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LECTURE 6
Convergence à la Mode

Abstract: We discuss convergence in distribution and in probability, and review some
Central Limit Theorems and Weak Laws of Large Numbers.

1. Convergence in Distribution

The first mode of convergence to be introduced is based on the distribution function FX(x) =

Pr(X ≤ x) of a random variable, rather than the random variable itself. Consider two random
variables, X and Y . If |Pr(X ≤ x)−Pr(Y ≤ x)| < ε for all values of x, it might be reasonable
to conclude that X and Y are “near” to one another. This is in the sense that probabilities
calculated from FX and FY would be almost identical, thought it may be too restrictive to
insist that this condition holds for all x. Indeed, as far as the calculation of probabilities is our
goal we only need to require that the above approximation holds for all continuity points of FX

and FY .
Let X be a random variable with distribution function F (x), and let {Xn} be a sequence of

random variables. If it is true that

Fn(x) = Pr(Xn ≤ x) → Pr(X ≤ x) = F (x) as n → ∞

for a sufficiently large set of values of x, then Fn converges weakly to F , written Fn ⇒ F . By
‘sufficiently large’ we mean at all points x save those where F , the limiting d.f., is discontinuous.
As a d.f. has at most a countable number of points of discontinuity, a major reason for excluding
these points of discontinuity is so that the limiting distribution function may be a step function.
This would be the case with a discrete limiting variable, for example.

In the current context, where the X’s are specifically random variables, it is also often said
that the associated sequence of random variables {Xn} converges in distribution or law to the
random variable X and we write Xn

d→ X. However, distribution functions need not be defined
with reference to a random variable. Thus a sequence of distribution functions can be said to
converge weakly without any further qualification, motivating the need for the more general ⇒
notation.
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In Figure 1 a sequence of distributions and a limit distribution that are continuous are
illustrated. The idea is that one picks a value x, say x∗, and proceeds to check if the sequence
of numbers Fn(x

∗) converges to the number F (x∗). If this is true for all values x∗, then Fn ⇒ F .
The same information may be expressed on a density function graph, if we are willing to

make the assumption that the densities of the Fn’s and that of F exist. It can be shown that
Fn ⇒ F if the corresponding sequence of densities {fn(x)} converges to a valid density f(x)

except on a set of Lebesgue measure zero, i.e.

{fn(x)} → f(x) for almost all x, implies Fn ⇒ F,

but the reverse may not be true, since convergence may occur without the existence of the
relevant densities.

It is possible that the limit random variable may take on only a single value and, therefore,
not be a random variable at all. In such a case X(ω) = c, a constant, for all ω and the limiting
random variable is said to be degenerate. The corresponding limiting distribution F is a step
function with a unit step at c. As an example, let {Xn} be a sequence of normal random
variables with parameters µn = µ and σ2

n = σ2/n. Then Xn
d→ µ, a degenerate distribution

with a spike at µ.
The following example demonstrates what we mean by the requirement that convergence is

only required at continuity points of F .

Example 1. Define a sequence of distribution functions and a limiting distribution function as
follows:

Fn(x) =

{
0 if x < 1/n

1 if x ≥ 1/n
F (x) =

{
0 if x < 0

1 if x ≥ 0

Then Fn ⇒ F even thought Fn(0) does not converge to F (0).

It will be become clear later just how important it is that random variables be standardized
correctly when seeking a valid limiting distribution. The following example demonstrates this
important point.

Example 2. Let X1, ..., Xn be independently distributed exponential random variables with
distribution function G(x) = 1−exp(−αx), for x ≥ 0. By independence, the distribution Fn(x)
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of the maximum of these random variables, Mn = maxi{Xi}, is given by

Fn(x) = Pr(Mn ≤ x) = Pr(max
i

{Xi} ≤ x)

= Pr(X1 < x,X2 < x, ...,Xn < x)

=

n∏
i=1

Pr(Xi < x) = [G(x)]n.

