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LECTURE 7

Weighted Least Squares

1. Introduction.

Consider again the classical linear regression model given by

yn×1 = Xn×kβk×1 + un×1.

We have seen that under the following assumptions:

(i) Exogeneity of the Regressors: E(u|X) = 0.
(ii) Spherical Errors: E(uu′) = σ2

uIn.
(iii) Full Rank: X ′X is a symmetric positive definite matrix.
(iv) Normal Errors: u ∼ N(0, σ2

uIn).

the OLS coefficients
β̂ = (X ′X)−1X ′y,

are normal, β̂ ∼ N(β, σ2
u(X

′X)−1), and efficient (BLUE).
In what follows we will discuss various violations of the classical assumptions that will make

OLS inefficient or even inconsistent. We will see that optimal estimators are solutions to
‘weighted’ least squares problems, so we will refer to them collectively as WLS. The “weight”
will, of course, depend in the situation at hand.

2. Eigenvalue Decomposition

Many mathematical objects can be understood better by breaking them into constituent
parts, or finding some properties of them that are universal, not caused by the way we choose
to represent them. For example, integers can be decomposed into prime factors. The way we
represent the number 12 will change depending on whether we write it in base ten or in binary,
but it will always be true that 12 = 2× 2× 3. From this representation we can conclude useful
properties, such as that 12 is not divisible by 5, or that any integer multiple of 12 will be
divisible by 3.

Much as we can discover something about the true nature of an integer by decomposing it
into prime factors, we can also decompose matrices in ways that show us information about
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their functional properties that is not obvious from the representation of the matrix as an array
of elements.

One of the most widely used kinds of matrix decomposition is called eigendecomposition, in
which we decompose a matrix into a set of eigenvectors and eigenvalues.

An eigenvector of a square matrix A is a non-zero vector v such that multiplication by A

alters only the scale of v:
Av = λv.

The scalar λ is known as the eigenvalue corresponding to this eigenvector. (One can also find
a left eigenvector such that vA = λv, but we are usually concerned with right eigenvectors).

If v is an eigenvector of A, then so is any rescaled vector sv for s ∈ R, s ̸= 0. Moreover, sv
still has the same eigenvalue. For this reason, we usually only look for unit-length eigenvectors.

Suppose that a matrix A has n linearly independent eigenvectors, {v(1), ..., v(n)}, with corre-
sponding eigenvalues {λ1, ..., λn}. We may concatenate all of the eigenvectors to form a matrix
V with one eigenvector per column: V = [v(1), ..., v(n)]. Likewise, we can concatenate the
eigenvalues to form a vector λ = (λ1, ..., λn)

′. The eigendecomposition of A is then given by

A = V diag(λ)V −1.

We have seen that constructing matrices with specific eigenvalues and eigenvectors allows us
to stretch space in desired directions. However, we often want to decompose matrices into their
eigenvalues and eigenvectors. Doing so can help us analyze certain properties of the matrix,
much as decomposing an integer into its prime factors can help us understand the behavior of
that integer.

Not every matrix can be decomposed into eigenvalues and eigenvectors. In some cases,
the decomposition exists, but may involve complex rather than real numbers. Fortunately, in
this lecture, we usually need to decompose only a specific class of matrices that have a simple
decomposition. Specifically, every real symmetric matrix can be decomposed into an expression
using only real-valued eigenvectors and eigenvalues:

A = QΛQ′,

where Q is an orthogonal matrix composed of eigenvectors of A, and Λ is a diagonal matrix.
The eigenvalue Λi,i is associated with the eigenvector in column i of Q, denoted as Q:,i. Because
Q is an orthogonal matrix, we can think of A as scaling space by λi in direction v(i). See Figure
1 for an example.

While any real symmetric matrix A is guaranteed to have an eigendecomposition, the eigen-
decomposition may not be unique. If any two or more eigenvectors share the same eigenvalue,



Weighted Least Squares 3

Figure 1. An example of the effect of eigenvectors and eigenvalues. Here, we
have a matrix A with two orthonormal eigenvectors, v(1) with eigenvalue λ1 and
v(2) with eigenvalue λ2. (Left) We plot the set of all unit vectors u ∈ R2 as a
unit circle. (Right) We plot the set of all points Au. By observing the way that
A distorts the unit circle, we can see that it scales space in direction v(i) by λi.

then any set of orthogonal vectors lying in their span are also eigenvectors with that eigen-
value, and we could equivalently choose a Q using those eigenvectors instead. By convention,
we usually sort the entries of Λ in descending order. distinct. The eigendecomposition of a
matrix tells us many useful facts about the matrix. The matrix is singular if and only if any
of the eigenvalues are zero.

The eigendecomposition of a real symmetric matrix can also be used to optimize quadratic
expressions of the form maximize f(x) = x′Ax subject to ||x|| = 1. Whenever x is equal to an
eigenvector of A, f takes on the value of the corresponding eigenvalue. The maximum value of
f within the constraint region is the maximum eigenvalue and its minimum value within the
constraint region is the minimum eigenvalue.

A matrix whose eigenvalues are all positive is called positive definite. A matrix whose
eigenvalues are all positive or zero is called positive semidefinite. Likewise, if all eigenvalues
are negative, the matrix is negative definite, and if all eigenvalues are negative or zero, it is
negative semidefinite. Positive semidefinite matrices are interesting because they guarantee
that ∀x, x′Ax ≥ 0. Positive definite matrices additionally guarantee that x′Ax = 0 ⇒ x = 0.
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3. The Triangular Factorization of a Symmetric Positive Definite Matrix

Any square n × n positive definite symmetric matrix Ω has a unique representation of the
form

Ω = ADA′,

where A is an (n× n) lower triangular matrix with 1s along the principal diagonal,

A =



1 0 0 · · · 0

a21 1 0 · · · 0

a31 a32 1 · · · 0
...

...
...

...
an1 an2 an3 · · · 1


,

and D is an (n× n) diagonal matrix,

D =



d11 0 0 · · · 0

0 d22 0 · · · 0

0 0 d33 · · · 0
...

...
...

...
0 0 0 · · · dnn


,

with dii > 0 for all i = 1, ..., n. This is known as the triangular factorization of Ω.

3.1. Calculating the The Triangular Factorization

To see how the triangular factorization can be calculated, consider

Ω =



ω11 ω12 ω13 · · · ω1n

ω21 ω22 ω23 · · · ω2n

ω31 ω32 ω33 · · · ω3n

...
...

...
...

ωn1 ωn2 ωn3 · · · ωnn


.

We assume that Ω is positive definite, meaning that x′Ωx > 0 for any nonzero (n× 1) vector
x. We also assume that Ω is symmetric, so that ωij = ωji for all i, j = 1, ..., n.

The matrix Ω can be transformed into a matrix with zero in the (2, 1) position by multiplying
the first row of Ω by ω21ω

−1
11 and substracting the resulting row from the second. A zero can be

put in the (3, 1) position by multiplying the first row by ω31ω
−1
11 and substracting the resulting
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row from the third. We proceed in this fashion down the first column. This set operations can
be summarized as premultiplying Ω by the matrix

E1 =



1 0 0 · · · 0

−ω21ω
−1
11 1 0 · · · 0

−ω31ω
−1
11 0 1 · · · 0

...
...

