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ABSTRACT 

This paper reviews the available methods used to convert Supply and Use 

Tables of actual economic systems to Symmetric Input-Output Tables. It is 

argued that all conversion methods rest on the unrealistic assumption that 

single production, and not joint production, characterizes the economic 

structure of the real world. Finally, a straightforward treatment, based on 

general joint-product models inspired by von Neumann (1945) and Sraffa 

(1960), of the Supply and Use Tables is proposed as a way out of the 

inconsistencies of the conversion methods. 

 

INTRODUCTION 

In 1968 System of National Accounts, United Nations introduced the Supply and Use 

Tables (SUT hereafter) in the compilation of Input-Output Tables (United Nations, 

1968). In those Tables there are industries that produce more than one commodity and 

commodities that are produced by more than one industry. Since then, there has been 

an ongoing discussion on how these tables of joint production can be converted to 

Symmetric Input-Output Tables (SIOT hereafter) of single production.
1 

 Most of the discussion has been focused on two alternative assumptions for 

dealing with the problem at hand: (i) the Commodity Technology Assumption (CTA 

hereafter); and (ii) the Industry Technology Assumption (ITA hereafter). It can be 

said that the CTA is doubtless the preferred method, since it is the only one that fulfils 
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basic axioms of the Input-Output analysis (see Jansen and ten Raa, 1990). However, 

even in this method certain problems arise that cast doubt to its reliability.  

 The remainder of the paper is organized as follows: Section 2 reviews the 

alternative methods of conversion of SUT into SIOT. Section 3 offers an evaluation of 

these methods. Section 4 presents the von Neumann-Sraffa treatment of joint 

production as the way out of the problems encountered in the conversion methods. 

Section 5 concludes the paper. 

 

THE CONVERSION METHODS 

Let [ ]ijuU
 
be the Use matrix, which describes commodities (rows) consumed by 

industries (columns), [ ]ijvV  be the Make matrix which describes commodities 

(rows) produced by industries (columns),
2
 f  be the column vector of final demand, 

Tv  be the row vector of value-added („ T ‟ is the sign for transpose) and e  be the 

column summation vector (all magnitudes are expressed in money terms). Then, an 

actual joint-product system (SUT) is described by the following relations
3 

 Ve Ue f      (1) 

             T T T e V e U v     (2) 

The conversion methods try to transform (1) and (2) into the following single-product 

system (SIOT) 

      * x Ze f      (3) 

         T T * T( ) x e Z v     (4) 

where x  is a column vector that describes the output of commodities of the single-

product system, ( ( , ) )Z A U V x  is the transactions matrix, ( , )A U V  is the 

commodity-by-commodity direct requirements matrix that is derived from the 

conversion of the SUT to SIOT,
4
  

*f , * T( )v  are the transformed vectors of final 

demand and value added, respectively, and [„ ^ ‟] denotes diagonalization either by 

suppression of the off-diagonal entries of a square matrix or by placement of the 

entries of a vector. 
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The usual methods of conversion of SUT to SIOT are the following: 

The Commodity Technology Assumption 

The CTA assumes that each industry produces only the total output of the commodity 

that is primary to that industry and that each commodity has its own input structure, 

irrespective of the industry that produces it. Thus, it holds
5
 

( , )U A U V V      (5) 

and 

     x Ve                  (6) 

Consequently, the direct requirements matrix is obtained as follows 

1( , ) A U V UV      (7) 

Substituting (5) and (6) in (1) yields 

     ( , ) x A U V x f      (8) 

From relations (8) and (3) it follows 

     
* f f                   (9) 

Substituting (5) in (2) yields 

     T T T( , ) e V e A U V V v              (10) 

Post-multiplying (10) by 1( )V Ve  gives 

      T T T 1( ) ( , )( ) ( ) e Ve e A U V Ve v V Ve             (11) 

Substituting (6) in (11) we obtain 

     T T T 1( , ) ( ) x e A U V x v V x               (12) 

From relations (12), (4) and (6) it follows 

     * T T 1( ) ( )v v V Ve               (13) 
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Hence, under the CTA, the joint-product system described by the relations (1) and (2) 

is converted to the single-product system described by the relations 

( , ) Ve A U V Ve f  and  T T T 1( ) ( , )( ) ( ) Ve e A U V Ve v V Ve , respectively.  

