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LECTURE 1
EMPIRICAL DEMAND ANALYSIS

1. Introduction
"I never listen to long introductions," said Fräulein
Bürstner.

— Franz Kafka, The Trial, Chapter 1.
The theory of consumer choice is rightly viewed as one of the major triumphs of economic

theory, for it yields conclusions that are not only mathematically elegant and intuitively sat-
isfying, but are also in accordance with empirical evidence. A number of standard and widely
known results have been derived from the neoclassical theory of choice, including the most fa-
mous result in economics, the “Law of Demand”, which states that the (income-compensated)
demand function for a good (that represents quantity demanded as a function of own price)
slopes downward. It also yields a near perfect marriage of theory and econometrics, to a degree
unparalleled by any other field of economics. The field has attracted a lot of attention since
the introduction of the linear expenditure system and its application to British data by Stone
(1954), followed by the differential demand system of Barten (1964) and Theil (1965, 1975/76,
1980) and developments thereafter. Dr. Pangloss would be pleased!

This lecture covers demand systems based on specific utility functions (e.g., the linear ex-
penditure system), demand systems based on indirect utility functions (e.g., the translog),
those based on cost functions (e.g., the almost ideal demand system) and some others. It
then introduces the differential approach to consumption theory, some members of the class of
differential demand equations and some new simpler alternatives. This lecture also discusses
separable utility functions and demand equations for groups of goods and for goods within a
group.

An economic agent, identified as an individual consumer or as a household unit whose mem-
bers act jointly, is assumed to allocate an income of y over n market goods qi, i = 1, ..., n, which
are purchased at unit prices pi, i = 1, ..., n, in such a way that a “utility” function u(q1, ..., qn)

defined over the n goods is at a maximum. Much of the elegance of this theory is that one
can equally well take the demand functions as the starting point (the demand functions, after
all, are what is in principle observable), and, under certain conditions, associate them with a
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utility function. These conditions (the so-called Slutsky conditions, which are both necessary
and sufficient) are that the matrix, whose typical element is

sij =
∂qi
∂pj

+ qj
∂qi
∂y

, i, j = 1, ..., n.

be symmetric and of rank n − 1. Demand functions that satisfy these conditions are said to
be integrable (that is, theoretically plausible). Slutsky revealed how utility functions, embar-
rassingly invisible, might actually be constructed from demand functions, visible or otherwise,
provided certain conditions were satisfied.

Still another example of consumption expenditures that are of the ‘eliminate - discomfort’
variety are ones that are socially induced so as to be able “to appear in public without shame,” a
notion, incidentally, that can be traced to the Talmud (Tamari, 1987). Related notions include
Veblen’s Conspicuous Consumption (1899), “bandwagon” and “snob” effects of Leibenstein
(1950), and “Keeping-up-with-the-Joneses” (Duesenberry, 1949).

Once the utility function is introduced, demand analysis becomes much richer in its impli-
cations and applications. The utility framework is the foundation for index number theory,
which includes the measurement of real income; the measurement of the effects of distortions
such as commodity taxation; and the division of goods into groups which are closely related. In
addition, the utility function generates the three major predictions of demand analysis, (i) that
the demand equations are homogeneous of degree zero in income and prices; (ii) symmetry of
the substitution effects; and (iii) that the substitution matrix is negative semidefinite. These
topics are discussed at length in this lecture.

2. The Neoclassical Theory of Consumer Demand

The debate about ordinal versus cardinal utility has a long history dating from the Marginal-
ist Era. Pareto [3, pp. 159, 540–542] is the first to argue that only ordinality matters for
consumer choice theory, but does not make use of this observation. The issue was resolved
definitively by Slutsky [18] (see Stigler [19] for a discussion). Hicks and Allen [20, 21] construct
a theory of consumer choice using the marginal rate of substitution as the primitive concept
rather than the utility function, thereby avoiding cardinality.
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Given some rather mild regularity conditions on preferences1 (completeness, transitivity,
continuity, reflexivity, strong monotonicity and strict convexity2) it can be shown that the
preference relation q � q′ (q, q′ ∈ Rn), which is read as “the bundle q is weakly preferred to
bundle q′”, can be rationalized by a continuous, non-decreasing, strictly quasi-concave3 utility
function u : Rn

+ 7→ R+ such that,

q � q′ if and only if u(q) ≥ u(q′).

For the derivation of the utility function from primitive preferences see Varian (1992). A
counterexample of preferences that cannot be represented by a utility function are lexicographic
preferences, which are quite extreme and will not concern us here.

1De gustibus non est disputandum. Preferences are taken as a primitive: how they are formed and what
they are is not part of the science of economics. The above admonition not to quarrel over tastes is commonly
interpreted as advice to terminate a dispute when it has been resolved into a difference of tastes. The question
of our likes and dislikes, and whether we should allow them to influence our search for truth, is the subject of
an anecdote quoted by the mathematician Littlewood: The philosophers Russell and Moore were having one of
their many philosophical discussions. Suddenly Russell said : “Moore, you don’t like me, do you?” “No,” said
Moore. The discussion then continued without a further word on the point from either side.

2Theorem (Debreu, 1954): A binary preference relation ≽ can be represented by a continuous real-valued
utility function u : Rn

+ → R if and only if it is complete, transitive and continuous.
For a proof of this theorem see Barten and Böhm (1982) and Jehle and Reny (2011), p.13. It can be shown that
if u represents the preference ordering ≽, then ≽ is complete and transitive. But the reverse is not generally
true, that is, there are preference orderings ≽ that are complete and transitive but cannot be represented by
a utility function. For example, lexicographic preferences are complete and transitive (that’s why we have
usable dictionaries) but they cannot be represented by a utility function. Continuity of the ordering ≽ rules
out lexicographic preferences and makes u a continuous function. The rest of the conditions on ≽ listed above
guarantee monotonicity and quasi-concavity of u.(see Mandy, David M - Producers, consumers, and partial
equilibrium-Academic Press (2017) p. 190-194 and p.204)

3That is, we require that

∂u

∂qi
≥ 0, and d2qi

dq2j

∣∣∣∣
u=u0

≥ 0, for all qi, qj ≥ 0, i, j = 1, ..., n.

Quasi-concavity of u guarantees that the corresponding indifference curves (isoquants of u) are convex to the
origin, so that the budget line y = p′q is tangent to at most one of these curves, possibly at more that one
points. If we strengthen the assumption of quasi-concavity to strict quasi-concavity of u, the tangency occurs
at only one point. Recall that indifference curves are solutions to the equation

du =

n∑
i=1

∂u(q)

∂qi
dqi = 0, such that u(q) = u0.
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The utility function u(·) need not convey any cardinal information about utility since any
strictly increasing transformation of u(q), say log u(q) or

√
u(q), yields the same ordering

of bundles q. We say that u is an ordinal function, which is to say that, it is determined
only up to a strictly increasing transformation, so that, for example, u(q1, q2) = qa1q

b
2 and

u∗(q1, q2) := log u(q1, q2) = a log q1 + b log q2 represent the same preferences and is thus the
“same” utility function. We say that u and every strictly increasing transformation of it u∗

belong to the same class of utility functions.
To characterize each class we use an invariant of the class, the marginal rate of substitution.

To define it, suppose we increase the consumption of good i and ask: how does the consumer
has to change his consumption of good j in order to keep utility constant, i.e., stay on the
same indifference curve? By assumption, the change in utility must be zero, i.e., du = 0 which
means that for i 6= j,

∂u(q)

∂qi
dqi +

∂u(q)

∂qj
dqj = 0 i, j = 1, ..., n.

Therefore4

MRSij :=
dqj
dqi

= −∂u(q)
∂qi

/∂u(q)
∂qj

= −
u[i]

u[j]
, i, j = 1, ..., n (2.1)

provided that the marginal utilities u[i] = ∂u(q)/∂qi are strictly positive for all i = 1, ..., n. This
is the marginal rate of substitution of good i with good j, and gives us the amount by which we
have to decrease (notice the minus sign) the consumption of good j in order to counterbalance
the increase in consumption of good i by dqi and remain on the same indifference curve, that
is dqj =MRSij dqi. Geometrically, the MRS is the slope of the indifference curve along which
we move in our thought experiment above.

The MRS does not depend on the specific utility function used to represent the underlying
preferences, but is common across all members of the same class of utilities. To see this,
let u∗(q) = g(u(q)) be a strictly increasing transformation of u(q). The marginal rate of
substitution for the two utility functions u and u∗ is the same since

−∂u
∗(q)

∂qi

/∂u∗(q)
∂qj

= −g′(u)∂u(q)
∂qi

/[
g′(u)

∂u(q)

∂qj

]
= −∂u(q)

∂qi

/∂u(q)
∂qj

,

4This a consequence of the Implicit Function Theorem that, provided u(q) is C1 and strictly quasiconcave
in q, guaranties the existence of C1 functions qj(q−j) for all j = 1, ..., n, where q−j is the vector q with the jth
component excluded, and that their derivatives with respect to qi are given by −u[i]/u[j].
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if and only if g′(u) > 0, i.e., g is strictly increasing. This gives a useful way to recognize
preferences that are represented by different utility functions: given two utility functions, just
compute the MRS for each one to see if they are the same. If they are, then the two utility
functions have the same indifference curves, and so the underlying preferences are the same.

Example 1. Consider the following two ways to write the Cobb-Douglas utility function:
u(q1, q2) = qa1 q

b
2, and u∗(q1, q2) = a log q1 + b log q2. To see that they represent the same

preferences, we compute MRS in each case and verify that they are equal:

MRS12 = −∂u(q1, q2)
∂q1

/∂u(q1, q2)
∂q2

= −aq
a−1
1 qb2

bqa1q
b−1
2

= −aq2
bq1

,

and

MRS∗
12 = −∂u

∗(q1, q2)

∂q1

/∂u∗(q1, q2)
∂q2

= −a/q1
b/q2

= −aq2
bq1

.

Since several functions may be used to represent the same preferences, it is useful to find the
“simplest” function to represent a particular set of preferences. For example, the discussion
above shows that Cobb-Douglas preferences depend only on the ratio a/b, and not on a and b

separately. This means that, without loss of generality, we may write the general Cobb-Douglas
utility function for two goods as u(q1, q2) = qα1 q

1−α
2 , so MRS1,2 = −α/(1−α) ·(q2/q1) (in terms

of a and b, α = a/(a+b)). In the n commodities case, the Cobb-Douglas utility function may be
written as u(q) =

∏n
i=1 q

αi
i , with 0 < αi < 1,

∑n
i=1 αi = 1.5 Moreover, since in its logarithmic

form

u(q) =

n∑
i=1

αi log qi, with qi > 0, 0 < αi < 1,

n∑
i=1

αi = 1,

the Cobb-Douglas function is seen to be additive-separable, this is our preferred way of repre-
senting the class of Cobb-Douglas preferences.

5The Cobb-Douglas power function is also used to represent production functions in production theory, but
since production functions are cardinal, the normalization

∑n
i=1 αi = 1 is not imposed there. In fact, this

condition corresponds to constant returns-to-scale which is of course a restriction, since returns-to-scale in any
given situation might be increasing, constant, or decreasing.
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Before ending our discussion of the ordinality of the utility function, it is expedient to
introduce one more concept that we will use shortly, namely the elasticity of substitution, σij ,
between goods i and j, introduced by John Hicks (1932) and defined by

σij :=
d(qj/qi)

(qj/qi)

/
d(dqj/dqi)

(dqj/dqi)
=MRSij ·

qi
qj
.

It measures the curvature of an indifference curve and thus the substitutability between goods,
i.e. how easy it is to substitute one good for the other. For the Cobb-Douglas class of utilities,
MRSij = −(αj/αi) · (αiqj/αjqi), so σij = 1.

The elasticity of substitution is defined as the ratio of the proportionate change in good
proportions to the proportionate change in the slope of the indifference curve. Good proportions
are qi/qj and the change in good proportions is d(qi/qj), hence the proportionate change in good
proportions is d(qi/qj)/(qi/qj). The slope of the indifference curve is dqi/dqj and the change
in that slope is d(dqi/dqj), hence the proportionate change of slope is d(dqi/dqj)/(dqi/dqj).
Putting all this together, we get that the elasticity of substitution between goods i and j is:

σij :=

d

(
qi
qj

)/(
qi
qj

)
d

(
dqi
dqj

)/(
dqi
dqj

) . (2.2)

This may look like a fairly complicated expression but as we shall see, it in fact turns out to
be very simple when applied to many standard forms of utility function.

2.1. The Primal Consumer Behavior Problem – Marshallian Demands

Given a twice continuously differentiable, strictly increasing, strictly quasiconcave utility
function u(q) : Rn

+ → R+ representing preferences over the vector of goods q, we may formulate
“consumer behavior” as the problem

[UMP]: max
q∈Rn

+

u(q), subject to pTq ≤ m, (2.3)

called the Utility Maximization Problem [UMP], where p = (p1, ..., pn)
T ∈ Rn

++ is a vector of
strictly positive prices of the positive coordinate commodities q = (q1, ..., qn)

T ∈ Rn
+, and m > 0

denotes money income. Both prices p � 0 and money income m > 0 are regarded as given
from the standpoint of the consumer. We abstract from various complications like nonlinear
pricing, intertemporal decision making, conspicuous consumption, etc., etc. We will assume
that the utility function is twice continuously differentiable and that there is nonsatiation, so
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Figure 1. Alfred Marshall (1842–1924)

that the marginal utility for each product is positive,

∂u(q)

∂qi
> 0, i = 1, ..., n.

We further assume that there is generalized diminishing marginal utility, so that the Hessian
matrix of second derivatives of u

U :=

[
∂2u(q)

∂qi∂qj

]
i,j=1,...,n

= ∇qqᵀu(q) (2.4)

is a symmetric negative definite n× n matrix.
Since a continuous function attains its maximum on a compact set, and (i) u is continuous

and (ii) the set {q ∈ Rn
+ : pTq ≤ m} defining the budget constraint is compact (i.e., closed

and bounded), the set of solutions of the problem in (2.3) is nonempty. Furthermore, by the
strict convexity of the preference relation � assumed here, u is strictly quasi-concave, and by
nonsatiation it is also monotone increasing, and thus the solution is unique.6

6If preferences are only convex but not strictly convex, the utility function u is quasi-concave but not strictly
so, in which case the utility maximization problem in (2.3) may have multiple solutions. If solutions are non-
unique, the demand functions studied below become demand correspondences, the study of which requires more
advanced mathematical methods than the elementary calculus-based methods used here. We will not consider
this more general setting here, however, since our goal is to arrive at empirically implementable equations and
not to give the most general theoretical results.
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Nonsatiation means that the budget constraint will be satisfied with equality, and the La-
grangian of the so-called “primal” problem in (2.3) is given by

L (q, λ;p,m) = u(q) + λ(m− pTq), (2.5)

where λ is a scalar Lagrange multiplier. Differentiation with respect to the elements of q and
λ yields the (n+ 1) system of simultaneous equations

∂u(q∗)

∂qi
− λ∗pi = 0, i = 1, ..., n, (2.6)

m−
n∑

i=1

piq
∗
i = 0.

Dividing the ith by the jth equation we get

∂u(q∗)/∂qi
∂u(q∗)/∂qj

=
pi
pj
, i, j = 1, ..., n, i 6= j,

which says that the optimal consumption bundle q∗ = (q∗1, q
∗
2, ..., q

∗
n)

T is characterized by the
conditions

MRSij |q∗ = − pi
pj
, i 6= j, i, j = 1, ..., n. (2.7)

Here MRSij |q∗ is the slope of the indifference curves at the optimal consumption q∗ and −pi/pj
is the slope of the budget constraint, so (2.7) says that at the optimal level of consumption the
highest attainable indifference curve should be tangent to the budget constraint. Note that the
optimality characterization of q∗ depends on u() only through its MRS, and is thus invariant to
a strictly increasing transformation g(u(q)), as the ordinality of our concept of utility requires.