...
...

−ωn1ω
−1
11 0 0 · · · 1


.

This matrix always exists provided that ω11 ̸= 0. This is ensured in the present case, because
ω11 is equal to e′1Ωe1, where e′1 = (1, 0, 0, ..., 0). Since Ω is positive definite, e′1Ωe1 must be
greater than zero.

When Ω is premultiplied by E1 and postmultiplied by E′
1 the result is

H = E1ΩE′
1,

where

H =



h11 0 0 · · · 0

0 h22 h23 · · · h2n

0 h32 h33 · · · h3n
...

...
...

...
0 hn2 hn3 · · · hnn



=



ω11 0 0 · · · 0

0 ω22 − ω21ω
−1
11 ω12 ω23 − ω21ω

−1
11 ω13 · · · ω2n − ω21ω

−1
11 ω1n

0 ω32 − ω31ω
−1
11 ω12 ω33 − ω31ω

−1
11 ω13 · · · ω3n − ω31ω

−1
11 ω1n

...
...

...
...

0 ωn2 − ωn1ω
−1
11 ω12 ωn3 − ωn1ω

−1
11 ω13 · · · ωnn − ωn1ω

−1
11 ω1n


.

We next proceed in exactly the same way with the second column of H. The approach will
now be to multiply the second row of H by h32h

−1
22 and subtract the result from the third row.

Similarly, we multiply the second row of H by h42h
−1
22 and subtract the result from the fourth

row, and so on down through the second column of H. These operations can be represented
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as premultiplying H by the following matrix

E2 =



1 0 0 · · · 0

0 1 0 · · · 0

0 −h32h
−1
22 1 · · · 0

...
...

...
...

0 −hn2h
−1
22 0 · · · 1


.

This matrix always exists provided that h22 ̸= 0. But h22 can be calculated as h22 = e′2He2,
e′2 = (0, 1, 0, ..., 0). Moreover, H = E1ΩE′

1, where Ω is positive definite. Since E1 is lower
triangular, its determinant is the product of terms along the principal diagonal, which are
all unity. Thus E1 is nonsingular, meaning that H = E1ΩE′

1 is positive definite and so
h22 = e′2He2 must be strictly positive. Thus E2 can always be calculated.

If H is premultiplied by E2 and postmultiplied by E′
2, the result is

K = E2HE′
2,

where

K =



h11 0 0 · · · 0

0 h22 0 · · · 0

0 0 h33 − h32h
−1
22 h23 · · · h3n − h32h

−1
22 h2n

...
...

...
...

0 0 hn3 − hn2h
−1
22 h23 · · · hnn − hn2h

−1
22 h2n


.

Again, since H is positive definite and since E2 is nonsingular, K is positive definite and
in particular k33 is positive. Proceeding through each of the columns with the same apprach,
we see that for any positive definite symmetric matrix Ω there exist matrices E1,E2, ...,En−1

such that

En−1 · · ·E2E1ΩE′
1E

′
2 · · ·E′

n−1 = D,

where

D =



ω11 0 0 · · · 0

0 ω22 − ω21ω
−1
11 ω12 0 · · · 0

0 0 h33 − h32h
−1
22 h23 · · · 0

...
...

...
...

0 0 0 · · · pnn − pn,n−1p
−1
n−1,n−1pn−1,n


,
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with all the diagonal elements of D strictly positive. The matrices E1 and E2 are as above.
In general, Ej is a matrix with nonzero values in the jth column below the principal diagonal,
1s along the principal diagonal, and zeros everywhere else.

Thus each Ej is lower triangular with unit determinant. Hence E−1
j exists, and the following

matrix exists:
A = (En−1 · · ·E2E1)

−1 = E−1
1 E−1

2 · · ·E−1
n−1.

If D is premultiplied by A and postmultiplied by A′, the result is

Ω = ADA′,

Recall that E1 represents the operation of multiplying the first row of Ω by certain numbers
and substracting from each of the sunsequent rows. Its inverse E−1

1 undoes this operation,
which would be acheived by multiplying the first row by the same numbers and adding the
results to the subsequent rows. Thus

E−1
1 =



1 0 0 · · · 0

ω21ω
−1
11 1 0 · · · 0

ω31ω
−1
11 0 1 · · · 0

...
...

...
...

ωn1ω
−1
11 0 0 · · · 1


,

as may be verified directly by multiplying E1 by E−1
1 to obtain the identity matrix. Similarly,

E−1
2 =



1 0 0 · · · 0

0 1 0 · · · 0

0 h32h
−1
22 1 · · · 0

...
...

...
...

0 hn2h
−1
22 0 · · · 1


,

and so on. Because of this special structure, the series of multiplications defining A above
turns out to be trivial to carry out and yields

A =



1 0 0 · · · 0

ω21ω
−1
11 1 0 · · · 0

ω31ω
−1
11 h32h

−1
22 1 · · · 0

...
...

...
...

ωn1ω
−1
11 hn2h

−1
22 kn3k

−1
33 · · · 1


.

That is, the jth column of A is just the jth column of E−1
j .



8 Lecture 7

Since A is lower triagular with 1s along the principal diagonal, and D is diagonal with all
its diagonal elements strictly positive, Ω = ADA′ is indeed the triangular fasctorization of Ω
we were looking for.

3.2. Uniqueness of the Triangular Factorization

Theorem 1. The triangular factorization ADA′ of a symmetric positive definite matrix Ω is
unique.

Proof. �

3.3. The Cholesky Factorization

A closely related factorization of a symmetric positive definite matrix Ω is obtained as follows.
Define D1/2 to be the (n×n) diagonal matrix whose diagonal elements are the square roots of
the corresponding elements of the matrix D in the triangular factorization:

D1/2 =



√
d11 0 0 · · · 0

0
√
d22 0 · · · 0

0 0
√
d33 · · · 0

...
...

...
...

0 0 0 · · ·
√
dnn


.

Since the matrix D is unique and has strictly positive diagonal elements, the matrix D1/2 exists
and is unique. Then the triangular factorization can be written as

Ω = AD1/2D1/2A′ = (AD1/2)(AD1/2)′,

or

Ω = PP ′,
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where

P = AD1/2

=



1 0 0 · · · 0

a21 1 0 · · · 0

a31 a32 1 · · · 0
...

...
...

...
an1 an2 an3 · · · 1





√
d11 0 0 · · · 0

0
√
d22 0 · · · 0

0 0
√
d33 · · · 0

...
...

...
...

0 0 0 · · ·
√
dnn



=



√
d11 0 0 · · · 0

a21
√
d11

√
d22 0 · · · 0

a31
√
d11 a32

√
d22

√
d33 · · · 0

...
...

...
...

an1
√
d11 an2

√
d22 an3

√
d33 · · ·

√
dnn


.