The Industry Technology Assumption 

The ITA assumes that each industry produces only the total output of the commodity 

that is primary to that industry and that has the same input requirements for any unit 

of output. In that case, the input structure of each commodity depends on what 

industry produces it. In mathematical terms, it holds
6 

 T 1 T 1( , ) ( ) ( ) A U V U e V V Ve             (14) 

and 

                  
x Ve                                                          (15)

 

Relation (14) entails that 

     

 T 1 T( , )( )( ) ( )U A U V Ve V e V             (16) 

 Post-multiplying (16) by the summation vector gives 

( , )Ue A U V Ve               (17) 

Substituting (15) and (17) in (1) yields 

     ( , ) x A U V x f               (18) 

From relations (18) and (3) it follows 

     
* f f                 (19) 

Substituting (16) in (2) yields 

    

 T T T 1 T T( , )( )( ) ( ) e V e A U V Ve V e V v                     (20) 

Post-multiplying (20) by 
T 1 T( )e V V  gives 
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  T T 1 T T T T 1 T( ) ( , )( ) ( )  e V e V V e A U V Ve v e V V             (21) 

Substituting (15) in (21) we obtain
7 

  
   T T T T 1 T( , ) ( ) x e A U V x v e V V   

 
           (22) 

From relations (22) and (4) it follows 

     
* T T T 1 T( ) ( )v v e V V                          (23) 

 

Hence, under the ITA, the joint-product system described by the relations (1) and (2) 

is converted to the single-product system described by the relations 

( , ) Ve A U V Ve f  and  T T T T 1 T( ) ( , )( ) ( ) Ve e A U V Ve v e V V , respectively.  

The By-Product Method 

The by-product method (Stone, 1961, pp. 39-41) assumes that all „secondary 

products‟ are „by-products‟
8
 and that can be treated as negative inputs of the 

industries that they are actually produced. The Make matrix splits into V  and 
2V , 

where V  is the diagonal matrix that describes the „primary products‟ of each industry 

and 
2V  is the off-diagonal matrix that describes the „secondary products‟ of each 

industry. Thus, it holds 

      
2 V V V                (24) 

In mathematical terms, the by-product method assumes that
9
  

    
2 ( , ) U V A U V V               (25) 

and 

     x Ve                 (26) 

Relation (25) entails that  

      1

2( , ) ( )( ) A U V U V V              (27) 
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Combining (24) and (1) gives 

     
2( )  Ve U V e f               (28) 

Substituting (25) and (26) in (28) yields 

     ( , ) x A U V x f               (29) 

From relations (3) and (29) it follows 

     * f f                 (30) 

Combining (24) and (2) gives 

     T T T

2( )  e V e U V v              (31) 

Substituting (25) in (31) yields
 

      T T T( , ) e V e A U V V v              (32) 

Substituting (26) in (32) yields
10

 

     T T T( , ) x e A U V x v               (33) 

From relations (33) and (4) it follows 

     T * T( ) v v                (34) 

Thus, it follows that, under the by-product method, the joint-product system described 

by the relations (1) and (2) is converted to the single-product system described by the 

relations  ( , ) Ve A U V Ve f  and  T T T( ) ( , ) Ve e A U V V v , respectively.  

 Mixed Technology Assumptions 

Mixed Technology Assumptions were suggested by Gigantes and Matuszweski 

(1968) and were incorporated in the 1968 System of National Accounts (United 

Nations, 1968, p. 50). This conversion method assumes that a part of the secondary 

products should be treated using the CTA and the remaining part should be treated 

using the ITA. The Make matrix splits into the matrices 
1V  and 

2V  and it is assumed 
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that 
1V
 
includes output that fits the CTA whilst 

2V
 
includes output that fits the ITA. 

