ΑΝΟΙΚΤΑ ΛΟΓΙΣΜΙΚΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΓΙΑ ΨΥΧΟΛΟΓΟΥΣ. Η R & TO JAMOVI

Φώτης Φωτιάδης Τμήμα Ψυχολογίας Πάντειο Πανεπιστήμιο Κοινωνικών & Πολιτικών Επιστημών

Διάλεξη 11

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {1}

■ **ΠΕΡΙΕΧΟΜΕΝΑ**

- 1. Περιγραφική στατιστική.
 - 1.1. Περιγραφικά Μέτρα
 - 1.2. Έλεγχος Κανονικότητας
 - 1.3. Αποθήκευση, Διαγραφή, Εξαγωγή Αποτελεσμάτων
 - 1.4. Περιγραφικά Μέτρα Ανά Ομάδα
- 2. Γραφήματα από το μενού Exploration

2.1. Επεξεργασία Γραφημάτων

2.2. Αντιγραφή, Εξαγωγή Γραφημάτων

3. Έλεγχος χ^2

Περιγραφική
 Στατιστική

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {3}

Εισαγωγή

Όταν αναφέρουμε τα αποτελέσματα μια έρευνας, πρέπει:

Να αναφέρουμε δημογραφικά στοιχεία του δείγματος που έλαβε μέρος στην έρευνά μας, δηλαδή ΜΟ και ΤΑ ηλικίας, καθώς και στοιχεία για το φύλλο των συμμετεχόντων.

Να αναφέρουμε περιγραφικά στατιστικά για την εξαρτημένη μεταβλητή, όπως είναι ο ΜΟ και η ΤΑ.

Το Πείραμα και τα Δεδομένα

Θα χρησιμοποιήσουμε τα δεδομένα από το γνωστό πείραμα, όπου συμμετέχοντες μαθαίνουν δύο κατηγορίες. Στη μία ομάδα, οι ετικέτες των κατηγοριών είναι ψευδολέξεις, ενώ στην άλλη ομάδα οι ετικέτες είναι ιδεογράμματα.

- Κατεβάζουμε το αρχείο independent_samples.zip από το eclass (Εγγραφα> Διάλεξη 10)
- Αποσυμπιέζουμε το αρχείο, και μεταφέρουμε το απόσυμπιεσμένο αρχείο (independent_samples.omv) στο φάκελο jamovi_mathima.
- Avoíγουμε το αρχείο independent_samples.omv με το jamovi.

Δεδομένα

Τα δεδομένα είναι κάπως έτσι:

Μεταβλητές:

- sex: ονομαστική με τρία επίπεδα: F, M, other
- age: συνεχής
- sbj: ID
- group: ονομαστική, με δύο επίπεδα, ideo και pseudo
- acc: συνεχής

	🔗 sex	🤣 age	🥒 sbj	🔒 group	🤌 acc
1	F	20	1	ideo	0.575
2	М	21	4	ideo	0.625
3	other	20	6	ideo	0.863
4	F	27	8	ideo	0.850
5	F	19	10	ideo	0.588
б	F	20	12	ideo	0.887
7	М	19	14	ideo	0.887
8	F	20	15	ideo	0.738
9	М	20	16	ideo	0.637
10	F	22	18	ideo	0.863
11	F	22	19	ideo	0.713
12	F	31	24	ideo	0.400
13	other	26	2	pseudo	0.500
14	F	20	3	pseudo	0.738
15	М	19	5	pseudo	0.738
16	М	20	7	pseudo	0.863
17	М	20	9	pseudo	0.900
18	F	22	11	pseudo	0.750
19	М	21	13	pseudo	0.800
20	F	19	17	pseudo	0.738
21	F	20	20	pseudo	0.613
22	F	29	21	pseudo	0.887
23	F	20	22	pseudo	0.787
24	F	20	23	pseudo	0.487
25					
26					
27					
28					

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi [6]

1.1. Περιγραφικά Μέτρα

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {7}

Descriptives I

Για να υπολογίσουμε το MO και την TA της ηλικίας του δείγματός μας, πρέπει να κάνουμε κλικ στο μενού Analyses, και στη συνέχεια στο Exploration.

Στο πτυσσόμενο μενού που εμφανίζεται κάνουμε κλικ στο Descriptives.