The expression Ω = PP ′ is known as the Cholesky factorization of Ω. Note that P , like A, is
lower triangular, and is unique, i.e., for each symmetric positive definite matrix Ω there is a
unique lower triangular matrix P such that Ω = PP ′. This follows directly from the uniqueness
of the triangular factorization of Ω.

3.4. The Spectral Factorization of a Positive Definite Matrix

Theorem 2. Suppose that the n× 1 vector y ∼ N(µ,Σ), where µ is an n× 1 vector and Σ is
an n× n positive definite, symmetric matrix, and let w = (y − µ)′Σ−1(y − µ). Then w ∼ χ2

n.

Proof. It suffices to show that w = z′z, where the (n× 1) vector z is distributed N(0, In). We
make the following steps:

(i) Since Σ is a positive definite matrix, we can write

Σ = CΛC ′

where Λ is the diagonal matrix whose diagonal elements are the eigenvalues of Σ, and
C is the matrix whose columns are the corresponding eigenvectors of Σ. Now, C is an
orthonormal matrix, i.e., CC ′ = C ′C = I so that C−1 = C ′, i.e., its inverse is equal to
its transpose. We can write

Σ = CΛC ′ = (CΛ1/2)(Λ1/2C ′)

= (CΛ1/2C ′)(CΛ1/2C ′)′ = Σ1/2(Σ1/2)′,
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where Σ1/2 = CΛ1/2C ′ and Λ1/2 is the diagonal matrix whose diagonal element is
the square root of the corresponding diagonal element of Λ. The matrix Σ1/2 is a
square root matrix of Σ. There are, of course, many square roots of Σ, the Cholesky
decomposition discussed above being another.

(ii) Since C is orthonormal, C−1 = C ′, which means that

Σ−1 = (CΛC ′)−1 = CΛ−1C ′.

This is a very convenient way of computing Σ−1 since Λ is a diagonal matrix and Λ−1

is simply the diagonal matrix whose elements are the reciprocals of the corresponding
elements of Λ. Now, let Λ−1/2 be the diagonal matrix whose diagonal elements are
the reciprocal square roots of the corresponding diagonal elements of Λ. Clearly, then
Λ−1/2(Λ−1/2)′ = Λ−1, which justifies us in calling this matrix the inverse square root
matrix of Λ.

(iii) Let K = Σ−1/2 = CΛ−1/2C ′ be a square root matrix of Σ−1, i.e., a matrix for which
K = K ′, KK ′ = CΛ−1C = Σ−1.

(iv) Let ϵ = y − µ. Then ϵ ∼ N(0,Σ).
(v) Let z = Kϵ. Then z ∼ N(0,K ′ΣK) = N(0, In).
(vi) w = ϵ′Σ−1ϵ = ϵ′K ′Kϵ = (Kϵ)′(Kϵ) = z′z ∼ χ2

n.
�

Example 1. Let

Σ =

 2 −1 1

−1 5 1

1 1 3

 .

Then

C =

−0.1809726 0.5932347 0.7844243

0.9364571 −0.1397551 0.3217400

0.3004946 0.7928059 −0.5302470


and

Λ =

5.514137 0 0

0 3.571993 0

0 0 0.9138698

 .

The eigenvalues of Σ in the diagonal of Λ are here arranged in decreasing order, and to each of
them corresponds the eigenvector of Σ contained in the matching column of C. For example, to
the first eigenvalue λ1 = 5.514137 corresponts the eigenvector c1 = (−0.1809726, 0.9364571, 0.3004946)′.
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The diagonal matrix Λ−1/2 is then given by

Λ−1/2 =

1/
√
5.514137 0 0

0 1/
√
3.571993 0

0 0 1/
√
0.9138698



=

0.4258545 0 0

0 0.5291084 0

0 0 1.046063

 .

Clearly, Λ−1/2Λ−1/2′ = Λ−1. We can now compute the matrix K = Σ−1/2 as

K = CΛ−1/2C ′ =

 0.8438200 0.1479681 −0.2094063

0.1479681 0.4920731 −0.1172490

−0.2094063 −0.1172490 0.6651328

 = K ′.

We verify that

KK ′ = Σ−1 =

 7/9 2/9 −1/3

2/9 5/18 −1/6

−1/3 −1/6 1/2

 ,

and that

K ′ΣK =

1 0 0

0 1 0

0 0 1

 = I3.

3.5. Block Triangular Factorization

Suppose now we have observations on two sets of variables. The first set is collected in an
(n1 × 1) vector Y 1 and the second set in an (n2 × 1) vector Y 2. Their second-moment matrix
can be written in partitioned form as

Ω =

[
E(Y 1Y

′
1) E(Y 1Y

′
2)

E(Y 2Y
′
1) E(Y 2Y

′
2)

]
=

[
Ω11 Ω12

Ω21 Ω22

]
.

where Ω11 is an (n1 × n1) matrix, Ω22 is an (n2 × n2) matrix, and the (n1 × n2) matrix Ω12 is
the transpose of the (n2 × n1) matrix Ω21.
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We can put zeros in the lower left (n2×n1) block of Ω by premultiplying Ω by the following
matrix:

Ē1 =

[
In1 0

−Ω21Ω
−1
11 In2

]
.

If Ω is premultiplied by Ē1 and postmultiplied by Ē
′
1, the result is[

In1 0

−Ω21Ω
−1
11 In2

][
Ω11 Ω12

Ω21 Ω22

][
In1 −Ω−1

11 Ω21

0 In2

]
=

[
Ω11 0

0 Ω22 −Ω21Ω
−1
11 Ω12

]
.

4. Non-Spherical Errors - Generalized Least Squares

In some situations we have reason to believe that the spherical error assumption is violated
in our model.

(ii)′ E(uu′|X) = Σ.
Under this assumption

E(β̂|X) = β

so the OLS coefficients are still unbiased, but

V (β̂|X) = (X ′X)−1X ′ΣX(X ′X)−1.

Let K be the Cholesky decomposition of Σ−1, i.e. KK ′ = Σ−1 and K ′ΣK = In, and consider
the following transformations,

ỹ = K ′y, X̃ = K ′X ũ = K ′u.

Then our model becomes
ỹ = X̃β + ũ,

and for this model
E(ũ|X) = E(K ′u|X) = K ′E(u|X) = 0,

and
E(ũũ′|X) = E(K ′uu′K|X) = K ′E(uu′|X)K = K ′ΣK = In.

It follows that the OLS estimate of the transformed model will be optimal, since for this model
the errors are spherical. This estimator is given by

β̃ = (X̃ ′X̃)−1X̃ ′ỹ

= (X ′KK ′X)−1X ′K ′Ky

= (X ′Σ−1X)−1X ′Σ−1y.
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We will call this the Generalized Least Squares (GLS) estimator. Write

β̃ = (X̃ ′X̃)−1X̃ ′ỹ

= β + (X̃ ′X̃)−1X̃ ′ũ.