Thus, it holds 

1 2 V V V               (35) 

Following Armstrong (1975), we define 

 T 1 T 1

1 1 1( ) ( )( ) A U V e V e V              (36) 

and 

     
 T 1 T 1

2 2 2( ) ( ) A U V e V V e              (37) 

where 
1A  is the direct requirements matrix for outputs included in 

1V , whilst 
2A  is 

the direct requirements matrix for outputs included in 
2V . Then, the commodity-by-

commodity direct requirements matrix of the economy is defined as
11

 

     
1 2( , ) [ ]  A U V A I D A D              (38) 

where   1

2( )( )D V e Ve . It can be seen that if 
2 V 0 , then 1

1

 A A UV , which is 

the CTA. On the other hand, if 
1 V 0 , then 

 T 1 T 1

2 ( ) ( )  A A U e V V Ve , which is 

the ITA.
 

 On the basis of their critique to the ITA, ten Raa et al. (1984) constructed an 

alternative mixed technology model, assuming that 
2V  includes output that fits the 

by-product assumption. In mathematical terms, it is assumed that 

     
1 2 V V V                (39) 

     
1x Ve                (40) 

and 

2 1( , ) U V A U V V               (41) 

which entails that 

1

2 1( , ) ( )  A U V U V V              (42) 
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Combining (39) and (1) gives 

     
1 2( )  Ve U V e f               (43) 

Substituting (40) and (41) in (43) yields 

     ( , ) x A U V x f               (44) 

From relations (44) and (3) it follows 

    * f f                 (45) 

Combining (39) and (2) gives 

     T T T

1 2( )  e V e U V v                         (46) 

Substituting (41) in (46) yields 

     T T T

1 1( , ) e V e A U V V v              (47) 

Post-multiplying (47) by 1

1 1( ) ( )V Ve  we obtain 

     T T T 1

1 1 1 1( ) ( , )( ) ( ) ( ) e Ve e A U V Ve v V Ve              (48) 

Substituting (40) in (48) yields 

     T T T 1

1( , ) ( ) x e A U V x v V x                          (49) 

From relations (49), (40) and (4) it follows 

     * T T 1

1 1( ) ( )v v V Ve               (50) 

Thus, it follows that, under the mixed technology model introduced by ten Raa et 

al.(1984), the joint-product system described by the relations (1) and (2) is converted 

to the single-product system described by the relations 
1 1( , ) Ve A U V Ve f  and 

 T T T 1

1 1 1 1( ) ( , )( ) ( ) Ve e A U V Ve v V Ve , respectively. 
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The Transfer Method 

The Transfer method was proposed by Stone (1961, pp. 39-41) as an alternative 

method to treat „by-products‟. This method treats „secondary products‟ as if they were 

bought by the industry where they are „primary‟ and added to the output of that 

industry. In mathematical terms, it holds 

     T

2( ) x V V e               (51) 

 whilst the direct requirements matrix derived from the transfer method is defined as
12

 

  T T 1

2( , ) ( )[( ) ( ) ]   A U V U V e V Ve V              (52) 

where V  is the diagonal matrix that describes the „primary products‟ of each industry 

and 
2V  is the off-diagonal matrix that describes the „secondary products‟ of each 

industry. Relation (52) entails that 

  T T

2 ( , )[( ) ( ) ]   U V A U V e V Ve V              (53) 

Adding T

2V e  to both sides of (1) we obtain 

    T T

2 2( ) ( )   V V e U V e f               (54) 

Substituting (53) in (54) yields 

   
  T T

2( ) ( , )[( ) ( ) ]    V V e A U V e V Ve V e f   

or
13 

    T T

2 2( ) ( , )( )   V V e A U V V V e f              (55) 

Substituting (51) in (55) gives 

     ( , ) x A U V x f               (56) 

From relations (56) and (3) it follows 

     
* f f                 (57) 
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Adding T T

2e V  to both sides of (2) we obtain 

    T T T T T

2 2( ) ( )   e V V e U V v              (58) 

Substituting (53) in (58) yields 

   
  T T T T T

2( ) ( , )[( ) ( ) ]    e V V e A U V e V Ve V v      

or 

     T T T( , ) x e A U V x v               (59) 

From relations (59) and (4) it follows 

     * T T( ) v v                (60) 

Hence, it follows that, under the transfer method, the joint-product system described 

by the relations (1) and (2) is converted to the single-product system described by the 

relations  

T T

2 2( ) ( , )( )   V V e A U V V V e f  

 and  

T T T T T

2 2[( ) ] ( , )[( ) ]   V V e e A U V V V e v  

respectively.  