Consider approximating this distribution as n → ∞. As it stands, Fn(x) → 0 for all x, the
reason being that the maximum Mn of these exponential variables gets unboundedly large as n
increases, so that the probability of it being less than any fixed value x tends to zero. However,
althought Fn(x) → 0 for all x, it cannot be said that Fn converges weakly to the function
F (x) = 0, for this is not a valid distribution function.

Now consider the standardized random variable Mn − α−1 log n. This standardization leads
to the modified maximum having a distribution function given by

Pr[Mn − α−1 log n ≤ x] = Pr[Mn ≤ x+ α−1 log n] = Fn[x+ α−1 log n]

= [1− exp(−αx− log n)]n = [1− n−1 exp(−αx)]n

→ exp(−e−αx) ≡ F (x).

Hence Fn(x) ⇒ F (x), the Gumbel distribution, with the result e−x = lim(1− x/n)n as n → ∞
having been used in establishing the result. The appropriately standardized maximum, there-
fore, has a valid limiting distribution, whilst Mn itself had no meaningful limiting properties.

Statistics like the maximum or the minimum are called order statistics, and as we saw in
the previous example, are asymptotically Gumbel distributed. In the next section we will
investigate the asymptotic behavior of sums and averages of random variables, and show that
they behave asymptotically like Normal random variables.

2. The Central Limit Theorem

One of the main applications of convergence in distribution is in situations in which the Fn

are nit specified, but nevertheless the limiting distribution can be obtained. As one may easily
imagine, this cannot be done in complete generality, but one special case of great significance
arises when the sequence Xn has been formed by summation, or, which is the same, it is some
kind of average. Let X1, X2, ... be a sequence of random variables and define the sequence of
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partial sums by

Sn =
n∑

i=1

Xi.

and the sequence of averages by

X̄n =
1

n
Sn.

The application of the concept of convergence in distribution to the sequences Sn and/or X̄n

leads to the famous result known as the Central Limit Theorem (CLT). We state the result
based on X̄n, but the restatement of it in terms of Sn should also be obvious.

Theorem 1. (The Lindeberg-Levy CLT).
Let {Xi, i = 1, ..., n} be a sequence of i.i.d. random variables with finite mean µ and finite
variance σ2. Then

Pr

(
X̄n − µ

σ/
√
n

≤ x

)
→
∫ x

−∞

1√
2π

exp(−t2/2)dt = Φ(x),

or equivalently,
√
n(X̄ − µ)

d→ N(0, σ2).

Proof. Since the first two moments µ and σ2 exist, a Taylor series expansion of the characteristic
function of X1, ϕX1(t), about t = 0 yields

ϕX1(t) = 1 + iµt− 1

2
σ2t2 + o(t2).

It follows that the c.f. of (X1 − µ) has the expansion

ϕX1−µ(t) = 1− 1

2
σ2t2 + o(t2).

Then, by independence, Sn = X1+ · · ·+Xn has characteristic function ϕSn(t) = [ϕX1(t)]
n, and

√
n(X̄n − µ)/σ has characteristic function

ϕ√
n(X̄n−µ)/σ(t) =

[
ϕX1−µ

(
t

σ
√
n

)]n
=

[
1− t2

2n
+ o

(
t2

n

)]n
→ exp

{
−1

2
t2
}
, as n → ∞.

This is the characteristic function of a standard normal variable, and the result now follows
from the uniqueness of the characteristic function. �
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Example 3. (The De Moivre CLT). Abraham De Moivre (1667–1754) was the first mathe-
matician to prove a CLT. He proved that for large n the Binomial may be approximated by a
Normal with mean np and variance np(1− p), that is, as n → ∞(

n

x

)
px(1− p)n−x → 1√

2πnp(1− p)
e
− (x−np)2

2np(1−p) .

