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Lecture 10

Quantile Regression

Abstract: We motivate quantile regression through some examples and present

some asymptotic results useful for inference.

Much of the early history of social statistics, strongly influenced by Quetelet,

can be viewed as a search for the “average man” – that improbable man

without qualities who could be comfortable with his feet in the ice chest

and his hands in the oven. Some of this obsession can be attributed to

the seductive appeal of the Gaussian law of errors. Everyone, as Poincare

famously quipped, believes in the normal law of errors: the theorists because

they believe it is an empirical fact, and the empiricists because they believe

that it is a mathematical theorem. Once in the grip of this Gaussian faith, it

suffices to learn about means. But sufficiency, despite all its mathematical

elegance, should be tempered by a skeptical empiricism: a willingness to

peer occasionally outside the cathedral of mathematics and see the world

in all its diversity.

– Roger Koenker, Quantile Regression. Cambridge University Press.

Consider the problem of evaluating the effect of surgery on patients. Let y be a health

indicator and x be a binary (dummy) indicator of whether or not the patient has received

surgery. Assuming for purposes of exposition, that x is the only relevant variable, we can

write the simple regression model

y = h(x; β) + u.

If we assume that E(u|x) = 0, then h(x; β) is a conditional mean function (i.e., E(y|x) =

h(x; β)), while if Med(u|x) = 0, then h(x; β) is a conditional median function. Assuming

that h(x; β) is linear in x and β, we obtain a linear conditional expectation model E(y|x) =

α + βX, or a linear conditional median model Med(y|x) = α + βX, depending on the

kind of restriction we have put on the error term.

In the case of a linear expectation model, we can interpret β a mean or average, treat-

ment effect (ATE), i.e., the effect of treatment on the mean of the conditional distribution

of the health indicator y. If a median model is assumed, then β is a median treatment

effect (MTE).

The information contained in the mean or median estimate is interesting, but very

limited. If β is positive, for example, then we learn that the average person tends to
1
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benefit from this procedure, but we learn nothing about the rest of the distribution. To

explore the effect of x on the entire distribution of y we need to look at other quantiles.

Figure 1 presents some stylized examples of an effect of a treatment x on a health

indicator y. The first row of the graph presents the effect of a pure location shift, the

second row of a pure scale shift, and the third row of a location and scale shift. Looking

first at the location shift model, we see that the effect of treatment x on distribution of

health is to shift it to the right (the solid line is the before and the dotted line is the after

treatment distribution). In this case, the effect of treatment is the same for the entire

distribution, so the quantile treatment effect (QTE), graphed to the right, is constant

across all quantiles in (0, 1).

The second raw presents the situation in the case where the treatment has a pure

scale effect on the distribution of the health indicator. Here the mean (or median) of the

distribution is unaffected by the treatment, but the rest of the distribution has changed.

In particular, the QTE, graphed to the right, is negative at low quantiles and is strictly

increasing as we move to higher quantiles of the conditional distribution. Clearly, a mean

or median regression model would miss all this information as β would be insignificantly

different from zero.

The last panel presents a combined location and scale effect. The QTE graphed to the

right tells us that the treatment is beneficial for the mean person (dotted line) and for

people belonging to high conditional quantiles, but is detrimental to those belonging to

the lowest quantiles.

The simple location-scale models of Figure 1 are restrictive in that the QTE’s so pro-

duced as monotone in the estimation quantile. This need not be so. Let τ ∈ (0, 1) be the

estimation quantile and consider the quantile regression model

Qτ (y|x) = α(τ) + β(τ)x,

where α(τ) is the intercept and β(τ) is the slope of the τ -th quantile model. In our

example, β(τ) is the QTE and can be any function of τ , monotone, constant, or U-shaped,

as the situation may be.

In real applications, y depends on a host of variables, but this doesn’t present any

problems for us as we are free to add any number of regressors we wish, and write

Qτ (y|x) = x′β(τ), τ ∈ (0, 1)

where Qτ (y|x) is the τ -conditional quantile of y, x is a k-vector of regressors, and β(τ) is

the k-vector of coefficients for the τ -th quantile model.