The ESA Method 

The ESA (European System of Integrated Economic Accounts) method (Eurostat, 

1979, pp. 116-7) recommends that „secondary products‟ should be treated as if they 

were produced by the industries were these products are „primary‟. Thus, it holds 

 x Ve                (61) 

and the direct requirements matrix is defined as
14

 

       1( , ) ( )A U V U Ve                          (62) 
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which entails that 

( , )( )U A U V Ve               (63) 

Substituting (63) in (1) yields 

     ( , ) Ve A U V Ve f               (64) 

Substituting (61) in (64) gives 

     ( , ) x A U V x f               (65) 

From relations (65) and (3) it follows 

     * f f                            (66) 

Substituting (63) in (2) yields 

     T T T( , )( ) e V e A U V Ve v              (67) 

Adding T( )Ve  to both sides of (67) and after rearrangement we obtain 

   T T T T T( ) ( , )( ) ( )   Ve e A U V Ve v Ve e V              (68) 

Substituting (61) in (68) yields 

    T T T T T( , ) ( )   x e A U V x v Ve e V              (69) 

From relations (69) and (4) it follows 

     * T T T T( ) ( )  v v Ve e V              (70) 

Consequently, with the use of the ESA method, the joint-product system described by 

the relations (1) and (2) is converted to the single-product system described by the 

relations ( , ) Ve A U V Ve f  and T T T T T( ) ( , )( ) ( )   Ve e A U V Ve v Ve e V , 

respectively.  

 

 

 



12 
 

The Lump-Sum Method 

The Lump-Sum (or Aggregation) Method (Office of Statistical Standards, 1974, p. 

116) treats „secondary products‟ as if they were produced as a „primary product‟ of 

the industry that they are actually produced. Thus, it holds 

     Tx V e                (71) 

and the direct requirements matrix is defined as
15

  

T 1( , ) ( )A U V U V e               (72) 

which entails that 

     
 

T( , )( )U A U V V e               (73) 

Substituting (73) in (1) yields 

     T( , ) Ve A U V V e f               (74) 

Adding TV e  to both sides of (74) and after rearrangement we obtain 

    T T T( , )( ) ( )   V e A U V V e f V V e              (75) 

Substituting (71) in (75) yields 

            T( , ) ( )   x A U V x f V V e              (76) 

From relations (76) and (3) it follows 

     * T( )  f f V V e                          (77) 

Substituting (73) in (2) gives 

     
T T T T( , )( ) e V e A U V V e v              (78) 

Combining (71) and (78) yields
16 

     T T T( , ) x e A U V x v                          (79) 

From relations (79) and (4) it follows 

     * T T( ) v v                                      (80) 
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Hence, under the Lump-Sum Method, the joint-product system described by the 

relations (1) and (2) is converted to the single-product system described by the 

relations T T T( ) ( , ) ( )   V e A U V V e f V V e  and 
T T T T T( ) ( , )( ) V e e A U V V e v , 

respectively.  

The Redefinition Method 

The Redefinition method is used to move outputs and inputs of „secondary products‟, 

that have distinctive production processes compared to those of the „primary 

products‟ of each industry, to the industries where these products are „primary‟.
17

 This 

method is most suitable to be applied for „secondary products‟ that have production 

processes similar to the respective production processes of the industries where these 

products are „primary‟. Nevertheless, this method needs additional data on the 

production of the „secondary products‟ that are not always available.
18 

 

EVALUATION OF THE CONVERSION METHODS 

The next issue that comes up is which of the conversion methods is the most suitable 

for the problem at hand. Since there were not any objective criteria to test the 

consistency of the various methods, Jansen and ten Raa (1990) developed four 

desirable properties or, alternative, axioms that the various methods should fulfill. 