It is customary to write the first-order conditions for utility maximization simply as

u[i] = λ∗pi, i = 1, ..., n, (2.8)

m =
n∑

i=1

piq
∗
i ,

where u[i] denotes the partial derivative of u(q) with respect to qi evaluated at q∗. In words,
this system of equations says that at the optimal consumption q∗, the marginal utility from
consuming the ith good, ui, is proportional to its price pi, with the constant of proportionality
λ∗ > 0 being equal to the marginal utility of income (see below) for all i = 1, ..., n, and that
this consumption is feasible, i.e., it exhausts the available money income m.

The second-order conditions for a local maximum require the Hessian matrix of the La-
grangian function L with respect to q at (q∗, λ∗) be negative definite for all directions z1 that
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are orthogonal to the gradient of the constraint function, that is,

zT
1 (∇qqTL ) z1 = zT

1 U z1 < 0 for all z1 ∈ Rn
++ such that zT

1 ∇qη(q) = −zT
1 p = 0, (2.9)

where η(q) = m− pTq is the budget line. Thus, we require that d2u < 0 for all dq satisfying
dη = −pT dq = 0. In words, this means that utility is decreasing as we move away from
the optimal q∗ in any direction along the budget line η(q), or equivalently, in any direction
orthogonal to the gradient of the budget line ∇qη = −p.

Consider the Hessian matrix of the Lagrangian L evaluated at (q∗, λ∗), given by

H̄ = ∇(λ,q)(λ,q)TL (q∗, λ∗;p, y) =



0 η[1] η[2] · · · η[n]

η[1] u[11] u[12] · · · u[1n]

η[2] u[21] u[22] · · · u[2n]
...

...
... . . . ...

η[n] u[n1] u[n2] · · · u[nn]


(2.10)

=



0 −p1 −p2 · · · −pn
−p1 u[11] u[12] · · · u[1n]

−p2 u[21] u[22] · · · u[2n]
...

...
... . . . ...

−pn u[n1] u[n2] · · · u[nn]


=

[
0 −pT

−p U ,

]
, (2.11)

where function subscripts in square brackets [·] denote partial differentiation with respect to
the corresponding qi evaluated at (q∗,λ∗). The (n+ 1) × (n+ 1) matrix H̄ is called bordered
Hessian (and we write it as H with a bar above it) because the submatrix ∇qqTL = U is
“bordered” by the gradient vector of the constraint function ∇qη = −p. Recall7 that the
matrix U = ∇qqTL is negative definite on the linear subspace {z ∈ Rn

++ : pTz = 0} if the last
n − 1 leading principal submatrices of H̄ have determinants (called leading principal minors)
that are nonzero and alternate in sign starting from a positive sign, as follows:

|H̄3| =

∣∣∣∣∣∣∣
0 −p1 −p2

−p1 u[11] u[12]

−p2 u[21] u[22]

∣∣∣∣∣∣∣ > 0, |H̄4| =

∣∣∣∣∣∣∣∣∣∣
0 −p1 −p2 −p3

−p1 u[11] u[12] u[13]

−p2 u[21] u[22] u[23]

−p3 u[31] u[32] u[33]

∣∣∣∣∣∣∣∣∣∣
< 0, and so on..., (2.12)

with the last determinant |H̄n+1| = |H̄| being nonzero and having the same sign as (−1)n. 8

7See Theorem 16.4 (p. 389), Theorem 16.5 (p. 391), and Theorem 19.6 (p. 460) of Simon and Blume (1994).
8Recall that if f : U → R is a C2 function of n variables x = (x1, ..., xn)

T and x∗ is an interior point of U ,
an open subset of Rn, such that ∇f(x∗) = 0 then
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Aside. A common error9 is to state the second order conditions for a constrained local max-
imum as requiring that H̄ = ∇(λ,q)(λ,q)TL (q∗, λ∗;p, y) be negative semidefinite, i.e., that
zT H̄ z ≤ 0 for all z ∈ Rn+1

++ . The correct condition involves checking only the last n − 1 of
the n+ 1 leading principal minors of H̄, and verifying that they are nonzero and alternate in
sign as indicated above, and not all of them, as the mistaken condition that H̄ be negative
semidefinite would require, which also allows them to be zero. Also, the mistaken condition
that H̄ be negative semidefinite, sounds a lot like the correct condition that U = ∇qqTL be
negative definite on the linear subspace {z ∈ Rn

++ : zT∇qη(q)) = 0}.
Thus, we must check only the minors starting from 3 and higher |H̄3|, |H̄4|, ..., |H̄n+1|.

The condition for a local maximum says nothing about the first 2 minors |H̄1| = 0 and
|H̄2| = (−η[1])2 = −p21 < 0, that are always 0 and negative, respectively. This cannot be
summarized by requiring that H̄ be negative semidefinite because then |H̄3|, |H̄4|, ..., |H̄n+1|
would also be allowed to be zero, as |H̄1| = 0 is, which is not the case: |H̄k|, k = 3, 4, ..., n+ 1

must be nonzero and alternate in sign staring from positive. The error stems from the desire
to sum-up in an easy condition what it is that is required, but the negative semidefiniteness
condition doesn’t accomplish this, since in order to accommodate the zero in the 1st minor,
also allows zero minors from 3 and up, which is not correct.

This discussion generalizes directly to, say, m constraints by requiring that we check that
the last n−m of the n+m leading principal minors of the (n+m)× (n+m) border Hessian
H̄, given by |H̄k|, k = m+2, ...,m+n, be nonzero and alternate in sign starting from (−1)m+1

and ending in (−1)n. Again, this cannot be summarized by requiring that H̄ be negative
semidefinite.

What is not widely known is that it is indeed possible to write a condition in terms of
the definiteness of some matrix that summarizes correctly the sufficient conditions for a con-
strained local maximum, and thus avoid all the discussion about which principal minors need
be considered and their signs. Consider the constrained maximization problem

max
x∈A⊂Rn

f(x;α) s.t. g(x;α) ≤ y, (2.13)

(a) If the Hessian ∇xxf(x
∗) is a negative definite symmetric matrix, x∗ is a strict local maximum of f ;

(b) If the Hessian ∇xxf(x
∗) is a positive definite symmetric matrix, x∗ is a strict local minimum of f ; and

(c) If ∇xxf(x
∗) is indefinite, then x∗ is neither a local maximum nor a local minimum of f ;

9For an instance of this error see p. 481 of Kalman, P.J. and Intriligator, M.D. (1973), “Generalized Com-
parative Statics with Applications to Consumer Theory and Producer Theory”, International Economic Review,
14:473–486. Caputo (2000).
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and its Lagrangian

L (x,λ;α,y) = f(x;α) + λT[y − g(x;α)]. (2.14)

The bordered Hessian for of the problem is then given by

H̄ =

[
0 (−∇xg)

T

−∇xg ∇xxTL

]
. (2.15)

Assuming that H̄ is nonsingular, the inverse H̄
−1 exists and is given by

H̄
−1

=

[
0 (−∇xg)

T

−∇xg ∇xxTL

]−1

=

[
A A (∇xg)

T (∇xxTL )−1

A (∇xxTL )−1 (∇xg) D

]

where

A = −
[
(∇xg)

T (∇xxTL )−1 (∇xg)
]−1

, (2.16)

and

D = (∇xxTL )−1 +A (∇xxTL )−1 (∇xg) (∇xg)
T (∇xxT L )−1. (2.17)

Since the second-order sufficient condition holds at the optimum, it follows from a theorem in
Takayama (1985, footnote 16, p. 166) that D is symmetric and negative semidefinite.

Theorem 1. The n × n matrix ∇2
xxT L is negative (positive) definite on the constraint set

{x : g(x) = y} if and only if H̄
−1 exists, and the n × n symmetric submatrix D has rank

(n−m) and is negative (positive) semidefinite.

Proof: See Samuelson, p. 378-379.

This concludes this rather along Aside, and we turn to applying it to our [UMP].

That H̄ is indeed negative semidefinite is guaranteed by our assumption that u(q) is strictly
increasing and strictly quasiconcave in q. To see this note that by the FOC in (2.8) we have
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that at the optimal consumption q∗, pi = u[i]/λ, so that

|H̄| =

∣∣∣∣∣∣∣∣∣∣∣

0 −p1 · · · −pn
−p1 u[11] · · · u[1n]

...
... . . . ...

−pn u[n1] · · · u[nn]

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

0 −u[1]/λ · · · −u[n]/λ
−u[1]/λ u[11] · · · u[1n]

...
... . . . ...

−u[n]/λ u[n1] · · · u[nn]

∣∣∣∣∣∣∣∣∣∣∣
(2.18)

=
1

λ2

∣∣∣∣∣∣∣∣∣∣∣

0 u[1] · · · u[n]

u[1] u[11] · · · u[1n]
...

... . . . ...
u[n] u[n1] · · · u[nn]

∣∣∣∣∣∣∣∣∣∣∣
=

1

λ2

∣∣∣∣∣0 uT

u U

∣∣∣∣∣ , (2.19)

where we have pulled one −1/λ out from the last column and another −1/λ from the last row
of |H̄|, and u = ∇qu(q) is the n × 1 gradient vector of u(q) and U = ∇2

qqTu(q) is the n × n

Hessian matrix of u(q), as above. Therefore,

|H̄| = 1

λ2
|Ū |, (2.20)

where Ū is the bordered Hessian of u(q). Therefore, if u(q) is (strictly) quasiconcave the
Lagrangian L is also (strictly) quasiconcave. A necessary condition for u to be a quasi-concave
function is that the even-numbered principle minors of the bordered Hessian Ū be non-negative
and the odd-numbered principle minors of Ū be non-positive. A sufficient condition for u to be
quasi-concave is that the even-numbered principle minors of the bordered Hessian be strictly
positive and the odd-numbered principle minors be strictly negative.

3.4 Quasiconcavity and quasiconvexity
https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/qcc/t
Simon, Blume (1994) – Mathematics for economists, theorem 22.1, p.545
Arrow and Enthoven (1961), Theorem 5 (p. 797).
https://en.wikipedia.org/wiki/Concavification

The first-order conditions for a maximum in (2.8) is a system of (n+1) nonlinear equations
in 2(n+ 1) unknowns, namely (qT,pT, λ,m)T. The second-order conditions (2.12) for a clean
interior maximum yield that the following Jacobian is nonzero

J = |H̄n| =

∣∣∣∣∣ U −p

−pT 0,

∣∣∣∣∣ 6= 0, (2.21)
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where U is defined in (2.4). Taking the (n+1) variables (pT,m)T as fixed data (or parameters),
the Implicit Function Theorem (IFT) now yields that the remaining (n+ 1) variables (qT, λ)T

may be written uniquely as functions of the parameters (pT,m)T in a neighborhood of the
currently prevailing prices and income (p0,m0)T as

q∗ = g(p,m) = (g1(p, y), ..., gn(p,m))T (2.22)

λ∗ = f(p,m),

where g (p,m) = (g1(p,m), ..., gn(p,m))T is a n × 1 vector of functions called the uncom-
pensated, or ordinary, or Marshallian demands, and λ∗ is the marginal utility of income.10

Moreover, these functions possess continuous first partial derivatives in this neighborhood of
(p0,m0)T.

The Lagrange multiplier λ∗ has an interesting economic interpretation: it is, as Alfred Mar-
shall called it, the marginal utility of income. To see what this means, note that from the first
order conditions

∂u

∂qi
= λ∗pi, i = 1, ..., n,

so that
λ∗ =

∂u(q∗)

∂(qipi)
, i = 1, ..., n.

Since (piqi) is the expenditure on good i, the above says that, at the optimal level of consump-
tion, an additional euro spent on any of the goods yields the same increase λ in utility. We
can therefore say that λ is the change in the maximized value of utility as income changes, or
that, at the optimal level of consumption

λ∗ =
∂u(q∗)

∂m
.

Thus, λ is the increase in utility resulting from an additional euro of income, justifying Mar-
shall’s interpretation of λ∗ as the marginal utility of income11.

10The custom of settling the problem of existence of an equilibrium by counting equations and unknowns,
that is, by verifying that they are equal, and then appealing to the IFT to obtain a solution is very old. In
the present case the IFT is adequate, but in more general situations such simple calculus-based methods are
not powerful enough. Modern general equilibrium theory utilizes more advanced (topological and analytical)
concepts, such as fixed points and convex sets, so that fixed-point theory (FPT) and convexity theory (CT) are
the cornerstones of modern economic theory.

11This interpretation of the Lagrange multipliers generalizes to any constrained optimization problem, in
that the Lagrange multiplier attached to each of the constraints measures, at the optimum, the increase in the
objective that results from relaxing the corresponding constraint by a “small” (marginal) amount. In this sense
λj attached to constraint j is the shadow price of the variable restricted under the constraint j. For example,
in a production optimization problem over the inputs of capital K and labor L, the multiplier λK attached to
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Figure 2. Utility maximization subject to the budget constraint.

Aside. The Lagrange condition
∇u = λ∇g

for the [UMP] can be restated using differentials and the wedge product as

du ∧ dg = 0,

which means that at the optimal point the two differentials (co-vectors) du and dg are linearly
dependent (parallel). We compute,

du =
∑
i

∂u

∂qi
dqi, dg =

∑
i

pi dqi

so that, using the anti-commutativity of the wedge product a∧ b = −b∧ a (which implies that
a ∧ a = 0),

du ∧ dg =

(∑
i

∂u

∂qi
dqi

)
∧

(∑
i

pi dqi

)

=
∑
i<j

(
∂u

∂qi
pj −

∂u

∂qj
pi

)
dqi ∧ dqj .

The condition du ∧ dg = 0 thus yields
∂u

∂qi
/
∂u

∂qj
= pi/pj ,

the capital constraint is interpreted as the shadow price of capital, and the multiplier λL attached to the labor
constraint is interpreted as the shadow price of labor.
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which is exactly the solution we obtained from the Lagrange condition. For more on this
alternative derivation of the optimal solution, see Frank Zizza (1998) – “Differential Forms for
Constrained Max-Min Problems: Eliminating Lagrange Multipliers”, The College Mathematics
Journal, vol. 29, p. 387 – 396.

2.1.1. The Marshallian Demand Functions

The following theorem provides the properties of the Marshallian demand functions.

Theorem 2. Suppose that u(·) is a strictly quasiconcave twice continuously differentiable utility
function representing a complete, transitive, strictly convex preference relation � defined on
the consumption set Q = Rn

+. Then the Marshallian demand functions g(p,m) exist and are:
(i) Homogeneous of degree 0 in (p,m), i.e., for any p,m and scalar α > 0, we have

g(αp, αm) = g(p,m).
(ii) Satisfy Walra’s Law (also called the Adding-Up Condition): pTg(p,m) = m.

(iii) Continuously differentiable in p and m.

Proof: (i) The homogeneity of degree 0 follows easily from the invariance of the budget
constraint (feasibility set) to a proportional increase in prices and income. Since the following
two sets are equal

{q ∈ Rn
+ : αpTq = αm} = {q ∈ Rn

+ : pTq = m}

the two demand functions g(p,m) and g(αp, αm), α > 0, solve the same maximization problem
and are thus equal.