This an unbiased estimator of β since

E(β̃|X) = β + (X̃ ′X̃)−1X̃ ′E(ũ|X)

= β + (X̃ ′X̃)−1X̃ ′K ′E(u|X) = β.

The variance of β̃ is given by

V (β̃|X) = E[(β̃ − β)(β̃ − β)′|X]

= E[(X̃ ′X̃)−1X̃ ′ũũ′X̃(X̃ ′X̃)−1|X]

= (X̃ ′X̃)−1X̃ ′E(ũũ′|X)︸ ︷︷ ︸
In

X̃(X̃ ′X̃)−1

= (X̃ ′X̃)−1

= (X ′Σ−1X)−1.

The GLS estimator β̃ is optimal (BLUE) under nonspherical errors, which implies that V (β̃)−
V (β̂) is positive definite.

4.1. Heteroskedasticity

In the heteroskedastic error case,

Σ =


σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
... . . . ...

0 0 · · · σ2
n

 .

The Cholesky decomposition of Σ−1 is given by

K =



1

σ1
0 · · · 0

0
1

σ2
· · · 0

...
... . . . ...

0 0 · · · 1

σn


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and it is easy to verify that K ′ΣK = In and KK ′ = Σ−1. The transformed model is given by

K ′y = K ′Xβ +K ′u,

which may be written as
yi
σi

=

k∑
j=1

xij
σi

bj +
ui
σi
, i = 1, ..., n,

that can now be estimated by OLS.
The only problem remaining is to specify an estimate of Σ. Recall that Σ here is a diagonal

matrix with n non-zero elements, Σ = diag{σ2
1, σ

2
2, ..., σ

2
n}. There is a problem here: we need

to estimate n parameters from n observations! The resolution of this problem is to realize that
the estimator of the n× n matrix Σ need not be consistent, it only needs to be unbiased! Let

Σ̂ = diag{û21, û22, ..., û2n},

where ûi is the OLS residual for the ith observation, be an estimator of Σ. That this esti-
mator can NOT be a consistent estimator of Σ is obvious, but that is fine since it is unbi-
ased and we only need to worry about consistency of the variance matrices (X ′Σ̂−1X)−1 and
(X ′X)−1X ′Σ̂X(X ′X)−1, and not of Σ̂ itself. The dimension of these matrices are k×k and can
be shown to be consistent for their population analogues (X ′Σ−1X)−1 and (X ′X)−1X ′ΣX(X ′X)−1,
respectively.

Note, however, that we cannot replace Σ in the GLS estimator by Σ̂ = diag{û21, û22, ..., û2n}
as this yields an inconsistent estimator (see Section 5.8.6). See Cameron and Trivedi p.82 and
p.157-158.

4.1.1. Testing for Heteroskedasticity

Assume that σ2
i = E(ε2i ) = h(Zα) where Z = [1z1 · · · zp] is a set of variables entering the

scale function of ε, α = [α1α2 · · ·αp], and h(·) is some unspecified function that may take only
positive values. The null of homoskedasticity can then be written as

H0 : α2 = α3 = · · · = αp = 0

under which σ2
i = h(α1), a constant. The Breusch Pagan test of H0 can now be implemented

by regressing the OLS residuals on Z where Z may be the X’s in the model and various
power’s and products of them. The R2 of this auxiliary regression can then be used to test
homoskedasticity since under the null

nR2 ∼ χ2
p,

as n → ∞.
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4.2. Autocorrelation

Another well known violation of the spherical error assumption that is often present in time-
series data is autocorrelation. There are at least two possibilities. First the error may follow
an Autoregressive process of order p, AR(p), which is given by

εt = ρ1εt−1 + ρ2εt−2 + · · ·+ ρpεt−p + ut

where the ρ’s are the coefficients of the AR process and the ut’s are iid disturbances. A second
possibility is that the error follows a Moving Average process of order q, MA(q), given by

εt = ut + α1ut−1 + α2ut−2 + · · ·+ αqut−q

where the α’s are the coefficients of the MA process and the ut’s are again iid disturbances.
In what follows we will focus exclusively on the case where εt follows an AR(1) process,

which is the most common form of autocorrelation in empirical applications. Consider the
linear model

yt = x′tβ + εt

where yt is the value of the depended variable at time t, xt is a k × 1 vector of the regressors
at time t, β is a k × 1 vector of coefficients, and εt is the disturbance at time t. Assume that
εt follows a nonexplosive AR(1) process, that is

εt = ρεt−1 + ut, |ρ| < 1

and

E(ut) = 0, ∀t, E(utus) =

{
σ2
u, t = s

0, t ̸= s
, ∀t, s.

It follows that

εt = ρεt−1 + ut

= ρ(ρεt−2 + ut−1) + ut = ρ2εt−2 + ρut−1 + ut

= ρ2(ρεt−3 + ut−2) + ρut−1 + ut = ρ2εt−3 + ρ2εt−2 + ρut−1 + ut

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

= ρsεt−s +
s−1∑
j=0

ρjut−j .
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Since |ρ| < 1, we have that lims→∞ ρsεt−s = 0, while the series
∑s−1

j=0 ρ
jut−j converges to a

finite limit. Therefore, we can write

εt =

∞∑
j=0

ρjut−j , t = 1, ..., n.

Given this representation of the error term is it easy to compute its expectation and variance
as

E(εt) =

∞∑
j=0

ρjE(ut−j) = 0, t = 1, ..., n,

and

E(ε2t ) = E(
∞∑
j=0

ρjut−j)
2

= E(
∞∑
j=0

∞∑
k=0

ρj+kut−jut−k)

=
∞∑
j=0

∞∑
k=0

ρj+kE(ut−jut−k)

= σ2
u

∞∑
j=0

ρ2j

=
σ2
u

1− ρ2
, t = 1, ..., n

where the last line uses
∑∞

j=0(ρ
2)j = 1/(1− ρ2). Similarly, the covariance is given by

E(εtεt−1) = E[(ρεt−1 + ut)εt−1]

= ρE(ε2t−1) + E(εt−1ut)

= ρ
σ2
u

1− ρ2
, t = 1, ..., n

and generally

E(εtεt−s) = ρs
σ2
u

1− ρ2
, t = s+ 1, s+ 2, ..., n.
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From these results we deduce the variance-covariance matrix of the errors,

E(εε′) = σ2
u

1

1− ρ2



1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

... . . . ...
ρn−1 ρn−2 ρn−3 · · · 1


= σ2

uW.

The inverse of W is

W−1 =



1 −ρ

−ρ 1 + ρ2 −ρ 0

−ρ 1− ρ2

−ρ −ρ

0 1 + ρ2 −ρ

−ρ 1


,

and its Cholesky decomposition is given by

K ′ =



√
1− ρ2

−ρ 1 0

−ρ 1

−ρ

0

−ρ 1


.