Quantile regression represents an extension of traditional estimation methods that al-

lows for distinct quantile effects; see Koenker and Hallock (2001). The quantile model

posits the τ -th quantile of y conditional on x to be, Qτ (y|x) = α(τ) + xβ(τ), 0 < τ < 1.
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If β(τ) is a constant β, the model reduces to the standard conditional expectation model,

E(y|x) = α + xβ, with constant variance errors. When β(τ) depends on τ , the model

allows the distribution of y to depend on x in different ways at different parts of the

distribution. The traditional linear model can be viewed as a summary of all the quantile

effects; that is, ∫ 1

0

Qτ (y|x) dτ = E(y|x).

Under this interpretation, traditional conditional mean analysis loses information due to

its aggregation of possibly disparate quantile effects. Many different quantile paths, for

example, can lead to βk = 0. On the one hand, βk = 0 can mean xk does not matter

– does not affect the distribution of y. But it can also mean there are important but

compensating quantile effects relating y and x. In the latter case the single β statistic

obscures information about quantile effects. This is especially important when scientific

interest concerns differences in the way regressors affect different parts of the distribution.

The details provided by the quantiles discriminate between what would be otherwise

identical situations.

Example: As an example, consider the estimation of a salary equation. Log salary depends

on education, experience and a host of other variables, among which is an indicator of

union membership. We write the regression model

log salary = β0 + β1educ+ β2exp+ β3exp
2 + · · ·+ βkunion+ u

where u are unobserved attributes like ability, ambition etc. We are interested in mea-

suring the effect of all of theses variables on various parts of the conditional distribution

of log salary, and we are particularly interested in the “union effect”. In particular, we

would like to test the conjecture that unions may have a more beneficial effect on the

salaries of people with low u (ability etc.) than those with high u. For this purpose, we

write the quantile regression model

Qτ (log salary|x) = β0(τ) + β1(τ)educ+ β2(τ)exp+ β3(τ)exp2 + · · ·+ βk(τ)union

end estimate it over a grid of quantiles τ ∈ (0, 1), say, τ = 0.10, 0.25, 0.50, 0.75, and 0.90

(we could estimate a very fine grid but the paper mentioned below reported only these

estimates). It is then customary to plot these estimates across the estimated quantiles, i.e.,

report the estimation results in graphs, one for each coefficient. For example, graphing

β1(τ) against τ we could see that it is increasing in τ (as the QTE’s in Figure 1), so

that education would have an increasing important effect as we move up the conditional

quantiles of salaries.

Chamberlain (1988) estimated exactly such a model and reported estimates for vari-

ous coefficients, but here we will only present his estimates for the union variable (the

interested reader is referred to the paper). Figure 2 plots the β(τ) of the union variable
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 (Chamberlain, 1988)

Figure 2. The union effect across quantiles.

(solid line) along with the OLS estimate (dotted line). The dashed lines around β(τ) are

pointwise 95% confidence bands.

As we can see the union effect is very important for people low on the conditional

distribution, but becomes smaller as we move up to higher conditional quantiles. Since

the dependent variable is in logs, the union effect coefficient may be interpreted as the

percent increase in wages due to union membership. We see that the mean effect of union

membership is a 25% increase, which is similar to the τ = 0.50 median effect. At the

low τ = 0.10 quantile this increase is 35%, while at the high τ = 0.90 quantile union

membership results in only 10% more salary. We see that union membership is beneficial

across the board, but much more so for low ability workers. A single mean or median

model would miss all this interesting structure!
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Figure 3. Alcohol price elasticity across qualtiles.

Example: As a final example of the usefulness of quantile regression in describing the effect

of a set of explanatory variables on the conditional distribution of a response variable,

consider estimating the demand for alcohol.

Manning et. al. (1995) report estimates of a simple model of the (Marshallian) demand

for alcohol. Log-consumption is regressed against log price and and log-income for various

quantiles, and the estimates are interpreted as quantile-specific elasticities of demand.