(ii) Follows directly from the nonsatiation property of the preferences and the strict qua-
siconcavity of the utility function u(·). Let q∗ = g(p,m) denote the optimal consumption.
If pTq∗ < m there exists another bundle q′ sufficiently close to q∗ with pTq′ < m and
u(q′) > u(q∗), which contradicts the optimality of q∗.

(iii) Existence and continuous differentiability follow from our assumptions regarding u(q)

and the Implicit Function Theorem (see the Appendix).

The fact that the functions g(p,m) : Rn+1
+ → Rn

+ are homogeneous of degree 0 in (p,m)

means that optimizing rational consumers do not suffer from money illusion12, and thus their
12The existence or not of money illusion on the part of economic agents has been a very old preoccupation

in economics. In the 1930’s Irving Fisher expressed the opinion that people are more sensitive to changes in
money income than to changes in prices, and he considered the consequent failure to adjust interest rates to
rising prices as one cause of inflationary profits. J. M. Keynes’ theory is based on similar observations, referring
both to the demand for goods and to the supply of labor. See Marschak Jacob (1943) – Money Illusion and
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demands depend on p and m only through the normalized prices

p := p/m = (p1/m, p2/m, ..., pn/m)T.

Therefore, there exist functions g(p) : Rn
+ → Rn

+ such that

g(p) := g(p/m, 1). (2.23)

These functions are called normalized Marshallian demands, and are the solutions to the opti-
mization problem

max
q∈Rn

+

u(q), subject to pTq ≤ 1. (2.24)

While the functions g(p,mj) describe demand in a world where everyone faces the same
prices p but has a different income mj , say, the functions g(pj) describe demand in world
where everyone faces different normalized prices pj = p/mj . In this world, rich people have
the ‘right’ to purchase goods cheaply, while poor people must purchase the same goods dearly,
so as everyone’s total expenditure is less that or equal to 1 monetary unit.

In applications, we almost always use the regular Marshallian demands g(p,m) and talk of
the effect of changes in p on the quantities demanded as price effects, and the effect of changes
in m on the quantities demanded as income effects. Since price changes are not compensated
by a proportional change (in the other direction) in income, the (regular) Marshallian demands
g(p,m) are also called uncompensated demands. As it turns out, normalizing by income is not
quite enough to guarantee that a change in the price of a good is exactly compensated by a
corresponding opposite change in income, since this compensation should also depend on the
utility function and the satisfaction the consumer derives from each good. A price increase in a
good that yields a lot of utility is not the same as a price increase in a good that matters less,
and compensation should be analogous to the decrease in utility each price increase results in.
In the next section we will introduced the compensated demands.

2.1.2. The Indirect Utility Function

Substituting the Marshallian demands g(p,m) back into the utility function u(·) we obtain
the indirect utility function

v(p,m) := u(g(p,m)), (2.25)

which expresses the maximum achievable utility under price-income state v(p,m). Equivalently
we may define

v(p) := u(g(p)), (2.26)

Demand Analysis, Review of Economics and Statistics Volume 25 issue 1 1943, for an early demonstration of
the existence of non-homogeneous demand functions in the market for meat [p. 46].
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to be the same function as above since v(p,m) can only depend p and m only through the
normalized prices p = p/m.

The following theorem gives the main properties of the indirect utility function.

Theorem 3. (Properties of the Indirect Utility Function) Suppose that u(·) is a
twice continuously differentiable utility function representing a locally nonsatiated preference
relation � defined on the consumption set Q = Rn

+. Then the indirect utility function

v(p,m) = max
q∈Rn

+

{u(q) s.t. pTq = m}

for given p � 0 and m > 0 is:

(i) Homogeneous of degree 0 in (p,m), i.e., for any p � 0,m > 0 and scalar α > 0, we
have v(αp, αm) = v(p,m).

(ii) Strictly increasing in m and decreasing (but not necessarily strictly) in p.
(iii) Quasiconvex in in (p,m), i.e., the set {(p,m) ∈ R++ × R+ : v(p,m) ≤ v0} is convex

for any v0 ∈ R, or equivalently, for every α ∈ (0, 1) and any distinct price-income
states (p0,m0) and (p1,m1) ∈ R++ × R+,

v
(
αp0 + (1− α)p1, αm0 + (1− α)m1

)
≤ max

{
v(p0,m0), v(p1,m1)

}
.

(iv) Continuously differentiable in p and m.

Proof: (iv) Follows from the continuity and differentiability of u(·) and g(p,m), since it is
their composition.

Note that while the direct utility function u(q) is (assumed!) quasiconcave in q, the indirect
utility function v(p,m) is quasiconvex in (p,m), and it is so even if u(·) is not quasiconcave
(see Mas-Colell p.56, footnote 11). Also note that the indirect utility function depends on the
utility representation chosen, in that if u(q) corresponds to v(p,m) then g(u(q)) corresponds to
g(v(p,m)), where g(·) is a strictly increasing function. For this reason v(p,m) and all strictly
increasing transformations of it g(v(p,m)), are considered the ‘same’ indirect utility function.

The direct utility function u(q) and the indirect utility function v(p) are equivalent descrip-
tions of the underlying preference ordering. Choice under a budget constraint can be analyzed
either as the maximization of the direct utility function with given prices and income, or as the
minimization of the indirect utility function with given quantities: the observable consequences
are the same. This means that there is a duality relationship between the direct and the indirect
utility functions, in the sense that maximization of u(q) with respect to q given p and m, and
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minimization of v(p) with respect to p given q, leads to the same demand equations. We say
the the direct utility u(q) and the indirect utility v(p) are dual functions to each other.

While the direct utility function probably has greater intuitive appeal, the indirect utility
function is not without its claims to interest also, for it is the foundation of “constant-utility”
index numbers of the cost of living. If we try to determine what change in income is necessary
to compensate for a given change in prices (to mention one of the problems to which such index
numbers can be applied) we are in effect trying to keep the indirect utility function constant.

Example 2. The constant-elasticity-of-substitution (CES) utility function is defined as

u(q) =
( n∑

i=1

αiq
ρ
i

)1/ρ
, −∞ < ρ < 1, 0 < αi < 1,

n∑
i=1

αi = 1, qi > 0, i = 1, ..., n. (2.27)

As the name suggests, this specification has a constant σ = 1/(1− ρ) elasticity of substitution
for all levels of the q’s, and it nests a number of interesting cases:

(i) ρ→ 1, σ → ∞ ⇒ u(q) =
n∑

i=1

αiqi [linear utility, perfect substitutes].

(ii) ρ→ 0, σ → 1 ⇒ u(q) =
n∑

i=1

αi ln(qi) [Cobb-Douglas utility].

(iii) ρ→ −∞, σ → 0 ⇒ u(q) = min
i=1,...,n

{αiqi} [Leontief utility, perfect complements].

For income y > 0 and prices pi > 0, i = 1, ..., n, the Lagrangian of the problem is

L =
( n∑

i=1

αiq
ρ
i

)1/ρ
+ λ

(
m−

n∑
i=1

piqi

)
.

The first-order conditions for an interior solution are
∂L

∂qi
= 0 ⇒ 1

ρ

( n∑
i=1

αiq
ρ
i

) 1
ρ
−1
αiρq

ρ−1
i = λpi, i = 1, ..., n,

∂L

∂λ
= 0 ⇒ m =

n∑
i=1

piqi.

Taking ratios to eliminate λ, we obtain

pi
pj

=
αiq

ρ−1
i

αjq
ρ−1
j

, or qj =
(αjpi
αipj

)σ
qi, i, j = 1, ..., n. (2.28)

Substituting the last expression into the budget constraint and gathering terms we obtain

m =
n∑

j=1

pjqj =
n∑

j=1

pj

(αjpi
αipj

)σ
qi = qi

( pi
αi

)σ n∑
j=1

ασ
j p

1−σ
j ,
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or
m

qi
=
( pi
αi

)σ
I(p), i = 1, ..., n

where,

I(p) =

n∑
i=1

ασ
i p

1−σ
i .

I(p) is a utility-weighted price index. Such indices play an important role in measuring wel-
fare effects of price changes and will be discussed later. Solving for qi, we obtain the CES
Marshallian demand system

q∗i = gi(p,m) =
m

I(p)

(αi

pi

)σ
, i = 1, ..., n. (2.29)

Plugging these demands back into the utility function, we derive the corresponding indirect
utility function

v(p,m) = mI(p)1/(1−σ). (2.30)

We see that the indirect utility function is a function of real income m and the utility-
weighted price index I(p)1/(1−σ), that is, it is equal to the utility-weighted real income given by
m/I(p)1/(σ−1).

2.2. The Transposed (aka Dual) Problem – Hicksian Demands

An alternative approach, which yields equivalent results, is to formulate the transposed prob-
lem 13

[EMP]: min
q∈Rn

e(q;p) = pTq subject to u(q) ≥ u, (2.31)

called the Expenditure Minimization Problem [EMP], where, e(q;p) is the total expenditure or
cost incurred by the consumer as a function of q, taking p as given. For the sake of definiteness,
we could think of u as the level of utility achieved by solving the primary [UMP] problem in
(2.3).

13Quite often what is here called a transposed problem has been said by economists to be a problem dual to
the original problem; see, e.g. Debreu (1951, p. 279), Arrow and Debreu (1954, pp. 285-286), Baumol (1977, p.
355), Deaton and Muellbauer (1980, pp. 37ff), Layard and Walters (1978, p. 143), and Theil (1980, p. 21). But
to say this is to be inconsistent with normal mathematical usage, where a dual problem is one whose solutions
are located in a vector space that is ”in duality with” –and so in principle different from– the vector space of
the solutions to the primal problem, whereas a transposed problem has its solution in the same space as the
original.
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Figure 3. John Hicks (1904–1989)

Nonsatiation means that the utility constraint will be satisfied with equality, and the La-
grangian of the so-called “dual” problem in (2.31) is given by

M (q, µ;p,m) = pTq + µ (u− u(q)), (2.32)

where µ is a scalar Lagrange multiplier. Differentiation with respect to the elements of q and
µ yields the (n+ 1) system of simultaneous equations

pi − µ∗
∂u(q∗)

∂qi
= 0, i = 1, ..., n, (2.33)

u− u(q) = 0.

These are exactly the same first order conditions (dividing the ith and the jth equation we
obtain that the ratio of prices equals the ratio of marginal utilities) that we obtained from the
[UMP] except that now the restriction is on u and not on m. Consequently, the second order
conditions are also the same and thus the two problems are equivalent. By this we mean that
if q∗ solves the [UMP] it also solves the [EMP], or put another way, the solutions to the two
problems are equal.
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The [EMP] problem in (2.31) has solution

q∗ = h(p, u) = (h1(p, u), ..., hn(p, u))
T , (2.34)

µ∗ = 1/λ∗. (2.35)

Here h(p, u) is a n × 1 vector-valued function called the compensated or Hicksian demands14

and they represent optimal consumption behavior as a function of prices p and the utility level
u, in contrast to the Marshallian formulation which is in terms of prices p and the (observable!)
level of income M . Also, µ∗ is the marginal cost of utility and is equal to the reciprocal of the
marginal utility of income λ∗.

Since the tangency conditions of [UMP] and [EMP] are identical, we have

q∗ = g(p,m) = h(p, u),

i.e., the solution of both the maximization problem and minimization problem produce identical
demands q∗. However, the solutions are functions of different variables, so the comparative-
statics exercises will generally produce different results.

Aside. The following theorem is proven in Panik, M.J. Classical Optimization: Foundations
and Extensions, New York: North-Company, 1976 (pp. 207). See also, Caputo M.R. (2000),
“Lagrangian transposition identities and reciprocal pairs of constrained optimization prob-
lems”, Economics Letters, 66, 265–273, and the references therein. See also Varian H.R. (1992)
Microeconomics Analysis, p. 113.

Theorem (Lagrangian Transposition Principle): The solution x∗(α; z) to the problem

max
x

{f(x;α) s.t. g(x;α) ≤ z}

with Lagrangian
L (x, λ) = f(x;α) + λ(z − g(x;α))

for fixed z, is identical to the solution x̂(α; y) of the “transposed problem”

min
x

{g(x;α) s.t. f(x;α) ≥ y}

with Lagrangian
M (x, µ) = g(x;α) + µ(y − f(x;α))

for fixed y = f(x∗;α), where x∗ solves the first problem.

14As the name suggests the dual consumer problem and the corresponding compensated demand functions
were introduced by Sir John Richard Hicks (1939).
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Assume that y = f(x;α) is quasiconcave and z = g(x;α) is quasiconvex.

Again substituting the solution back into the objective function, we get the minimum-value
function

c(p, u) := pTh(p, u),

which is usually called the indirect cost or expenditure function: it gives the minimum expen-
diture needed to obtain utility level u under prices p. The indirect cost function c(p, u) is
the dual function of the direct cost function e(q;p) = pTq. While in the direct cost function
e(q;p), q is variable and p is fixed, in the dual function c(p, u) there is no q anymore and both
p and u are variable.

Since the solutions q∗ in the primal and dual problems are determined by the tangency point
of the same utility curve and budget constraint line, it follows that the minimized expenditure
in the dual problem is equal to the budget constraint in the primal, i.e.,

c(p, u) = pTh(p, u) = pTg(p,m) = pTq∗ = m.

The expenditure function was introduced into the literature by Lionel McKenzie (1957), and
plays an important role in Welfare Economics.

Example 3. The Lagrangian of the dual problem for the CES utility function in (2.27) is given
by

M =
n∑

i=1

piqi + µ

[
u−

( n∑
i=1

αiq
ρ
i

)1/ρ]
.

The first-order conditions for an interior solution yield again eq. (2.28). Substituting back into
the constraint and solving for each of the q’s in turn, we obtain the CES Hicksian demand
functions

q∗i = hi(p, u) =
u

I(p)1/ρ

(αi

pi

)σ
, i = 1, ..., n. (2.36)

Plugging the solutions into the individual’s budget, we get the expenditure function

c(p, u) = u I(p)1−σ. (2.37)

Question: Could you have guessed the form of the expenditure function e(u,p) in the CES case
from the derivations in Example 1?

We see that the expenditure function c(p, u) here is homogeneous of degree 1 in u (actually,
this is true for any utility function not just the CES, see Theorem 1 below), which permits us
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to form an exact price index corresponding to the cost of a unit of utility given by

∂c(p, u)

∂u
= I(p)1−σ =

( n∑
i=1

ασ
i p

1−σ
i

)1−σ
.

2.3. A Third Variant – Frisch Demands

Yet a third variant of the foregoing is the so-called Frisch demands. Recall that solving the
primal problem yields the first order conditions

∂u(q∗)

∂qi
= λ∗pi, i = 1, ..., n (2.38)

where λ∗ is a Lagrange multiplier on the budget constraint that may be interpreted as the
marginal utility of income. When utility is additive separable, i.e.,

u(q) =
n∑

i=1

ui(qi),

eq. (2.38) becomes
u′i(q

∗
i ) = pi/r

∗, i = 1, ..., n,

where r∗ = 1/λ∗ can be interpreted as the marginal cost of utility at current prices. Inverting
this (recall that ui(qi) must be monotonic by nonsatiation so the inverse is well-defined) we
obtain the Frisch demands

q∗i = fi(pi/r), i = 1, ..., n,

where fi(·) = (u′i)
−1(·). It follows that demand for the ith good depends only on r and the

ith price. For general utility functions this is not true, but under additive separability (which
holds in many intertemporal models, for example) it is, and as it turns out it is quite useful.

An important example of the foregoing theory is the linear expenditure system, developed
by Stone, Gorman, Samuelson and others. The utility function takes the additive form

u(q) =
n∑

i=1

ui(qi) :=
n∑

i=1

βi log(qi − γi), with qi > γi > 0, βi > 0,
n∑

j=1

βj = 1.

