
Gregory Kordas
Last update: March 22, 2023

LECTURE 3
UNIVARIATE PROBABILITY DISTRIBUTIONS

Abstract: We introduce the concept of a random variable, discuss discrete and con-
tinuous variables, their transformations and convolutions, as well as, their moments,
moment generating functions and characteristic functions.

1. Random variables

The essential reason why random variables and associated quantities are introduced springs
from the fact that the underlying sample spaces on which σ-fields and probability measures
are defined are arbitrary. A probability measure P is a set function that assigns probabilities
to events like a side of a die or the face of a coin, and so on. However, further progress needs
to be made. For example, it is not possible to add a head on a coin to a red card chosen from
a pack of cards. A second consideration is that there is a kind of equivalence between many
experiments. For example, we may well assign similar probabilities to the outcome of a head
on the toss of a coin, the occurrence of an odd number on rolling a die and the drawing of a red
card from a pack, yet in terms of the underlying Ω these experiments are obviously different.
As a result of considerations like these, it is often desirable to cast the sample space Ω itself
into the background, and contact our analysis in terms of other quantities that are easier to
handle mathematically and generalize directly to other experiments with similar structure.

The first step in liberating our analysis from the limitations of the sample space Ω is to
define a random variable on this space.

Definition: Let F be a σ-field defined on the sample space Ω, and let B be the Borel σ-field
on the real line R. A random variable X(·) is a function X(ω) : Ω 7→ R mapping the sample
space into the real line, such that for all B ∈ B, X−1(B) ∈ F .

Figure 1. The measurability of the random variable X.
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Figure 2. Types of cdf’s: (a) discrete, (b) absolutely continuous, (c) mixed.

The last condition in the definition of a random variable, i.e. that for all B ∈ B, X−1(B) ∈
F , means that X(·) is a measurable function from Ω to R. Measurability is defined as requiring
that the inverse image of X is an element of the σ-field F , i.e., an event.

A cumulative distribution function (c.d.f.) is a real valued function

F (x) = P (X ≤ x),

defined on the real line, having the following properties:

(i) F (−∞) = lim
x→−∞

F (x) = 0,
(ii) F (+∞) = lim

x→+∞
F (x) = 1,

(iii) lim
ϵ↓0

F (x+ ϵ) = F (x),
(iv) If x1 < x2 then F (x1) ≤ F (x2).

That is, every c.d.f. increases monotonically from zero to one and is right continuous We
say that F (x) is a cadlag (French for “continue á droite, limite á gauche”) function, i.e., it
is continuous on the right with limits on the left. For each ϵ > 0, a cadlag function has, at
most, finitely many discontinuities of magnitude greater than ϵ > 0 in any compact interval.
Otherwise, these discontinuities would have a right or left limit point, destroying the cadlag
property. Since the real line can be covered by a countable number of compact sets, a cadlag
function can have, at most, a countable number of discontinuities. Conversely, every real valued
function F (x) on the real line which has the properties specified above is the distribution
function of some random variable. The distribution functions are classified into four main
types: (a) discrete, (b) absolutely continuous, (c) mixed, and (d) singular.
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2. Discrete Random variables

We start by considering random experiments that admit only a countable (finite or infinite)
number of elementary outcomes ω, and define a random variable X on these outcomes, with
values −∞ < ξ1, ξ2, ... < ∞. Then, X(ω) is a discrete random variable, and its possible values
ξ1, ξ2, ... are its mass points. Probabilities P{X(ω) = x} are assigned according to a real valued
function f(·), defined on the real line and called the probability mass function (p.m.f.), with
the following properties:

(i) f(x) ≥ 0, for all x;
(ii) f(x) = 0 except at the mass points ξ1, ξ2, ...;
(iii)

∑
i f(ξi) = 1.

Conversely, every real valued function f(x) on the real line which has these properties is the
pmf of some random variable.

The following discrete distributions are of particular interest.

(1) Bernoulli with parameter p, (0 ≤ p ≤ 1).

f(x) = px(1− p)1−x, for x = 0, 1.

This random variable describes the toss of a coin, in which case X = 1 if Heads, X = 0 if
Tails, the probability of Heads is Pr(X = 1) = p1(1 − p)0 = p, and the probability of Tails is
Pr(X = 0) = p0(1 − p)1−0 = (1 − p). Alternatively, X could be the employment status of an
individual, with p being the probability of employment and (1 − p) being the probability of
unemployment.

(2) Binomial with parameters n, p (n positive integer, 0 ≤ p ≤ 1).

f(x) =
n!

x!(n− x)!
px(1− p)n−x, for x = 0, 1, 2, ..., n.

This variable describes the toss of n identical coins. For instance, letting X =“# of Heads”,
for n = 1 the Binomial reduces to the Bernoulli, while for n = 2, we compute, f(0) = (1− p)2,
f(1) = 2p(1− p), and f(2) = p2.

(3) Discrete Uniform with parameter n (a positive integer).

f(x) =
1

n
, for x = 1, 2, ..., n.
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(4) Poisson with parameter λ > 0.

f(x) =
e−λλx

x!
, for x = 0, 1, 2, ...

The Poisson random variable describes the number of flights arriving at an airport in the space
of 24 hours, or the number of patent applications submitted in a year. The Taylor series
expansion of the exponential eλ is given by

eλ =
∞∑
x=0

λx

x!
= 1 + λ+

λ2

2
+
λ3

6
+ · · · ,

so that
∞∑
x=0

f(x) = 1, as required.
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Figure 3. Poisson p.m.f. for λ = 1, 5, 9.

3. Absolutely Continuous Random variables

To assign probabilities we use the probability density function (p.d.f.) f : R → R, continuous,
with the following properties:

(i) f(x) ≥ 0 everywhere;
(ii)

∫ ∞

−∞
f(x) dx = 1.
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The value f(x) assigned to any particular x, is not a probability per se, since in the continuous
case the probability of any given value x is necessarily zero. Instead, the pdf is used to compute
probabilities as areas under the curve,

Pr(a ≤ X ≤ b) =

∫ b

a
f(x) dx.

That is, the probability that the random variable X will take values in the interval [a, b] is
given by the area under f between a and b. Since f is a continuous function, Pr(a < x < b) =

Pr(a ≤ X ≤ b) and thus Pr(X = a) = Pr(X = b) = 0, as required.