Transforming the model y = Xβ + ε we obtain

K ′y = K ′Xβ +K ′ε

which reduces to √
1− ρ2 y1 =

√
1− ρ2 x′1β +

√
1− ρ2 ε1,

for the first observation (t = 1), and

yt − ρyt−1 = (xt − ρxt−1)
′β + εt − ρεt−1, t = 2, ..., n,
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for the rest of the observations. In applications, the alternative simplified matrix

K ′
1 =



−ρ 1

−ρ 1 0

−ρ

0

−ρ 1


is often used. The resulting transformation disregards the special status of the first observation,
but this is inconsequential for large n. The model is given by

yt − ρyt−1 = (xt − ρxt−1)
′β + εt − ρεt−1, t = 1, ..., n

To operationalize this, we need an estimate of ρ, but this is easy to obtain by first fitting
the model by OLS and the estimating ρ by the auxiliary regression

ε̂t = ρε̂t−1 + error

where the ε̂t’s are the OLS residuals.

4.2.1. Testing for Autocorrelation

Let ε̂t = yt−x′tβ̂ be again the residuals of the OLS regression. The pth order autocorrelation
model is given by

εt = ρ1εt−1ρ2εt−2 + · · · ρsεt−p + ut.

The null for no autocorrelation can be written as

H0 : ρ1 = ρ2 = · · · = ρp = 0.

Consider again the auxiliary regression

ε̂t = ρ1ε̂t−1ρ2ε̂t−2 + · · · ρsε̂t−p + error

that does not contain an intercept. Then, under the null

nR2 ∼ χ2
p,

as n → ∞.
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5. Endogenous Regressors - Instrumental Variables

Consider again the linear regression model

y = Xβ + u

with spherical errors u, but this time assume that X ̸⊥ u. We say that X is endogenous,
and since E(X ′u) ̸= 0, the OLS coefficient will be biased. Assume that we have another
set of variables Z, such that dim(Z) = dim(X) and Z ⊥ u or E(u|Z) = 0. Imposing the
orthogonality condition in our sample we obtain

Z ⊥ u ⇒ Z ′u = 0 ⇔ Z ′(y −Xβ̂ILS) = 0,

and solving we obtain the Indirect Least Squares (ILS) estimator

β̂ILS = (Z ′X)−1Z ′y.

The ILS estimator is unbiased:

E(β̂ILS |X) = E[(Z ′X)−1Z ′y|X,Z]

= E[(Z ′X)−1Z ′(Xβ + u)|X,Z]

= β + (Z ′X)−1Z ′E(u|Z)

= β,

and its variance is given by

V (β̂ILS |X,Z) = E[(β̂ILS − β)(β̂ILS − β)′|X,Z]

= E[(Z ′X)−1Z ′uu′Z(Z ′X)−1|X,Z]

= σ2
u(Z

′X)−1Z ′Z(Z ′X)−1.

It is worth noting that V (β̂ILS) > V (β̂OLS), so there is a cost in not having X ⊥ u. The term
(Z ′X) measures the (in-sample) correlation between Z and X. When this correlation is small
the variance of β̂ILS blows up, so we would like to have an instrument that is highly correlated
with X. If Z is highly correlated with X we call it a strong instrument. Otherwise, we say it
is a weak instrument.

It is clear that we need at least as many instruments as endogenous regressors, but it doesn’t
hurt to have more. Consider then the more general situation in which dim(Z) ≥ dim(X). Our
simple algebra above doesn’t work anymore because the relevant matrices are not conformable,
so we need to follow a 2-step procedure.
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First, we will project X onto the space spanned by the columns of Z, i.e. we will estimate
the vector-valued regression

X = Zδ + e

and obtain fitted values

X̂ = Z(Z ′Z)−1Z ′X ≡ PZX

where PZ is the projection matrix that carries the X’s into the space spanned by the Z’s. Since
the Z’s are orthogonal to u, the X̂’s will be too, so the OLS estimates of the regression of y
on X̂ will be consistent. The Two Stage Least Squares (2SLS) estimator is defined as

β̂2SLS = (X̂ ′X̂)−1X̂ ′y

= (X ′PZX)−1X ′PZy,

where in the last line we have used the idempotency of the projection matrix PZ . The expec-
tation of this estimator is given by

E(β̂2SLS |X,Z) = E[(X̂ ′X̂)−1X̂ ′y|X,Z]

= E[(X̂ ′X̂)−1X̂ ′(Xβ + u)|X,Z]

= β + E[(X̂ ′X̂)−1X̂ ′u|X,Z]

= β

so the estimator is unbiased. It’s variance is given by

V (β̂2SLS |X,Z) = E[(β̂2SLS − β)(β̂2SLS − β)′|X,Z]

= E[(X̂ ′X̂)−1X̂ ′uu′X̂(X̂ ′X̂)−1|X,Z]

= σ2
u(X̂X̂)−1

= σ2
u(X

′PZX)−1.

The 2SLS estimator can be computed in a two-step procedure (thus the name):

(i) Regress each of the endogenous X’s on Z to get fitted values X̂.
(ii) Regress y on X̂ to obtain β̂2SLS .

The covariance matrix of the second step regression, however, needs correction in that the
estimate for σ2

u is not appropriate. The correct estimate is given by

σ̂2
u =

1

n− k

n∑
i=1

(yi − x′
iβ̂2SLS)

2,
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which is different from the estimate
1

n− k

n∑
i=1

(yi − x̂′
iβ̂2SLS)

2

that the second step regression produces.

6. Seemingly Unrelated Regressions

Consider a system of m equations

yj = Xjβj + uj , j = 1, ...,m

where each yj is an (n × 1) vector, each Xj is an (n × kj) matrix and each βj is an (kj × 1)

vector of coefficients. To simplify notation we will assume that kj ≡ k for all j = 1, ...,m, but
this assumption can be easily relaxed without affecting the developments1. Stacking the data

y1

y2
...

ym


(mn)×1

=


X1 0 · · · 0

0 X2 · · ·
...

... · · · . . . ...
0 · · · · · · Xm


(mn)×(mk)


β1

β2
...

βm


(mk)×1

+


u1

u2

...
um


(mn)×1

we can write the system as
Y = X β + U .

Assume that the uj ’s are only contemporaneously correlated, i.e.

Σ =


σ11 σ12 · · · σ1m

σ12 σ22 · · · σ2m
...

... . . . ...
σ1m σ2m · · · σmm


(m×m)

= [σij ]i,j=1,...,m.

Then

E(U U ′) = Σ⊗ In

=


σ11In σ12In · · · σ1mIn

σ12In σ22In · · · σ2mIn

...
... . . . ...

σ1mIn σ2mIn · · · σmmIn


(mn×mn)

,

1Take k to be the total number of explanatory variables appearing in the system, and set to zero the coefficients
of the x’s that don’t appear in a specific equation.
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where ⊗ denotes the Kronecker product.
This is a linear model with non-spherical errors, so, by the GLS principle, the optimal SUR

estimator is given by

β̂SUR = (X ′(Σ⊗ In)
−1X )−1X ′(Σ⊗ In)

−1Y ,

which is the same as a GLS estimator of the regression of Y on X with covariance matrix
Σ⊗ In.