These properties are: 

i. The „Material Balance property‟:   

    
( , ) A U V Ve Ue               (81) 

This property implies that the requirements needed to produce the output should 

be equal to the actual inputs of the economy. 

ii. The „Financial Balance property‟: 

        T T( , ) e A U V V e U                  (82) 

This property implies that, assuming that market prices are equal to 1,
19

 the input 

cost of the output should be equal to the cost of the actual inputs. 

iii. „The Price Invariance property‟: 
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                       B B B B 1( , ) ( , )( )A p U p V p A U V p , B p 0
             

(83) 

where Bp  is the price vector relative to the base year prices. This property implies 

that whatever the base-year price is, the corresponding direct requirements matrix 

should be similar to the matrix ( , )A U V .  

iv. The „Scale Invariance property‟:  

( , ) ( , )A Us Vs A U V  ,  s 0             (84) 

This property guarantees that the direct requirements matrix does not depend on 

the activity levels of the economy. 

Jansen and ten Raa (1990) proved that: (i) the CTA fulfils all the desirable properties; 

(ii) the ITA fulfils only the „Material Balance property‟;
20

 (iii) the By-Product method 

and the Mixed Technology model, constructed by ten Raa et al. (1984), fulfil the 

„Price‟ and „Scale Invariance properties‟; (iv) the Transfer method does not fulfil any 

of the properties; (v) the ESA method fulfils the „Material Balance‟ and „Price 

Invariance properties‟; and (vi) the Lump-Sum method fulfils only the „Scale 

Invariance property‟.  

Thus, it is concluded that only the CTA fulfils all the desirable properties. 

However, the CTA has been criticized because (i) it cannot be applied to the case of 

rectangular SUT;
21

 and (ii) the direct requirements matrix that is derived from this 

method is possible to contain negative coefficients. Input-Output analysts have 

pointed out a number of reasons why negative coefficients may appear in the direct 

requirements matrix. These reasons are: (i) the same commodities may be produced 

with distinct technologies in different industries (in that case the CTA is not valid);
22

 

(ii) production classifications may be heterogeneous;
23

 and (iii) SUT may have errors 

of measurement.
24, 25

 

In order to overcome the problem of negative coefficients, analysts have 

proposed various procedures for removing the negative coefficients that may appear 

in the direct requirements matrix under the CTA.
26

 A well known method is that 

proposed by Almon (1970, 2000), which consists of an iterative procedure of changes 

in the direct requirements matrix that converges to a (semi-)positive matrix.
27

 

Alternatively, Mixed Technology Models, i.e., a combination of the CTA with 
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another conversion method, are often used in order to overcome the problem of 

negative coefficients (see e.g., Armstrong, 1975). Nevertheless, Mixed Technology 

Models cannot guarantee the derivation of a direct requirements matrix with non-

negative coefficients.  

 On the basis of the previous analysis it can be said that none of the conversion 

methods can guarantee (i) consistency with the requirements of Input-Output analysis; 

and (ii) economically acceptable results.  

We may find a way out of that problem by accepting that we live in a world 

where joint-product economic activities are common and by making use of general 

joint-product models inspired by von Neumann (1945) and Sraffa (1960). In the next 

section we present the essential ideas of the v. Neumann/Sraffa-based approach to the 

case of joint production as a preferable approach to treat actual joint-product tables.
28 

 

THE V. NEUMANN/SRAFFA-BASED APPROACH 

A square linear system of joint production à la v. Neumann/Sraffa is defined 

by the pair { , }B A , where B  is the output matrix and A  is the input matrix (both B  

and A  are expressed in physical terms). Also, let d  be the vector of final demand (in 

physical terms), 
Tz  be the row vector of value-added coefficients (in money terms), y  

be the vector of activity levels and Tp  be the row vector of market prices. Then we 

can write 

 By Ay d                (85) 

and     T T T p B p A z               (86) 

The above system is said to be strictly viable if it can produce a physical net surplus 

of any commodity. Formally, 

    , y 0  ( ) B A y 0                (87) 

A system { , }B A  is said to be strictly profitable if there exists a price vector p  for 

which all industries are profitable, i.e.,
29 



16 
 

    , p 0 T T( ) p B A 0                  (88) 

A commodity i  is said to be separately producible if it is possible to produce a net 

output consisting of a unit of that commodity alone with a nonnegative vector of 

activity levels. That is, 

    , y 0  ( ) B A y ei
               (89) 

where ei
 is a vector whose i  th element is equal to 1 and all other elements are equal 

to zero. 