Figure 3 presents the estimated price elasticity for various quantiles.

We see that price has a U-shaped effect. It is relatively unimportant for people belonging

to low or high quantiles, and more important for people in the middle of the distribution

(the estimation quantiles start at τ = 0.40 instead of, say, τ = 0.10, because 35% of

the people reported zero consumption). These results make a lot of sense: People at

the τ = 0.40 to τ = 0.50 quantiles are people that drink very little, and when they do

they don’t care too much about the price, so their demand is rather inelastic. People

from τ = 0.60 to τ = 0.80 are the “social drinkers”, people who drink more frequently.
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These people have a very elastic demand. Finally, the people that are very high on the

consumption of alcohol distribution have zero price elasticity. These people are addicted

to drinking and are not responsive to price changes.

1. The Estimator and its Asymptotic Distribution

To formalize the discussion above, consider the regression model

y = x′β + u.

Coupled with a conditional quantile restriction Qτ (u|x) = 0 for a fixed quantile τ ∈ (0, 1),

we obtain the linear quantile regression model

Qτ (y|x) = x′β(τ).

Given a random sample {yi, xi, i = 1, ..., n} we can estimate β(τ) by minimizing a

weighted absolute deviations objective function, i.e. by

β̂(τ) = argmin
β

n−1
n∑
i=1

ρτ (yi − x′iβ)

where

ρτ (u) = u (τ − I{u < 0})

is the check function. The check function generalizes the absolute value function. For

τ = 0.5,

ρ0.5(u) = u (0.5− I{u < 0}} = 1
2
u (1− 2I{u < 0}) = 1

2
u sgn(u) = 1

2
|u|,

i.e., half the absolute value function, so β(0.5) is conditional median (the 1
2

factor simply

rescales the objective function without affecting the minimizer). The rest of the quantiles

are computed by over-weighting positive or negative deviations.

In order to see the purpose of the ρτ (.) function note that it takes the residuals ui =

yi − x′iβ as arguments. The sum in the minimization problem can therefore be rewritten

as

n−1
n∑
i=1

ρτ (ui) = n−1
n∑
i=1

τ |ui| I{ui ≥ 0}+ (1− τ) |ui| I{ui < 0}.

We see that positive residuals associated with observation yi above the suggested quantile

regression hyperplane x′iβ are given weight τ , while negative residuals, associated with

observations yi below the quantile regression hyperplane x′iβ, are weighted with (1 − τ).

For τ = 0.5 positive and negative residuals are weighted equally, and an equal number of

observations are above and below the optimal hyperplane. Then x′iβ̂(0.5) is the median

regression hyperplane. When τ = 0.9 each positive residual is weighted 9 times that of a
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negative residual with weight 1− τ = 0.1, and so for every observation above the hyper-

plane x′iβ̂(0.9) approximately 9 will be placed below it. Hence the x′iβ̂(0.9) hyperplane

represents the 0.9-quantile. For an exact statement of this see Theorem 2.2 and Corollary

2.1 of Koenker (2005).

To do inference we need to know the asymptotic distribution β̂(τ). But before present-

ing this result it is useful to first derive the asymptotic distribution of a sample quantile.

Let {yi, i = 1, ..., n} be a random sample of a variable y with distribution and density

F and f , respectively. The τ -th sample quantile of y, is given by

q̂τ = argmin
q

n−1
n∑
i=1

ρτ (yi − q).

For example, the median estimator is given by

q̂0.5 = argmin
q

1

n

n∑
i=1

|yi − q| =

{
y(n−1

2
) if n is odd,

1
2

(
y(n−1

2
) + y(n

2
)

)
if n is even,

where y(i) denotes the ith order statistic of y. The following theorem gives the asymptotic

distribution of q̂τ .