This is the so-called Stone-Geary utility function, and it was first used by Klein and Rubin
(1948). To obtain it, start from the simple product utility u(q) =

∏
i qi and replace qi by

(qi − γi). Then raise each term to the power βi to obtain the utility u(q) =
∏

i(qi − γi)
βi .

Finally, take logs to get another member of this class of utility functions, and set
∑

i βi = 1 to
normalize it. Note that the only difference between this and the Cobb-Douglas utility function
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discussed above is the presence of the γi parameters that are interpreted below as ‘committed’
or ‘subsistence’ quantities of good i.

The Lagrangian of the primary problem is given by

L =

n∑
i=1

ui(qi) + λ
(
m−

n∑
i=1

piqi

)
,

which yields the first order conditions

u′i(q
∗
i ) =

βi
q∗i − γi

= λ∗pi, i = 1, ..., n.

Using the ‘β constraint’
∑

j βj = 1 and the budget constraint, we get

1 =
n∑

j=1

βj = λ∗
n∑

j=1

pj(q
∗
j − γj),

so
λ∗ =

1

m−
∑n

j=1 pjγj
.

Substituting this expression for λ∗ back and solving for q∗i we obtain the demand system

q∗i =: fi(p,m) = γi +
βi
pi

(
m−

n∑
j=1

pjγj

)
, i = 1, ..., n, (2.39)

such that q∗i > γi > 0, βi > 0, and
n∑

i=1

βi = 1.

This is the famous linear expenditure demand system (LES). Each quantity demanded qi is a
function of income m, own-price pi, and all the prices pj of the other goods. The parameters
γi and βi in this formulation have a convenient economic interpretation:

γi is the committed quantity of consumption of good i purchased regardless of the
currently prevailing prices that may be interpreted as ‘subsistence’ quantities,
and
βi is the marginal budget share of good i, i.e., the rate of change in the share of
good i as money income m changes.

Thus, we may view the consumer as first deciding to purchase γi of qi, then computing his
remaining, “supernumerary” income (m−

∑
i piγi), and allocating this income according to

the βi’s. Since its first use by Stone (1954), LES has probably been the most popular demand
system. This system is convenient for its simplicity. However, it is also very restrictive. For
instance, it imposes the restriction that all the goods are complements in consumption. This
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is not realistic in most applications, particularly when the goods under study are varieties of a
differentiated product.

Substituting f(p,m) back into u(q), we obtain the LES indirect utility function

v(p,m) =
n∑

i=1

βi log

βi
pi

(
m−

n∑
j=1

piγi

) .
Exponentiating we obtain the equivalent form

ν(p,m) = ev(p,m) =
(
m−

n∑
i=1

piγi

) n∏
j=1

(βi/pi)
βi . (2.40)

Setting the expenditure function equal to a fixed level of utility u and solving for m, we obtain
the LES expenditure function

c(p, u) = u
n∏

i=1

(pi/βi)
βi +

n∑
i=1

piγi. (2.41)

This provides a very convenient way to compute true cost of living indices or exact compensating
variations required to change prices from p0 to p1. We will return to this later when we discuss
welfare measures.

As it turns out, the LES model cannot describe a system which contains inferior or comple-
mentary commodities or groups of commodities.

Multiplying (2.39) through by pi, and letting ci = piqi be the expenditure on good i, we
obtain

ci = piγi + βi

m−
n∑

j=1

pjγj

 (2.42)

= βim+

piγi − βi

n∑
j=1

pjγj

 , i = 1, ..., n.

Letting Γ = diag{γ} be an n× n diagonal matrix and ι = (1, 1, ..., 1)T be an n-vector of ones,
we can write

c = βm+ (I − βιT)Γp, (2.43)

where, c = (p1q1, p2q2, ..., pnqn)
T and p = (p1, ..., pn)

T are the n-vector of expenditures and
prices, respectively. Finally, letting D = (I − βιT)Γ be an n× n matrix, we can write

c = βm+Dp. (2.44)
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We see that the LES model expresses expenditures as a linear function of prices and income,
which justifies its name. However, although linear in the variables m and p, the model is
nonlinear in the structural parameters γ and β, and thus to estimate it we will need to use
nonlinear econometric methods.

To be more precise, the model is linear in the extended-form parameters β and D, but
this would entail estimation of the n parameters in β and the n2 parameters in D, which
gives a total of n(n + 1) parameters, instead of the only 2n structural parameters in γ and
β. In fact, there are only 2n− 1 structural parameters to be estimated, since the summing-up
constraint m = ιTc implies that one (any) of the equations can be deleted in estimation, and
its parameters uniquely determined once we obtain estimates of the other equations.

2.3.1. Estimation of the LES model

Assume now that we have a sample of household consumption data {qt,pt,mt}, for house-
holds t = 1, ..., T , and define the vector of budget shares wt for household t as

wt =


p1tq1t/mt

p2tq2t/mt

...
pntqnt/mt


n×1

, t = 1, ..., T.

We can write the regression model for wt as

wt = β +Dpt/mt + ut, t = 1, ..., T, (2.45)

such that D = (I − βιT)Γ;

Γ = diag{γ};

γ > 0;β > 0;

ιTβ = 1;

ιTD = 0T,

where ut = (ut1, ut2, ..., utn)
T is a n × 1 error vector. Because of the summing-up condition

mt = ιTct (which implies the ιTD = 0T condition), the variance-covariance matrix of ut, given
by E(utu

T
t ), is singular. To achieve identification of the model, we will drop the equation of

one of the n goods and consider the remaining (n − 1)-dimensional system of demands. Note
that we may drop anyone of the equations without affecting the estimation results, so we will
drop the nth good, and consider estimation of the remaining (n − 1) demand equations. In
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what follows, all quantities that up to now had dimension n will, from here on and
until the end of this section, have dimension (n− 1).

We will assume that

ut =


ut1

ut2
...

ut(n−1)

 ∼MVN(n−1)

(
0(n−1)×1,Σ(n−1)×(n−1)

)
, t = 1, ..., T, (2.46)

where

Σ =


σ11 σ12 σ1(n−1)

σ21 σ22 σ2(n−1)

...
σ(n−1)1 σ(n−1)2 σ(n−1)(n−1)


(n−1)×(n−1)

. (2.47)

Now let θ = (β,γ) be the parameters in the model and define

xt(θ) = βmt +Dpt, (2.48)

to be the nonlinear mean function we wish to estimate, so that

ct = xt(θ) + ut, t = 1, ..., T. (2.49)

The density of ut is given by

p(ut|Σ) = (2π)−(n−1)/2 |Σ|−1/2 exp{−1
2u

T
t Σ−1 ut}.

Therefore, the density of ct is

p(ct|θ,Σ) = (2π)−(n−1)/2 |Σ|−1/2 exp
{
−1

2(ct − xt(θ))
TΣ−1 (ct − xt(θ))

}
|J |,

where the Jacobian of the transformation |J | = 1. Hence, the log-likelihood function of the
sample is

ℓ(θ,Σ) = −T (n− 1)

2
log(2π)− T

2
log |Σ| − 1

2

T∑
t=1

(ct − xt(θ))
TΣ−1 (ct − xt(θ)). (2.50)

To maximize the likelihood in (2.50) we will follow a four-step procedure that is standard in
dealing with likelihoods of normal (linear and nonlinear) regression models: First, we will obtain
the ML estimator of the variance-covariance matrix of the errors Σ as a function of the mean
function parameter vector θ. Second, we will use the ML estimator of Σ to concentrate the
likelihood in terms of the parameter vector θ only. Third, we will maximize the concentrated
likelihood to obtain the ML estimator of θ. Fourth, we will obtain the Information Matrix of
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the model and use standard asymptotic theory to obtain the asymptotic distribution of the ML
estimators along with consistent estimators for the quantities in this distribution. Because of
the importance of this four-step procedure in applied work where normal errors are frequently
assumed, we will describe it in detail. In many papers of the literature (for example Parks
(1971)) certain steps of this procedure are omitted as “obvious” or “well-known”, assuming
that the reader can provide the omitted steps for him- or herself.

1. Since |Σ| = |Σ−1|−1, (2.50) can be expressed purely as a function of the inverse matrix
Σ−1 as

ℓ(θ,Σ) = −T (n− 1)

2
log(2π) +

T

2
log |Σ−1| − 1

2

T∑
t=1

(ct − xt(θ))
TΣ−1 (ct − xt(θ)). (2.51)

By the invariance of the ML estimator to monotone transformations, the ML estimator of Σ is
the inverse of the ML estimator of Σ−1, so we can compute the ML estimator of Σ by partially
differentiating (2.51) with respect to the inverse Σ−1 which is simpler, and solve the resulting
equation. We then have

∂ℓ

∂(Σ−1)
=
T

2
Σ− 1

2

T∑
t=1

(ct − xt(θ)) (ct − xt(θ))
T. (2.52)

Setting this equal to zero and solving for Σ, we obtain the ML estimator of the variance-
covariance of the errors as

Σ̂(θ)mle =
1

T

T∑
t=1

(ct − xt(θ)) (ct − xt(θ))
T. (2.53)

The ML estimator of Σ is exactly what we would expect it to be, namely the matrix of sums
of squares and cross-products of the residuals, divided by the sample size (without correction
for the degrees of freedom).

2. We now wish to substitute the ML estimator in (2.53) back into the log-likelihood function
in (2.51). Observing that the trace of a scalar is just the scalar itself and that the trace of a
matrix product is invariant to a cyclic permutation of the factors of the product, we obtain

(ct − xt(θ))
TΣ−1 (ct − xt(θ)) = Tr

(
(ct − xt(θ))

TΣ−1 (ct − xt(θ)
)

= Tr
(
Σ−1(ct − xt(θ)) (ct − xt(θ)

T
)
.
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Summing over t yields
T∑
t=1

(ct − xt(θ))
TΣ−1 (ct − xt(θ)) =

T∑
t=1

Tr
(
(ct − xt(θ))

TΣ−1 (ct − xt(θ)
)

= Tr
(
Σ−1

T∑
t=1

(ct − xt(θ)) (ct − xt(θ)
T

)
= Tr

(
Σ−1TΣ

)
= T (n− 1).

Thus the concentrated log-likelihood function that corresponds to (2.50) is

ℓc(θ) = −T (n− 1)

2
(log(2π) + 1)− T

2
log

∣∣∣∣∣ 1T
T∑
t=1

(ct − xt(θ)) (ct − xt(θ)
T)

∣∣∣∣∣
= −T (n− 1)

2
(log(2π) + 1)− T

2
log |Σ̂(θ)|.

It is customary to aggregate all constants that do not depend on the parameter θ into a constant
C and write the concentrated log-likelihood function as

ℓc(θ) = C − T

2
log |Σ̂(θ)|. (2.54)

3. Next we wish to obtain the ML estimator of the mean function parameter vector θ =

(β,γ). From (2.54) we see that to obtain θ̂mle we will need to minimize the logarithm of the
determinant of the contemporaneous covariance matrix Σ̂(θ). This can be done quite easily be
using the rule for computing derivatives of logarithms of determinants given in the Appendix.
This rule states that if A is a nonsingular square matrix, then the derivative of log |A| with
respect to the ij-th element of A is the ji-th element of A−1. By the chain rule, the derivative
of log |Σ̂(θ)| with respect to θh is

∂ log |Σ̂(θ)|
∂θh

=

n−1∑
i=1

n−1∑
j=1

∂ log |Σ̂(θ)|
∂σij

∂σij(θ)

∂θh

=

n−1∑
i=1

n−1∑
j=1

(
Σ−1(θ)

)
ji

∂σij(θ)

∂θh

= Tr
(
Σ−1(θ)

∂Σ(θ)

∂θh

)
.

It is now easy to see that
∂Σ(θ)

∂θh
= − 2

T

T∑
t=1

ut(θ)
∂xt(θ)

∂θh
,
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from which the gradient of (2.54) can be seen to be

∇θℓ
c(θ) =

T∑
t=1

XT
t (θ) Σ(θ)−1 (ct − xt(θ)) , (2.55)

where Xt(θ) is the (n− 1)× 2n− 1 matrix with typical element

Xt,ji(θ) ≡
∂xti(θ)

∂θj
.

θ =



β1

β2
...

βn−1

γ1

γ2
...
γn


2n−1

, xt(θ) =



p1tγ1 + β1

mt −
n∑

j=1

pjtγj


p2tγ2 + β2

mt −
n∑

j=1

pjtγj


...

pn−1,tγn−1 + βn−1

mt −
n∑

j=1

pjtγj




(n−1)×1

(2.56)

Given β, we can write
ch − βmh = (I − βιT)ph γ + uh (2.57)

or
yh = xh γ + uh. (2.58)

This a linear regression-through-the-origin model. Stacking the data and error terms across
households, we can write

Y = X Γ+U , (2.59)

where, Γ = diag{γ} is an (n− 1)× (n− 1) matrix and

Y =


yT
1

yT
2
...

yT
N


N×(n−1)

, X =


xT
1

xT
2
...

xT
N


N×(n−1)

, U =


uT
1

uT
2
...

uT
N


N×(n−1)

. (2.60)

Assuming that the errors across households are iid, our assumption regarding uh yields that

U ∼MVNN(n−1)

(
0N(n−1)×1, IN ⊗Σ

)
. (2.61)

Under these assumptions, the equation in (2.59) is a (linear) Seemingly Unrelated Regression
(SUR) model, and can thus be estimated by Generalized Least Squares (GLS) methods.
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2.3.2. An Alternative Strategy for the Estimation of the LES model

Assume now that we have an iid sample of household consumption data for N households
{ci,pi,m}, where ci is the N -vector of observations on the expenditure for the ith commodity,
pi is the N -vector of prices for the ith commodity, m is the N -vector of observations on total
expenditure (income). Using (2.42) we can write the regression model for the expenditure on
the ith commodity as

ci = γipi + βi

m−
n∑

j=1

γjpj

+ ui, i = 1, ..., n. (2.62)

where ui is a N -vector of unobserved random disturbances, and βi and γi are are unknown
scalar parameters to be estimated, subject to the constraint that

∑n
i=1 βi = 1. This is a system

of n equations (one for each commodity) with N observations for each equation.
The constraint on the βi’s and the fact that total expenditure m is the sum of the ci’s imply

that
∑n

i=1 ui = 0. Thus, one of the equations (2.62) is completely redundant in the sense that
using the information contained in any n−1 of the equations we can obtain the nth equation by
an appropriate linear combination. We are dealing with an allocation problem, and it suffices
to allocate n − 1 of the commodities, the last is a residual. For this reason we shall consider
the reduced system which consists of the equations (2.62), but with the nth equation deleted.
This choice is arbitrary, but since the equations can be put in any order the choice does not
matter.15 For the rest of this section, all quantities that up to now had dimension
n will, from here on and until the end of this section, have dimension (n− 1).

It will be convenient to express the reduced system in two different forms which alternatively
focus on the set of β coefficients and on the γ coefficients.

1. A typical equation in the system may be written as follows to provide a regression equation
for γi’s given the βi’s

(ci − βim) =
[
−βip1, · · · , (1− βi)pi, −βipi+1, · · · , −βipn

]

γ1

γ2
...
γn

+ ui. (2.63)

15The linear restriction on the ui’s means that the covariance matrix for the full system is singular. Barten [1]
shows for a different demand model that maximum likelihood estimation of the full system reduces to maximum
likelihood for the reduced system. A similar formal argument can be made in the case of the linear Linear
Expenditure System.
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This equation can be written in a more compact form as

yi = xiγ + ui, i = 1, ..., n. (2.64)

The complete statistical system excluding the last equation can be written as
y1

y2
...

yn−1


N(n−1)×1

=


x1 0

x2

0
. . .

xn−1


N(n−1)×N(n−1)


γ

γ
...
γ


N(n−1)×1

+


u1

u2

...
un−1


N(n−1)×1

(2.65)
or as

Y = X(β)Γ+U , (2.66)

where Γ = ι⊗ γ, and we have written the matrix X as X(β) to remind us that the data in it
are conditional on the βi’s.