Of particular interest in applications is the probability of the event {−∞ < X ≤ a}. We
define the cumulative distribution function (cdf), F (x), as

F (x) = Pr(−∞ < X ≤ x) =

∫ x

−∞
f(t)dt.

The cdf gives the area under the pdf from −∞ to x. Some properties of the cdf follow imme-
diately from the definition:

(i) F (−∞) = 0, F (∞) = 1;
(ii) F (x) is nondecreasing (since f(x) ≥ 0);
(iii) Whenever differentiable, dF (x)/dx = f(x), because F =

∫
f(t)dt, and the derivative

of an interval with respect to its upper limit is just the integrand evaluated at the
upper limit.

The following continuous distributions occur often in applications:

(1) Uniform on the interval [a, b] (a < b).

f(x) =


1

b− a
, for a ≤ x ≤ b

0, otherwise.
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Observe that f(x) ≥ 0 everywhere, and∫ ∞

−∞
f(x)dx =

∫ b

a

1

b− a
dx =

1

b− a
x

∣∣∣∣b
a

= 1,

as required. Also,

F (x) =

∫ x

−∞
f(t)dt =


0, for x ≤ a
x− a

b− a
, for a ≤ x ≤ b

1, for x > b.

(2) Exponential with parameter λ > 0.

f(x) =

{
λe−λx, for x > 0

0, otherwise.

We compute

λ

∫
e−λtdt = λ

eλt

−λ
= −eλt

so,

F (x) =

{
0, for x ≤ 0,

1− e−λx, for x > 0.

The exponential distribution may be appropriate for modelling the life of many electronic
devices, or for the duration of unemployment spells.

(3) Standard normal. The pdf, denoted by ϕ(x), is given by

ϕ(x) =
1√
2π
e−x2/2, x ∈ R.

Clearly, ϕ(x) > 0 for all x ∈ R. To see that it also integrates to one, consider

I =
1√
2π

∫ ∞

−∞
e−x2/2dx =

2√
2π

∫ ∞

0
e−x2/2dx,

and let x2/2 = z and dx = z−1/2/
√
2 dz to obtain

I =
1√
π

∫ ∞

0
z−1/2e−zdz.

The integral in the rhs is equal to Γ(12) =
√
π (see the discussion of the Gamma function below),

so that I = 1 and ϕ(x) is a proper density.
The standard normal p.d.f. ϕ(x) has the following properties:

(i) ϕ(0) = 1/
√
2π ≈ 0.3989;

(ii) ϕ(x) = ϕ(−x);
(iii) ϕ′(x) = −xϕ(x);
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Figure 4. The standard normal density. In a normal population approximately
68% of the observations are within one s.d. from the mean, and 95% are within
2 s.d.’s from the mean. The probability beyond ±3 s.d.’s is almost zero.

(iv) ϕ′′(x) = (x2 − 1)ϕ(x), so ϕ(x) has inflection points at x = ±1.

The c.d.f. of the standard normal

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt, −∞ < x <∞.

is not available in closed form (it cannot be written in terms of elementary functions), but it
is widely tabulated. Note that tabulations of Φ(x) for x > 0 are sufficient, since by symmetry
Φ(−x) = 1−Φ(x). By a series expansion of e−t2/2 and direct integration, one can immediately
obtain the formula

Φ(x) =
1

2
+

1

2π

∞∑
j=0

(−1)jx2j+1

2j(2j + 1)
, −∞ < x <∞.
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Computations, however, using this formula are often inefficient. An excellent approximating
formula due to Zelen and Severo (1968)1 is

Φ(x) = 1− ϕ(x)
[
b1t+ b2t

2 + b3t
3 + b4t

4 + b5t
5
]
+ ϵ(x), x ≥ 0,

where t = (1 + px)−1, p = .2316419; b1 = .319381530; b2 = −.356563782; b3 = 1.781477937;
b4 = −1.821255978; b5 = 1.330274429. The magnitude of the approximation error is |ϵ(x)| <
7.5× 10−8, i.e., whithin computer single-precision.

(4) Standard logistic. The p.d.f. is given by

f(x) =
ex

(1 + ex)2
, −∞ < x <∞,

and the c.d.f. is given by

F (x) =

∫ x

−∞
f(t)dt =

ex

1 + ex
, −∞ < x <∞.

The logistic pdf is very similar in shape to the normal pdf (both are bell-shaped, unimodal and
symmetric about their mean), but the the logistic density has slightly thicker tails than the
normal. An interesting property of the logistic distribution is that it is the unique solution of
the following differential equation,

f(x) =
dF (x)

dx
= F (x)(1− F (x)).

(5) Standard Cauchy. The pdf is given by

f(x) =
1

π(1 + x2)
, −∞ < x <∞.

Cauchy random variables are notoriously badly behaved, and for this reason they play an im-
portant theoretical role as counterexamples to many results that hold for well behaved variables
but fail to hold for Cauchy variables.

Two important families of distributions are the Beta and Gamma families. Associated with
them are the Beta and Gamma functions. The Gamma function is defined as

Γ(t) =

∫ ∞

0
ut−1e−udu, for t > 0.

1Zelen, M. and Severo, N. C. (1964), “Probability Functions”, Ch. 26. in Handbook of Mathematical Functions,
M. Abramowitz and I. A. Stegun (eds), 925-995, U. S. Department of Commerce, Applied Mathematics Series.
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Figure 5. The Γ(t) function. The minimum for t > 0 occurs at t = 1.46163...

marked by ×.

Theorem 1. The following properties of the Gamma function are used frequently,
(i) Γ(1) = Γ(2) = 1

(ii) Γ(12) =
√
π (isn’t this amazing?!)

(iii) Γ(t) = (t− 1)Γ(t− 1) for t > 1 and real
(iv) Γ(t) = (t− 1)! for t positive integer.

Proof: Part (iii) follows from integrating Γ(t) by parts:

Γ(t) = −u(t−1)e−u]∞0+ + (t− 1)

∫ ∞

0+
ut−2e−udu.
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The first term in the r.h.s. is zero, and the second is (t− 1)Γ(t− 1), t > 0. For example,

Γ(72) = (52)Γ(
5
2)

= (52)(
3
2)Γ(

3
2)

= (52)(
3
2)(

1
2)Γ(

1
2),

a sort of generalized factorial. Clearly, for t positive integer (iv) holds. (i) is a special definition
that holds for factorials too: 0! = 1! = Γ(2) = (2 − 1)! = 1. Part (ii) is of special importance
and the only difficult part to prove. We have

Γ(12) =

∫ ∞

0
u−

1
2 e−udu.