Theorem 1. Let {yi, i = 1, ..., n} be an i.i.d. sample of a random variable y with distri-

bution and density functions F and f , respectively, and let qτ be its τ th quantile. Provided

that f(F−1(τ)) =: f(qτ ) 6= 0,

√
n (q̂τ − qτ )

d→ N
(

0,
τ(1− τ)

f(qτ )2

)
.

Proof: We will only prove the median case q := q0.5. Assume that n is odd so that

q̂ = y(n−1
2 ) (otherwise discard the last observation to make n odd – it will make no

difference asymptotically). Without loss of generality, assume that q = 0, so that

Pr
(√

n (q̂ − q) ≤ a
)

= Pr
(
q̂ ≤ a√

n

)
.

Let Sn denote the number of times yi − q, i = 1, ..., n, exceed a/
√
n, and observe that

q̂ ≤ a√
n

if and only if Sn ≤
n− 1

2
.

Also observe that Sn ∼ Binomial(pn, n), with pn = 1 − F (a/
√
n). Therefore, for z =

(Sn − E(Sn))/
√
V ar(Sn),

Pr

(
Sn ≤

n− 1

2

)
= Pr

(
z <

1
2
(n− 1)− npn√
npn(1− pn)

)

→ Φ

(
lim
n→∞

1
2
(n− 1)− npn√
npn(1− pn)

)
,
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as n→∞, by the Lindeberg central limit theorem. Write
1
2
(n− 1)− npn√
npn(1− pn)

=

√
n(1

2
− pn)− 1/(2

√
n)√

pn(1− pn)

= 2
√
n(1

2
− pn) + op(1)

= 2a
F (a/

√
n)− F (0)

a/
√
n

+ op(1)

→ 2af(0),

as n→∞, where the second line above uses pn(1− pn)→ 1
4
, and the third line uses the

definition of pn from above, i.e., pn = 1− F (a/
√
n), and F (0) = 1

2
. We have shown that

for q = q0.5,

Pr(
√
n(q̂ − q) ≤ a)→ Φ(2af(q)),

or
√
n(q̂ − q) d→ N

(
0,

1

4f(q)2

)
for f(q) > 0. The general result can be proven similarly, only this time the 1

4
factor is

replaced by τ(1− τ) and f(q0.5) by f(qτ ).

The factor f(qτ ) is the density of y evaluated at the τ -th quantile. If f(qτ ) = 0 the

τ -th quantile would have a zero density at that point, so no sample no matter how large

could identify qτ . The condition f(qτ ) 6= 0 precludes this pathological case.

The following theorem gives the asymptotic distribution of regression quantiles.

Theorem 2. Assume that

(A1) The distribution functions {Fi} are absolutely continuous, with continuous den-

sities, {fi(ξ)}, uniformly bounded away from 0 and ∞ at the points ξi(τ), i =

1, 2, · · ·
(A2) There exist positive definite matrices D0 and D1(τ) such that

(i) limn→∞ n
−1∑n

i=1 xix
′
i = D0 ≡ E [xx′];

(ii) limn→∞ n
−1∑n

i=1 fi(ξi(τ))xix
′
i = D1(τ) ≡ E

[
fi
(
F−1i (τ)|x

)
xx′
]
;

(iii) maxi=1,··· ,n ||xi||/
√
n→ 0 (this implies the Lindeberg condition).

Then √
n(β̂(τ)− β(τ))

d→ N
(
0, τ(1− τ)D1(τ)−1D0D1(τ)−1

)
.

Furthermore, if errors are i.i.d., Fi = F, fi = f for all i, and the above result simplifies to
√
n(β̂(τ)− β(τ))

d→ N
(
0, ω(τ)2D0

)
,

where ω(τ)2 is the variance of the τ -th unconditional quantile given by

ω(τ)2 =
τ(1− τ)

f(F−1(τ))2
.
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Proof: Difficult – Take Econ 721 if you have to know.

The easiest way to understand this asymptotic result is to consider the homoskedastic

case and compare it to the asymptotic distribution of the OLS coefficients. Recall that

under homoskedasticity

√
n(β̂ − β)

d→ N
(
0, σ2E(xx′)−1

)
so that the asymptotic variance of the OLS coefficient vector β̂ is given by

AVar(β̂) =
σ2

n
E(xx′)−1.