In practise Σ is not known, so we will again need to estimate it from the data. Let ûj be
the residuals from the OLS estimation of the jth equation and define

σ̂ij =

∑n
t=1 ûitûjt
n− k

, i, j = 1, ...,m.

Then Σ̂ = [σ̂ij ]i,j=1,...,m is a consistent estimator of Σ. Replacing Σ with Σ̂ in our estimator
above we obtain the Feasible SUR (FSUR) estimator.

An important observation is that there is no efficiency gain from reweighting by (Σ⊗ In)
−1

if X = (In ⊗ X0). That is, if all equations contain the same set of explanatory variables
Xj = X0 for all j = 1, ...,m as would be the case in some demand systems, we gain nothing
from SUR over what can be accomplished by an equation-by-equation OLS. To see this write

(Σ−1 ⊗ In)(In ⊗X0) = (Σ−1 ⊗X0).

Recall that SUR imposes the following orthogonality condition

X ′(Σ⊗ In)
−1Û = 0,

But if X = (In ⊗X0), this is equivalent to

(Σ−1 ⊗X ′
0)Û = 0,

which is implied by the equation-by-equation OLS orthogonality condition

X ′
0ûj = 0, j = 1, ...,m.

Therefore, when all equations have the same vector of explanatory variables, SUR and OLS
are identical.

7. Three Stage Least Squares

Consider a system of m equations

yi = Yiδi +Xiγi + εi, i = 1, ...,m.
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We have to deal with two problems:

(i) the Yi’s are endogenous; and
(ii) the εi’s are correlated across different equations.

To correct for endogeneity we will use 2SLS, while to correct for correlation across equations
will take one more step and do SUR estimation. This is a 3-step procedure and the estimator
will be called a Three Stage Least Squares (3SLS) estimator.

Rewrite the above system as

yi = Ziβi + εi, i = 1, ...,m.

where Zi = [Yi|Xi] and βi = [δi|γi], and stack the observations to obtain
y1

y2
...
ym


(mn)×1

=


Z1 0 · · · 0

0 Z2 · · ·
...

...
... . . . ...

0 0 · · · Zm


(mn)×(mk)


β1

β2
...

βm


(mk)×1

+


ε1

ε2
...
εm


(mn)×1

or

Y = Z β + E .

Assume again that the εj ’s are only contemporaneously correlated, i.e.

Σ =


σ11 σ12 · · · σ1m

σ12 σ22 · · · σ2m
...

... . . . ...
σ1m σ2m · · · σmm


(m×m)

= [σij ]i,j=1,...,m

so that E(E E ′) = Σ⊗ In.
Start by taking care of the SUR effect. Let Λ be the Cholesky decomposition of Σ−1 so that

Λ ⊗ In is the Cholesky decomposition of (Σ ⊗ In)
−1 = Σ−1 ⊗ In, and transform the data as

follows

Ỹ = (Λ⊗ In)
′Y , Z̃ = (Λ⊗ In)

′Z , Ẽ = (Λ⊗ In)
′E .

In terms of the transformed data the model is given by

Ỹ = Z̃ β + Ẽ ,

and this model has a spherical error since E(Ẽ Ẽ ′) = Imn.
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We next turn to the endogeneity problem and correct for it by using a 2SLS estimator. For
instruments we will use the Xi’s that are exogenous. Let X be the matrix of all exogenous Xi’s
across all the equations and define

X =


X 0 · · · 0

0 X · · ·
...

... · · · . . . ...
0 · · · · · · X


(mn)×(mk)

= Im ⊗X.

First we project Z̃ on X to obtain

ˆ̃Z = X (X ′X )−1X ′Z̃ = PX Z̃ .

Finally, we compute the 3SLS estimator by

β̂3SLS = (
ˆ̃ ′

Z ˆ̃Z )−1 ˆ̃ ′
Z Ỹ .

Unraveling the previous steps, we can open up the 3SLS estimator as

β̂3SLS = (Z̃ ′P ′
X PX Z̃ )−1Z̃ ′P ′

X PX Ỹ

= (Z (Λ⊗ In)
′PX (Λ⊗ In)Z )−1Z ′(Λ⊗ In)

′PX (Λ⊗ In)Y

= (Z Σ−1 ⊗ PX Z )−1Z ′Σ−1 ⊗ PX Y .

To compute the 3SLS estimator we may use the following procedure:

(i) Predict Zi, i = 1, ...,m.
(ii) Compute the 2SLS estimator β̂2SLS,i, i = 1, ...,m.
(iii) Estimate Σ by Σ̂ = [σ̂ij ]i,j=1,...,m where σ̂ij are estimated from the 2SLS residuals

σ̂ij =
1

n− k

n∑
t=1

ε̂itε̂jt.

(iv) Compute β̂3SLS .

We may iterate this procedure by re-estimating Σ̂ from the residuals of 3SLS regression and
recomputing β̂3SLS until convergence. Convergence, however, is very fast here, so the first-step
estimate will in most cases be nearly optimal and further iterations will only produce minor
improvements.
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8. Digression Into GMM

All of the above Weighted Least Squares problems have a similar structure in that we find it
optimal to reweight the OLS by a weighting matrix W . The general problem may be written
as

min
β,W

ε(β)′Wε(β)

where the minimization is performed both over β and W .

1. GLS: In the case of nonspherical errors our model is given by

y = Xβ + ε

with E(εε′) = Σ. In this case W = Σ−1 and

β̂GLS = argmin
β,Σ

(y −Xβ)′Σ−1(y −Xβ)

where minimization is performed both over β and Σ.

2. 2SLS: In the case of endogenous regressors

y = Xβ + ε

with E(εε′) = σ2
εIn, but X is not orthogonal to ε. If Z is a set of valid instruments and PZ is

the projection matric into the space spanned by the Z’s, then W = PZ and

β̂2SLS = argmin
β

(y −Xβ)′PZ(y −Xβ).

where minimization is performed only over β since the weighting matrix PZ is constant here.

3. SUR: In the seemingly unrelated regression context, the model is given by

Y = Z β + E .

with E(E E ′) = Σ⊗ In. This is exactly like GLS, so W = Σ−1 ⊗ In here and

β̂SUR = argmin
β,Σ

(Y − Z β)′(Σ−1 ⊗ In)(Y − Z β)

where minimization is performed over both β and Σ.
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4. 3SLS: Finally in the case of 3SLS estimator the model is given by

Y = Z β + E .

with E(E E ′) = Σ⊗In, and some of the Z ’s not orthogonal to E . Let X be the part of Z that
is orthogonal to E , and let W = PX be the matrix projection the Z ’s into the space spanned
by the X ’s. Then the 3SLS estimator solves

min
β,Σ=[σij ]

(Y − Z β)′(Σ−1 ⊗ PX )(Y − Z β)

where minimization is performed over both β and Σ.

