
relevant	case,	it	would	seem	reasonable	that	a	straightforward	treatment	of	SUTs,	
based	on	the	von	Neumann–Sraffa-based	analysis,	to	be	preferred	instead	of	trying	
to	derive	single	production	tables	(i.e.	SIOTs).		
	
1.6	Concluding	Remarks	
	
This	chapter	mapped	the	structure	of	the	empirical	input–output	representations	
of	 actual	 economies,	 i.e.	 the	 Supply	 and	Use	 Tables	 (SUTs)	 and	 the	 Symmetric	
Input–Output	Tables	(SIOTs).	It	has	been	shown	that	the	main	difference	between	
these	two	types	of	input–output	tables	is	that	the	SUTs,	which	constitute	the	core	
of	the	modern	systems	of	national	accounting,	allow	for	joint	production	activities,	
whereas	the	SIOTs	rule	out	joint	production	and	are	constructed	on	the	basis	of	
specific	assumptions	on	the	relationships	between	inputs	and	outputs	recorded	in	
the	SUTs.	The	review	of	the	alternative	methods	used	to	convert	SUTs	into	SIOTs	
revealed	that,	despite	the	differences	amongst	those	methods,	they	all	rest	on	the	
tacit	 assumption	 that	 there	 is	 a	 single	 production	 system	 hidden	 in	 the	 SUTs	
characterizing	 the	 real	 world.	 It	 has	 been	 argued	 that	 this	 is	 a	 groundless	
assumption,	and	that	a	consistent	approach	is	the	straightforward	treatment	of	
SUTs	on	the	basis	of	general	joint	production	models	inspired	by	the	von	Neumann	
and	Sraffa	contributions.		
	

References	
Almon,	C.	 (1970).	 Investment	 in	 input–output	models	 and	 the	 treatment	of	 secondary	

products.	In	A.	P.	Carter,	&	A.	Bródy	(Eds.),	Applications	of	input–output	analysis	(pp.	
103–116).	Amsterdam:	North	Holland.	

Almon,	 C.	 (2000).	 Product-to-product	 tables	 via	 product	 technology	with	 no	 negative	
flows,	Economic	Systems	Research,	12(1),	27–43.	

Armstrong,	A.G.	(1975).	Technology	assumptions	in	the	construction	of	United	Kingdom	
input–output	 tables.	 In	 R.	 I.	 G.	 Allen,	 &	 W.	 F.	 Gossling	 (Eds.),	 Estimating	 and	
projecting	input–output	coefficients	(pp.	68–93).	London:	Input–Output	Publishing.	

Baumgärtner,	 S.,	 Faber,	 M.,	 &	 Schiller,	 J.	 (2006).	 Joint	 production	 and	 responsibility	 in	
ecological	 economics.	 On	 the	 foundation	 of	 environmental	 policy.	 Cheltenham:	
Edward	Elgar.	

Bidard,	 C.	 (1986).	 The	maximum	 rate	 of	 profits	 in	 joint	 production.	Metroeconomica,	
38(1),	53–66.	

Bidard,	C.	(1996).	All-engaging	systems.	Economic	Systems	Research,	8(4),	323–340.	
Bidard,	C.	(1997).	Pure	joint	production.	Cambridge	Journal	of	Economics,	21(6),	685–701.	
Bidard,	 C.,	 &	 Erreygers,	 G.	 (1998).	 Sraffa	 and	 Leontief	 on	 joint	 production.	Review	 of	

Political	Economy	10(4),	427–446.	
de	Mesnard,	L.	(2011).	Negatives	in	symmetric	input–output	tables:	the	impossible	quest	

for	the	Holy	Grail.	The	Annals	of	Regional	Science,	46(2),	427–454.	

{M,U}
{B,A}



 26 

Edmonston,	J.	H.	(1952).	A	treatment	of	multiple-process	industries.	The	Quarterly	Journal	
of	Economics,	66(4),	557–571.	

Eurostat	 (1979).	 European	 system	 of	 integrated	 economic	 accounts	 (ESA)	 (2nd	 ed.).	
Luxembourg:	Office	for	the	Official	Publications	of	the	European	Communities.	

Eurostat	 (2008).	Eurostat	manual	 of	 supply,	 use	 and	 input–output	 tables.	 Luxembourg:	
Office	for	the	Official	Publications	of	the	European	Communities.	

Faber,	M.,	Proops,	J.	L.	R.,	&	Baumgärtner,	S.	(1998).	All	production	is	joint	production.	A	
thermodynamic	analysis.	In	S.	Faucheux,	J.	Cowdy,	&	I.	Nikolaï	(Eds.),	Sustainability	
and	firms:	Technological	change	and	the	changing	regulatory	environment	(pp.	131–
158).	Cheltenham:	Edward	Elgar.	

Fukui,	Y.,	&	Seneta,	E.	 (1985).	A	 theoretical	approach	to	 the	conventional	 treatment	of	
joint	product	in	input–output	tables.	Economics	Letters,	18(2–3),	175–179.	