A system { , }B A  is said to be all-productive if all products are separately producible. 

Formally, 

        , d 0 , y 0 ( ) B A y d              (90) 

It can be easily seen that if { , }B A  is all-productive then 1( ) B A 0  (and vice 

versa). 

A process, within a system { , }B A , is called indispensable if it has to be activated 

whatever net output is to be produced. An all-productive system whose processes are 

all indispensable is called all-engaging. Formally, the system { , }B A  is all-engaging 

iff the following two properties hold 

       ,( )   y 0 B A y 0               (91) 

   { ,( ) }     y 0 B A y 0 y 0               (92) 

It can be easily seen that if { , }B A  is all-engaging then 1( ) B A 0  (and vice versa). 

The concepts of „all-productive‟ („all-engaging‟) systems, introduced by Schefold 

(1971, pp. 34-5; 1978), are of significant importance since they correspond with 

systems that retain all the essential properties of decomposable (indecomposable) 

single-product systems.
30

   

 We now return to the actual economic system described by the Make and Use 

matrices, i.e., the pair { , }V U . The Make and Use matrices can be rewritten 

 ( ) ( )V p B y                           (93) 
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and  

 ( ) ( )U p A y                           (94) 

Analogously, the vectors of final demand and value-added can be rewritten  

( )f p d                           (95) 

and      T T ( )v z y                (96) 

By setting the market prices equal to 1, i.e.,
 

p e                            (97) 

the relations (93), (94) and (95) become ( )V B y , ( )U A y  and f d , 

respectively. Thus, from relations (1), (93), (94), (95) and (97) we obtain 

      ( ) ( ) B y e A y e d               (98) 

or  

 By Ay d                (99)              

which is relation (85). Analogously, by setting y e , it can be seen that there is a 

direct connection between relations (2) and (86). Consequently, the system described 

by the Make and Use matrices can be considered as the empirical counterpart of a 

joint-product system à la v. Neumann/Sraffa.
31 

Namely, the Make matrix, V , can be 

considered as the counterpart of the matrix B , the Use matrix, U , can be considered 

as the counterpart of the matrix A , the vector of final demand, f , can be considered 

as the counterpart of the vector d  and the vector of value-added, Tv , can be 

considered as the counterpart of the vector 
Tz . In that case, an actual joint-product 

system will be said to be all-productive (all-engaging) when it holds 1( ) V U 0  

( 1( ) V U 0 ).
32

 

The conversion methods try to transform the joint-product system described 

by the pair of matrices { , }V U  to the single-product system described by the pair of 

matrices { , ( , )}I A U V . This means that all conversion methods assume, implicitly or 

otherwise, that the there is a single-product system „hidden‟, i.e. not directly 
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observable, in the SUT. However, this is an unrealistic assumption.
33

 On the other 

hand, the v. Neumann/Sraffa-based analysis of joint production constitutes a 

straightforward approach, i.e., it does not rule out joint production, which is not based 

on any of the restrictive (and debatable) assumptions of the conversion methods.
34

  

To sum up this section, given that (i) the pair { , }V U  can be considered as the 

empirical counterpart of the pair { , }B A ; and (ii) joint production constitutes the 

empirical relevant case, it would seem reasonable that a straightforward treatment of 

actual joint-product tables (SUT), based on the v. Neumann/Sraffa-based analysis, to 

be preferred instead of trying to derive single-product tables (SIOT).  