From theorem 2, we see that under homoskedasticity

√
n(β̂n(τ)− β(τ))

d→ N
(
0, ω(τ)2E(xx′)−1

)
so the asymptotic variance of β̂(τ) is given by

AVar(β̂(τ)) =
ω(τ)2

n
E(xx′)−1.

The difference between the two asymptotic variances is the constant by which the “regres-

sion factor” E(xx′)−1 is scaled. Since OLS is a conditional mean, the factor that appears

in the asymptotic variance of β̂ is the variance of the sample mean σ2/n, whereas since

QR is a conditional quantile, the factor that appears in the asymptotic variance of β̂(τ)

is the variance of the sample quantile ω(τ)2/n.

2. Formulating Quantile Regression as a Linear Programming Problem

Thie, Paul R. and Keough, Gerard E. (2008) -- An Introduction to Linear Programming

and Game Theory, Wiley-Interscience.

Linear programs (LPs) are predominantly analyzed and solved using the standard form

min
z

F (z) = c′z subject to Az ≥ b, z ≥ 0, (1)

where c is an n-vector of constants (called the objective constants), z is a n-vector of

variables (also called instruments), A is an p× n matrix of constants (called the techno-

logical constants of the problem), and b is is an p-vector of constants (called the constraint

constants). Note that in the standard formulation of LP’s, z is restricted to be positive,

i.e. z ∈ Rn
+, so in total we have p+ n constraints.

Intriligator, Michael D.(1987) -- Mathematical Optimization and Economic

Theory, Society for Industrial Mathematics, chapter 5.

Each of the n nonnegativity constraints zi ≥ 0, i = 1, ..., n defines a closed half space,

and the intersection of all such half spaces is the nonnegative orthant of Euclidean n-space,
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Rn
+. Each of the p inequality constraints

n∑
j=1

aijzj ≥ bi, i = 1, ..., p

also defines a closed half-space in Rn, namely the set of points lying on, or on the appro-

priate side of, the hyperplane defined by{
z ∈ Rn

∣∣∣∣∣
n∑
j=1

aijzj = bi, i = 1, ..., p

}
.

In general, the intersection of closed half-spaces in Rn is a convex polyhedral set, or, if

bounded, a convex polyhedron.

The hyperplane boundaries are called bounding faces, and the points at which n or

more bounding faces meet are called vertices. Each bounding face consists of all points

at which one of the inequality or nonnegativity constraints is satisfied as an equality, and

each vertex is a point at which n or more of the inequality constraints are satisfied as

equalities.

The contours of the objective function are:

{z ∈ Rn |c′z = constant} ,

which is the equation of a hyperplane in Rn. As the constant is varied the contour map

is obtained as a series of parallel hyperplanes. The preference direction is the direction of

steepest increase of the objective function and is given by the gradient vector:

∂F

∂z
= c′,

a row vector in Rn which is orthogonal to all contours through which it passes.

Geometrically, then, the linear programming problem is that of finding a point (or set of

points) in Rn on that contour of the objective function lying furthest along the preference

direction but within the convex polyhedral opportunity set. From the geometry it is

apparent that if a solution exists, it cannot be an interior point but must rather lie on the

boundary of the opportunity set—on one or more of the bounding faces or, equivalently,

at one vertex, two vertices,. . . , n vertices and all points in between these vertices; i.e., all

convex combinations of these vertices. The solution is obtained at the point(s) at which a

contour hyperplane is a supporting hyperplane of the convex polyhedral opportunity set.