Letting u = z2 so that du = 2z dz the integral takes the alternate form

Γ(12) = 2

∫ ∞

0
e−z2dz.

This is the so-called probability integral, called by this name because it is related to the area
under the normal curve. To evaluate it, let

I =

∫ ∞

0
e−z2dz =

∫ ∞

0
e−y2dy,

and revolve the curve x = e−y2 about the X-axis. The surface generated by the revolution has
the equation x = e−(y2+z2). The volume between this surface and the YZ-plane is

V = 4

∫ ∞

0

∫ ∞

0
e−(y2+z2)dydz

= 4

∫ ∞

0

[∫ ∞

0
e−y2dy

]
e−z2dz

= 4

∫ ∞

0
Ae−z2dz = 4A2.

By the method of hollow cylinders, this volume can be expressed as

V = 2π

∫ ∞

0
ye−y2dy = π.

Equating the two results, we get 4I2 = π, or I = 1
2

√
π, and (ii) is proved.

Second proof2: We wish to show that the Gaussian integral

I =

∫ ∞

0
e−x2

dx =

√
π

2
.

2Georgakis G. (1994), ”A Note on the Gaussian Integral”, Mathematics Magazine, vol. 67, p. 47.
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Let y = xs, dy = xds, then

I2 =

∫ ∞

0

(∫ ∞

0
e−(x2+y2)dy

)
dx =

∫ ∞

0

(∫ ∞

0
e−x2(1+s2)x ds

)
dx

=

∫ ∞

0

(∫ ∞

0
e−x2(1+s2)x dx

)
ds

=

∫ ∞

0

[
1

−2(1 + s2)
e−x2(1+s2)

∣∣∣∣∞
0

]
ds =

1

2

∫ ∞

0

ds

1 + s2

=
1

2
arctan s

∣∣∣∣∞
0

=
π

4
.

Related to the probability integral discussed in the proof above, is the so-called error function
erf(x) defined as

erf(x) = 2√
π

∫ x

0
e−t2dt, −∞ < x <∞.

This function is related to the normal c.d.f. Φ(x) by

Φ(x) =
1

2
+

1

2
erf(x/

√
2).

The Beta function is defined by

B(p, q) =

∫ 1

0
up−1(1− u)q−1du, for p > 0, q > 0,

and it is not difficult to prove that

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

(6) Gamma distribution with parameters p > 0, λ > 0. The p.d.f. of a γ(p, λ) is given by

f(x) =
λp

Γ(p)
xp−1e−λx, x > 0.

The parameter p controls the shape of the distribution, while λ controls its scale. It can be
shown that if X1 ∼ γ(p1, λ) and X2 ∼ γ(p2, λ) independent of X1, then X1+X2 ∼ γ(p1+p2, λ).
Also, γ(ν/2, ν/2) = χ2

ν , i.e., the chi-square distribution with ν degrees of freedom.

(7) Beta distribution with parameters p > 0, q > 0. The pdf of a β(p, q) is given by

f(x) =
1

B(p, q)
xp−1(1− x)q−1, x > 0,
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It can be shown that if X1 ∼ γ(p1, λ) and X2 ∼ γ(p2, λ), independent of X1, then

X1

X1 +X2
∼ β(p1, p2).

4. Transformations

Suppose that X has a known pdf f(x), and we wish to find the pdf g(y) of Y = h(X). One
way to approach the problem would be to first compute the cdf of Y by

G(y) = Pr(Y ≤ y) = Pr(h(X) ≤ y),

and then recover g(y) by differentiating G(y).

Example 1. Let

f(x) =

{
3
2x

2, for − 1 ≤ x ≤ 1,

0, otherwise,

and let Y = X2. Then

G(y) = Pr(Y ≤ y) = Pr(X2 ≤ y) = Pr(−√
y ≤ X ≤ √

y)

=

∫ √
y

−√
y
f(x)dx =

∫ √
y

−
√
u

3

2
x2dx

=
3

2
· x

3

3

∣∣∣∣
√
y

−√
y

= y3/2.

Therefore,

g(y) =
dG(y)

dy
=

3

2

√
y.

Now the range of Y can be obtained from the relationship Y = X2. Since −1 ≤ x ≤ 1, we
should have 0 ≤ y ≤ 1. Therefore,

g(y) =

{
3
2

√
y, for 0 ≤ y ≤ 1,

0, otherwise.

It is easy to check that ∫ 1

0
g(y)dy =

3

2

∫ 1

0

√
ydy =

3

2
· x

3/2

3/2

∣∣∣∣∣
1

0

= 1.
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If the function Y = h(X) is one-to-one and differentiable, then the inverse function X =

h−1(Y ) exists, so we can write

G(y) = Pr(h(X) ≤ y) = Pr(X ≤ h−1(y))

=

∫
f(h−1(y))

∣∣∣∣dh−1(y)

dy

∣∣∣∣ dy,
where J =

dh−1(y)

dy
is the Jacobian of the transformation and | · | is the absolute value function.

Thus, the density of Y is given by,

g(y) = f(h−1(y))

∣∣∣∣dh−1(y)

dy

∣∣∣∣ .
Recall that the probability of X lying in an infinitesimally small region with volume dx is

given by fx(x)dx. Since h(·) can expand or contract space, the infinitesimal volume surrounding
x in X−space may have different volume in Y -space. We thus need to preserve the property

|fy(h(x))dy| = |fx(x)dx|,

from which we obtain
fy(y) = fx(x)

∣∣∣∣dxdy
∣∣∣∣ ,

which is the same as the formula above for x = h−1(y).

Example 2. (The Normal location-scale family). Let X be a standard normal random variable,
i.e.

f(x) =
1√
2π
e−x2/2, −∞ < x <∞

and let Y = µ+σX, for µ, σ ∈ R. Clearly this is an one-to-one and differentiable transformation,
so the inverse function exists. We have

X = h−1(Y ) =
Y − µ

σ
,

and
|J | =

∣∣∣∣dh(y)dy

∣∣∣∣ = 1

|σ|
.