2. Alternatively, a typical equation may be written as follows to provide an equation for the
βi’s given the γi’s

(ci − γipi) = (m−
n∑

j=1

γjpj)βi + ui, i = 1, ..., n, (2.67)

or more concisely,
wi = zβi + ui, i = 1, ..., n. (2.68)

The complete statistical system excluding the last equation can be written as
w1

w2

...
wn−1


N(n−1)×1

=


z

z 0

0
. . .

z


N(n−1)×(n−1)


β1

β2
...

βn−1


(n−1)×1

+


u1

u2

...
un−1


N(n−1)×1

(2.69)

or as
W = Z(γ)β +U , (2.70)

where we have written the matrix Z as Z(γ) to remind us that the data in it are conditional
on the γi’s.

The random disturbances (u1h, ..., u(n−1)h) for observation h are assumed to come from a
multivariate normal distribution with mean zero and covariance matrix Σ. Disturbances across
different households are assumed to be uncorrelated. Thus, the random disturbance vector U

has E(U) = 0 and E(UUT) = Ω = Σ⊗I, where Σ is the (n−1)×(n−1) covariance matrix of
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the multivariate normal distribution, where I is a N ×N identity matrix and where ⊗ denotes
the Kronecker product operation. The matrix Σ given by

Σ =


σ11 σ12 σ1(n−1)

σ21 σ22 σ2(n−1)

...
σ(n−1)1 σ(n−1)2 σ(n−1)(n−1)

 . (2.71)

is assumed to be positive definite and symmetric.
Under these assumptions for U , both the “Y ,X,γ given β” model in (2.66) and the

“W ,Z,β given γ” model in (2.70) are Nonlinear Seemingly Unrelated Regression (NSUR)
models, and can thus be estimated by Nonlinear Generalized Least Squares (NGLS) methods.

2.4. Duality

In mathematics there are many notions of duality or conjugacy, among which is Lagrange
duality, Frechnel conjugasy. There are dual problems, dual functions, dual vector spaces, and
so on.

The following theorem describes the way in which the [UMP] and the [EMP] are dual prob-
lems to each other.

Theorem 4. (Duality I) Assume that the utility function u(q) is continuous and locally
nonsatiated, and that prices are strictly positive, i.e., p � 0.

(i) If q∗ = g(p,m) solves the [UMP] for some money income m > 0, then
• q∗ also solve the [EMP] for utility level u = u(q∗); and
• c(p, v(p,m)) = m.

(ii) If q∗ = h(p, u) solves the [EMP] for some utility level u > 0, then
• q∗ also solve the [UMP] for money income m = pTq∗; and
• v(p, c(p, u)) = u.

Theorem 5. (Duality II) Assume that the utility function u(q) is continuous, and let u >
u(0) and m > 0. Then

(i) g(p,m) = h(p, v(p,m)); and
(ii) h(p, u) = g(p, c(p, u)).

Theorem 6. (Properties of the Expenditure Function) If u(q) is continuous, strictly
quasi-concave and locally non-satiated, then the associated expenditure function c(p, u) is

(i) continuously differentiable in p and u,
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(ii) homogeneous of degree 1 in p,
(iii) concave in p,
(iv) strictly increasing in u, and nondecreasing in pj for any j = 1, ..., n,
(v) convex in u if u(q) is concave,

(vi) Shephard’s Lemma: has own-price partial derivatives which are the compensated (Hick-
sian) demand functions, i.e.,

hi(p, u) =
∂c(p, u)

∂pi
, i = 1, ..., n.

(vii) Logarithmic form of Shephard’s Lemma: the budget share wi = piq
∗
i /m of good i is

given by

wi(p, u) =
∂ log c(p, u)

∂ log pi
, i = 1, ..., n.

Proof: We prove each property in turn.
(i) Follows directly from the continuity and differentiability of u.
(ii) H1◦ in p. c(p, u) = min{pTq|u(q) = u} so c(θp, u) = θc(p, u) for all θ > 0.
(iii) ∩ in p. Take any two price vectors p0 and p1 and set pθ = θp0 + (1 − θ)p1, for some

θ ∈ (0, 1). Let qθ be optimal for pθ and u, i.e., xθ = h(pθ, u). Then

c(pθ, u) = qθ
T
pθ = θqθ

T
p0 + (1− θ)qθ

T
p1.

The result now follows from the observation that qθ is not optimal at p0 or p1, i.e.,

c(pj , u) ≤ qθ
T
pj , j = 0, 1.

(iv) ↗ in u. Follows directly from nonsatiation since more u requires more q in at least one
coordinate commodity.

(v) Shephard’s Lemma. Since c(p, u) is concave in p, it’s partial derivatives with respect to
p exist. Let

z(p) = pTq0 − c(p, u)

where q0 = h(p0, u). Now z(p) ≥ 0 by construction, since pTq0 is always greater or equal to
the minimal cost of achieving u under prices p. But z(p) is known to achieve a minimum of 0
at p = p0, so z(p) has a stationary point at p0, i.e.,

∂z(p)

∂pi

∣∣∣∣
p=p0

= q0i −
∂c(p, u)

∂pi

∣∣∣∣
p=p0

= 0.

Note that this equality depends on the strict convexity of preferences which we have assumed.
Thus, ∂c(p, u)/∂pi = hi(p, u) as asserted.
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The property of the expenditure function c(p, u) that its derivative with respect to the ith
price pi yields the Hicksian demand for good i, hi(p, u), is extremely useful in applications.
Exercise: Check that the CES preferences in Examples 1 and 2 satisfy Theorem 1. Verify
Shephard’s Lemma for this specification.

In applications, one starts by estimating Marshallian demands q∗ = g(p,m), as the quan-
tities in this expression (quantity demanded, prices, and income) are observable. For welfare
analysis, however, one invariably needs the compensated Hicksian demands q∗ = h(p, u), since
in these later quantities utility appears explicitly, and we can control its level. In short,
Marshallian demands are estimable from data but not very useful for welfare analysis, while
Hicksian demands are appropriate for welfare analysis but un-estimable directly as we lack data
for utilities.

The strategy usually employed is to first estimate the Marshallian demands g(p,m) from
the observable price-income data and then derive the corresponding Hicksian demands h(p, u).
Given the Marshallian demand functions it is straightforward to obtain Hicksian demands by
simply substituting m in g(p,m) with the expenditure function c(p, u),

q∗ = g(p,m) = g(p, c(p, u)) = h(p, u).

The reverse can also be done by substituting u in the Hicksian demands with the indirect utility
function v(p,m),

q∗ = h(p, u) = h(p, v(p,m)) = g(p,m).

This means that the two demand functions g(p,m) and h(p, u) cross at the current price level
p. This fact will be used latter on.

2.4.1. Roy’s Identity

Finally, we may observe that the Marshallian demands g(p,m) may be obtained from the
indirect utility function v(p,m)

Exercise: Verify Roy’s identity for the CES preferences in Example 1.

Theorem 7. The following is true
(i) Roy’s Identity:

gi(p,m) = −∂v(p,m)/∂pi
∂v(p,m)/∂m

, i = 1, ..., n. (2.72)
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(ii) Logarithmic Form of Roy’s Identity: Let wi(p,m) = pigi(p,m)/m be the budget share of
good i. Then

wi(p,m) = −∂ log v(p,m)/∂ log pi
∂ log v(p,m)/∂ logm

, i = 1, ..., n. (2.73)

(iii) Modified Form of Roy’s Identity:

wi(p,m) = −∂v(p,m)/∂ log pi
∂v(p,m)/∂ logm

, i = 1, ..., n. (2.74)

(iv) Diewert’s Modified Form of Roy’s Identity:

wi(p) =
pi∂v(p)/∂pi∑n
j=1 pj∂v(p)/∂pj

, i = 1, ..., n. (2.75)

Proof: (i) Differentiate the identity

v(p, c(p, u)) ≡ u

with respect to pi to obtain
∂v

∂pi
+
∂v

∂m

∂c

∂pi
≡ 0,

for m = c, and use that q∗i = ∂c/∂pi to obtain Roy’s identity

q∗i =
∂c

∂pi
= −∂v/∂pi

∂v/∂m
= gi(p,m), i = 1, ..., n.

Alternatively, consider the Lagrangian of the [UMP], evaluated at the optimal values q∗ and
λ∗ and considered as a function of p and m:

L (p,m; q∗, λ∗) = u(q∗) + λ∗(m− pTq∗).

Assuming an interior solution, the Envelope Theorem yields
∂v(p,m)

∂pi
=
∂L (p,m; q∗, λ∗)

∂pi
= −λ∗q∗i , i = 1, ..., n;

∂v(p,m)

∂m
=
∂L (p,m; q∗, λ∗)

∂m
= λ∗.

Recall that, although q∗ and λ∗ depend on p and m, the Envelope Theorem says that we don’t
need to consider this dependence when we differentiate the value function (here the Lagrangian)
at the optimum, and we can treat q∗ and λ∗ as fixed! Dividing the two equations yields the
result.

For a third derivation of the result (which is also the original derivation offered by Roy,
1942), note that at equilibrium, we must have

dv = 0 and
n∑

i=1

q∗i dpi = dm,
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or
∂v

∂p1
dp1 +

∂v

∂p2
dp2 + · · ·+ ∂v

∂pn
dpn = − ∂v

∂m
dm

and

q∗1dp1 + q∗2dp2 + · · ·+ q∗ndpn = dm,

which taken together imply

∂v/∂p1
q∗1

= · · · = ∂v/∂pn
q∗n

= − ∂v

∂m

or

q∗i = −∂v/∂pi
∂v/∂m

, i = 1, ..., n.

(ii) Recall that
∂ log v

∂ log pi
=

∂v

∂pi

pi
v

and ∂ log v

∂ logm
=

∂v

∂m

m

v
,

so that, using the result in part (i),

wi ≡
piq

∗
i

m
= −pi

m

∂v/∂pi
∂v/∂m

= − (∂v/∂pi) (pi/v)

(∂v/∂m) (m/v)

= −∂ log v/∂ log pi
∂ log v/∂ logm

, i = 1, ..., n.

(iii) This part is considerably harder to prove rigorously. It was first stated and proved by
Diewert (1974, p. 126) using duality theory. For now we can satisfy ourselves by appealing to
the ‘invariance’ of the direct and indirect utility functions to strictly increasing transformations
(if preferences are represented by u and v, they are also represented by g(u) and g(v) provided
that g is strictly increasing) and noting that exp(log v) = v is in this sense ‘equivalent’ to log v

since g(·) = exp(·) is strictly increasing.

To summarize, by differentiating the expenditure function with respect to prices we obtain
the Hicksian demand functions via Shephard’s Lemma, while by differentiating the indirect
utility function we get the Marshallian demands via Roy’s identity. For empirical purposes, it
is often convenient to start with estimating either c(p, u) or v(p,m), and then derive estimates
of demands h(p, u) and g(p,m) by elementary differentiation or direct substitution.
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As a matter of terminology we have the following conventions for cross derivatives introduced
by Hicks:

∂hi/∂pj > 0 qi, qj are substitutes

∂hi/∂pj < 0 qi, qj are complements

∂gi/∂pj > 0 qi, qj are gross substitutes

∂gi/∂pj < 0 qi, qj are gross complements.

We state a general theorem regarding various properties of the demand functions and then
discuss their implications.

Theorem 8. Hicksian and Marshallian demands have the following properties:
(i) Adding-up:

pTh(p, u) = pTg(p,m) = m,

i.e., the consumer spends all his income on the available commodities.
(ii) Homogeneity of degree 0 in p: For all θ ∈ R,

h(θp, u) = h(p, u) and g(θp, θm) = g(p,m),

i.e., the consumer does not suffer from money illusion.
(iii) Symmetry: For all i, j = 1, ..., n,

∂hi(p, u)

∂pj
=
∂hj(p, u)

∂pi
.

(iv) Negative semi-definiteness: For all ξ ∈ Rn,
n∑

i=1

n∑
j=1

ξiξj
∂hi(p, u)

∂pj
≤ 0, and

n∑
i=1

pi
∂hj(p, u)

∂pi
= 0.

Proof: (i) Follows directly from nonsatiation which implies that optimal demands exhaust the
available income.

(ii) Since c(p, u) is homogeneous of degree one in p, its derivatives, h(p, u), are homogeneous
of degree zero in p: f(θp) = θf(p) ⇒ ∇p(f(θp)) = ∇pf(θp)×∇p(θp) = θ∇pf(θp) = θ∇pf(p),
so ∇pf(θp) = ∇pf(p).

(iii) Symmetry is a trivial consequence of the analytic fact that the order of differentiation
in the cross partial ∂2c(p, u)/∂pi∂pj doesn’t matter16.

16Symmetry of second derivatives, also called the equality of mixed partials, is also known as Young’s theorem,
or Schwarz’s theorem, or Clairaut’s theorem.
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(iv) Negative semi-definiteness is a consequence of the concavity in p of c(p, u), while the
singularity constraint is a consequence of (i).

The first two results in Theorem 2 yield the following results.

Theorem 9. (see Deaton and Muelbauer (1980) page 16) Differentiating the adding-up property

pTg(p,m) = m

(i) with respect to m we obtain

Engel Aggregation:
n∑

i=1

pi
∂gi(p,m)

∂m
= 1,

and (ii) with respect to pi we obtain

Cournot Aggregation: qi +

n∑
j=1

pj
∂gj(p,m)

∂pi
= 0, i = 1, ..., n.

(iii) Also, Euler’s theorem and the homogeneity of degree 0 property of g(p,m) yields

Euler Aggregation: m
∂gi(p,m)

∂m
+

n∑
j=1

pj
∂gi(p,m)

∂pj
= 0, i = 1, ..., n.

In terms of price and income elasticities eij and ηi respectively, and budget shares wi =

piq
∗
i /m the above identities can be restated as follows:

Theorem 10. The following identities hold:

(i) Engel Aggregation:
n∑

i=1

wiηi = 1, (2.76)

(ii) Cournot Aggregation: wi +
n∑

j=1

wje
g
ij = 0, i = 1, ..., n. (2.77)

(iii) Euler Aggregation: ηi +

n∑
j=1

egij = 0, i = 1, ..., n. (2.78)

Example 4. The following Table presents demand price and income elasticity estimates for 10
commodities (9 food items and a nonfood aggregate) for the U.S., along with the budget shares
for each commodity. Verify that the equalities of Theorem 4 are satisfied.
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Table 1. Demand price and income elasticity estimates for 10 commodities (9
food items and a nonfood aggregate) in the U.S..