The (single) vertex solution, which is unique, and the two vertex (bounding face) so-

lution, which is not unique, are illustrated in Fig. 2.4. In the latter case the common

slope of the contours equals the slope of the highest possible bounding face hyperplane, a

line in R2, so the solution occurs at two vertices and at all points on the line connecting

these two vertices. In three space (n = 3), if a solution exists, it can be at a vertex point

(the intersection of three or more bounding faces), along a line (the intersection of two

bounding faces), or on a plane (a bounding face). While the solution need not be unique,
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Figure 4

if a solution exists, the value of the objective function is unique. Also, from the convexity

of the opportunity set and linearity of the objective function, by the local-global theorem

of Sec. 2.3, a solution which is a local maximum is also a global maximum. Thus, if,

in the opportunity set a vertex yields a higher value (or, more generally, no lower value)

than all neighboring vertices, then it is a solution to the problem. This important prop-

erty is the basis for the simplex algorithm, to be discussed below. Furthermore, if n > p

then solutions must occur at a vertex of the opportunity set at which n|p or more of the

instrument variables are equal to zero; i.e., there is at least one solution which has at

most as many nonzero variables as there are inequality constraints.

Since the objective function is continuous and the opportunity set is closed, by the

Weierstrass theorem a solution exists if the opportunity set is nonempty and bounded.

Thus there are two circumstances in which there might not exist a solution to the linear

programming problem. The first is that in which the constraints are inconsistent so

the opportunity set is empty. If the opportunity set is nonempty and bounded then a

solution exists and it must be a boundary solution. More generally, a solution exists if

the opportunity set is nonempty and the objective function is bounded.

In general, then, there are three possible solutions for the linear programming problem:

(i) a unique solution (at a vertex), (ii) infinitely many solutions (between two or more

vertices), or (iii) no solution (if the opportunity set is empty or unbounded).

Example: The classical example of a standard LP problem is George Stigler’s diet problem.

Stigler’s diet problem: For a moderately active man weighing 154 pounds,

how much of each of 77 foods should be consumed on a daily basis so that

the man’s intake of 9 nutrients will be at least equal to the recommended

dietary allowances (RDAs) suggested by the National Research Council in

1943, with the cost of the diet being minimal?
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Figure 5. GAMS implementation of Stigler’s Diet Problem. GAMS Model

Libraries, diet.gms : Stigler’s Nutrition Model.

Figure 4 presents the GAMS implementation of the problem1. Of the total 77 food

groups considered by Stigler, the GAMS program uses only 20. This is not a restriction

1Available at https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_diet.html.
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since the omitted foods are not consumed at all in the optimal schedule, so the solution

to this restricted problem is the same as the solution to the complete model.

The nutrient RDAs required to be met in Stigler’s experiment were calories, protein,

calcium, iron, as well as vitamins A, B1, B2, B3, and C. The result was an annual budget

allocated to foods such as evaporated milk, cabbage, dried navy beans, and beef liver at

a cost of approximately $0.11 a day in 1939 U.S. dollars.

---- EQU nb nutrient balance (units)

LOWER LEVEL UPPER MARGINAL

calorie 3.000 3.000 +INF 0.009

protein 70.000 147.414 +INF .

calcium 0.800 0.800 +INF 0.032

iron 12.000 60.467 +INF .

vitamin-a 5.000 5.000 +INF 4.0023E-4

vitamin-b1 1.800 4.120 +INF .

vitamin-b2 2.700 2.700 +INF 0.016

niacin 18.000 27.316 +INF .

vitamin-c 75.000 75.000 +INF 1.4412E-4

LOWER LEVEL UPPER MARGINAL

---- EQU cb . . . 1.000

cb cost balance (dollars)

---- VAR x dollars of food f to be purchased daily (dollars)

LOWER LEVEL UPPER MARGINAL

wheat . 0.030 +INF .

cornmeal . . +INF 0.489

cannedmilk . . +INF 0.044

margarine . . +INF 0.778

cheese . . +INF 0.235

peanut-b . . +INF 0.698

lard . . +INF 0.626

liver . 0.002 +INF .

porkroast . . +INF 0.893

salmon . . +INF 0.652

greenbeans . . +INF 0.615
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cabbage . 0.011 +INF .

onions . . +INF 0.555

potatoes . . +INF 0.335

spinach . 0.005 +INF .

sweet-pot . . +INF 0.350

peaches . . +INF 0.758

prunes . . +INF 0.667

limabeans . . +INF 0.103

navybeans . 0.061 +INF .