Gigantes,	T.	(1970).	The	representation	of	technology	in	input–output	systems.	In	A.	P.	
Carter,	 &	 A.	 Bródy	 (Eds.),	 Contributions	 to	 input–output	 analysis	 (pp.	 270–290).	
Amsterdam:	North-Holland.		

Gigantes,	 T.,	 &	 Matuszewski,	 T.	 (1968).	 Technology	 in	 input–output	 models.	 Paper	
presented	at	the	Fourth	International	Conference	on	Input–Output	Techniques,	8–
12	January	1968,	Geneva.		

Guo,	J.,	Lawson,	A.	M.,	&	Planting,	M.	A.	(2002).	From	make–use	to	symmetric	IO	tables:	An	
assessment	 of	 alternative	 technology	 assumptions.	 Paper	 presented	 at	 the	 14th	
International	 Input–Output	 Conference,	 10–15	 October	 2002,	 Montreal	 Canada.	
http://www.bea.gov/papers/pdf/alttechassump.pdf.	Accessed 30 Sept 2019.	

Jansen,	K.	P.,	&	ten	Raa,	T.	(1990).	The	choice	of	model	in	the	construction	of	input–output	
coefficients	matrices.	International	Economic	Review,	31(1),	213–227.	

Jevons,	W.	S.	([1871]	1888).	The	theory	of	political	economy	(3rd	ed.).	Includes Preface by 
Harriet Jevons. London:	 Macmillan	 and	 Co.	
http://www.econlib.org/LIBRARY/YPDBooks/Jevons/jvnPE1.html.	 Accessed 30 
Sept 2019.	

Kurz,	 H.	 D.	 (1986).	 Classical	 and	 early	 neoclassical	 economists	 on	 joint	 production.	
Metroeconomica,	38(1),	1–37.	

Kurz,	 H.	 D.	 (2006).	 Goods	 and	 bads:	 Sundry	 observations	 on	 joint	 production	 waste	
disposal,	and	renewable	and	exhaustible	resources.	Progress	in	Industrial	Ecology	–	
an	International	Journal,	3(4),	280–301.	

Kurz,	 H.	 D.,	 &	 Salvadori,	 N.	 (1995).	 Theory	 of	 production.	 A	 long-period	 analysis.	
Cambridge:	Cambridge	University	Press.	

Kurz,	H.	D.,	&	Salvadori,	N.	(2001).	Sraffa	and	von	Neumann.	Review	of	Political	Economy,	
13(2),	161–180.	

Kurz,	H.	D.,	Dietzenbacher,	E.,	&	Lager,	C.	(1998).	General	introduction.	In	H.	D.	Kurz,	E.	
Dietzenbacher,	&	C.	Lager	(Eds.),	Input–output	analysis.	Cheltenham:	Edward	Elgar.	

Leontief,	W.	(1936).	Quantitative	input	and	output	relations	in	the	economic	system	of	
the	United	States.	The	Review	of	Economics	and	Statistics,	18(3),	105–125.	

Mariolis,	T.	(2008).	The	conversion	of	SUTs	into	SIOTs.	Internal	Report	of	the	Study	Group	
on	Sraffian	Economics,	4	Apr	2008.	Athens:	Department	of	Public	Administration,	
Panteion	University	(in	Greek).	

Mariolis,	T.,	&	Soklis,	G.	(2007).	On	the	empirical	validity	of	the	labour	theory	of	value.	In	
T.	Mariolis	(2010).	Essays	on	the	logical	history	of	political	economy	(pp.	231–260).	
Athens:	Matura	(in	Greek).	



 27 

Mariolis,	 T.,	&	 Soklis,	 G.	 (2010).	Additive	 labour	 values	 and	prices:	 Evidence	 from	 the	
supply	and	use	tables	of	the	French,	German	and	Greek	Economies.	Economic	Issues,	
15(2),	87–107.	

Mariolis,	 T.,	&	 Soklis,	 G.	 (2018). The	 static	 Sraffian	multiplier	 for	 the	Greek	 economy:	
Evidence	 from	 the	 supply	 and	 use	 table	 for	 the	 year	 2010.	Review	 of	 Keynesian	
Economics,	6(1),	114–147.	

Mariolis,	T.,	Ntemiroglou,	N.,	&	Soklis,	G.	(2018).	The	static	demand	multipliers	in	a	joint	
production	framework:	Comparative	findings	for	the	Greek,	Spanish	and	Eurozone	
economies.	Journal	 of	 Economic	 Structures,	 7:	 18,	
https://doi.org/10.1186/s40008–018–0116-0.	 

Marx, K. ([1878] 1977). From the Critical History. In F. Engels, Anti-Dühring. Herr Eugen 
Dühring’s revolution in science (pp. 274–305). Moscow: Progress Publishers. 

Neumann, J. von (1937). Über ein ökonomisches Gleichungssystem und eine 
Verallgemeinerung des Brouwerschen Fixpunktsatzes. In K. Menger  (Ed.), Ergebnisse  
eines Mathematischen Kolloquiums, 8 (pp. 73–83). Leipzig: Deuticke. 