Uncompensated Own- and Cross- Price Elasticities, eij Income Budget
Commodity 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Elast. ηi Share wi

1. Cereals & Bakery −0.93 0.04 0.02 0.14 0.13 0.45 −0.04 −0.42 −0.06 0.39 0.28 .0151
2. Meat 0.02 −0.40 0.05 0.00 0.16 −0.12 −0.09 0.23 0.20 −0.69 0.64 .0252
3. Eggs 0.24 1.00 −0.73 0.66 −0.47 −0.54 0.27 0.25 −0.20 0.22 −0.69 .0012
4. Dairy 0.16 0.00 0.08 −0.91 −0.09 0.26 0.20 -0.26 0.17 −0.59 0.97 .0117
5. Fruits & Vegetables 0.14 0.32 −0.05 −0.07 −0.58 −0.15 0.11 0.20 −0.03 −0.16 0.27 .0183
6. Other foods 0.33 −0.17 −0.04 0.15 −0.11 −0.62 0.05 0.12 0.00 −0.50 0.79 .0244
7. Nonalcoholic Beverages −0.06 −0.22 0.03 0.21 0.13 0.08 −0.77 −0.08 0.18 −0.37 0.86 .0093
8. Food Away From Home −0.15 0.13 0.01 −0.07 0.06 0.05 −0.02 −0.55 −0.12 −0.19 0.84 .0666
9. Alcoholic Beverages −0.05 0.24 −0.02 0.10 −0.02 0.00 0.10 −0.22 −0.50 −0.13 0.50 .0119
10. Nonfood 0.00 −0.03 0.00 −0.01 −0.01 −0.02 −0.01 −0.02 −0.02 −0.94 1.07 .8162
From Tables 13 and 20 of Okrent and Alston (2011). We omit the estimates’ standard errors to avoid cluttering the table.

Aside. (Homothetic preferences.) Note that the symmetry of the Hicksian demands in part
(iii) of Theorem 2 is not in general shared by the Marshallian demands. But if the utility
function is homothetic17, that is, if for every α > 0, u(α q) = αu(q), then the Marshallian
demands satisfy a similar symmetry, i.e.,

∂gi(p,m)

∂pj
=
∂gj(p,m)

∂pi
. (2.79)

For example, the CES utility function is homothetic and its Marshallian demands obey this
symmetry condition.

Recall that the Lagrange multiplier λ of the primal problem [UMP] is equal to the marginal
utility of income, and that this is generally a function of both prices p and income m, that is

∂v(p,m)

∂m
= λ(p,m).

Thus, we can generally rewrite Roy’s identity as

gi(p,m)λ(p,m) = −∂v(p,m)

∂pi
.

For homothetic preferences, however, λ is independent of the prices p, so for homothetic pref-
erences Roy’s identity becomes

gi(p,m)λ(m) = −∂v(p,m)

∂pi
.

The symmetry condition (2.79) now follows by the invariance of mixed partial derivatives
of v(p,m) to the order of differentiation. That λ is independent of p implies a homothetic

17A homothetic function is an ordinal version of a homogeneous function of degree 1, i.e., it is a homogeneous
function of degree 1 and all its monotonic transformations.
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preference ordering with corresponding linear Engel curves and unitary income elasticities for
all goods. (see Salvador Barbera, Peter Hammond, Christian Seidl (1999), Handbook of Utility
Theory: Principles, Springer, p. 497-498.)

We know that homothetic preferences lead to constant budget shares given prices. Therefore,
g(p,m) = mβ(p) for some scalar function β(p) and, if we were to take the homogeneous
representation of utility, which necessarily exists, then doubling m doubles demands and would
double utility. Thus, more generally, v(p,m) = ϕ(m/a(p)) for some scalar function a(p) and
some increasing ϕ(·), and c(p, u) = ϕ−1(u)a(p). The function a(p) can be interpreted as a
price index which is independent of utility u.

Preferences � are homothetic if q1 � q2 ⇔ βq1 � βq2 for any β > 0. With homothetic
preferences there is really only one indifference curve: any indifference curve is a “radial blow-
up” of any other. It is intuitively obvious but surprisingly hard to prove that the demand
system in this case can be written as g(p,m) = mh(p, 1) = mβ(p) if and only if preferences are
homothetic. With homothetic preferences all income elasticities are equal to 1 – a restriction
that appears to be false for many goods. A classic result is that with identical homothetic
preferences, aggregate demand is “as if” there were a single consumer with the same preferences
and the total income of all consumers. (The proof is easy and left as an exercise). A more
subtle result is that if different consumers have different homothetic preferences, and each
consumer has a fixed share of total aggregate income (as prices and total income are varied)
then aggregate demand is “as if” there were a single consumer with some homothetic preference
ordering (see John Chipman, 2006 “Aggregation and Estimation in the Theory of Demand”
History of Political Economy 38 (annual supplement), pp. 106-125.).

The n×n Jacobian matrix of the compensated demands, or Hessian matrix of the expenditure
function, with respect to p

S =

[
sij ≡

∂hi(p, u)

∂pj

]
i,j=1,...,n

=
∂h(p, u)

∂pT
=
∂2c(p, u)

∂p ∂pT
, (2.80)

is often called the Slutsky matrix, plays an extremely important role: it represents the demand
response to changes in prices holding utility constant.

It is useful to have an expression for S in terms of Marshallian demands, since they can be
estimated. This can be done by exploiting the fact we have already mentioned in our discussion
above that the Marshallian and Hicksian demands cross at p,

gi(p, c(p, u)) = hi(p, u), i = 1, ..., n,
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so
∂gi
∂pj

+
∂gi
∂m

∂c

∂pj
=
∂hi
∂pj

≡ sij , i, j = 1, ..., n

and thus
sij =

∂gi
∂pj

+
∂gi
∂m

qj , i, j = 1, ..., n. (2.81)

The effect of an infinitesimal change in pj to the Marshallian demand for good i is thus give
by

∂gi
∂pj

=
∂hi
∂pj

− ∂gi
∂m

qj , i, j = 1, ..., n.

We see that this effect has been decomposed into two parts: (a) a pure substitution effect, and
(b) a pure income effect. This is the classical Slutsky decomposition. If pj , say, increases, the
optimizing consumer increases his consumption of substitutes and lowers his consumption of
complements, i.e. adjusts along the same indifference curve according to ∂hi/∂pj , and also
lowers proportionally – according to ∂gi/∂m – his consumption of all goods by qj∂gi/∂m,
reflecting the fact his real income is now lower.

The following theorem gives the result.

Theorem 11. The n × n matrix of substitution effects defined in (2.80) can be expressed in
terms of the Marshallian demands as

S =
∂g(p,m)

∂pT
+
∂g(p,m)

∂m
g(p,m)T, (2.82)

and is (i) negative semidefinite and (ii) symmetric, (iii) has rank n− 1, and (iv) its diagonal
elements are negative.

Proof: Since the expenditure function is concave in prices, the Slutsky matrix is symmetric
and negative semidefinite.

The Slutsky decomposition is somewhat more convenient in elasticity form, which can be
easily obtained by multiplying (2.81) through by pj/qi

ehij =
∂gi
∂pj

pj
qi

+
∂gi
∂m

m

qi

pjqj
m

= egij + wj ηi, i, j = 1, ..., n (2.83)

where egij and ehij are the Marshallian and Hicksian price elasticities respectively, ηi is the income
elasticity of commodity i, and wj = pjqj/m is the budget share of commodity j. Note that
the symmetry requirement sij = sji does not imply that the corresponding Hicksian demand
elasticities are equal, unless the budget shares of the two goods wi and wj are equal.

Equation (2.83) allows us to compute the compensated price elasticities given the uncom-
pensated price and income elasticities. For normal goods ηi > 0 and thus ehij > egij , while for
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inferior goods ηi < 0 and thus ehij < egij . Focusing only on the own-price elasticities egi and ehi ,
we have that for normal goods egi < ehi < 0, while for inferior goods ehi < egi . Interestingly, egi
could even be positive in the latter case (see the discussion of the Giffen good below), whereas
utility maximization implies that ehi is always negative. We see that for normal goods, the
Hicksian compensated demand curve is less responsive to price changes than is the Marshallian
uncompensated demand curve, since the uncompensated demand curve reflects both income
and substitution effects, while the compensated demand curve reflects only substitution effects.

2.4.2. Barten’s Fundamental Matrix Equation of Demand Theory

The symmetry of the Slutsky matrix sij = sji yields the Slutsky equation

∂gi
∂pj

+
∂gi
∂m

qj =
∂gj
∂pi

+
∂gj
∂m

qi, i, j = 1, ..., n. (2.84)

2.4.3. The Demand Integrability Problem

A problem that occupied economic theorists for several decades was to identify the restric-
tions that the assumption of utility maximization placed on demand functions. Another way
to phrase this issue is: given a demand system is it the case that there is a utility function
that generates it, and if so, how can it be recovered? Applied mathematicians tend to call this
the inverse optimization problem. What was discovered is that under certain conditions, it is
possible to solve differential equations to recover a utility function from a demand system. The
following reasonably general result is taken from Hurwicz and Uzawa (1971).

Definition 1. A system of Marshallian demands g(p,m) : Rn
++ × Rn

+ → Rn
+ is called inte-

grable if

(i) they are positive;
(ii) they satisfy the adding-up condition pTg(p,m) = m;

(iii) they are homogeneous of degree 0 in (p,m);
(iv) the Slutsky matrix of substitution effects

S =
∂g(p,m)

∂pT
+
∂g(p,m)

∂m
g(p,m)T

is symmetric and negative semidefinite.

Conditions (i)-(iv) are called the integrability conditions.

Theorem 12 (Hurwicz–Uzawa Integrability Theorem). Assume that the demand system g(p,m) :

Rn
++ × Rn

+ → Rn
+ is integrable and that it satisfies the following boundedness condition on the
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partial derivative with respect to income: For every 0 � p � p ∈ Rn
++, there exists a finite

real number C such that for all m� 0

p ≤ p ≤ p ⇒
∣∣∣∣∂gi(p,m)

∂m

∣∣∣∣ ≤ C.

Let Q denote the range of g, i.e.,

Q = {g(p,m) ⊂ Rn
+ : (p,m) ∈ Rn

++ × Rn
+}.

Then there exists a utility function u : Q → R on the range Q such that for each (p,m) ∈
Rn
++ × Rn

+, g(p,m) is the unique maximizer of u(q) over the budget set {q ∈ Q : pTq ≤ m}.

We know from the Support Function Theorem or the Envelope Theorem that
∂c(p, u)

∂pi
= hi(p, u) = gi(p, c(p, v)).

Ignoring v for the moment, we have the total differential equation

c′(p) = g(p, c(p)). (2.85)

Following Hurwicz and Uzawa (1971), define the income compensation function as

µ(p;p0,m0) = c(p, v(p0,m0)),

which is a function p alone (p0 and m0 are fixed parameters). Now note that

µ(p0;p0,m0) = m0,

and that
∂µ(p;p0,m0)

∂pi
=
∂c(p; v0)

∂pi
= hi(p; v

0) = gi(p; c(p; v
0)) = gi(p;µ(p; p

0,m0)).

We have proven the following theorem.

Lemma 1. The function c : Rn
++ → R defined by c(p) := µ(p;p0,m0) is the solution to the

differential equation
c′(p) = g(p, c(p))

that satisfies the initial condition c(p0) = m0.

To summarize, the properties of adding up, homogeneity, negativity and symmetry are not
only necessary but also sufficient for consumer optimization. If Marshallian demands satisfy
these restrictions then there is a utility function u(q) which they maximize subject to the budget
constraint. We say in such a case that demands are integrable. The implied Hicksian demands
define the expenditure function through a soluble set of differential equations by Shephard’s
Lemma. We know a system of demands is integrable if any of the following hold:
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• They were derived as solutions to the primal or dual problem given a well specified
direct utility function.

• They were derived by Shephard’s Lemma from a cost function satisfying the appropri-
ate requirements.

• They were derived by Roy’s identity from an indirect utility function satisfying the
appropriate requirements.

• They satisfy adding up, homogeneity, symmetry and negativity.

Aside. The symmetry of the Slutsky matrix implies that ∂hi/∂pj = ∂hj/∂pi, and thus the
compensated demand vector h(p, u) has

curlh = 0.

This means that the compensated demand vector h(p, u) forms a conservative vector field. This
in turn implies that there exists a scalar potential energy function c(p, u) such that

h = ∇p c.

In economics this scalar “energy” function is the expenditure function, and the above relation
is Sheppard’s Lemma.

Afriat (1980), Demand Functions and the Slutsky Matrix, p.3:
The Slutsky theory is a familiar topic in economics. Also, it has its own mathematical interest.
But it has no value for a heavy matter such as the empirical foundation of classical utility as
Slutsky and others thought. Slutsky even imagined that the immateriality of the order of utility
differentiations, instead of being merely a consequence of the continuity of second derivatives,
expressed indifference to the order of consumption (whether the main course comes before the
dessert or vice versa). Pareto’s notion (1897, pp. 251, 270, 539 ff.) was similar, as can be
gathered from Stigler (1965, p. 124), though for him it is instead a matter of integrations.
p. 8
Convexity [of the utility surfaces of a consumer] is characterized by the existence of a linear
support at any point...
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Figure 4. Engel curves.

2.5. The Giffen Good

The own-Slutsky effect, sii, is necessarily negative since it is the demand response along an
indifference curve to a change in a good’s own price (to see this, let ξ = (0, ..., 1, ..., 0)T be
the n vector with the ith element equal to 1 and all other elements equal to 0, in part (iv) of
Theorem 2). But note that, notoriously, the derivative of the Marshallian demand with respect
to own price

∂gi
∂pi

= sii − qi
∂gi
∂m

, i = 1, ..., n, (2.86)

can be positive if the very last term of the equation above, ∂gi/∂m, is sufficiently negative!
This is the infamous Giffen effect which Marshall introduced:

good i is Giffen if its Marshallian demand slopes upward, i.e., ∂gi
∂pi

> 0.

Obviously, this can only happen if xi is an inferior good, i.e., when ∂gi/∂m < 0, so much so,
that the second term in (2.86) overtakes sii. So a Giffen good must necessarily be inferior, but
an inferior good need not be Giffen.
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Of course, most goods have positive income effects, hence the usage normal goods to describe
cases in which ∂gi/∂m > 0. In terms of income elasticities, the following terminology is in use:

ηi < 0 i is an inferior good

ηi > 0 i is a normal good

0 < ηi < 1 i is a necessity

ηi > 1 i is a luxury.

It should be emphasized that “inferiority” can only be a local property: A good cannot be
inferior over the whole range of consumption or else it is not a good (i.e., a desirable) thing
but a “bad” thing that would never be consumed anyway (for example, garbage). This means
that it is impossible to generate Giffen behavior using commonly used specifications like Cobb-
Douglas and CES utility functions, since in these specifications either a commodity is globally
good or it is globally bad. As it turns out, it is quite hard to analytically construct utility
functions that exhibit the Giffen property. For this reason most authors of microeconomics
textbooks limit themselves to graphical representations and general arms waving, and do not
give any analytic examples of utility functions with Giffen behavior in a part of their domain.
The following example presents one such function.

Ernst Engel, 1821-1896, was a Prussian statistician, founder of the International Statistical
Institute and from 1860 to 1882 he was director of the Prussian statistical bureau in Berlin.
However, he is best known for the formulation of his Engel’s law, deriving on what is known
as the Engel curve.

Engel developed his famous curve in his book “Die Productions- und Consumtionsverhält-
nisse des Königreichs Sachsens” 1857, from observing and collecting data of the consumption
patterns of Belgian working-class families, and he related their level of income with their ex-
penditure in food and other goods. He observed that households with higher incomes tended
to allocate a lower share of their income to food than poorer households. The Engel curve
captures this inverse relation. His law is a reflection of this phenomenon and states this same
relation. As Engel himself expressed, the implication of this law is very interesting in the
macroeconomic sense as it implies that the higher the economic development of a country, the
lower the share of agriculture will be in aggregate production.