Descriptives II

Εμφανίζεται το διπλανό παράθυρο:

- Στα αριστερά εμφανίζονται όλες οι μεταβλητές
- Στο πεδίο Variables μεταφέρουμε τις μεταβλητές εκείνες για τις οποίες θέλουμε να υπολογίσουμε περιγραφικά στατιστικά μεγέθη.
- Στο πεδίο Split by μεταφέρουμε τις (ονομαστικές) μεταβλητές εκείνες, οι οποίες διαχωρίζουν το δείγμα μας σε ομάδες.

Descriptives	(\rightarrow)
Image: Sex of the sex of t	y &
Descriptives Variables across columns 🗸	🗌 Frequency tables 🐣 📶
Statistics	
> Plots	

Ηλικία

Αρχικά μεταφέρουμε στο πλαίσιο Variables τη μεταβλητή age

Σε περίπτωση που κάνουμε λάθος, και μεταφέρουμε άλλη μεταβλητή (π.χ, την sbj), μπορούμε να την επαναφέρουμε στη λίστα

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {10}

Ηλικία ΙΙ

Αυτόματα βλέπουμε πως δημιουργείται ένα πινακάκι με κάποια στατιστικά μεγέθη.

Αν χρειαζόμαστε άλλα μεγέθη, πρέπει να κάνουμε κλικ στο **Statistics**.

jamovi - indepa	endent_samples — \Box X
🚍 Variables Data Analyses Edit	c :
Exploration T-Tests ANOVA Regression Frequencies Factor	් Modules
Descriptives Image: Sex Image:	► Descriptives age N 24 Missing 0 Mean 21.5 Median 20.0 Standard deviation 3.28 Minimum 19 Maximum 31
	 References [1] The jamovi project (2022). <i>jamovi</i>. (Version 2.3) [Computer Software]. Retrieved from <u>https://www.jamovi.org</u>. [2] R Core Team (2021). <i>R: A Language and environment for statistical computing</i>. (Version 4.1) [Computer software]. Retrieved from <u>https://cran.r-project.org</u>. (R packages retrieved from MRAN snapshot 2022-01-01).

Statistics

Στο πεδίο statistics έχουμε διαθέσιμους όλους του υπολογισμούς που μπορούν να εκτελεστούν.

Για παράδειγμα μπορούμε να υπολογίσουμε

- το εύρος τιμών (range)
- το τυπικό σφάλμα του μέσου όρου
 (Std. error of Mean)
- τον στατιστικό έλεγχο κανονικότητας
 Shapiro-Wilk
- το διάστημα εμπιστοσύνης 95%

Descriptives	(\Rightarrow)
Descriptives Variables across columns 🗸	📃 Frequency tables 🐣 📶
✓ Statistics	
Sample Size	Central Tendency
🔽 N 🔽 Missing	🖌 Mean
Percentile Values	🖌 Median
Cut points for 4 equal groups	Mode
Percentiles 25,50,75	Sum
Dispersion	Distribution
🗸 Std. deviation 🗸 Minimum	Skewness
🗌 Variance 🗹 Maximum	Kurtosis
Range	Normality
Mean Dispersion	Shapiro-Wilk
Std. error of Mean	Outliers
Confidence interval for Mean 95 %	Most extreme 5 values
> Plots	

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {12}

Ηλικία ΙΙΙ

Επιλέγουμε τα προηγούμενα μέτρα.

Όσο τα επιλέγουμε, παρατηρούμε πως προστίθενται γραμμές στον πίνακά μας.

Descriptives	()		Results	
		•	Descriptives	
Descriptives Variables across columns 🗸	📃 Frequency tables 🔒 📶		Descriptives	
✓ Statistics				age
Sample Size	Central Tendency		N	24
🗸 N 🔽 Missing	🗸 Mean		Missing Mean	0 21.5
Percentile Values	🗹 Median		Std. error mean	0.670
Cut points for 4 equal groups	Mode		95% CI mean lower bound 95% CI mean upper bound	20.2
Percentiles 25,50,75	Sum	:	Median Standard dovistion	20.0
Diseasion	Distribution		Range	3.28
			Minimum	19
Variance Minimum	Kurtosis		Shapiro-Wilk W	0.695
	Kurtosis		Shapiro-Wilk p	< .001
Mean Dispersion	Normality Shapiro-Wilk		Note. The Cl of the mean assu sample means follow a t-distr with N - 1 degrees of freedon	imes ibution n
Stal error of Mean	Outliers			
Confidence interval for Mean 95 %	Most extreme 5 values			
> Plots	Δυρικτά Δρυκου	Vá		
	Ανοικτά Λογιομι	NU	α Αναλυσης Δεσομένων	για ψυχο/