LOWER LEVEL UPPER MARGINAL

---- VAR cost -INF 0.109 +INF .

cost total food bill (dollars)

wheat, liver, cabbage, spinach, and navy beans

In 2014, the Google chef Anthony Marco devised a recipe using a similar list of ingredients,

that he called “Foie Linéaire à la Stigler” (Linear Liver à la Stigler). One Google employee

described it as “delicious”.2

To arrive at a linear program on standard form the first problem is that in such a

program (1) all variables z over which minimization is performed should be positive.

To achieve this, residuals are decomposed into positive and negative parts using slack

variables:

ui = u+i − u−i , i = 1, .., n

where u+i = max{0, ui} = |ui| · I{ui ≥ 0} is the positive part, and u−i = max{0,−ui} =

|ui| · I{ui < 0} is the negative part of u. In the lingo of programming, the u+i , i =

1, ..., n, are called positive slack variables, and the u−i , i = 1, .., n, are called negative slack

variables. The objective function can be written as

n∑
i=1

ρτ (ui) =
n∑
i=1

τ u+i + (1− τ)u−i

= τ 1′nu
+ + (1− τ) 1′nu

−,

where u+ = (u+1 , ..., u
+
n )′, u− = (u−1 , ..., u

−
n )′, and 1n is a n-vector of ones (the sumer

vector). The residuals ui, i = 1, ..., n, must satisfy the n constraints

yi − x′iβ = ui = u+i − u−i , i = 1, ..., n.

2Orwant, Jon (2014),”Sudoku, Linear Optimization, and the Ten Cent Diet”, available at

https://ai.googleblog.com/2014/09/sudoku-linear-optimization-and-ten-cent.html
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This results in the following linear program

min
β,u+,u−

τ 1′nu
+ + (1− τ) 1′nu

− (2)

subject to yi − x′iβ − u+i + u−i = 0, i = 1, ..., n (3)

u+i ≥ 0, u−i ≥ 0, i = 1, ..., n (4)

β ∈ Rk+1. (5)

The problem in (2)-(5) is almost of the form (1), the difference being that in proper LP

programs all decision variables are positive, whereas here β is unrestricted, or, as we call

it in LP jargon, it is free. To bring the formulation to the standard form we can again

decompose β into positive and negative parts as follows

β = β+ − β−,

where β+ = max{0, β} and β− = max{0,−β}, component-wise. This results in the

following standard linear program

min
β+,β−,u+,u−

τ 1′nu
+ + (1− τ) 1′nu

− (6)

subject to yi − x′i(β+ − β−)− u+i + u−i = 0, i = 1, ..., n (7)

u+i ≥ 0, u−i ≥ 0, i = 1, ..., n (8)

β+
j ≥ 0, β−j ≥ 0, j = 1, ..., k. (9)

To see that the problem in (6)-(9) is a standard LP problem, we will write it in the

form (1). To do that we need to specify the quantities c, z, A, and b. Let

b := y

and let

X(β+ − β−) + Inu
+ − Inu− = [X,−X, In,−In]


β+

β−

u+

u−

 := Az,

where X := [x′1, x
′
2, ..., x

′
n]′ is the design matrix, In is the n×n identity matrix, and A and

z are defined in the obvious way. The n constraints in (7) can now be written in matrix

form as

Az = b.

Because β+ and β− enter the minimization problem only through the constraint in (9),

an all zeros vector of dimension (2k × 1), denoted by 02k, must be introduced as part of
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the coefficient vector c, which can then be appropriately defined as

c :=

 02k

τ 1n
(1− τ) 1n

 .
Then

c′z = 0′2k

[
β+

β−

]
+ τ 1′nu

+ + (1− τ) 1′nu
− =

n∑
i=1

ρτ (ui),

as desired.