Neumann,	 J.	 von	 (1945).	 A	 model	 of	 general	 economic	 equilibrium.	 The	 Review	 of	
Economic	Studies,	13(1),	1–9.	

Office	of	Statistical	Standards	(1974).	Input–output	tables	for	1970.	Tokyo:	Institute	for	
Dissemination	of	Government	Data.	

Quesnay,	F.	(1972).	Quesnay’s	Tableau	Economique	[1759].	Edited	by	M.	Kuczynski,	&	R.	L.	
Meek.	London:	Macmillan.		

Rueda-Cantuche,	J.	M.,	&	ten	Raa,	T.	(2009).	The	choice	of	model	in	the	construction	of	
industry	coefficients	matrices.	Economic	Systems	Research,	21(4),	363–376.	

Schefold,	 B.	 (1978).	 Multiple	 product	 techniques	 with	 properties	 of	 single	 product	
systems.	Journal	of	Economics,	38(1–2),	29–53.	

Smith,	A.	(1776).	An	inquiry	into	the	nature	and	causes	of	the	wealth	of	nations.	London,	
United	Kingdom:	Strahan	and	Cadell.		

Soklis,	G.	(2005).	On	the	make	and	use	matrices	in	input–output	analysis.	Internal	Report	
on	 Political	 Economy	 No.	 2,	 24	 Nov	 2005.	 Athens:	 Department	 of	 Public	
Administration,	Panteion	University	(in	Greek).	

Soklis,	 G.	 (2006).	 Labour	 values	 and	 production	 prices:	 Exploration	 based	 on	 the	 joint	
production	table	of	the	Greek	economy	for	the	year	1999.	Master’s	Thesis,	Athens:	
Department	of	Public	Administration,	Panteion	University	(in	Greek).	

Soklis,	G.	(2009).	The	conversion	of	the	supply	and	use	tables	to	symmetric	input–output	
tables:	A	critical	review.	Bulletin	of	Political	Economy,	3(1),	51–70.		

Soklis,	G.	(2011).	Shape	of	wage–profit	curves	in	joint	production	systems:	evidence	from	
the	supply	and	use	tables	of	the	Finnish	economy.	Metroeconomica,	62(4),	548–560.	

Soklis,	 G.	 (2012).	 Labour	 values,	 commodity	 values,	 prices	 and	 income	 distribution:	
Exploration	 based	 on	 empirical	 input–output	 tables.	 Ph.D.	 Dissertation,	 Athens:	
Department	of	Public	Administration,	Panteion	University	(in	Greek).	

Soklis,	 G.	 (2015).	 Labour	 versus	 alternative	 value	 bases	 in	 actual	 joint	 production	
systems.	Bulletin	of	Political	Economy,	9(1),	1–31.	

Sraffa,	P.	(1960).	Production	of	commodities	by	means	of	commodities.	Prelude	to	a	critique	
of	economic	theory.	Cambridge:	Cambridge	University	Press.		

Steedman,	I.	(1982).	Joint	production	and	the	wage–rent	frontier.	The	Economic	Journal,	
92(2),	377–385.	



 28 

Steedman,	I.	(1984).	L’importance	empirique	de	la	production	jointe.	In	C.	Bidard	(Ed.),	
La	production	jointe.	Nouveaux	débats	(pp.	5–20).	Paris:	Economica.	

Stone,	R.	(1961).	Input–output	and	national	accounts.	Paris:	OECD.	
ten	Raa,	T.,	&	Rueda-Cantuche,	J.	M.	(2013).	The	problem	of	negatives	generated	by	the	

commodity	technology	model	in	input–output	analysis:	A	review	of	the	solutions.	
Journal	of	Economic	Structures	2:	5, https://doi.org/10.1186/2193-2409-2-5.	 

ten	Raa,	T.,	Chakraborty,	D.,	&	Small,	J.	A.	(1984).	An	alternative	treatment	of	secondary	
products	 in	 input–output	analysis.	The	Review	of	Economics	and	Statistics,	66(1),	
88–97.	

United	Nations	(1968).	A	system	of	national	accounts.	New	York:	United	Nations,	Series	F,	
no.	2,	rev.	3.	

United	Nations	(1999).	Handbook	of	input–output	table.	Compilation	and	analysis.	Studies	
in	 methods.	 Handbook	 of	 national	 accounting.	 New	 York:	 United	 Nations,	
Department	for	Economic	and	Social	Affairs,	Statistics	Division,	Series	F,	No.74.	

van	Rijckeghem,	W.	(1967).	An	exact	method	for	determining	the	technology	matrix	in	a	
situation	with	secondary	products.	The	Review	of	Economics	and	Statistics,	49(4),	
607–608.	

Viet,	V.	Q.	(1994).	Practices	in	input–output	table	compilation.	Regional	Science	and	Urban	
Economics	24(1),	27–54.	