Therefore,

g(y) = f(h−1(y))

∣∣∣∣dh(y)dy

∣∣∣∣
= f

(y − µ

σ

)
· 1

|σ|

=
1√
2π|σ|

e−(y−µ)2/(2σ2), −∞ < y <∞.
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Therefore, if X is standard normal, Y = µ + σX has the normal density with mean µ and
variance σ2. Note that it is natural to restrict σ in the positive orthant, but in any case only
|σ| is relevant here.

The last example demonstrates a general rule that follows directly from the transformation
formula: If X has density f(x), then the density of Y = µ + σX, for µ ∈ R, σ ∈ R+, is given
by

g(y) =
1

σ
f
(y − µ

σ

)
.

Thus, given a standard density (like the standard normal, the standard logistic, or the standard
Cauchy) it is easy to create an entire family of densities, often referred to as a location-scale
family, by the above method. Note that neither µ is necessarily the mean of Y , nor σ2 the
variance of Y . The parameters µ and σ specify the general location and scale of the distribution
in the sense that as they increase the mean and the variance of Y increase. For example,
in the gerenalized logistic ditrubution E(Y ) = µ because the distribution is symetric, but
V (Y ) = π2σ2/3.

Another very useful transformation is the so-called probability transformation: If X is a
continuous random variable with cdf F , then F (X) is a uniform random variable on [0, 1], i.e.,

X ∼ F ⇔ F (X) ∼ U [0, 1].

Example 3. (The probability transformation). Let X be a standard logistic random variable
with density

f(x) =
e−x

(1 + e−x)2
,

and let

h(x) = F (x) ≡ ex

1 + ex
.

Then

x = h−1(y) = log
( y

1− y

)
= log y − log(1− y),

and
dh−1(y)

dy
=

1

y
+

1

1− y
=

1

y(1− y)
,
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which is always positive. Now 0 ≤ y ≤ 1, and

g(y) = f(h−1(y)) ·
∣∣∣∣dh−1(y)

dy

∣∣∣∣
= f

(
log

( y

1− y

))
· 1

y(1− y)

=
e
− log( y

1−y
)(

1 + e
− log( y

1−y
)
)2 · 1

y(1− y)

= 1.

Thus, Y = F (X) is indeed distributed as U [0, 1].

One application of the probability transformation is in drawing random samples from a
required distribution: if a random sample from a U ∼ U [0, 1] is available, then X = F−1(U) ∼
F is a random sample from F . Most computer programs include a uniform random number
generator, so if F−1 is available, it is easy to draw samples from the distribution F . For example,
in STATA the following commands will produce a sample from the logistic distribution

set obs 100 Set the sample size.
gen u = uniform() Draw a uniform sample.
gen x = log(u/(1-u)) Generate the logistic sample.

5. Expectations

Let X be a random variable defined on a probability space (Ω, A, P ) with cdf F (x). The
expectation of X exists if and only if

E(|X|) =
∫ ∞

−∞
|x|dF (x) <∞ (integrability)

i.e., if X is an integrable function. The expectation of X is then defined by

E(X) =

∫ ∞

−∞
xdF (x).

To understand the integrability condition, note that by the additivity of integrals, the expec-
tation of X can be written as

E(X) = E(X+)− E(X−),
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where
X+ = X I{X ≥ 0} = max{X, 0}

is the positive part and
X− = −X I{X < 0} = max{−X, 0}

is the negative part of X. If E(X+) = ∞ and E(X−) = −∞, we get E(X) = ∞−∞, which is
not defined! To avoid this anomaly, we restrict the expectation of |X| to be finite.

Provided that at least one of E(X+) and E(X−) is finite, we can define E(X) = E(X+)−
E(X−); otherwise (that is, if both E(X+) and E(X−) are infinite), E(X) is undefined (does
not exist).

Definition 1. Suppose that X is a nonnegative random variable with distribution function F .
The expected value or mean of X (denoted by E(X)) is defined to be

E(X) =

∫ ∞

0
[1− F (x)]dx

which may be infinite. In general, if X = X+ − X−, we define E(X) = E(X+) − E(X−)

provided that at least one of E(X+) and E(X−) is finite; if both are infinite then E(X) is
undefined. If E(X) is well-defined then

E(X) =

∫ ∞

0
[1− F (x)] dx−

∫ 0

−∞
F (x) dx

If X is a continuous random variable and F has pdf f , we have that dF (x) = f(x)dx, so the
expectation of X is given by

E(X) =

∫ ∞

−∞
xf(x) dx.

If X is a discrete random variable with pmf f(xi) = Pr(X = xi), i = 1, 2, ..., the expectation
of X can be expressed as

E(X) =
∑
i

xif(xi).

Since in the discrete case the integral reduces to a summation over the point masses, we will
employ the integral representation to denote expectation of a general (continuous or discrete)
random variable.

Suppose that X is a random variable with distribution function F : R → [0, 1] and inverse
(or quantile function) F−1 : [0, 1] → R. Then

E(X) =

∫ 1

0
F−1(t) dt

if E(X) is well-defined.
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If Y = h(X) is a transformation of a random variable X with pdf f(x) then

E(Y ) =

∫ ∞

−∞
h(x)f(x) dx.

Example 4.
(1) Suppose X ∼ Bernoulli(p). This is a discrete distribution with f(0) = 1− p and f(1) = p,
so E(X) = 0 · (1 − p) + 1 · p = p. Also, if Y = X2, E(Y ) = 02 · (1 − p) + 12 · p = p. Observe
that in general E(X2) 6= E(X)2, as it is certainly the case here.

(2) Suppose X follows the Poisson distribution with p.m.f. f(x) = e−λλx/x!, x = 0, 1, 2, .....
Using again the Taylor expansion of the exponential given above, it is now difficult to show
that

E(X) =

∞∑
x=0

x
e−λλx

x!
= λ.

Also, E(X2) = λ2 + λ, so that V (X) = E(X2) − E(X)2 = λ, so that λ is both the mean and
the variance of the Poisson distribution.

(3) Suppose X ∼ Uniform[0, 2], i.e.,

f(x) =

{
1
2 , for 0 ≤ x ≤ 2,

0, otherwise.

We calculate

E(X) =

∫ ∞

−∞
xf(x)dx =

∫ 2

0

1

2
xdx = 1.