That this is so follows immediately from Theorem 1. Given an i.i.d. sequence {Yi, i = 1, ..., n} of
Bernoulli random variables with parameter p, the Binomial Xn =

∑n
i=1 Yi will satisfy Theorem

1 with
Pr

(
Xn − np

np(1− p)
≤ x

)
→
∫ x

−∞

1√
2π

exp(−x2/2)dt = Φ(x).

Example 4. (Failure of the CLT). If {Xi} is a sequence of i.i.d. standard Cauchy random
variables then it can be shown that X̄n also has a standard Cauchy distribution for all n. Since
the Cauchy distribution has no moments, Theorem 1 does not apply here. Note that, not only
is

√
nX̄n not asymptotically normal, but

√
nX̄n actually explodes as n → ∞ (it is X̄n itself,

without normalization, that is standard Cauchy). In this extreme case, the sample mean has
the exact same distribution as the individual observations, so averaging does not produce any
benefit here!

Central Limit Theorems are not limited to random variables that are identically distributed.
Extending the basic i.i.d. result of Theorem 1 to more general cases is the subject of a vast
literature. The following is the most general result for independent sequences of random vari-
ables.

Theorem 2. (The Lindeberg-Feller CLT)
Let {Xi, i = 1, ..., n} be a sequence of independent random variables with finite means µi and
finite variances σ2

i , and let µ̄n = n−1
∑

i µi, and σ̄2
n = n−1

∑
i σ

2
i . Then

√
n(X̄n − µ̄n) →d N(0, σ̄2

n).

if and only if for every ϵ > 0,

lim
n→∞

1

nσ̄2
n

n∑
i=1

∫
|xi−µi|≥ϵσ̄n

√
n
(xi − µi)

2 dFXi(xi) = 0. (2.1)

Proof. See Chung (1974). �
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Assumption (2.1) is known as the Lindeberg condition and the great thing about it is that
it is both sufficient and necessary for asymptotic normality! It is essentially needed to rule out
the possibility that the variability of one of the summands dominates that of the others. In
fact the Lindeberg condition implies that σ2

i /(
∑n

i=1 σ
2
i ) → 0 for all i = 1, ..., n, so one way of

ensuring that the condition hold is to require that

lim
n→∞

max
1≤i≤n

σ2
i

n∑
i=1

σ2
i

= 0.

This condition is often referred to as an asymptotic negligibility condition, and is implied by,
but does not imply, the Lindeberg condition. It says that no single component of

∑
iXi can

contribute more than an infinitesimal amount to its total variation as n increases.
Theorem 2 contains Theorem 1 as a special case: Suppose the sequence {Xi} is i.i.d. with

mean µ and variance σ2. Then the Lindeberg condition reduces to

lim
n→∞

1

σ2

∫
|x1−µ|≥ϵσ

√
n
(x1 − µ)2 dFX1(x1) = 0,

which always holds since {|X1 − µ| ≥ ϵσ
√
n} ↓ ∅, the empty set, as n → ∞. Thus, Lindeberg’s

central limit theorem implies the central limit theorem for i.i.d. variables with finite variances.

Example 5. (Failure of the Asymptotic Negligibility Condition). Let σ2
i = ρi, 0 < ρ < 1, so

that ∑
i

σ2
i = ρ(1 + ρ+ ρ2 + · · ·+ ρn−1) =

ρ(1− ρn)

1− ρ
.

Now
σ2
i

nσ̄2
n

=
ρi(1− ρ)

ρ(1− ρn)

and thus

max
1≤i≤n

ρi(1− ρ)

ρ(1− ρn)
=

1− ρ

1− ρn
.

Hence

lim
n→∞

max
i≤n

σ2
i

nσ̄2
n

= lim
n→∞

1− ρ

1− ρn
= 1− ρ ̸= 0,

so the asymptotic negligibility condition is not satisfied. The Lindeberg condition however may
or may not be satisfied.