 

CONCLUDING REMARK 

In this paper, alternative methods, used to convert Supply and Use Tables to 

Symmetric Input-Output Tables, have been reviewed. The evaluation of the 

conversion methods reveals that, despite the differences between them, they all rest on 

the assumption that there is a single-product system „hidden‟ in the Supply and Use 

Tables that characterizes the economic structure of the real world. It has been argued 

that this is an unrealistic assumption and that a straightforward treatment of actual 

joint-product systems, on the basis of the v. Neumann/Sraffa-based analysis, 

constitutes a preferable approach.  

Notes 

 

1. It has to be noted that some of the „joint‟ products that appear in the SUT may result from statistical 

classification. Therefore, these products do not correspond with the notion of joint production (see e.g., 

Semmler, 1984, pp. 168-9 and United Nations, 1999, p. 77).  

2. The on-diagonal elements of the Make matrix describe the so-called „primary (or characteristic) 

product‟ of each industry and the off-diagonal elements describe the so-called „secondary products‟. 

The „primary product‟ of an industry is defined as the output of that industry that comprises the 

primary source of revenues (Miller and Blair, 1985, p. 153). 

3. In general, the SUT need not be „square‟, i.e., the number of commodities produced need not be 

equal to the producing industries (see e.g., United Nations, 1999, p. 86 and Eurostat, 2008, p. 325). 
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Nevertheless, in what follows we assume, for simplicity‟s sake, that the Make and Use matrices are 

square. 

4. The conversion methods that are presented in this paper convert the commodity-by-industry Make 

and Use matrices into a single-product system, where the direct requirements matrix is a commodity-

by-commodity matrix. Nevertheless, there are corresponding methods that result in an industry-by-

industry direct requirements matrix (see, e.g., United Nations, 1968, pp. 48-50, Gigantes, 1970, 

Eurostat, 2008, ch. 11). Moreover, for an evaluation of these methods, see Rueda-Cantuche and ten Raa 

(2008). Even though our analysis could be extended to those conversions, we exclude them, for 

brevity‟s sake, from our analysis.  

5. See, e.g., van Rijckeghem (1967) and United Nations (1968, p. 49). The origins of this method can 

be found in Edmonston (1952, p. 567).  

6. See, e.g., United Nations (1968, pp. 49-50) and Schefold (1987, p. 1030). For a more analytical 

exposition of this method and a numerical example, see Miller and Blair (1985, pp. 166-9).  

7. Note that 
T T 1 T T T T( ) ( )  e V e V V e V Ve . 

8. „By-products‟ are products that are technologically linked to the production of the „primary product‟ 

of the industry where it is actually produced (Stone, 1961, p. 39). The inputs needed for their 

production are considered to be „low‟ in relation to the „primary product‟ of the industry where they are 

produced (United Nations, 1999, p. 77, Viet, 1994, p. 33). 

9. See, e.g., ten Raa et al. (1984, p. 88) and Miller and Blair (1985, p. 173).  

10. Note that  T T( )e V Ve  and  ( )V Ve . 

11. For alternative ways of calculating the direct requirements matrix, using mixed technology 

assumptions, see Armstrong (1975, pp. 74-6) and Gigantes (1970, pp. 284-90). 

12. See, e.g., Jansen and ten Raa (1990, p. 215) and ten Raa and Rueda-Cantuche (2003, pp. 441-2). 

13. Note that 
   T T

2( ) ( ) ( )   e V Ve V V V e . 

14. See, e.g., Viet (1994, pp. 38-40) and ten Raa and Rueda-Cantuche (2003, p. 443). 

15. See, e.g., Fukui and Seneta (1985, p. 177) and ten Raa and Rueda-Cantuche (2003, p. 444). 

16. Note that 
T T T( )e V V e . 

17. See, e.g., Viet (1994, p. 40) and United Nations (1999, p. 81). 
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18. See, e.g., United Nations (1999, p. 81). For a presentation of the results that the Redefinition 

method yielded in the case of the USA Input-Output tables for the year 1992, see Guo et al. (2002, pp. 

11-3). 

19. That is to say, the physical unit of measurement of each commodity is that unit which is worth of a 

monetary unit (see, e.g., Miller and Blair, 1985, p. 356). 