All of the above estimators are Generalized Method of Moments (GMM) estimators. Let Z

be data (for example Z = (y,X) in the regression case) and let m(β;Z) be a moment condition
such that E[m(β0;Z)] = 0, i.e. the population value β0 solves the FOC. A GMM estimator
is one that minimizes a squared Euclidean distance of sample moments from their population
counterpart of zero. Let W be a positive semi-definite matrix, so that (m′Wm)1/2 is a measure
of the distance of m from zero. A GMM estimator solves

min
β,W

m(β;Z)′ W m(β;Z).

The matrix W can be chosen in an optimal way, if we set it equal to the covariance ma-
trix of of the moment conditions evaluated at the true parameter β0, i.e., if we put W =

E[m(β0;Z)m(β0;Z)′]. All of the above estimators have exactly this form, with m(β;Z) equal
to the residual vector ε(β; y, x) and W equal to the variance covariance of ε(β; y, x).

In practise it may be difficult to maximize both over β and W in one step, so people often
employ a 2-step strategy:

(i) Set W = I, the identity matrix, and estimate β̂ by minimizing the criterion function
over β.

(ii) Set Ŵ = E[m(β̂;Z)m(β̂, Z)′] and re-optimize the criterion function over β to get
β̂GMM .

It is possible to iterate this further by refitting W based on the new estimate and re-optimize
until convergence, but one step is enough to make the estimator asymptotically optimal.

9. Empirical Application: The Fulton Fish Market

Everybody knows Wall Street in lower Manhattan where the New York Stock Exchange
is located, but few have heard of the nearby Fulton Street where a Fish Market used to be.



Weighted Least Squares 27

Graddy (1995) collected data from one supplier at the Fulton Fish Market. The data was
collected in order to test if the market was consistent with competitive equilibrium as theory
would describe it.

9.1. Endogeneity Bias

The classic illustration of biases created by endogenous regressors was given by Working
(1927). In what follows we will describe the problem of endogeneity in terms of the estimation
of a classical demand and supply system of equations and derive the IV and 2SLS estimators
from first principles.

9.1.1. A simultaneous Equation Model of Market Equilibrium

Consider the following simple model of demand and supply:

qdt = α0 + α1pt + ut, (demand equation)

qst = β0 + β1pt + υt, (supply equation)

qdt = qst , (market equilibrium)

where qdt is the quantity demanded for the commodity in question (say coffee) in period t,
qst is the quantity supplied, and pt is the price. The error term ut in the demand equation
represents factors that influence coffee demand other than price, such as the public’s mood for
coffee. Depending on the value of ut, the demand curve in the price-quantity plane shifts up
or down. Similarly, υt represents supply factors other than price. We assume that E(ut) = 0

and E(υt) = 0 and that Cov(ut, υt) = 0. If we define qt = qdt = qst , the three equation system
above can be reduced to a two-equation system:

qt = α0 + α1pt + ut, (demand equation)

qt = β0 + β1pt + υt. (supply equation)

We say that a regressor is endogenous if it is not predetermined (i.e., not orthogonal to
the error term), that is, if it does not satisfy the orthogonality condition. When the equation
includes an intercept, the orthogonality condition is violated and hence the regressor is endoge-
nous, if and only if the regressor is correlated with the error term. In the present example the
regressor pt is endogenous in both equations. To see why, solve the system of equations for



28 Lecture 7

(pt, qt) to obtain,

pt =
β0 − α0

α1 − β1
+

υt − ut
α1 − β1

,

qt =
α1β0 − α0β1

α1 − β1
+

α1υt − β1ut
α1 − β1

.

We see that price is a function of the two error terms. From the solution for pt we can calculate
the covariance of pt with the demand shifter ut and the supply shifter υt as

Cov(pt, ut) = −Var(ut)
α1 − β1

, Cov(pt, υt) =
Var(υt)
α1 − β1

,

which are not zero (unless Var(ut) = 0 and Var(υt) = 0). Therefore, assuming that the demand
curve is downward-sloping (α1 < 0) and the supply curve is upward-slopping (β1 > 0), price is
positively correlated with the demand shifter and negatively correlated with the supply shifter.

9.1.2. Endogeneity Bias

So what do we get when we regress quantity on price? Do we estimate the demand or the
supply curve? The answer is neither, because price is endogenous in both the demand and
supply equations. To see this, assume we run the regression

qt = γ0 + γ1pt + et.

Recall that the Least Squares slope coefficient for γ̂1 satisfies

plim γ̂1 =
Cov(pt, qt)

Var(pt)
.

But from the demand equation we have

Cov(pt, qt) = α1Var(pt) + Cov(pt, ut),

so by combining the two we get the asymptotic bias of γ̂1 in terms of the the price effect in the
demand curve as

plim γ̂1 − α1 =
Cov(pt, ut)

Var(pt)
.

Similarly, the asymptotic bias of γ̂1 in terms of the the price effect in the supply curve is

plim γ̂1 − β1 =
Cov(pt, υt)

Var(pt)
.

But since, as we have already seen, Cov(pt, ut) ̸= 0 and Cov(pt, υt) ̸= 0, OLS is inconsistent
both for α1 and β1. This phenomenon is known as the endogeneity bias, or as the simultaneity
bias, because it appears often in systems of simultaneous equations, as in the present example.
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Solving plim γ̂1−β1 for Var(pt) and substituting the result in the expression for plim γ̂1−α1

we obtain,

plim γ̂1 =
α1Cov(pt, υt)− β1Cov(pt, ut)

Cov(pt, υt)− Cov(pt, ut)
.

Finally, using the expressions for Cov(pt, ut) and Cov(pt, υt) that we have already obtained we
get

plim γ̂1 =
α1Var(υt) + β1Var(ut)

Var(υt) + Var(ut)
.

We see that the OLS coefficient of the regression of quantity on price is a linear combination
of the demand and supply price effects with weights equal to the variances of the errors in the
system. Of course, if Var(ut) = 0 γ̂1 is consistent for α1, and if Var(υt) = 0 γ̂1 is consistent for
β1, but the assumption that one of the equations is measured without error is not realistic.

9.1.3. Observable Demand and Supply Shifters

The reason neither the demand curve nor the supply curve is consistently estimated in the
model above is that we cannot infer from the data at hand whether the change in price and
quantity is due to a demand shift or a supply shift (in the model above both shifters ut and
υt were unobservable and enter the equations as error terms). This suggests that it might be
possible to estimate the demand curve if some of the factors shifting the supply curve were
observable, and that we could estimate the supply curve if some of the factors shifting the
demand curve were observable. So suppose that the supply shifter υt can be divided into an
observable factor xt and an unobservable factor ζt uncorrelated with xt, and write the supply
equation as

qt = β0 + β1pt + β2xt + ζt (supply equation).

Now imagine that the supply shifter xt is also uncorrelated with the demand error term ut.
For example, we could think of xt as the temperature in coffee-growing regions. A variable
that is correlated with the endogenous regressor but uncorrelated with the error term is called
an instrumental variable, or simply an instrument. We will show that the presence of such a
supply shifter allows us to estimate the demand curve.