Example 5. The Wold-Jurèen (1953) utility function is given by

u(x1, x2) =
(x1 − 1)

(2− x2)2
,
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Figure 5. Ernst Engel (1821–1896)

with domain x1 > 1 and 0 ≤ x2 < 2. Figure 1 plots the indifference curves for the region of
interest x1 > 1, 0 < x2 ≤ 2. In this region, x1 is a Giffen good: an increase in the price of
x1 shifts the budget constraint to the dashed line and results in an increase in the quantity
demanded of x1. Note also the huge drop in the demand for the luxury good x2.

In empirical applications we are often interested in. Let p0 and p1 be two price levels and y

be the consumer’s income. The money metric indirect utility function defined by

ψ(p1; p0,m) = c(p1, υ(p0,m)),

measures the monetary compensation a consumer with money income m would require in order
to be indifferent between current prices p0 and new prices p1. Letting (p0,m0) and (p1,m1) be
two price-income states (say, the old and the new, respectively), an obvious measure of welfare
change is just the difference in indirect utility

υ(p1,m1)− υ(p0,m0).
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Figure 6. The Wold-Jurèen (1953) utility function.

In terms of the function ψ we may define two welfare measures: equivalent variation (EV) and
compensating variation (CV), given by

EV = ψ(p0; p1,m1)− ψ(p0; p0,m0) = ψ(p0; p1,m1)−m0

CV = ψ(p1; p1,m1)− ψ(p1; p0,m0) = m1 − ψ(p0; p1,m1)

EV measures the additional income a consumer would require to accept the new price-income
state.
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2.6. The Veblen Good

Another violation of the Law of Demand is presented by the Veblen good, named after the
American sociologist and economist Thorstein Veblen, who first identified conspicuous con-
sumption as a mode of status-seeking in The Theory of the Leisure Class (1899). Veblen goods
are types of luxury goods for which the quantity demanded increases as the price increases, an
apparent contradiction of the law of demand, resulting in an upward-sloping demand curve.
A higher price may make a product desirable as a status symbol in the practices of conspic-
uous consumption and conspicuous leisure. A product may be a Veblen good because it is a
positional good, something few others can own.

Conspicuous consumption is the spending of money on and the acquiring of luxury goods
and services to publicly display economic power (income and wealth). To the conspicuous
consumer, such a public display of discretionary economic power is a means of either attaining
or maintaining a given social status. The development of Thorstein Veblen’s sociology of
conspicuous consumption produced the term invidious or ostentatious consumption, that is,
the consumption of goods that is meant to provoke the envy of other people. Related to this
is the notion of conspicuous compassion, that is, the deliberate use of charitable donations
of money or property in order to enhance the social prestige of the donor, with a display of
superior socioeconomic status.

The classical formulation of consumer choice presented above cannot accommodate Veblen
goods, since the only possibility for an upward slopping demand curve there is the Giffen case,
which requires that the good in question be inferior. Clearly, a Veblen good must be a luxury,
not an inferior, good, and therefore it’s Marshallian demand curve with respect to own-price
must necessarily be downward slopping.

There is however an ingenuous modification of the classical setting introduced by Ng (1987),
yielding results that are in accordance with our intuitive notion of a Veblen good as described
above. The utility maximization problem that Ng considers is given by

max
(q1,...,qn)∈Rn

+

u(p1q1/pn, q2, ..., qn) such that
n∑

i=1

piqi = m, (2.87)

where u : Rn
+ → R is a quasiconcave function of its arguments, and qi, pi, i = 1, ..., n are

quantities demanded and prices of the i = 1, ..., n goods. The modification pertains to the
introduction of the p1q1/pn term in the utility function, where p1q1 is the value of the con-
sumption in the first good that will have the Veblen property, and pn is the price of the nth
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good that acts as numeraire18. Ng (1987) imagines that the Veblen good 1 is diamonds, and
the conspicuous consumption term p1q1/pn is the real money value expenditure for diamonds.
The consumer derives utility not from the amount of diamonds consumed q1, but from the real
money value expenditure for diamonds. If u(·) is assumed strictly increasing in its arguments,
then the more expensive relative to other goods diamonds are, the more utility the conspicuous
consumer derives from their consumption.

The Lagrangian of the problem is given by

L = u(p1q1/pn, q2, ..., qn) + λ(m−
n∑

i=1

piqi).

Assuming an interior solution, the first-order conditions for optimality are

∂L

∂(p1q1/pn)
=

∂u

∂(p1q1/pn)
− λ

∂p1q1
∂(p1q1/pn)

≡ u1 − λpn = 0, (2.88)

∂L

∂qi
=

∂u

∂qi
− λ

∂piqi
∂qi

≡ ui − λpi = 0, i = 2, ..., n,

∂L

∂λ
= m−

n∑
i=1

piqi = 0,

where subscripts of u denote partial differentiation with respect to the corresponding argument
of u.

3. Empirical Application: The Deadweight Loss of Christmas.

Joel Waldfogel’s (1993) American Economic Review paper provides a stylized (and contro-
versial) example of the application of the Carte Blanche principle. Waldfogel observes that
gift-giving is equivalent to an in-kind transfer and hence should be less efficient for consumer
welfare than simply giving cash. In January, 1993, he surveyed approximately 150 Yale under-
graduates about their holiday gifts received in 1992:

(i) What were the gifts worth in cash value?
(ii) How much the students be willing to pay for them if they didn’t already have them?
(iii) How much would the students be willing to accept in cash in lieu of the gifts. (Usually

higher than willingness to pay – an economic anomaly.)

18One could replace pn in p1q1/pn by a price index P of the prices of the i = 2, ..., n goods (the non-Veblen
goods) without altering the results of the analysis.
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For each gift, Waldfogel calculates the gift’s yield Yj = Vj/Pj . As theory (and intuition)
would predict, the yield was, on average, well below one. That is, in-kind gift giving ‘destroys’
value relative to the cost-equivalent cash gift.

The estimated value equation for gifts is (standard errors in parentheses):

log(valuei) = −0.314 + 0.964 log(pricei)
(−0.44) (0.08)

R2 = 0.656, n = 86, σ̂u = NA.

The Waldfogel article generated a surprising amount of controversy, even among economists,
most of whom probably subscribe to the Carte Blanche principle. To many readers, this article
seems to exemplify the well-worn gripe about economists, “They know the price of everything
and the value of nothing”. What is Waldfogel missing?

4. Empirical Application: Was Bread Giffen?
Science, at bottom, is really anti-intellectual. It always distrusts
pure reason and demands the production of objective facts.

— H. L. Mencken

Perhaps with something similar to the above quotation in mind, Roger Koenker (1977) has
called the Giffen good “the Loch Ness monster of economics”: it is rumored to exist in the deep,
murky lake of theoretical possibilities, but to date no one has ever been able to compellingly
document its existence (see also Stigler, 1948). In view, however, of the rationality of Giffen
behavior on the part of the consumer under certain circumstances discussed above, we should
perhaps be a little less ‘severe’ and liken it to the Tasmanian tiger instead: the Tasmanian tiger
is considered extinct today, but unlike the Loch Ness monster, it is an animal that certainly
existed in the recent past and may still be alive in the remote and uninhabited Tasmanian
forests. Likewise, Giffen behavior may very well have existed among the medieval peasants or
the post-industrial-revolution city poor, and may still be found among the poorest populations
on Earth.

Indeed, Jensen and Nolan (2008)
The budget data presented below are taken from Koenker (1977) who considered two studies

of the standard of living of English rural laborers conducted during the period 1787-1795 by the
Reverend David Davies and Mr. Frederick Morton Eden. These were among the first examples
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of studies in the long and honorable tradition of econometrically snooping into the private lives
of the poor. By the mid 19th century, such studies were being conducted all over Europe by
such notables as Ernst Engel, Frederick Engels, Frederick LePlay and others. The novelist Jane
Austen (1775-1817) lived during and wrote about the period that Davis and Eden collected
the data analyzed here, often referred to as the Georgian era of British history (named after
the Hanoverian kings George I, George II, George III and George IV) that lasted from 1714 to
1837.

Recall that a good is Giffen if the derivative of its Marshallian demand with respect to its
own price is positive. It has been hypothesized that such an anomaly is most likely to occur in
situations where the households under study are very poor living at a subsistence level. Then,
an increase in the price of an inferior good (like bread) might lead to a shift of funds used to
purchase a luxury good (like meat) to the inferior good, so much so, that that the luxury good
is almost eliminated and the demand for the inferior good is increased! Or as Marshall himself
puts it in his classic textbook,

a rise in the price of bread makes so large a drain on the resources of the
poorer labouring families and raises so much the marginal utility of money to
them, that they are forced to curtail their consumption of meat [...]

– Alfred Marshal, Principles of Economics, 8th ed., p. 132.

The sample examined by Koenker (1977) is thus ideal for discovering Giffen behavior since the
households considered were indeed very poor and bread and meat could very plausibly play the
roles of the inferior and luxury goods respectively that theory prescribes.

The price of bread is in old pence per half-peck loaf 19 and the price of meat is in old pence
per pound of bacon. Bacon was the lowest quality of meat, consisting essentially of the outer
fat and skin of the animal. In the rare cases where the meat consumed was not bacon, an
equivalent quantity (in money terms) of bacon was computed. Similarly, in cases where the
household purchased flour rather than bread an equivalent quantity of bread was computed.
Table 1 gives sample statistics (we will need these to compute elasticities at the mean).

We assume a linear system of Marshallian demands for bread (b) and meat (m) given by

qi = αi0 + αi1 s+ γim+
∑
i,j

βij pj + ui, i, j = b,m. (4.1)

19A half-peck (or gallon) of loaf was made with a gallon of flour, and weighed 8 pounds and 11 ounces, or
8.6875 pounds (3.9406 kg). It was considered that a gallon of bread (a little over a pound a day, 1 pound =
0.4536 kg) was the basic ration for one adult for one week, and it was on this basis that laborer’s wages were
based.
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Table 2. Sample Statistics
Variable Definition Mean Std.Dev.

qb Quantity demanded of bread (gallons/week) 4.772 1.534
qm Quantity demanded of meat (pounds/week) 1.706 1.324
pb Price of bread (pence per gallon) 13.629 3.172
pm Price of meat (pence per pound) 7.923 1.097
wb Budget share of bread (%) .669 .113
wm Budget share of meat (%) .136 .081
m Total Expenditure (pence) 95.171 26.796
s Family size (no. of members) 5.714 1.619

n = 35 observations

We also assume that errors are jointly normally distributed with mean zero and covariance
matrix

Σ =

[
σ2ub

ρσub
σum

ρσub
σum σ2um

]
.

We estimate the Marshallian demands as a system by the method of Seemingly Unrelated Re-
gressions (SUR). Although the two equations have the same set of regressors and therefore SUR
here is equivalent to equation-by-equation ordinary least squares (OLS), the joint estimation
of the two equations has the advantage that it yields estimates of the covariances of coefficients
both within the same equation and across different equations. OLS only provides covariances
for coefficients within the same equation but in order to test hypotheses that put restrictions
involving parameters from both equations (e.g. to test Slutsky symmetry, see bellow) we also
need the across-equations covariances.

The estimated demand equations for bread and meat are (standard errors in parentheses):

qb = 0.3932 + 0.415 s + 0.0243 m − 0.354 pb + 0.571 pm

(0.958) (0.104) (0.0073) (0.058) (0.150)

R2 = 0.797, n = 35, χ2
4 = 137.0, σ̂ub

= 0.682,

qm = 7.815 − 0.437 s + 0.0411 m + 0.162 pb − 1.229 pm

(0.968) (0.106) (0.0074) (0.059) (.151)

R2 = 0.721, n = 35, χ2
4 = 90.4, σ̂um = 0.721,

ρ̂ = −0.41, χ2
1 = 5.829.
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The fit of the models as measured by the R2 is quite high, and both equations are significant
overall since the χ2

4 values of 137 for the bread equation and 90.4 for meat equation reject
emphatically the null that all slope coefficients in the respective equations are zero. Also, all
individual coefficients in both equations are statistically significant at the 5% level, and only
the intercept in the bread equation is insignificant at the 1% level.

The uncompensated Marshallian elasticity estimates evaluated at the sample means are as
follows:20

êgbb = −1.01, êgbm = 0.95, η̂b = 0.49,

êgmm = −5.71, êgmb = 1.29, η̂m = 2.29.

We see that bread is a necessity and meat a luxury, but both are normal goods, that is, we
do not find bread to be Giffen (nay, it is not even inferior). An interesting find is that the
coefficient for family size is, positive in the bread equation, but negative in the meat equation.
This means that larger families consume more bread and less meat than smaller families.

To compute the Slutsky matrix we use equation (2.81) and evaluate at the sample means
(numbers in parentheses are standard errors21):

Ŝ =


γ̂bq̄b + β̂bb γ̂bq̄m + β̂bm

γ̂mq̄b + β̂mb γ̂mq̄m + β̂mm

 =


−0.238 0.612

(0.052) (0.149)

0.358 −1.159

(0.052) (0.150)

 .
As expected, the diagonal elements are negative, since they measure the slope of the compen-
sated Hicksian demands for bread and meat. Since both bread and meat are normal goods
these slopes are smaller in absolute value than the corresponding slopes of the Marshallian
demands. The positive cross effects in the off-diagonal elements indicate that bread and meat
are substitutes. The eigenvalues of this matrix are (λ̂1, λ̂2) = (−1.36,−0.042) and since they
are both negative, Ŝ satisfies the negative-semidefiniteness condition. Symmetry requires that

H0 : γmq̄b + βmb = γbq̄m + βbm. (4.2)

20Price elasticities are computed from the formula êgij =
dq̂i
dpj

p̄j
q̄i

= β̂ij
p̄j
q̄i

, and income elasticities are computed

from the formula η̂i =
dq̂i
dm

m̄

q̄i
= γ̂i

m̄

q̄i
, where i, j = b,m for bread and meat, respectively. As is done often in

this context, the sample means q̄b, q̄m, p̄b, p̄m and m̄ are treated as constants without variance.
21Note that in order to compute standard errors for the elements of the Slutsky matrix we need the covariances

between coefficients from different equations (for example, we need Cov(β̂bb, β̂mm)) that are available from SUR
estimation but equation-by-equation OLS estimation does not provide. The same is true for testing Slutsky
symmetry. The sample means q̄b and q̄m are again treated as constants without variance.
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Testing for symmetry we obtain a χ2 statistic on 1 degree of freedom of 3.16 with a p-value
of .0761 meaning that we accept symmetry at the 10% level, but we reject it at the 5% level.
Thus, although ŝbm = 0.612 is almost twice as large as ŝmb = 0.358, this disparity can be
explained away as the result of noise in the data, at least at the 10% level22. In fact, looking
at the standard errors of the two estimates, we see that ŝmb = 0.358 is much more accurately
estimated than ŝbm = 0.612, with the standard error of the latter being 3 times that of the
former.

We proceed to impose Slutsky symmetry as a constraint in estimation, that is, we re-estimate
the SUR model under the linear constraint in (4.2). The constrained SUR estimates are (stan-
dard errors in parentheses):

qb = 1.537 + 0.429 s + 0.0246 m − 0.303 pb + 0.324 pm

(0.727) (0.108) (0.0076) (0.052) (0.055)

R2 = .78, n = 35, χ2
4 = 156.49, σ̂ub

= 0.708,

qm = 7.441 − 0.442 s + 0.0415 m + 0.168 pb − 1.192 pm

(0.947) (0.106) (0.0074) (0.059) (0.150)

R2 = 0.69, n = 35, χ2
4 = 88.17, σ̂um = 0.692,

ρ̂ = −0.38, χ2
1 = 5.014.

