Panteion University Applied Econometrics Gregory Kordas July 2021

Final Exam

1. [Joint and Conditional Probabilities]. Let

$$f_{XY}(x,y) = cx^3y^2, \quad 0 < x < 1, \ 0 < y < 2.$$

be the joint probability density function of X and Y.

- (a) Find c that makes f(x, y) a valid probability density function.
- (b) Find $g_{Y|X}(y|x)$, the conditional probability density function of Y|X.
- (c) $\Pr(\frac{1}{3} < X < \frac{2}{3} | Y = \frac{2}{3}).$
- (d) Find Cov(X, Y), the covariance of X and Y.
- (e) Are X and Y stochastically independent? Justify your answer.
- (f) Let $Z = X^2 + Y^2$. Find E(Z), the expected value of Z.

2. [Linear Regression Model under Endogeneity]. Consider the linear regression model

$$y = X\beta + u$$

where, y is an $n \times 1$ vector, X is an $n \times k$ matrix of regressors (including an intercept), β is a $k \times 1$ vector of coefficients, and u is an $n \times 1$ vector of errors.

- (a) (10 points) State the classical assumptions and briefly explain them.
- (b) (10 points) Which of the above assumptions is violated when a regressor is endogenous? Give an example of a regression in which the problem is likely to arise.
- (c) (10 points) What are the properties of the OLS estimates under endogeneity?
- (d) (10 points) Which estimator should you use in this case, and what are its properties?

3. [Long and Short Regressions].

(a) (15 points) Assume that the true linear regression model explaining y is given by

$$y = X_1\beta_1 + X_2\beta_2 + u$$

where, y is an $n \times 1$ vector, X_1 is a $n \times k_1$ matrix of regressors (including an intercept), X_2 is a $n \times k_2$ matrix of regressors, β_1 is a $k_1 \times 1$ vector of coefficients, β_2 is a $k_2 \times 1$ vector of coefficients, and u is an $n \times 1$ vector of errors. Instead of estimating the true model, we estimate by OLS the *short* model

$$y = X_1\beta_1 + u.$$

What are the properties of the OLS estimate $\hat{\beta}_1$?

Hint: Write the OLS estimator for β_1 and compute its expectation using the true model for y.

(b) (15 points) Now consider the opposite situation where the true model for y is given by

$$y = X_1\beta_1 + u$$

we estimate by OLS the *long* model

$$y = X_1\beta_1 + X_2\beta_2 + u$$

What are the properties of the OLS estimate $\hat{\beta}_1$ in this case?

Hint: We can write $\widehat{\beta}_1 = (X'_1 M_2 X)^{-1} X_1 M_2 y$, where $M_2 = I - X_2 (X'_2 X_2)^{-1} X'_2$ is an idempotent matrix that projects into the space of X_2 residuals, $S^{\perp}(X_2)$. Now take the expectation using the true model for y.

- **4.** Let $X \sim U[0,1]$ be uniformly distributed on the interval [0,1].
 - (a) Find the probability distribution function, the cumulative distribution function, and the quantile function of $Y = -b \log X$.
 - (a) Find the median of the distribution in (a).
 - (a) Find the moment generating function of the distribution in (a).
 - (b) Let $(Y_1, ..., Y_n)$ be a random sample from the distribution in (a). Find the mle of b and its asymptotic distribution.

5. Suppose that $(X_1, ..., X_n)$ are independent and identically distributed $Poisson(\lambda)$ random variables.

- (a) Find the maximum likelihood (ML) estimator, and an asymptotic normal distribution for the estimator, of λ .
- (b) Suppose that, rather than observing the random variables in (b) precisely, only the events $X_i = 0$ or $X_i > 0$ for i = 1, ..., n are observed. (i) Find the ML estimator of λ under this new observation scheme. (ii) In this new scheme, when does the ML estimator not exist (at a finite value in the parameter space)? Justify your answer. (iii) Compute the probability that the ML estimator does not exist for a finite sample of size n, assuming that the true value of λ is λ_0 . (iv) Construct a modified estimator that is consistent for λ .
- (c) How would you measure the "loss of information" when we only observe the binary variable in (b) relative to observing the uncensored variable in (a)?

6. Consider the logit model for the survival of the passengers on the Titanic, as we discussed it in class.

- (a) Based on the model in the Lecture Notes, compute the survival odds of a passenger traveling 1st class relative to a passenger traveling 3rd class. Explain your answer.
- (b) How would you construct a 95% CI for your estimate in (a)? (Hint: Use the bootstrap.)

7. Consider the Demand and Supply model we discussed in class

(a) Explain why observations $(q_t, p_t, t = 1, ..., T)$ from the model

 $q_t^d = \alpha_0 + \alpha_1 p_t + u_t, \quad \text{(demand equation)}$ $q_t^s = \beta_0 + \beta_1 p_t + v_t, \quad \text{(supply equation)}$ $q_t^d = q_t^s, \quad \text{(market equilibrium)}$

do not identify either the demand or the supply equations.

(b) Assume now that we have observations $(q_t, p_t, w_t, t = 1, ..., T)$ from the model

Are any of the two equations now identified, and how would you estimate it/them?