Solve the new system of simultaneous equations to obtain

pt =
β0 − α0

α1 − β1
+

β2
α1 − β1

xt +
ζt − ut
α1 − β1

,

qt =
α1β0 − α0β1

α1 − β1
+

α1β2
α1 − β1

xt +
α1ζt − β1ut
α1 − β1

.
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Since Cov(xt, ζt) = 0 and Cov(xt, ut) = 0, it follows from the equation for pt that

Cov(xt, pt) =
β2

α1 − β1
Var(xt) ̸= 0.

So xt is indeed a valid instrument.
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With a valid instrument at hand we can estimate the demand price coefficient α1 consistently.
We have

Cov(xt, qt) = α1Cov(xt, pt) + Cov(xt, ut)

= α1Cov(xt, pt)

since Cov(xt, ut) = 0 by assumption and as we have verified Cov(xt, pt) ̸= 0. So we can divide
both sides by Cov(xt, pt) to obtain

α1 =
Cov(xt, qt)
Cov(xt, pt)

.

A natural estimator that suggests itself is thus

α̂1,IV =
Ĉov(xt, qt)
Ĉov(xt, pt)

,

where the hats are the sample covariances. This estimator is called the instrumental variable
(IV) estimator with xt as the instrument. We sometimes say “the endogenous regressor pt is
instrumented by xt”.

A similar argument shows that if there is an observable demand shifter then the supply price
effect β1 is identified, and when there are both observable demand and supply shifters then
both price effects α1 and β1 are identified.

A closely related procedure to estimate α1 is the two stage least squares estimator (2SLS).
In the first stage, endogenous regressor pt is regressed on a constant and the instrument xt, to
obtain fitted values p̂t. Then the dependent variable qt is regressed on p̂t to obtain an estimate
of α1 given by

α̂1,2SLS =
Ĉov(p̂t, qt)

V̂ar(p̂t)
,

where the hats are again sample covariance and sample variance. To relate the second stage
regression to the demand equation rewrite the demand equation as

qi = α0 + α1pt + [ut + α1(pt − p̂t)].

The second stage regression estimates this equation, treating the bracketed term as the error
term. Since by construction (pt − p̂t) is orthogonal to pt, OLS on the second regression will
produce a consistent estimate of α1. In the present example, the IV and 2SLS estimators are
numerically the same.
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9.2. The model

We first consider the estimation of the demand equation in the following simultaneous system
of supply and demand

(Demand) log qdt = α0 + α1 log pt + δXt + ut

(Supply) log qst = β0 + β1 log pt + β2st + υt

where (all logs are natural):
qt quantity of whiting sold (pounds),
pt price of whiting ($/pound),
Xt a set of regressors affecting the demand for whiting,
st dummy that equals 1 if the weather is stormy and 0 otherwise.

The price pt in this system is endogenous, so OLS is inconsistent. We can, however, use
the supply shifter st (stormy weather) as an instrument to identify the demand curve. Stormy
weather clearly affects the supply adversely, but there is no reason to beleive that it has any
effect on demand.

Consider the simple model where there are no Xt variables in the demand equation (model
(1) in the table). The sample variance-covariance matrix of log qt, log pt and st is given by

log qt log pt st

log qt .550077

log pt −.078899 .145874

st −.075134 .069414 .207043

Thus, the OLS estimate of the price elasticity of demand for whiting is given by

α̂1,OLS =
Ĉov(log pt, log qt)

V̂ar(log pt)
=

−0.078899

0.145874
= −0.54087,

while, according to our discussion above, the IV estimate using st as an instrument is

α̂1,IV =
Ĉov(st, log qt)
Ĉov(st, log pt)

=
−0.075134

0.069414
= −1.0824.

We see that the OLS estimate of the demand price elasticity for whiting is severely biased
towards zero. The IV estimate is close to −1, which is the value of demand elasticity that
maximizes revenues. In particular, if sellers have market power, theory predicts that they would
choose to operate at the unit elasticity region of the demand curve, as this would maximize
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Table 1. OLS and IV estimates of the demand for whiting.

Dependent variable: Log quantity
Instrument for Log price: Stormy (= 1 if stormy weather)

OLS IV
Variable (1) (2) (1) (2)
Log price −0.54 −0.54 −1.08 −1.22

(0.18) (0.18) (0.48) (0.55)

Monday 0.03 −0.03

(0.21) (0.17)

Tuesday −0.49 −0.53

(0.20) (0.18)

Wednesday −0.54 −0.58

(0.21) (0.20)

Thursday 0.09 0.12

(0.20) (0.18)

Weather on shore (= 1 if cold) −0.06 0.07

(0.13) (0.16)

Rain on shore (= 1 if rain) 0.07 0.07

(0.18) (0.16)

R2 0.08 0.23

Note: n = 111 observations. Standard errors in parentheses.

their total revenues. If costs are fixed, which seems to be a reasonable assumption here (the
daily catch is sold through an auction each day, the cost of which is not affected by the exact
quantity auctioned off each day), revenue maximization is equivalent to profit maximization.
The findings of this research thus support both that sellers have market power and that they
operate rationally, i.e., they maximize their profits.

Table 1 also reports a second model (Model 2) that includes day-of-the-week dummies, as
well as, weather-on-shore dummies that might affect the demand for whiting. We see that the
weather dummies are insignificant, and of the day dummies only the Tuesday and Wednesday
dummies are significanlty negative (relative the excluded Friday dummy). The estimated price
elasticity is a little higher but −1 is included in the 95% confidence interval.
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When the instrument is a binary dummy variable, as it is the case here, the IV estimator
may also be written as

α̂1,IV =
Ĉov(log qt, st)
Ĉov(log pt, st)

=
Ê(log qt|st = 1)− Ê(log qt|st = 0)

Ê(log pt|st = 1)− Ê(log pt|st = 0)

=
8.265156− 8.628047

0.044929− (−0.2903333)

=
−0.362891

0.3352623
= −1.0824.

In this form, the IV estimator is the classical Wald (1940) estimator, also known as the grouping
estimator. Grouping the observations into two groups, the stormy-weather-at-sea, s = 1, group,
and the non-stormy-weather-at-sea, s = 0, group, the IV estimate is the difference in average
log-quantity across the two groups divided by the difference in average log-price across the two
groups.

Koenker likens IV estimation to looking at an object through a looking glass. Consider the
earnings–schooling example. Suppose a one-unit change in the instrument z is associated with
0.2 more years of schooling and with a $500 increase in annual earnings. This increase in
earnings is a consequence of the indirect effect that increase in z led to increase in schooling,
which in turn increases income. Then it follows that 0.2 years additional schooling is associated
with a $500 increase in earnings, so that a one-year increase in schooling is associated with
a $500/0.2 = $2,500 increase in earnings. The causal estimate of β is therefore 2,500. In
mathematical notation we have estimated the changes dx/dz and dy/dz and calculated the
causal estimator as

βIV =
dy/dz

dx/dz
. (9.1)

This approach to identification of the causal parameter β is given in Heckman (2000, p. 58).
Therefore, we look at the causal effect of x on y through the “looking glass” of the instrument
z.
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