The symmetry-constrained estimated Slutsky matrix is (with s.e.’s in parentheses below the
point estimates)

S̃ =


−0.185

(0.043)

0.366 −1.121

(0.052) (0.149)

 ,
with eigenvalues (λ̂1, λ̂2) = (−1.25,−0.059), and since they are both negative, S̃ also satisfies
the negative-semidefiniteness condition. We see that the Slutsky cross coefficient s̃bm = s̃mb =

0.366 has a value that is very close to the ŝmb = 0.358 value of the unconstrained matrix.
The symmetry-constrained elasticity estimates evaluated at the sample means are:

ẽgbb = −0.87, ẽgbm = 0.54, η̃b = 0.49,

ẽgmm = −5.54, ẽgmb = 1.34, η̃m = 2.32.

22This is why we should formally and rigorously test hypotheses and not rely on just eyeballing the point
estimates that may lead us to unwarranted conclusions. The fact that ŝbm and ŝmb look very different should
not lead us to conclude that Slutsky symmetry fails here.
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We see that the meat elasticities are very little affected by the constraint, but some of the
estimated bread elasticities change considerably. In particular, imposing Slutsky symmetry
lowers the estimate for egbb from −1.01 to −0.87, and also lowers the estimate of egbm from 0.95
to 0.54. Thus, if Slutsky symmetry is imposed, bread becomes price-inelastic and much less
responsive to changes in meat prices, meaning that bread and meat are not close substitutes,
which is not very surprising. This is in agreement with the cross-coefficient of the Slutsky
matrix of only 0.366 that is quite low. Income elasticity estimates for both bread and meat are
very little affected by the constraint.

In any case, both the unconstrained and the constrained models agree that although bread
was a necessity and meat was a luxury, both bread and meat were normal goods. So, to answer
our original question, we conclude that bread was not Giffen.

5. Demand Systems

A popular example of directly specified demand equations is the double-log demand system,

log qi = αi + ηi logm+
n∑

j=1

eij log pj , i = 1, ..., n, (5.1)

where qi is the quantity demanded of good i (i = 1, ..., n); pj is the price of good j;

m =

n∑
k=1

piqi, (5.2)

is total expenditure, which we shall refer to as income for short; and αi, ηi and eij are constant
coefficients to be estimated from the data. All logarithms here are natural logarithms.

The interpretation of (5.1) is straightforward. The coefficient of income is

ηi =
∂(log qi)

∂(logm)
, (5.3)

which is the income elasticity of demand for good i and answers the question, if income rises by 1
percent with prices constant, what is the percentage change in consumption of i? Commodities
with income elasticities less than unity are called necessities, while those with income elasticities
greater than unity are known as luxuries. If the income elasticity is negative, then the good
is said to be inferior as its consumption falls with increasing income. Similarly, the coefficient
eij is the elasticity of demand for good i with respect to the price of good j,

eij =
∂(log qi)

∂(log pj)
, (5.4)
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and gives the percentage change in qk resulting from a 1 percent change in pj , income and the
other prices held fixed.

Although the double-log demand system is attractive in its simplicity, it does not satisfy the
adding-up condition, which means that it not consistent with any utility optimization setting.
We say that the double-log demand system does not satisfy the ‘integrability conditions’ (among
which is the adding-up condition) required by any ‘proper’ demand system.

To see how the double-log demand system fails to satisfy the adding-up condition, consider
a household expenditure survey in which all participating families pay approximately the same
price for each good, so that the k-th equation of (5.1) reduces to

log qi = αi + ηi logm, i = 1, ..., n,

where units are chosen such that the price of each good is unity, so that
∑n

j=1 eij log pj = 0.
Then the logarithmic change in expenditure on good i is a constant multiple ηi of the change
in income, i.e.

d(log piqi) = ηi d(logm).

Accordingly, if the income elasticity ηi exceeds unity, then expenditure on i increases at a faster
rate than does income. If income rises sufficiently, expenditure on good i will eventually exceed
income and violate the adding-up constraint (5.2). Therefore, the weakness of the model is
that it does not satisfy the adding-up constraint (5.2) for all values of income.

5.1. The Cobb Douglas (CD) Demand System

5.2. The Constant Elasticity of Substitution (CES) Demand System

5.3. The Homothetic Translog Indirect Utility Function

The homothetic translog indirect utility function is given by

log v(p) = α0 +
n∑

i=1

αi log pi +
1

2

n∑
i=1

n∑
j=1

βji log pi log pj (5.5)

with the following restrictions imposed

βij = βji, for all i, j = 1, ..., n; (5.6)
n∑

i=1

βij = 0, for all j = 1, ..., n; (5.7)

n∑
i=1

αi = 1. (5.8)
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Note that the symmetry βij = βji condition is true only for homothetic preferences. This
function is a generalization of the Cobb-Douglas function and reduces to it when all βji are
equal to zero. In fact, when all βji are equal to zero, the homothetic translog reduces to

log v(p) = α0 +

n∑
i=1

αi log pi (5.9)

which is the Cobb-Douglas, written in logs.
Application of Roy’s identity in share form then yields a set of share equations for the

homothetic translog

wi = αi +
n∑

j=1

βij log pj , i = 1, ..., n. (5.10)

With n products, the n homothetic translog share equations have n(n + 3)/2 parameters to
be estimated. For example, let us assume that there are only three products (n = 3). In this
three-product case the homothetic translog share equations become

w1 = α1 + β11 log p1 + β12 log p2 + β13 log p3;

w2 = α2 + β12 log p1 + β22 log p2 + β23 log p3;

w3 = α3 + β13 log p1 + β23 log p2 + β33 log p3,

and have 9 parameters, α1, α2, α3, β11, β12, β13, β22, β23, and β33.
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Figure 7. Cartoon by Sidney Harris.

6. Mathematical Appendix
LONG long ago, when wishing still could lead to something,
there lived a king whose daughters all were beautiful...

— Grimms’ Fairy Tales, No. 1, “The Frog King”, opening lines.

Because we don’t live “long long ago”, and wishing can’t lead to anything as the cartoon by
Sidney Harris above shows, we need a firm footing in mathematics.

6.1. Linear Algebra

6.2. Quasiconvex and Quasiconcave Functions

Some functions that arise in economic models are not convex (concave) but possess a weaker
property called quasiconvexity (quasiconcavity).

Definition 2. Assume that S ⊂ Rn is a convex set and ϕ : S → R. We say that ϕ is a
quasiconvex function if, for every x0,x1 ∈ S (x0 6= x1):

ϕ(αx0 + (1− α)x1) ≤ max{ϕ(x0), ϕ(x1)}, for every α ∈ (0, 1).

We say that ϕ is a quasiconcave function if −ϕ is quasiconvex or, equivalently, if:

ϕ(αx0 + (1− α)x1) ≥ min{ϕ(x0), ϕ(x1)}, for every α ∈ (0, 1).
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Figure 8. Cramer’s Rule, College Mathematics Journal, 1997, 28:2, 118.

0000

Figure 9. Cramer’s Rule

The quasiconvexity/quasiconcavity is strict if the inequality in the above definitions is strict.
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6.3. The Implicit Function Theorem

Suppose we have a system of n nonlinear equations depending on n endogenous variables
y = (y1, ..., yn)

T and m exogenous variables (also called parameters) x = (x1, ..., xm)T given by

f1(y1, ..., yn;x1, ..., xm) = 0

...

fn(y1, ..., yn;x1, ..., xm) = 0,

which we may write compactly as
f(y,x) = 0, (6.1)

where f : A × B → Rm is a continuously differentiable vector function. We assume that
the domain of the endogenous variables y is A ⊆ Rn and the domain of the parameters x is
B ⊆ Rm, where A and B are open sets, so that A×B ⊆ Rn+m.

Suppose that y∗ ∈ A and x∗ ∈ B satisfy the system of equations in (6.1), that is fi(y∗,x∗) =

0 for all i = 1, ..., n. We are then interested in the possibility of solving for y as a function of
x. That is, we are interested in the existence of n uniquely determined “implicit” functions
g(·) = (g1(·), ..., gn(·))T such that

fi(g1(x), ..., gn(x);x) = 0 for all i = 1, ..., n, and x ∈ B′ (6.2)

and
gi(x

∗) = y∗i for all i = 1, ..., n. (6.3)

The implicit function theorem gives a sufficient condition for the existence of such implicit
functions and tells us the first-order comparative statics effects of x on y at a solution.

Theorem 13. (Implicit Function Theorem) Suppose that f : A×B → Rm is continuously
differentiable with respect to the n+m variables (y,x), and that f(y∗;x∗) = 0. If the Jacobian
matrix of the system f(y;x) = 0 with respect to the endogenous variables y evaluated at (y∗,x∗)

is nonsingular, that is, if

J =

∣∣∣∣∣∣∣∣∣∣∣

∂f1(y
∗;x∗)

∂y1
· · · ∂f1(y

∗;x∗)

∂yn... . . . ...
∂fn(y

∗);x∗

∂y1
· · · ∂fn(y

∗);x∗

∂yn

∣∣∣∣∣∣∣∣∣∣∣
6= 0, (6.4)

then there exist implicitly defined functions gi : B′ → A′, i = 1, ..., n that are continuously
differentiable and satisfy (6.2) and (6.3), where A′ and B′ are open subsets of A and B,
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respectively. Moreover, the first-order effects of x on y at (y∗,x∗) are given by

∇x g(x∗)n×m = −
[
∇yf(y

∗;x∗)
]−1

n×n
∇xf(y

∗;x∗)n×m. (6.5)

These effects may also be computed by Cramer’s rule.

The first part of the theorem regarding the existence of the continuously differentiable func-
tions gi(x), i = 1, ..., n that satisfy (6.2) and (6.3) is the deep part of the implicit function
theorem and its proof requires advanced methods. The second part in which we obtain the
derivatives of gi(x), i = 1, ..., n is almost trivial since continuously differentiable functions
are locally linear, but because it is so useful in applications we state it explicitly. Indeed, if
g(x) exists and if both f(y;x) and g(x) are continuously differentiable around (x∗,y∗) and
f(y∗;x∗) = 0, then the differential of f(y;x) evaluated at (y∗,x∗) is

df = ∇yf(y
∗;x∗) dy +∇xf(y

∗;x∗) dx = 0, (6.6)

where dy = (dy1, ..., dyn)
T is the n × 1 vector of differentials of y and dx = (dx1, ..., dxm)T is

the m × 1 vector of differentials of x. Then using (6.2) and (6.3) we get dy = ∇xg(x
∗)dx so

that
∇yf(y

∗;x∗)n×n∇xg(x
∗)n×m dxm×1 +∇xf(y

∗;x∗)n×m dxm×1 = 0n×1. (6.7)

This is the linearization of system (6.1) around (x∗,y∗) that yields the second conclusion of the
implicit function theorem. The condition in (6.4) guarantees that the n×n matrix ∇yf(y

∗;x∗)

is invertible, so that

∇xg(x
∗) dx = −

[
∇yf(y

∗;x∗)
]−1

∇xf(y
∗;x∗) dx,

and the coefficients of dx must be equal. This way of computing the gradient of g(x) at x∗ is
called implicit differentiation.

6.4. The Envelope Theorem

Shephard’s Lemma and Roy’s Identity are special cases (applications) of the Envelope The-
orem.

Many properties of optima of functions are fundamentally consequences of the following
simple observation:

The maximal value of a constrained maximization problem cannot increase (and the minimal
value of a constrained minimization problem cannot decrease) as
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(1) existing constraints become more stringent, and/or
(2) new constraints are added.

Given a value function V (a), we wish to evaluate the effect of a change in the parameters a.
If we have a closed-form expression for V , we simply take the derivative of this expression with
respect to a and we are done. But we often find ourselves in situations where V is only implicitly
defined (i.e. we know that such a function exists and, being a value function, satisfies ‘certain
restrictions’ and has ‘certain properties’) but there is no closed-form expression available to
differentiate directly.

Theorem 14. (Envelope Theorem)
Consider the problem () when there is just one constraint and suppose the objective function f

and the constraint function g are continuously differentiable in (x,a) on an open subset W ×U
of Rn × A. For each a ∈ U , suppose that x(a) ∈ W uniquely solves (A2.35), is continuously
differentiable in a on U , and that the constraint g(x(a),a) ≤ 0 is binding for every a ∈ U . Let
L (x,a, λ) be the associated Lagrangian function and let (x∗(a), λ∗(a)) solve the Kuhn-Tucker
conditions in Theorem A2.20. Finally, let V (a) be the problem’s associated value function.
Then, the Envelope theorem states that for every a = (a1, ..., am)T ∈ U ,

∂V (a)

∂aj
=
∂L

∂aj

∣∣∣∣
x∗(a),λ∗(a)

, j = 1, ...,m. (6.8)

where the right-hand side denotes the partial derivative of the Lagrangian function with respect
to the parameter aj evaluated at the point (x∗(a), λ∗(a)).

The theorem says that the total effect on the optimized value of the objective function when
a parameter changes (and so, presumably, the whole problem must be reoptimized) can be
deduced simply by taking the partial of the problem’s Lagrangian with respect to the parameter
and then evaluating that derivative at the solution to the original problem’s first-order Kuhn-
Tucker conditions. Although x∗(a) and λ∗(a) also depend on a, the envelope theorem says
that we don’t need to consider this dependence when we differentiate the Lagrangian at the
optimum, and we can thus treat x∗(a) and λ∗(a) as fixed. Put differently, we may quickly
and easily differentiate an optimal value function V at a∗ without thinking about any implicit
changes in the optimal choice, or the multiplier, that may occur in the background - even when
the constraint is active - by differentiating the associated Lagrangian function L exclusively
with respect to the parameter α and evaluating that derivative at (x∗(a), λ∗(a)).



Empirical Demand Analysis 65

Although we have confined ourselves in the statement of the theorem to the case of a single
constraint, the theorem applies regardless of the number of constraints, with the usual proviso
that there be fewer constraints than choice variables.

Proof: First, form the Lagrangian for the maximization problem:
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Table 3. Weekly Budgets of English Rural Laborers, Koenker(1977).

County Date Expenditure Expenditure Family Total Price of Price of
for Bread for Meat Size Expenditure Bread Meat
(pence) (pence) (pence) (pence) (pence)

79 8 7 99 11.5 8
68.5 16 7 96.5 11.5 8
68.5 8 6 88.5 11.5 8
32 21 5 75 11.5 3.3

Berks 1787 53 12 4 75 11.5 8
48 20 5 78 11.5 8
56 18 5 90.5 13.5 8
98 12 7 124 13.5 8
50 12 3 81.25 13.5 8

95.5 0 8 120.25 13.5 8
49.5 0 7 60.5 13 7.5
61 12 6 85.5 13 7.5

37.5 8 5 58 13 7.5
37 8 4 65.5 13 7.5
43 12 5 68.5 13 7.5

Dorset 1789 43 8 4 61 13 7.5
59 30 4 106.25 13 7.5
59 30 7 108.5 13 7.5
50 10.5 4 70.75 13 7.5
41 22.5 4 80.25 13 7.5

58.5 15 6 88.5 13 7.5
Derby 1788 54 18 6 104 12 7.5

74 8 6 99 11.5 8
40 0 4 69.75 11.5 8
58 8 5 84 11.5 8
95 4 9 113 11.5 8

Dorset 1789 75 0 8 107.25 11.5 8
79 4 5 89 11.5 8
98 8 9 115.25 14 8
84 24 8 162 14 8
48 12 5 87 14 8

59.5 18 4 109 22 10
87 12 6 113 22 10

Oxford 1795 117 36 8 183.5 22 10
78 18 4 114 22 10