1.2. Έλεγχος Κανονικότητας

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {14}

Shapiro-Wilk

Έκτός από τα μέτρα περιγραφικής στατιστικής, εκτελέσαμε και τον έλεγχο Shapiro-Wilk για την κανονικότητα των δεδομένων μας (ηλικία).

Στα αποτελέσματα εμφανίζονται το στατιστικό μέτρο W καθώς το αντίστοιχο p.

Επομένως, τα αποτελέσματα του ελέγχου είναι W = 0.695, p < .001

Shapiro-Wilk W	0.695
Shapiro-Wilk p	< .001

Σημείωση: Στις περιπτώσεις των προϋποθέσεων (κανονικότητα, ομοσκεδαστικότητα κ.λ.π.), θέλουμε το p vα είναι μεγαλύτερο του 0.05. Στην περίπτωση του ελέγχου Shapiro-Wilk η μηδενική υπόθεση είναι πως δεν υπάρχει διαφορά μέταξύ της κατανομής των δεδομένων του δείγματος και της κανονικής κατανομής (που θεωρούμε πως χαρακτηρίζει τα δεδομένα όλου του πληθυσμού). Αν λοιπόν p > 0.05, τότε τα δεδομένα μας χαρακτηρίζονται από κανονική κατανομή.

1.3. Αποθήκευση, Διαγραφή, Εξαγωγή Αποτελεσμάτων

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {16}

Αποθήκευση Αποτελεσμάτων

Στο jamovi, όταν αποθηκεύουμε ένα αρχείο, **αποθηκεύονται μαζί και τα αποτελέσματα** των υπολογισμών ή των αναλύσεων, στο ίδιο αρχείο omv.

Δεν έχουμε δηλαδή ξεχωριστά αρχεία για τα δεδομένα και για τα αποτελέσματα των υπολογισμών/αναλύσεων (αυτό ισχύει μόνο στο SPSS).

Για να αποθηκεύσουμε τα αποτελέσματα (μαζί με τα δεδομένα), κάνουμε κλικ στο μενού File και στη συνέχεια στην εντολη Save.

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {17}

Άνοιγμα Αρχείου .omv

- Κλείνουμε το jamovi
- Το ξανα-ανοίγουμε
- Ανοίγουμε το αρχείο independent_samples.omv

Παρατηρούμε πως εμφανίζονται και τα αποτελέσματα των υπολογισμών/αναλύσεων μας.

≡ Varia	bles Data	Analyses	Edit	Jamovi - Indeper	ident_sampies.omv	- L . Ø
ploration T-	Tests ANOVA	Regression Free	quencies Factor			4 Module
🐣 sex	< age	🥒 sbj	🔒 group	🤌 acc		
F	20	1	ideo	0.575	Results	
Μ	21	4	ideo	0.625		
other	20	6	ideo	0.863		
F	27	8	ideo	0.850	Descriptives	
F	19	10	ideo	0.588		
F	20	12	ideo	0.887	Descriptives	
M	19	14	ideo	0.887		
F	20	15	ideo	0.738	aye	
M	20	16	ideo	0.637	N 24	
F	22	18	ideo	0.863	Missing 0	
I F	22	19	ideo	0.713	Mean 21.5	
2 F	31	24	ideo	0.400	Std. error mean 0.670	
3 other	26	2	pseudo	0.500	95% CI mean lower bound 20.2	
4 F	20	3	pseudo	0.738	95% Climean upper bound 22.9	
5 M	19	5	pseudo	0.738	Standard deviation 2.20	
6 M	20	7	pseudo	0.863	- Standard deviation 5.26	
7 M	20	9	pseudo	0.900	Minimum 19	
B F	22	11	pseudo	0.750	Maximum 31	
9 M	21	13	pseudo	0.800	Shapiro-Wilk W 0.695	
D F	19	17	pseudo	0.738	Shapiro-Wilk p <.001	
1 F	20	20	pseudo	0.613		
2 F	29	21	pseudo	0.887	Note. The CI of the mean assumes	
3 F	20	22	pseudo	0.787	sample means follow a t-distribution with N - 1 degrees of freedom	
4 F	20	23	pseudo	0.487		
5						
5						
7						
8						
adv 🗑 👁 i	Filters 0	Row count 24	Filtered 0 Deleter	0 Added 24 Cells edited 120	4	