20. ten Raa et al. (1984) showed that the direct requirements matrix derived under the ITA depends on 

the base year prices. In other words, they proved that the ITA does not fulfil the „Price Invariance 

property‟.  

21. That is because this method requires the inversion of the Make matrix. 

22. See, e.g., Armstrong (1975, pp. 78-9). 

23. See, e.g., ten Raa et al. (1984, p. 93) and Rainer and Richter (1992). 

24. See, e.g., Armstrong (1975, p. 79). For a method to locate errors of measurement in the Make and 

Use matrices, see Steenge (1990). 

25. ten Raa and van der Ploeg (1989) proposed a statistical model in order to interpret the source of 

negative coefficients. The application of their analysis to the case of the UK economy (for the year 

1975) indicated that the source of negative coefficients cannot be attributed to errors of measurement in 

the SUT and that the CTA should be rejected (ibid., p. 6). On the other hand, Konijn and Steenge 

(1995) proposed an alternative way to construct Input-Output tables that relies on the concept of 

„activity‟, defined as „a set of production processes with input structures as homogeneous as possible‟ 

(ibid., p. 36), and introduced the so-called „activity technology model‟, which is mathematically 

equivalent to the CTA. They argued that the direct requirements matrix, derived from the „activity 

technology model‟, will contain negative elements only from causes such as heterogeneity or errors of 

measurement in the data.    

26. For a detailed review of the available methods to remove negative coefficients, see ten Raa and 

Rueda-Cantuche (2005, pp. 4-13). 

27. It has to be noted that convergence is guaranteed only if more than half of the production of each 

commodity is in its primary industry. Almon‟s method has been criticized for being without economic 

justification (see ten Raa et al., 1984, p. 93 and ten Raa and Rueda-Cantuche, 2005, p. 10). 

28. For a detailed exposition of the v. Neumann/Sraffa-based analysis and the connection between the 

works of v. Neumann and Sraffa, see Kurz and Salvadori (1995, ch. 8 and pp. 403-26; 2001). 

29. In the case of joint production the conditions of viability and profitability are not equivalent (see 

Bidard, 1986, pp. 55-6). It need hardly be said that, in general, none of the usual laws of single-product 

systems holds true in the case of joint production (see Steedman, 1982; Bidard, 1997). Furthermore, for 
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an investigation of conditions under which the v. Neumann/Sraffa-based joint-product models lead to 

results consistent with the Marxian labour theory of value, see Semmler (1984, ch. 6). 

30. See Schefold (1971, 1978, 1989) and Bidard (1996).  

31. See also Flaschel (1980, pp. 120-1) and Bidard and Erreygers (1998, pp. 434-6).  

32. It has been argued (Chilcote, 1997, Appendix A) that, in real economies, the off-diagonal elements 

of the Make matrix are „small‟ and therefore joint production should not be overstated. Nevertheless, it 

has been found (see Mariolis and Soklis, 2009) that the actual systems that correspond with the SUT of 

the German (for the years 2000 and 2005) and Greek (for the years 1995 and 1999) economy are not 

„all-productive‟. Furthermore, empirical research from the author of this paper, based on the SUT of 

the Danish (for the years 2000 and 2004), German (for the years 1997-1999 and 2001-2005), Greek 

(for the years 1996-1998), Finnish (for the years 1995-2004), F.Y.R.O.M. (for the year 2005), 

Hungarian (for the years 2001-2004), Japanese (for the years 1970, 1975, 1980, 1985, 1990, 1995, 

2000), Slovenian (for the years 2002-2005), Swedish (for the years 1995-2005) and USA (for the years 

1998-2005) economy yielded the same result.  

33. The awareness of joint-product processes has been already familiar to classical economists, such as 

Adam Smith (1904, book 1, ch. 11, § 56). For a review of the contributions of earlier economists to an 

analysis of joint production, see Kurz (1986). In addition, Jevons (1888, ch. 5, § 49) had pointed out 

that the cases of joint production form the general rule, to which it is difficult to find important 

exceptions. More recently, Steedman (1984) expressed a similar view (see also Faber et al., 1998). 

34. For a similar view, see Lager (2007). 
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