Also, if Y = X2,

E(Y ) =

∫ ∞

−∞
x2f(x)dx =

∫ 2

0

1

2
x2dx =

4

3
.

(4) Suppose X follows the standard normal distribution. Then

E(X) =

∫ ∞

−∞
x

1√
2π
ex

2/2dx = 0.

As the integrability condition in the definition of the expectation above indicates, not all
random variables have an expectation.

Example 5.
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(1) Consider a discrete random variable X with pmf

f(x) =


3

(πx)2
, for x = ±1,±2, ...

0, otherwise.

Then,

E(X+) =

∞∑
x=1

xf(x) =

∞∑
x=1

3

π2x
= ∞.3 (5.0)

Therefore, E(X) = ∞−∞, and X does not have an expectation.

(2) Let X be a Cauchy random variable. Then

E(X) =

∫ ∞

−∞
x

1

π(1 + x2)
dx =

1

2π
log(1 + x2)

∣∣∣∣∞
−∞

= ∞−∞,

and the expectation does not exist.

In our examples above we saw that the expectation of the standard normal is 0, but the
expectation of the standard Cauchy fails to exist. Why is that?

3Theorem. The series
∑∞

n=1

1

np
diverges for all p ≤ 1, and converges for all p > 1.

Proof: There is a very simple proof of the divergence of the harmonic series, that is the series for p = 1, that
goes as follows. Suppose 1

1
+ 1

2
+ 1

3
+ 1

4
+ · · · converges to a number S. Then the even numbered terms clearly

converge to 1
2
S. But this means that the odd numbered terms must converge to the other half of S, which is

impossible because
1
1
> 1

2
, 1

3
> 1

4
, 1

5
> 1

6
, ... .

Thus the series must diverge.
Now consider p < 1. Since for p < 1 the series

∑∞
n=1

1

np
is term by term greater than the harmonic series∑∞

n=1

1

n
, it follows immediately that it too must diverge.

Finally consider the more interesting case p > 1. Write SN for the Nth partial sum of the series. Then

S2N+1 = 1 +
[ 1

2p
+

1

4p
+ · · ·+ 1

(2N)p

]
+

[ 1

3p
+

1

5p
+ · · ·+ 1

(2N + 1)p

]
< 1 +

[ 1

2p
+

1

4p
+ · · ·+ 1

(2N)p

]
+

[ 1

2p
+

1

4p
+ · · ·+ 1

(2N)p

]
= 1 +

1

2p
SN +

1

2p
SN

< 1 + 21−pS2N+1

because SN < S2N+1. Thus (1 − 21−p)S2N+1 < 1. Since p > 1 the factor 1 − 21−p is positive, and so we have
S2N+1 < (1 − 21−p)−1 for all N . Since S2N < S2N+1 we have that the increasing sequence {SN} is bounded
from above by (1− 21−p)−1. Hence it converges.
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The reason is that the Cauchy density (broken line) has much fatter tails than that of the
normal density (solid line), and as it turns out this is exactly the reason for the failure of the
Cauchy to have an expectation. The normal is an example of a density with exponential tails,
while the Cauchy is an example of a density with algebraic tails. For scalar random variable X
with df F we say F , or X, has an exponential tail if

lim
x→∞

− log(1− F (x))

cxr
= 1, for some c > 0, r > 0,

and an algebraic tail if

lim
x→∞

− log(1− F (x))

m log x
= 1, for some m > 0.

Densities with exponential tails die out very fast as we move away from their center, while
densities with algebraic tails remain positive even far from their centers. As a result, random
samples from densities with algebraic tails tend to have outliers, i.e. observations that are far
removed from the main body of the data.
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Example 6. Use Mathematica to compute the limits

lim
x→∞

− log(1− Φ(x))

x
and lim

x→∞

− log(1− Φ(x))

log x

to see that the first converges to 1 while the latter diverges to infinity. Thus, the normal has
exponential (thin) tails. Also verify that the log-normal has an algebraic right tail.

Example 7. The standard logistic cdf

F (x) =
ex

1 + ex

is frequently described as a distribution with tails somewhat fatter than the normal, but it
actually has exponential tails just like the normal. To see this, write

lim
x→∞

− log(1− F (x))

x
= lim

x→∞

− log(1/(1 + ex))

x
= lim

x→∞

log(1 + ex)

x
,

and use L’Hopital’s rule to get

lim
x→∞

log(1 + ex)

x
= lim

x→∞

d log(1 + ex)/dx

dx/dx
= lim

x→∞

ex

1 + ex
= 1.

Example 8. Now consider the standard Cauchy cdf. We have

F (x) =
1

2
+

arctan(x)

π
,

so
lim
x→∞

− log(1− F (x))

log x
= lim

x→∞

log(2π)− log(π − 2 arctan(x))

log x
= 1.

so the Cauchy has algebraic (fat) tails. Note that if we divide by x instead of log x the limit will
be zero. The arctan function is slowly varying at infinity, i.e., for large x it is strictly increasing
but very slowly. The logarithm log(x) is also slowly varying at infinity so it is exactly what is
needed to counter the arctan function and their ratio tends to one.

Example 9. The Pareto distribution with pdf

f(x) =

 0, for x < β,
αβα

xα+1
, for x ≥ β



Univariate Probability Distributions 21

and cdf

F (x) =

 0, for x < β,

1−
(
β

x

)α

, for x ≥ β

is very useful in modeling tail events. Without loss of generality, set β = 1, in which case

logtail(x) = − log(1− F (x)) = α log x

so for m = α,
− log(1− F (x))

α log x
= 1,

holds not just in the limit but for all x! This means that, at least for large x, any distribution
with algebraic tails will eventually behave as a Pareto distribution (!), which explains its use-
fulness in modeling exceedances. For example, if income is log-normally distributed, the upper
10%, say, of incomes (the right tail) will be approximately Pareto distruted. We will return to
theses issues at a future lecture when we discuss the theory of extreme events.

6. Theorems on Expectations

Theorem 2. For a random variable X and constants a and b, the random variable Y = a+bX

has expectation E(Y ) = a+ bE(X) and variance V (Y ) = b2V (X).

Proof: Integrals are linear operators: E(Y ) =
∫
(a+ bx)f(x)dx = a

∫
f(x)dx+ b

∫
xf(x)dx =

a+ bE(X).

Theorem 3. The variance of a random variable X is equal to the expectation of its square
minus the square of its expectation, V (X) = E(X2)− E(X)2.

Proof: Let Y = X − E(X) so that Y 2 = X2 + E(X)2 − 2E(X)X and apply the previous
theorem to get V (X) = E(Y 2) = E(X2) + E(X)2 − 2E(X)2 = E(X2) = E(X)2.

Theorem 4. Let c be a constant. Then the the mean square error (MSE) of a random variable
X about c is E(X − c)2 = σ2 + (c− µ)2. When X is an estimator of a population quantity of
interest we say that MSE(X) = V AR(X) +BIAS(X)2.

Proof: Write (X−c) = (X−µ)−(c−µ) = Y −(c−µ). So (X−c)2 = Y 2+(c−µ)2−2(c−µ)Y .
Then the first theorem gives E(X − c)2 = E(Y ) + (c−µ)2 − 2(c−µ)E(Y ). But E(Y ) = 0 and
E(Y 2) = σ2.
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The following theorem is very important in econometrics. It says that the expected value
(mean) of a random variable is the optimal predictor of X under square loss. A loss function
is any function L(·) satisfying the condition

0 < u < υ ⇒

{
0 = L(0) ≤ L(u) ≤ L(υ)

0 = L(0) ≤ L(−u) ≤ L(−υ),

where u and υ denote values for the prediction error X − c. The square loss E(X − c)2 and
the absolute loss E|X − c| are the two prime examples of loss fuctions.

Theorem 5. The value of c that minimizes E(X − c)2 is c = µ, i.e.,

µ = argmin
c∈R

E(X − c)2.

Proof: From theorem 3, E(X − c)2 = σ2 + (c− µ)2, and (c− µ)2 ≥ 0 with equality only when
c = µ.

7. Moments

The moments of a r.v. X are the expectations of integer powers of X, or of X − µ. When
E(Xr) exists we call it the r-th raw moment of X, or the r-th moment of X around 0, and
denote it by mr, i.e.

mr = E(Xr) =

∫
xrdF (x).

Clearly then (verify), m0 = 1,m1 = E(X),m2 = E(X2), and so on.

Theorem 6. For integers r < s, the existence of ms implies the existence of mr.

Proof: When |X| ≥ 1, we have |x|r ≤ |x|s ⇒
∫
|x|rdF (x) ≤

∫
|x|sdF (x) < ∞ and E(Xr)

exists. On the other hand, when 0 ≤ |X| < 1, we have |x|r ≤ |x|s + 1 ⇒
∫
|x|rdF (x) ≤∫

1 + |x|sdF (x) = 1 +
∫
|x|sdF (x) <∞, so E(Xr) exists.

Next we define the r-th central moment of X around the mean µ = m1 by

µr = E(X −m1)
r =

∫
(x−m1)

rdF (x),

so that (verify) µ0 = 1, µ1 = 0 and µ2 = m2 −m2
1. The second central moment, µ2, is called

the variance of X and is denoted by σ2.
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Theorem 7. .
(a) If mr exists, then µr also exists and is given by

µr = mr −
(
r

1

)
mr−1m1 +

(
r

2

)
mr−2m

2
1 − · · ·+ (−1)r−1rmr

1 + (−1)rmr
1.

(b) Alternatively, if µr exists, then mr also exists and is given by

mr = µr +

(
r

1

)
µr−1m1 +

(
r

2

)
µr−2m

2
1 + · · ·+ rµ1m

r
1 +mr

1.

Proof: (Idea) This result follows from the binomial theorem: If n a positive integer

(a+ b)n = an + nan−1b+
n(n− 1)

2
an−2b2 + · · ·+ bn.

Apart from the mean µ = µ1 and the variance σ2 = µ2, the skewness µ3/σ3, and kurtosis
µ4/σ

4, are often used measures of asymmetry and tail thickness, respectively.

The following theorem from Courant (1937)4, p. 250, says that an improper integral diverges
if its integrand vanishes at infinity to an order not higher than the first. Since E(X) involves
the integrand xf(x), if f(x) vanishes at infinity to an order not higher than the second order,
E(X) diverges and, a fortiori, no higher moments can exist.

Theorem 8. [Courant (1937)]
The improper integral ∫ ∞

a
f(x)dx, a > 0, f(x) > 0,

converges if the function f(x) vanishes at infinity to a higher order than the first, that is, if
there is a number ν > 1 such that for all values of x, no matter how large, the relation

0 < f(x) ≤ M

xν

is true, where M is a fixed number independent of x. The integral diverges if the function
remains positive and vanishes at infinity to an order not higher than the first, that is, if there
there is a fixed number N > 0 such that

xf(x) ≥ N.

4Courant, R., Differential and Integral Calculus. New York: Interscience Publishers, Inc., Vol. 1, 1937.
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In general, if f(x) vanishes at infinity at an order not higher than the (r+2)th, the rth and
higher moments do not exist. For a random variable to have moments of all orders, f(x) must
vanish at infinity at an exponential rate which is faster than any polynomial. Normal and other
well-behaved r.v.’s have this property and posses moments of all orders. It is not difficult to
show that for the tν r.v., f(x) vanishes at infinity at a rate of xν+1 so it has only ν − 1 finite
moments.

8. Convolutions

We say that Y is the convolution of the independent variables X1 and X2, if Y = X1 +X2.
We have

FY (y) = Pr(Y ≤ y) = Pr(X1 +X2 ≤ y) = Pr(X2 ≤ y −X1)

=

∫ ∞

−∞

∫ y−x1

−∞
f1(x1)f2(x2)dx2dx1

=

∫ ∞

−∞
f1(x1)

[ ∫ y−x1

−∞
f2(x2)dx2

]
dx1

=

∫ ∞

−∞
f1(x1)F2(y − x1)dx1.

Hence,

fY (y) =
d

dy
FY (y) =

∫ ∞

−∞
f1(x1)

d

dy
F2(y − x1)dx1

which yields the famous convolution formula,

fY (y) =

∫ ∞

−∞
f1(x1)f2(y − x1)dx1.

Example 10. (The Tent Distribution). Let X1 and X2 be two independent U [0, 1] random
variables and assume that we wish to find the distribution of Y = X1+X2. From it’s definition
the support of Y is the interval (0,2). Using the convolution formula, we have

fY (y) =

∫ ∞

−∞
f1(x1)f2(y − x1)dx1

=

∫ ∞

−∞
I{0 ≤ x1 ≤ 1} · I{0 ≤ y − x1 ≤ 1}dx1

=

∫ 1

0
I{0 ≤ y − x1 ≤ 1}dx1.
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Consider first y < 1. For what values of x1 would 0 < y−x1 < 1? The answer is for 0 < x1 < y,
so for the y < 1 case,

fY (y) =

∫ y

0
dx1 = y, y < 1.

Similarly for y > 1, in order to satisfy 0 < y − x1 < 1 we need y − 1 < x1 < 1. Thus in this
case,

fY (y) =

∫ 1

y−1
dx1 = 2− y, y > 1.

Thus

fY (y) =


0 y ≤ 0

y 0 < y ≤ 1

2− y 1 < y ≤ 2

0 y > 2.

For obvious reasons this distribution is called the tent distribution.

Example 11. Let X1 and X2 be two independent N(0, 1) random variables and consider
Y = X1 +X2. We will show that Y ∼ N(0, 2). Using the convolution formula,

fY (y) =

∫ ∞

−∞
f1(x1)f2(y − x1)dx1

=

∫ ∞

−∞

1

2π
exp

{
− 1

2
x21 −

1

2
(y − x1)

2
}
dx1.

Completing the square

x21 + (y − x1)
2 = x21 + y2 − 2x1y + x21

= 2x21 − 2x1y + y2

= 2
(
x21 − x1y +

1

4
y2
)
+ y2 − 1

2
y2

= 2
(
x1 −

y

2

)2
+

1

2
y2

we obtain

fY (y) =
1

2π

∫ ∞

−∞
exp

{
− 1

2

[
2
(
x1 −

y

2

)2
+

1

2
y2
]}
dx1

=
1

2π

∫ ∞

−∞
exp

{
−
(
x1 −

y

2

)2
− 1

4
y2
}
dx1

= e−y2/4 1

2π

∫ ∞

−∞
exp

{
−
(
x1 −

y

2

)2}
dx1



26 Lecture 3

Multiplying and dividing by
√
2π 1

2 we obtain

fY (y) = e−y2/4

√
2π 1

2

2π

∫ ∞

−∞

1√
2π 1

2

exp
{
−

(
x1 −

y

2

)2}
dx1.

Note that the quantity inside the integral is the density of a N(y2 ,
1
2) random variable, so that

the integral is equal to 1. Thus

fY (y) =
1

2
√
π
e−

y2

2·2 = N(0, 2),

as promised.

9. Moment Generating Functions

The moment generating function (m.g.f) of a random variable X

ψ(t) = E(etX) =

∫
etxdF (x).

In other branches of mathematics the m.g.f. is called the Laplace transform of a function.
Expanding the exponential we obtain,

ψ(t) =

∫
(1 + tx+

1

2
t2x2 + · · · )dF (x)

=

∞∑
j=0

∫
tjxj

j!
dF (x)

=

∞∑
j=0

tj

j!

∫
xjdF (x).

Therefore,

ψ(t) =
∞∑
j=0

tj

j!
mj ,

so that the coefficient of tj/j! is the j-th raw moment mj . It follows that one way of finding
mj is by differentiating ψ(t) w.r.t tj and evaluate at 0, i.e.,

mj =
djψ(t)

dtj

∣∣∣∣
t=0

Example 12.
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(1) For the standard normal random variable,

ψ(t) = E(etX)

=

∫ ∞

−∞
etx

1√
2π
e−x2/2dx

=
1√
2π
et

2/2

∫ ∞

−∞
e−(x−t)2/2dx.

Let s = (x− t) and change variables to write the integral above as∫ ∞

−∞
e−(x−t)2/2dx =

∫ ∞

−∞
e−s2/2ds =

√
2π.

Thus,
ψ(t) = et

2/2.

To find the moments of X we expand the mgf to obtain

ψ(t) = et
2/2 =

∞∑
j=0

1

j!

( t2
2

)j
=

∞∑
j=0

t2j

(2j)!
1× 3××5× · · · (2j − 1).

It follows that all the odd raw moments are zero (by symmetry), while the even raw moments
are given by

m2j = 1× 3× 5× · · · × (2j − 1), j = 1, 2, ... .

(2) For the Poisson random variable,

ψ(t) =

∞∑
x=0

etxe−λλ
x

x!
= eλ(e

t−1).

We can now compute the moments easily,

m1 =
dψ(t)

dt

∣∣∣∣
t=0

= λeteλ(e
t−1)

∣∣∣
t=0

= λ

and
m2 =

d2ψ(t)

dt2

∣∣∣∣
t=0

= (λ2e2t + λet)eλ(e
t−1)

∣∣∣
t=0

= λ2 + λ,

so that,
µ2 = m2 −m2

1 = λ2 + λ− λ2 = λ.

Thus, both the mean and the variance of a Poisson random variable is λ.

The expansion of the mgf as the weighted sum of an infinity (!) of raw moments given above,
rises the question: what if X does not have moments of all orders? As we have seen, some
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variables don’t even have a first moment. Clearly, the m.g.f. would fail to exist if X does
not have moments of all orders, or to put in another way, if X has an mgf then it also has
moments of all orders. It also follows that when the mgf exists, it is unique (given by the above
expansion), and completely describes the random variable at hand.

Example 13. Consider a discrete random variable X with pmf

f(x) =
6

(πx)2
, x = 1, 2, 3, ...

Note that f(x) = Pr(X = x) ≥ 0 for all x = 1, 2, 3, ... and

∞∑
x=1

6

(πx)2
=

6

π2

( 1

12
+

1

22
+

1

32
+ · · ·

)
=

6

π2
· π

2

6
= 1,

so this is a proper pmf. For this random variable,

ψ(t) = E(etX)

=
6

π2

∞∑
x=1

etx
1

x2

=
6

π2

∞∑
x=1

(
1 + tx+

t2x2

2!
+
t3x3

3!
+ · · ·

) 1

x2

=
6

π2

∞∑
x=1

( 1

x2
+
t

x
+
t2

2!
+
t3x

3!
+ · · ·

)
.

This sum does not converge, and therefore X does not have a moment generating function.
Actually, we have already seen that X have no moments at all.

It is simple to show that if ψX(t) is the mgf of X and α, β ∈ R,

ψα+βX(t) = eαt · ψX(βt).

Also if Y is another variable independent of X with mgf ψY (t), the mgf of their sum X + Y is
given by

ψX+Y (t) = ψX(t) · ψY (t).

This last expression for the sum of two random variables is the most useful property of the
mgf.
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10. Characteristic Functions

The characteristic function (cf) of a random variable X is given by,

φ(t) = E(eitX) =

∫
eitxdF (x),

where i =
√
−1. Unlike the mgf, the cf always exists. To see this, recall that |a + ib| ≡

(a+ ib)(a− ib) = a2 + b2, and use the Euler identity eiz = cos z + i sin z to write,

|φ(t)| =
∣∣∣ ∫ eitxdF (x)

∣∣∣
≤

∫
|eitx|dF (x)

=

∫
| cos tx+ i sin tx|dF (x)

=

∫ √
cos2 tx+ sin2 tx dF (x)

=

∫
1dF (x) = 1.

Hence, |φ(t)| ≤ 1, and φ(t) always exists. An important property of the cf is that it (essentially)
determines its corresponding df through the inversion formula for the density

f(x) =
1

2π

∫ ∞

−∞
e−itxφ(t)dt,

or, more generally,

F (x)− F (y) =
1

2π

∫ ∞

−∞

e−itx − e−ity

it
φ(t)dt,

if x and y are continuity points of F .

Theorem 9. If E|X|m <∞ for an integer m > 0, then

φ(t) =
m∑
j=0

(it)j

j!
mj + o(tm).

Proof: By a Taylor expansion

eitx =
m∑
j=0

(itx)j

j!
+

(it)m

(m− 1)!

∫ 1

0
(eitxsxm − xm)(1− s)m−1ds.

Now replace x by X and take expectations, evaluating the remainder as,

(it)m

(m− 1)!

∫ 1

0
(φm(ts)− φm(0))(1− s)m−1ds.
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Under the condition that φm is uniformly continuous, for small t the integral is o(1) and thus
the remainder is o(tm).

When the mgf exists, the cf and the mgf are related by

φ(t) = ψ(it).

More generally, the cf has the same properties as the mgf when the latter exists. The cf of
a standard normal random variable is φ(t) = e(it)

2/2 = e−t2/2, while for a Poisson random
variable the cf is φ(t) = eλ(e

it−1). The cf of a Cauchy random variable is given by e−|t| and
since this is discontinuous at 0, the Cauchy has no moments.

11. Total Probability and the Generalized Bayes Rule

The total probability of an event A whose occurence depends on a r.v. X is given by the
formula

P (A) =

∫ ∞

−∞
f(x)P (A|x)dx,

in which f(x) is the pdf of X, on the values of which depends the probability of occurence of
A, and P (A|x) is the probability of A under the assumption that X takes the value x.

The conditional probability density f(x|A) of X under the assumption that A has occured,
is determined by the generalized Bayes formula:

f(x|A) = f(x)P (A|x)∫ ∞

−∞
f(x)P (A|x)dx

.

In this context, f(x) is the prior pdf of X (prior to the occurence of A), and f(x|A) is the
posterior pdf of X.

Example 14. The deviation of the size of an item from the midpoint of the tolerence field of
width 2d equals the sum of two independent mean zero normal r.v.’s X and Y with variancess
σ2x and σ2y , respectively. We are interested in determining the conditional probability density
of X for the non-defective items.

Let A be the event that an item is non-defective. The conditional probability P (A|x) of
getting a non-defective item when X takes the value x is given by

P (A|x) =
∫ x+d

x−d

1

σy
√
2π

exp

(
− y2

2σ2y

)
dy = Φ

(
x+ d

σy

)
− Φ

(
x− d

σy

)
,

where Φ is the standard normal cdf.
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Let f(x|A) be the conditional p.d.f of X for non-defective items, so that

f(x|A) = f(x)P (A|x)∫ ∞

−∞
f(x)P (A|x)dx

.

Substituting the prior density of X, f(x) = ϕ(x/σx), and P (A|x) from above, we obtain the
posterior density of X as

f(x|A) =

1

σx
√
2π

exp

(
− x2

2σ2x

)[
Φ

(
x+ d

σy

)
− Φ

(
x− d

σy

)]
∫ ∞

−∞

1

σx
√
2π

exp

(
− x2

2σ2x

)[
Φ

(
x+ d

σy

)
− Φ

(
x− d

σy

)]
dx

=

Φ

(
x+ d

σy

)
− Φ

(
x− d

σy

)
2Φ

(
d

/√
σ2x + σ2y

)
− 1

× ϕ(x/σx),

where ϕ and Φ are the standard normal pdf and cdf, respectively.
Note that as d/σy → 0, i.e., when only very small deviations relative to the precision of the

process (as measured relative to σy) are tolerated, the first factor in the last expression tends
to ϕ(x/σy) (by the basic definition of the derivative), and

f(x|A) → ϕ(x/σy)ϕ(x/σx) = ϕ
(
x/

√
σ2xσ

2
y/(σ

2
x + σ2y)

)
,

a rescaled normal pdf. Since when d/σy is small the prior and the posterior distributions of X
are different, we say that A is informative about X .

On the other hand, as d/σy becomes large, i.e., as even very large deviations are tolerated,
the first factor tends to 1 and

f(x|A) → ϕ(x/σx),

the unconditional distribution of X. In this case, we say that the prior is uninformative, i.e.
knowning that an item is non-defective doesn’t tell us much since even items with very large
deviations are characterized as “non-defective”.
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Figure 6. Visit http://www.math.wm.edu/ leemis/chart/UDR/UDR.html for an
interactive graph.
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De Morgan was explaining to an actuary what was the chance that
a certain proportion of some group of people would at the end of a
given time be alive; and quoted the actuarial formula [the normal
density], involving π, which, in answer to a question, he explained
stood for the ratio of the circumference of a circle to its diameter.
His acquaintance, who had so far listened to the explanation with
interest, interrupted him and exclaimed, “My dear friend, that must
surely be a delusion, what can a circle have to do with the number
of people alive at a given time?”

— Walter William Rouose Ball (1850− 1925)
Mathematical Recreations and Problems,

London: 1896, p.180.