Διαγραφή Αποτελεσμάτων

Αν θέλουμε να διαγράψουμε κάποια αποτελέσματα:

- Κάνουμε δεξί κλικ στα συγκεκριμένα αποτελέσματα.
- Παρατηρούμε πως επιλέγεται ο πίνακας των αποτελεσμάτων, και πως εμφανίζεται ένα πτυσσόμενο μενού.
- Κάνουμε κλικ στο All
- Κάνουμε κλικ στο Remove

Results		_		
	All	\rightarrow	C c	ору
Descriptives	Analysis	>	E	xport
beschputes			R	emove
Descriptives				
N				
Missing				
Mean				

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {19}

Σημείωση: Επιλογή Αποτελεσμάτων

Επαναλαμβάνουμε τους υπολογισμούς (Range, Shapiro-Wilk, Std error, Confidence Intervals).
 Τα αποτελέσματα δομούνται υπό τη μορφή στοιχείων πινάκων.
 Άλλο στοιχείο είναι ο τίτλος Results
 Άλλο στοιχείο είναι ο τίτλος Descriptives
 Άλλο στοιχείο είναι ο πίνακας Descriptives

Παρατηρούμε πως αν κάνουμε δεξί κλικ σε διαφορετικά σημεία του δεξιού πλαίσιου, επιλέγονται διαφορετικά στοιχεία.

Μπορούμε, επίσης, να κάνουμε δεξί κλικ στον πίνακα, και να επιλέξουμε ένα από:

- Analyses
- Table

Εξαγωγή Αποτελεσμάτων σε pdf

Στο jamovi, έχουμε τη δυνατότητα να κάνουμε εξαγωγή (export) των αποτελεσμάτων σε μορφή pdf.

- Κάνουμε δεξί κλικ στα αποτελέσματα
- Κάνουμε κλικ στο Analysis
- Στη συνέχεια, επιλέγουμε την εντολή Export...

Στο πλαίσιο που εμφανίζεται υπάρχει η δυσκολία πως εμφανίζεται η πλήρης διαδρομή του αρχείου.

Για να ξεπεράσουμε το ζήτημα αυτό, κάνουμε κλικ στο Browse.

4	iamovi	C:\Users\tsarl\Desktop\jamovi_mathima\independer	Export
	Jannoen	PDF Document (.pdf)	
		↑ ·	📄 Browse

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {21}

Εξαγωγή Αποτελεσμάτων σε pdf II

Στο πλαίσιο που εμφανίζεται επιλέγουμε

óvoµα (age)

φάκελο (jamovi_mathima)

Save As								×
← → ~ 1 → My	/ Computer > Desktop > ja	amovi_mathima]	~	ت Sea	rch jamovi_mathima	ş	>
Organize 👻 New folde	er						- (?
Δημοτικό ^	Name		Date modified	Туре	Size			
len OneDrive			No items match yo	ur search.				
💻 My Computer								
3D Objects								
📃 Desktop								
🔮 Documents								
🖊 Downloads								
b Music								
Pictures								
🚆 Videos								
🏪 OS (C:)								
USB DRIVE (E:)								
File name: age								~
Save as type: PDF D	ocument (.pdf) (*.pdf)							~
∧ Hide Folders						Save	Cancel	

κάνουμε κλικ στο Save

Εξαγωγή Αποτελεσμάτων σε pdf III

Εντοπίζουμε το αρχείο **age.pdf** στον φάκελο jamovi_mathima, και το ανοίγουμε (κάνοντας διπλό κλικ).