We will also state one more CLT that is often used in applications.
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Theorem 3. (The Lyapounov CLT)
Let {Xi} be a sequence of independent random variables with finite means EXi = µi, and finite
variances σ2

i , let µ̄n = n−1
∑

i µi and σ̄2
n = n−1

∑
i σ

2
i , and assume that E|Xi|2+δ < ∞ for

some positive δ. Then
√
n(X̄n − µ̄) →d N(0, σ̄2

n),

if for every ϵ > 0 and all i = 1, · · · , n

lim
n→∞

n∑
i=1

1

σ̄2+δ
n

E|Xi − µi|2+δ = 0. (2.2)

Assumption (2.2) is often referred to as the Lyapounov condition. The Lyapounov condition
implies the Lindeberg one, so Theorem 3 is also a special case of Theorem 2. However, the
Lyapounov condition is often easier is verify than the Lindeberg condition, making Theorem 3
a favorite in applications.

3. Convergence in Probability

Convergence in distribution says little about the values of the random variable in the se-
quence. However, it may be the case that these values are relevant in deciding whether a
sequence of random variables gets ‘near to’ a limit random variable X. This will require us
to look at |Xn(ω) − X(ω)| for ω in the sample space Ω. This way of thinking takes us back
to recalling that a random variable is in reality not a ‘variable’ at all, but a function (to be
accurate a measurable function) of the basic outcomes ω in a sample space Ω. Convergence of
a sequence of random variables Xn(ω) to a random variable X(ω) can then viewed as akin to
the concept of convergence of a sequence of real functions fn(x) to a real function f(x).

One way of doing this is to fix n and compute Pr(ω : |Xn(ω)−X(ω)| < ε), that is, for fixed
n, find all those ω for which |Xn(ω)−X(ω)| is less than a positive number ε, and then compute
the probability measure of these ω’s. If this probability tends to zero as n → ∞ we say that
Xn converges in probability to X.

Definition 1. A sequence of random variables Xn converges in probability to a random variable
X if for all ε > 0

lim
n→∞

Pr(ω : |Xn(ω)−X(ω)| ≥ ε) = 0.

We write Xn
p→ X.
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In terms of our analogy to a sequence of real functions fn(x), this definition says that fn(x)

converges in measure (we replace ‘probability’ with ‘measure’ because fn(x) are not random
variables) to a function f(x) if the set of points for which their absolute distance exceeds ε > 0

has measure zero as n → ∞, i.e. if for all ε > 0

lim
n→∞

M (x : |fn(x)− f(x)| ≥ ε) = 0.

4. The Weak Law of Large Numbers

As we show the CLT provides an important example of convergence in distribution and is
one of the most important pillars on which statistical inference is based. Here we will discuss
another fundamental result, the Weak Law of Large Numbers (WLLN). The starting point is
what is known as Markov’s inequality which states that, provided the relevant moment exists,

Pr(|Z| ≥ λ) ≤ E(|Z|r)
λr

for any positive λ and r. If we let Z = Xn − E(Xn) which suggests that the random variable
in question is a member of a sequence then, putting r = 2 and relabelling λ as ε, the above
inequality becomes the well-known Chebyshev inequality

Pr(|Xn − E(Xn)| ≥ ε) ≤ V (Xn)

ε2
.

Since E(Xn) and V (Xn) are just numbers, all that needs to be done to prove that Xn
p→ c is

to show that E(Xn) = c and that V (Xn) → 0. In effect a statement concerning convergence of
random variables (i.e. functions) has been converted to one about numbers.