Example:

base=read.table("http://freakonometrics.free.fr/rent98_00.txt",header=TRUE)

attach(base)

library(quantreg)

library(lpSolve)

tau <- 0.3

# Problem (1) only one covariate

X <- cbind(1,base$area)

K <- ncol(X)

N <- nrow(X)

A <- cbind(X,-X,diag(N),-diag(N))

c <- c(rep(0,2*ncol(X)),tau*rep(1,N),(1-tau)*rep(1,N))

b <- base$rent_euro

const_type <- rep("=",N)

linprog <- lp("min",c,A,const_type,b)

beta <- linprog$sol[1:K] - linprog$sol[(K+1):(2*K)]

beta

rq(rent_euro~area, tau=tau, data=base)

# Problem (2) with 2 covariates

X <- cbind(1,base$area,base$yearc)

K <- ncol(X)

N <- nrow(X)

A <- cbind(X,-X,diag(N),-diag(N))

c <- c(rep(0,2*ncol(X)),tau*rep(1,N),(1-tau)*rep(1,N))

b <- base$rent_euro

const_type <- rep("=",N)

linprog <- lp("min",c,A,const_type,b)
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beta <- linprog$sol[1:K] - linprog$sol[(K+1):(2*K)]

beta

rq(rent_euro~ area + yearc, tau=tau, data=base)

Note how much slower the lp command of the lpsolve library is relative to the rq

command of the quantreg library.
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3. Modeling Melbourn’s Maximum Daily Temperature

We consider the model

L(t) = β0 + A sin

(
2π

365
(t− t∗)

)
. (10)

Since at t = t∗ the value of the expression inside the parenthesis above is 0 and sin 0 = 0,

we have L(t∗) = α0, so β0 is the temperature at time t∗. Also, since for any two angle θ1
and θ2

sin(θ1 − θ2) = sin(θ1) cos(θ2)− cos(θ1) cos(θ2) (11)

we have that

A sin

(
2π

365
(t− t∗)

)
= A sin

(
2πt

365
− 2πt∗

365

)
(12)

= A sin

(
2πt

365

)
cos

(
2πt∗

365

)
− A cos

(
2πt

365

)
cos

(
2πt∗

365

)
(13)

=

[
A sin

(
2πt

365

)
− A cos

(
2πt

365

)]
cos

(
2πt∗

365

)
(14)

=

[
A sin

(
2πt

365

)
− A cos

(
2πt

365

)] [
1−

(
2πt

365

)2

/2

]
(15)

= β1 sin

(
2πt

365

)
+ β2 cos

(
2πt

365

)
(16)

where we have defined

β1 = A cos

(
2πt∗

365

)
and β2 = −A cos

(
2πt∗

365

)
= −β1. (17)

If the starting time t∗ is unknown, we can let β1 and β vary freely and form their estimates

retreive estimates of A and t∗.
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Figure 6. State-space tree for a sample of n = 3 observations. Each node

is named according to the values of the 3 γ’s, (γ1, γ2, and γ3) in that state.

F stands for “free”, meaning that the corresponding γ takes any value in

the [0, 1] interval. Otherwise, the γ’s are restricted to either 0 or 1. At the

root node FFF all the γ’s are free. The bottom line lists all 3! = 8 feasible

combinations of values for the γ’s. For example, at the 10F node, γ1 = 1,

γ2 = 0, and γ3 ∈ [0, 1].
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in survival analysis the expected lifetime is

µ =

∫ ∞
0

S(t)dt

where the survival function is S(t) = Pr(T > t) = 1−F (t) measured from birth at t = 0.

(It can easily be extended to cover negative values of t.)
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Figure 7. Various reflections of the same area expressed in alternative ways.
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I do not understand why statisticians commonly limit their

inquiries to Averages and do not revel in more comprehensive

views. Their souls seem so dull to the charm of variety as

that of a native of one of our flat English counties, whose

retrospect of Switzerland was that, if its mountains could be

thrown into its lakes, two nuisances would be got rid of at

once.

— Francis Galton