Descriptives	

	age
N	24
Missing	0
Mean	21.5
Std. error mean	0.670
95% Cl mean lower bound	20.2
95% Cl mean upper bound	22.9
Median	20.0
Standard deviation	3.28
Range	12
Minimum	19
Maximum	31
Shapiro-Wilk W	0.695
Shapiro-Wilk p	< .001

Note. The CI of the mean assumes sample means follow a t-distribution with N - 1 degrees of freedom

1.4. Περιγραφικά Μέτρα Ανά Ομάδα

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {24}

Ηλικία ανά Ομάδα

Σε κάποιες περιπτώσεις, όταν, π.χ., έχουμε πειραματική ομάδα και ομάδα ελέγχου, πρέπει να αναφέρουμε τα δημογραφικά στοιχεία ανά ομάδα.

Για να υπολογίσουμε περιγραφικά στατιστικά μεγέθη για κάθε ομάδα, πρέπει να εισάγουμε στο πεδίο Split by την (ονομαστική) μεταβλητή που διακρίνει τους συμμετέχοντες.

Εν προκειμένω, στο πλαίσιο Descriptives πρέπει να εισάγουμε στο πεδίο Split by την μεταβλητή group.

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {25}

Ηλικία ανά Ομάδα ΙΙ

Βλέπουμε πως αυτόματα εμφανίζονται οι υπολογισμοί της μεταβλητής μας (ηλικία) ανά ομάδα.

Descriptives	\ominus		Results		
<pre> sex Q + sbj </pre>	Variables		Descriptives		
acc			Descriptives		
				group	age
			N	ideo	12
	Split by			pseudo	12
	la group		Missing	ideo	0
				pseudo	0
			Mean	ideo	21.8
Descriptives Variables across columns 🗸	🗌 Frequency tables de 📶			pseudo	21.3
Chatiatian		1	Std. error mean	ideo	1.05
▼ Statistics				pseudo	0.882

Εξαρτημένη Μεταβλητή ανά Ομάδα

Στην ενότητα Αποτελέσματα (σε μια πτυχιακή ή σε ερευνητική αναφορά), ξεκινάμε με τα περιγραφικά μέτρα της εξαρτημένης μεταβλητής μας.

Επειδή στο πείραμά μας έχουμε δύο ομάδες (pseudo ideo), καλό είναι να αναφέρουμε MO και TA ακρίβειας για κάθε μία ομάδα.

Για να μην διαγραφεί η ανάλυση που έχουμε κάνει (ηλικία ανά ομάδα) πρέπει να κάνουμε κλικ:

- στο μενού Analyses (αν δεν είναι ήδη επιλεγμένο)
- στο Exploration
- στην επιλογή Descriptives

				_	
≡	Variables	Data	Analyses	Edit	
Exploration	₹ T-Tests	₽ ₽ ANOVA	Regression	Frequencies	Factor
Descripti	ves				
scatr	/es				

Εξαρτημένη Μεταβλητή ανά Ομάδα ΙΙ

- Μετάφέρουμε την μεταβλητή acc στο πλαίσιο Variables
- Μεταφέρουμε την μεταβλητή group στο πλαίσιο Split by

Descriptives	•	Note. The CI of the r follow a t-distributio	naeo pseu mean assumes n with N - 1 de	, sample r egrees of	<.001 means f
Split by → Second		Descriptives			_
Descriptives Variables across columns 🗸 📄 Frequency tables 🐣 💷		N	group ideo pseudo ideo	12 12 12	-
✓ Statistics Sample Size Central Tendency	:	Mean	pseudo ideo	0 0.719	
N Missing Mean Percentile Values		Median	pseudo ideo pseudo	0.733 0.725 0.744	
Cut points for 4 equal groups Mode		Standard deviation	ideo pseudo	0.157 0.137	

Παρατηρούμε πως αυτόματα εκτελούνται οι υπολογισμοί.

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {28}

2. Γραφήματα από το μενού Exploration

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {29}

Γραφήματα

- (Avoíγουμε το αρχείο independent_samples.omv.)
- (Κάνουμε κλικ στο μενού Exploration, και μετά στο Descriptives.)
- (Εισάγουμε την μεταβλητή acc στο Πλαίσιο Viariables και την μεταβλητή group στο Split by.)
- Κάνουμε κλικ στο Plots

Γραφήματα ΙΙ

Εμφανίζονται στο πεδίο Plots κάποιες επιλογές:

Histograms

Box Plots

- Bar Plots
- Q-Q Plots

istograms	Box Plots	Bar Plots
Histogram	Box plot	🗌 Bar plot
Density	Label outliers	
Q Plots	Violin	
0-0	🗌 Data	
	Jittered 🗸	

Ιστογράμματα

Μπορούμε να εμφανίσουμε είτε

μόνο το ιστόγραμμα

Histograms		
- 🔽	Histogram	
	Density	

μόνο την συνάρτηση πυκνότητας πιθανότητας (κατανομή)

και τα δύο

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {32}

0.4

0.6

acc

0.8

1.0

pseudo -

Θηκογράμματα

Μπορούμε να εμφανίσουμε είτε

 μόνο το θηκόγραμμα
 (το label outliers εμφανίζει τη γραμμή στα δεδομένα που υπάρχουνοι ακραίες τιμές)

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {33}

Ραβδογράμματα

Μπορούμε να εμφανίσουμε είτε

το θηκόγραμμα

Q-Q Plots

Σημείωση: Τα Q-Q plots είναι γραφήματα που μας επιτρέπουν να εκτιμήσουμε την κανονικότητα των δεδομένων μας.

Μπορούμε να εμφανίσουμε:

■ Tα Q-Q plot

2.1. Επεξεργασία Γραφημάτων

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {36}

Boxplot – Violin Plot

Δημιουργούμε ξανά το θηκόγραμμα μαζί με το violin plot.

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {37}

Mevoú Edit

Για να επεξεργαστούμε το γράφημα, πρέπει να κάνουμε κλικ στο μενού Edit.

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {38}

Προσθήκη Τίτλου

Μπορούμε να βάλουμε έναν τίτλο στο γράφημά μας:

«Ακρίβεια Κατηγοριοποίησης ανά Ομάδα»

Στη συνέχεια, μπορούμε με τα εργαλεία του μενού, να μορφοποιήσουμε τον τίτλο.

- Επιλέγουμε όλο τον τίτλο
- Κάνουμε τα γράμματα έντονα (Β)
- Στοιχίζουμε στο κέντρο

Σημείωση

Δυστυχώς, δεν παρέχεται η δυνατότητα να επεξεργαστούμε άλλα στοιχεία του γραφήματος, όπως:

- χρώματα
- τίτλους και εύρος αξόνων

Επομένως, οι δυνατότητες του jamovi είναι περιορισμένες ως προς αυτό το θέμα.

2.2. Αντιγραφή και Εξαγωγή Γραφημάτων

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {41}

Επιλογή Γραφήματος

Για να επιλέξουμε ένα γράφημα, πρέπει να κάνουμε δεξί κλικ πάνω του.

Παρατηρούμε πως επιλέγεται μόνο το γράφημα (όχι οι τίτλοι).

Αν κανουμε κλικ στο Group, επιλέγεται όλο το γράφημα

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {42}

Αντιγραφή Γραφήματος

Για να αντιγράψουμε το γράφημα,
 κάνουμε κλικ στην εντολή Copy

Εμφανίζεται ένα πλαίσιο:

Copied The content has been copied to the clipboard

Στη συνέχεια, μπορούμε να το επικολλήσουμε (Paste) σε ένα αρχείο Κειμένου

χ Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {43}

Εξαγωγή Γραφήματος

Στο jamovi έχουμε τη δυνατότητα να εξάγουμε ένα γράφημα σαν αρχείο εικόνας.

Για να το κάνουμε αυτό, πρέπει να είναι επιλεγμένο το στοιχείο Image

 Στη συνέχεια, κάνουμε κλικ στην εντολή Export

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {44}

Εξαγωγή Γραφήματος ΙΙ

Στο πλαίσιο που εμφανίζεται, υπάρχει η δυσκολία πως αναγράφεται η πλήρης διαδρομή του

αρχείου.

Για να προσπεράσουμε τη δυσκολία, κάνουμε κλικ κλικ στο κουμπί Browse

Στο παράθυρο που εμφανίζεται, ειναι πιο εύκολο να επιλέξουμε φάκελο, όνομα, και τύπο αρχείου:

Εξαγωγή Γραφήματος ΙΙΙ

- Επιλέγουμε τον φάκελο jamovi_mathima
- Δίνουμε το όνομα violinplot
- Επιλέγουμε είδος αρχείου: PNG

File name:	violinplot	
Save as type:	PNG Image (.png) (*.png)

Κάνουμε κλικ στο Save

File name:	violinplot
Save as type:	PNG Image (.png) (*.png)
	PDF Document (.pdf) (*.pdf)
	PNG Image (png) (*.png)
Folders	SVG Image (.svg) (*.svg)
UX	EPS Image (.eps) (*.eps)
	-
Save	

Αποθηκευμένο Γράφημα

Εντοπίζουμε το αρχείο violinplot.png και κάνουμε διπλό κλικ επάνω του.

Στο πρόγραμμα των Windows το γράφημα εμφανίζεται έτσι:

Αυτό οφείλεται στο ότι τα γραφήματα του jamovi είναι διαφανή.

Αν το εισάγουμε σε ένα αρχείο κειμένου δεν θα υπάρχει θέμα.

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {47}

3. Έλεγχος χ^2

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {48}

Το Πείραμα

Θέλουμε να ελέγξουμε την αποτελεσματικότητα ενός φαρμάκου για μια συγκεκριμένη ιατρική πάθηση. Ας υποθέσουμε ότι έχουμε 105 ασθενείς υπό μελέτη και οι 50 από αυτούς έλαβαν το φάρμακο. Επιπλέον, οι υπόλοιποι 55 ασθενείς διατηρήθηκαν ως ομάδα ελέγχου. Έτσι, η κατάσταση υγείας όλων των ασθενών ελέγχθηκε μετά από μια εβδομάδα.

Καταγράφουμε για κάθε συμμετέχοντα στη μεταβλητή treatment το αν έλαβαν αγωγή (treated) ή όχι (not-treated).

Επίσης, καταγράφουμε στη μεταβλητή improvement ο/η συμμετέχων σημείωσε βελτίωση (improved) ή όχι (not-improved).

Θέλουμε να ελέγξουμε αν βελτίωση (improvement) σχετίζεται ή όχι με την παροχή φαρμάκου (treatment).

Τα Δεδομένα

- Κατεβάζουμε το αρχείο categorical_data.csv από το eclass (Εγγραφα> Διάλεξη 10), και το μετακινούμε στον φάκελο jamovi_mathima
- Avoíγouµε µε το jamovi (µενού File > Open) το αρχείο categorical_data.csv.

Οπως πάντα, ελέγχουμε τις μεταβλητές μας.

Μετατρέπουμε την μεταβλητή id σε τύπο ID

DATA VARIABLE	
id	
Description	
Measure type ID	¥ 🤌
Data type Integer 🗸	

Analyses > Frequencies

Για να διεξάγουμε τον έλεγχο χ2 πρέπει να

- κάνουμε κλικ στο μενού Analyses και μετά
- κλικ στο Frequencies.
- Στο πτυσσόμενο μενού που εμφανίζεται κάνουμε κλικ στην εντολή Independent Samples

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {51}

Το παράθυρο

Εμφανίζεται το παρακάτω παράθυρο:

	jamovi - categorical_data	- 🗆 X
≡ Variables Data Analyses Edit		C :
Exploration T-Tests ANOVA Regression Frequencies Factor		
Contingency Tables	Results	A
Image: Graph of the second	Contingency Tables	
id Columns →	Contingency Tables	
Counts (optional)		
Layers	Total	
	·	
	Value df p	
➤ Statistics	χ ² · · · · · · · · · · · · · · · · · · ·	
> Cells		
> Plots		
	References	
	 The jamovi project (2022). jamovi. (Version 2.3) [Computer Softwa <u>https://www.jamovi.org</u>. 	re]. Retrieved from
	4	

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {52}

Πίνακας Συχνοτήτων

Πρέπει να δημιουργήσουμε τον πίνακα συχνοτήτων. Τοποθετούμε

- στο πλαίσιο Rows την μεταβλητή treatment
- στο πλαίσιο Columns την μεταβλητή improvement

Παρατηρούμε πως άμεσα εμφανίζεται ο πίνακας συχνοτήτων, και εκτελείται ο έλεγχος χ².

Σημείωση:

Τα αποτελέσματα είναι ίδια με αυτά της R. Μόνο που το jamovi κάνει την στρογγυλοποίηση για εμάς.

```
> chisq.test(table, correct = F)
        Pearson's Chi-squared test
data: table
X-squared = 5.5569, df = 1, p-value = 0.01841
```


Contingency Tables

Contingency Tables

	impr		
treatment	improved	not-improved	Total
not-treated	26	29	55
treated	35	15	50
Total	61	44	105

χ² Tests			
	Value	df	р
y ²	5.56	1	0.018
Ν	105		

Αναμενόμενες Τιμές

Για να ισχύει ο έλεγχος χ², πρέπει οι αναμενόμενες τιμές (βλέπε Διάλεξη &, Ενότητα 1.1) να είναι μεγαλύτερες του 5.

Δυστυχώς, το jamovi δεν προειδοποιεί αν δεν πληρείται αυτή η προϋπόθεση

Πρέπει να ελέγξουμε τις αναμενόμενες τιμές μόνοι μας.

Για να εμφανίσουμε τις αναμενόμενες τιμές,

- κάνουμε κλικ στο Cells
- επιλέγουμε το Expected Counts

Παρατηρούμε, πως πλέον εμφανίζονται οι τιμές Επειδή όλες οι τιμές είναι > 5, πληρείται η προϋπόθεση.

		impr		
treatment		improved	not-improved	Total
not-treated	Observed	26	29	55
	Expected	32.0	23.0	55.0
treated	Observed	35	15	50
	Expected	29.0	21.0	50.0
Total	Observed	61	44	105
	Expected	61.0	44.0	105.0

Ανοικτά Λογισμικά Ανάλυσ

Μέγεθος Επίδρασης

Το μέγεθος επίδρασης για τον έλεγχο χ² είναι το Cr

Tests

Για να υπολογίσουμε το μέγεθος αυτό:

- κάνουμε κλικ στο Statistics
- επιλέγουμε στην κατηγορία Nominal TO Phi and Cramer's V

Παρατηρούμε πως εμφανίζεται ένας νέος πίνακας με το αποτέλεσμα που θέλουμε.

Σημείωση: Η τιμή είναι ίδια με αυτή της R. > cramerV(table)

> Cramer V 0.2301

o Cramer's	S V. Hypothesis		Interval 95 %
	Oroup 1 ≠ G	roup 2	Compare rows 🗸
 Statistics 	— Group 1 > G	roup 2	
sts	○ Group 1 < G	roup 2	
Χ ²	Nominal		Ordinal
χ ² continuity	Contingency	coefficient	Gamma
	Phi and Crar	ner's V	Kendall's tau-b
			Mantel-Haenszel
κας	Nominal		
	1	/alue	
	Phi-coefficient	0.230	
	Cramer's V	0.230	

Αναφορά κατά ΑΡΑ

Για την αναφορά των αποτελεσμάτων, χρειαζόμαστε τους πίνακες χ² Tests και Nominal

A 1000	Value	df	р
χ²	5.56	1	0.018
Ν	105		
Nominal			
Nominal	Value		
Nominal Phi-coefficie	Value nt 0.23	2	

Γράφουμε κατά ΑΡΑ:

«Βρέθηκε μια σημαντική συσχέτιση μεταξύ της παροχής φαρμάκου και της βελτίωσης των ασθενών, $\chi^2(1) = 5.56$, p = .018, Cramer's V = 0.23»

Ο ακριβής Έλεγχος του Fisher

Σε δεδομένα για τα οποία δεν πληρείται η προϋπόθεση των αναμενόμενων τιμών, ακολουθούμε τα προηγούμενα βήματα, και μπορούμε να:

- κάνουμε κλικ στο Statistics
- από-επιλέξουμε το χ2
- επιλέξουμε το Fisher's exact test

Παρατηρούμε πως εμφανίζονται οι υπολογισμοί του ελέγχου.

Σημείωση: Οι τιμή είναι ίδια με της R.

> fisher.test(table)

Fisher's Exact Test for Count Data

data: table p-value = 0.02098 alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval: 1.449481 Inf sample estimates: odds ratio Inf

Ανοικτά Λογισμικά Ανάλυσης Δεδομένων για Ψυχολόγους. Η R και το jamovi {57}

Εργασία 11

- Γράφημα Κατηγορικών Δεδομένων

- Τίτλος