Example 6. Let Xi be a sequence of i.i.d. random variables with mean µ and variance
σ2 < ∞. Define Sn =

∑n
i=1Xi and attempt to apply Chebychev’s inequality to Sn. This

is unproductive, for V (Sn) approaches infinity. The Lindeberg CLT indicates that Sn/
√
n

converges in distribution to a normal random variable with mean µ and variance σ2. To obtain
convergence in probability to a constant sufficient scaling must be applied to render the limiting
distribution degenerate. Indeed applying Chebychev’s inequality to Sn/n gives

Pr(|Sn/n− µ| ≥ ε) ≤ σ2/n

ε2

and the right-hand side converges to zero as n → ∞. Thus Sn/n = X̄
p→ µ.

We have proven the following theorem.
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Theorem 4. (Weak Law of Large Numbers) If {Xi, i = 1, ..., n} is a sequence of i.i.d. random
variables with mean µ and variance σ2 < ∞, then X̄

p→ µ as n → ∞.

More refined results that do not presume the existence of variances can be produced with
a more delicate use of inequalities. We state without proof the following theorem that gives a
necessary and sufficient condition for the WLLN.

Theorem 5. (Weak Law of Large Numbers II) Let {Xi, i = 1, ..., n} is a sequence of i.i.d.
F random variables. In order that there exist constants µn such that Sn/n − µn

p→ 0, it is
necessary and sufficient that

x[1− F (x) + F (−x)] → 0 as x → ∞.

In this case µn =
∫ n
−n xdF (x) works.

There is also a WLLN for independent but not-identically distributed random variables.

Example 7. Let Xi be a sequence of independently distributed random variables with means
µi and variances σ2

i . With Sn =
∑n

i=1Xi, an application of Chebychev’s inequality to Sn/n

gives

Pr(|Sn/n− n−1
n∑

i=1

µi| ≥ ε) ≤ n−1
∑

σ2
i /n

ε2
=

∑
σ2
i /n

2

ε2

where µ̄ = n−1
∑

µi and σ̄2 = n−1
∑

σ2
i . The right hand side of this expression cannot be

shown to converge to zero without some assumption about the {σi}. It would not id σi = i, for
example. Two conditions that would be sufficient to ensure that the variance of Sn/n goes to
zero are that the maximum variance, σ2

max, be bounded, so that
∑n

i=1 σ
2
i /n ≤ nσ2

max/n
2 → 0

as n → ∞, or if the average of the variances converged to some number σ2
0, say. In either of

these cases the WLLN will hold.

We have proven the following theorem.

Theorem 6. (Weak Law of Large Numbers III) If {Xi, i = 1, ..., n} is a sequence of indepen-
dently distributed random variables with means µi and variances σ2

i such that maxi σ
2
i < ∞,

then X̄
p→ µ̄ as n → ∞, where µ̄ = n−1

∑n
i=1 µi.

Just as the Lindeberg and asymptotic negligibility conditions in the context of the CLT, it
is seen that some mechanism to control the relative behavior of the variances is also needed for
the WLLN.

An instance of a WLLN for dependent random variables is provided in the next example.
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Example 8. Let Xi be i.i.d. normal random variables with mean µ and variance σ2. Put
Wi = (Xi−

∑n
i=1Xi/n)

2 and Sn =
∑n

i=1Wi. It is not difficult to show that E(Sn) = (n−1)σ2

and that V (Sn) = 2(n − 1)σ4. However, the Wi are neither independent nor uncorrelated
because of the common presence of

∑n
i=1Xi. Nevertheless, applying Markov’s inequality with

Z = n−1Sn − σ2, r = 2 and λ = ε gives

Pr(|Sn/n− σ2| ≥ ε) ≤ ε−2E(n−1Sn − σ2)2

= ε−2
{
V (n−1Sn) + [n−1(n− 1)σ2 − σ2]2

}
= ε−2

{
2n−2(n− 1)σ4 + [n−1(n− 1)σ2 − σ2]2

}
The middle line uses the result that the mean squared error is the variance plus the squared
bias. Both terms approach zero as n → ∞ so Sn/n converges in probability to σ2 and the
statistic is a consistent estimator of the variance.

In the last example the statistic Sn/n provides a consistent estimator of the σ2, even though
E(Sn/n) ̸= σ2 for any finite n. It illustrates a general point that sufficient conditions for
consistency are that the bias and the variance of the statistic should both go to zero with n. It
should be kept in mind, however, that although sufficient these conditions are not necessary.

We close this section with a result that is very useful in applications, the Continuous Mapping
Theorem (CMT).

Theorem 7. (Continuous Mapping Theorem) If Xn
p→ c as n → ∞ and g(·) is continuous at

c, then g(Xn)
p→ g(c) as n → ∞.

Proof. Since g is continuous at c, for all ε > 0 we can find a δ > 0 such that if |Xn − c| < δ

then |g(Xn) − c| ≤ ε. Recall that A ⊂ B implies P (A) ≤ P (B). Thus Pr(|g(Xn) − g(c)| ≤
ε) ≥ Pr(|Xn − c| < δ) → 1 as n → ∞ by the assumption that Xn

p→ c. Hence g(Xn)
p→ g(c) as

n → ∞. �

5. OLS Asymptotics

In this section we apply the theory developed so far to prove the consistency and asymptotic
normality of the OLS estimator. Consider the linear regression model

yi = xiβ + εi, i = 1, ..., n
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where yi is a scalar, xi is a k vector of exogenous variables, and εi is a scalar disturbance. The
OLS estimator is give by

β̂ =

(
n∑

i=1

xix
′
i

)−1 n∑
i=1

xiyi

We will prove first consistency and then asymptotic normality.

5.1. Consistency

The following conditions are sufficient for consistency.

Assumption 1. Assume that

(i) E(εi) = 0;
(ii) E(xiεi) = 0;

(iii) E(ε2i ) = σ2
ε < ∞;

(iv) E(x′ixi) < ∞;
(v) Q = E(xix

′
i) is positive semidefinite;

Theorem 8. Under Assumption 1, β̂ p→ β as n → ∞.

Proof. Write

β̂ = β +

(
n∑

i=1

xix
′
i

)−1 n∑
i=1

xiεi.

Assumption 1 and the WLLN imply that

1

n

n∑
i=1

xix
′
i

p→ E(xix
′
i) = Q

and

1

n

n∑
i=1

xiεi
p→ E(xiεi) = 0.

Then by the CMT,

β̂
p→ β +Q−10 = β.

�
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5.2. Asymptotic Normality

To prove asymptotic normality we need extra assumptions.

Assumption 2. Assume that
(i) E(ε4i ) < ∞;

(ii) E(|xi|4) < ∞.

Theorem 9. Under Assumptions 1 and 2,
√
n(β̂ − β)

d→ N
(
0, σ2

εE(xix
′
i)
−1
)
.

Proof. Write

√
n(β̂ − β) =

(
1

n

n∑
i=1

xix
′
i

)−1
1√
n

n∑
i=1

xiεi.

By Assumption 1 and the WLLN,

1

n

n∑
i=1

xix
′
i

p→ E(xix
′
i)

while by Assumptions 1 and 2 and the CLT

1√
n

n∑
i=1

xiεi
d→ N

(
0, E(xix

′
iε

2
i )
)
.

Assumption 2 guarantees that E(xix
′
iε

2
i ) exists, since by the Cauchy-Schwarz inequality

E|xix′iε2i | ≤
(
E|xix′i|2

)1/2 (
E|εi|4

)1/2
=
(
E|xi|4

)1/2 (
E|εi|4

)1/2
< ∞.

By Assumption 1(ii),
E(xix

′
iε

2
i ) = E(xix

′
i)E(ε2i ) = σ2

εE(xix
′
i),

and now taking everything together and invoking the CMT, we obtain
√
n(β̂ − β)

d→ E(xix
′
i)
−1N

(
0, σ2

εE(xix
′
i)
)
= N

(
0, σ2

εE(xix
′
i)
−1
)
.

�


