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Preface

The primary objective of this book is to prepare students for empirical
research. But it also serves those who will go on to advanced study in
econometric theory. Recognizing that readers will have diverse back-
grounds and interests, I appeal to intuition as well as to rigor, and draw
on a general acquaintance with empirical economics. I encourage
readers to develop a critical sense: students ought to evaluate, rather
than simply accept, what they read in journals and textbooks.

The book derives from lecture notes that I have used in the first-year
graduate econometrics course at the University of Wisconsin. Students
enroll from a variety of departments, including agricultural economics,
finance, accounting, industrial relations, and sociology, as well as eco-
nomics. All have had a year of calculus, a semester of linear algebra,
and a semester of statistical inference. Some have had much more course
work, including probability theory, mathematical statistics, and econo-
metrics. Others have had substantial empirical research experience.

All of the material can be covered—indeed has been covered—in two
semesters. To make that possible, I focus on a few underlying principles,
rather than cataloging many potential methods. To accommodate stu-
dents with varied preparation, the book begins with a review of ele-
mentary statistical concepts and methods, before proceeding to the
regression model and its variants.

Although the models covered are quite standard, the approach taken
is somewhat distinctive. The conditional expectation function (CEF) is intro-
duced as the key feature of a multivariate population for economists
who are interested in relations among economic variables. The CEF
describes how the average value of one variable varies with values of
the other variables in the population—a very simple concept. Another
key feature of a multivariate population is the linear projection, or best
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(ylinear predictor (BLP): it provides the best linear approximation to the
~CEF. Alternative regression models arise according to the sampling
Oscheme used to get drawings from the population.

The focus on CEF’s and BLP’s is useful. For example, whether a
regression specification is “right” or “wrong,” least-squares linear regres-
sion will typically estimate something in the population, namely, the
BLP. Instead of emphasizing the bias (or inconsistency) of least squares,
O one can consider whether or not the population feature that it does
O consistently estimate is an interesting one. This approach also avoids
() visualizing empirical relations as disturbed versions of exact functions.
(O For the most part, “disturbances” are just deviations from a mean,
() rather than objects that must be added to theoretical relations to pro-

duce empirical relations.

The analogy principle is relied on to suggest estimators, which are then

0 evaluated according to conventional criteria. Thus least-squares, instru-

mental-variable, and maximum-likelihood estimators are made plausible
O by analogy before their sampling properties are studied.

A pedagogical feature of the book is the introduction of technical
ideas in simple settings. Many advanced items are covered in the context
O of simple regression. These include asymptotics, the effect of alternative
@) sampling schemes, and heteroskedasticity-corrected standard errors.
) The asymptotic theory for the ratio of sample means in sampling from
() a bivariate population, derived in Chapter 10, serves as a prototype for
") much more elaborate problems.

From Chapter 16 on, the exercises include real micro-data analyses.
-, These are keyed to the GAUSS programming language, but can readily
~, be adapted to other languages or packages. Virtually all of the exercises
~ have been used as homework assignments or exam questions.
f I thank three cohorts of students at Wisconsin, and one class at
~) Stanford (where a portion of the material was used in 1990), for pressing
J me on details as well as on exposition. Over the years, I have had the
_ benefit of guidance and instruction by several past and present col-
) leagues at Wisconsin, including Guy Orcutt, Harold Watts, Glen Cain,
) Laurits Christensen, Gary Chamberlain, Charles Manski, and James
) Powell. I am particularly grateful to Gary Chamberlain for his close
critical reading of an early version of the manuscript. Frank Wolak of
. Stanford provided helpful comments on a later version. They all will
recognize their ideas here despite my attempts at camouflage.

O

i
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Preface xvit

I am fortunate to have had the expert editorial advice of Elizabeth
Gretz at Harvard University Press, and the proofreading assistance of
Donghul Cho and Sangyong Joo. For permission to quote or reproduce
their work, I thank Thad W. Mirer, John J. Johnston, and Aptech
Systems, Inc. Passages from Econometric Methods, 3d ed., by John J.
Johnston, copyright © 1984 by McGraw-Hill, are rcproduced with per-
mission of McGraw-Hill, Inc.; Table 1.1 is adapted with permission of
the Institute for Social Research from Consumer Behavior of Individual
Families over Two and Three Years, edited by R. Kosobud and J. N. Morgan
(Ann Arbor: Institute for Social Research, The University of Michigan,
1964); Table A.6 is reprinted by permission of John Wiley & Sons, Inc.,
from Principles of Econometrics by Henri Theil, copyright © 1971 by John
Wiley & Sons; Tables A.3 and A.5 are reprinted by permission of
Macmillan Publishing Company from Economic Statistics and Econometrics,
2d ed., by Thad W. Mirer, copyright © 1988 by Macmillan Publishing
Company.

Madison, Wisconsin
November 1990
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1 Empirical Relations

1.1. Theoretical and Empirical Relations

Most of economics is concerned with relations among variables. For
example, economists might consider how

* the output of a firm is related to its inputs of labor, capital, and raw
materials;

* the inflation rate is related to unemployment, change in the money
supply, and change in the wage rate; '

* the quantity demanded of a product depends on household income,
price of the product, and prices of substitute products;

* the proportion of income saved varies with the level of family
income;

* the earnings of a worker are related to her age, education, race,
region of residence, and years of work experience.

In theoretical economics, the relations are characteristically treated as
exact relations, that is, as deterministic relations, that is, as (single-
valued) functions. For example, consider the relation between savings
and income. Let

Y = savings rate = savings/income = proportion of income saved,
X = income.

In theoretical economics, one might consider ¥ = g(X), where g(-) is a
function in the mathematical sense, that is, a single-valued function.
Henceforth we will always use the word “function” in this strict sense.
Corresponding to each value of X, there is a unique value of Y. An
economist might ask such questions as: Is g(X) constant with respect to
X? Is g(X) increasing in X? Is g(X) linear in X?




2 1 Empirical Relations

The same applies when there are several explanatory variables X,
..., X}, as when a firm’s output is related to its inputs of labor, capital,
and raw materials. In theory one considers Y = g(X;, . . . , X;;), where
corresponding to each set of values for X, . . ., X,, there is a unique
value of Y. So g is again a (single-valued) function. The relation of Y to
the X's is an exact one, that is, a deterministic one.

This is what relations look like in theory. What happens when we look
at empirical relations, that is, at real-world data on economic variables?

Table 1.1 refers to 1027 U.S. “consumer units” (roughly, families)
interviewed by the University of Michigan’s Survey Research Center in
1960, 1961, and 1962. Income is averaged over the two years 1960 and
1961; the savings rate is the ratio of two-year savings to two-year income.
In the source, the data were presented in grouped form, with ten
brackets for income and nine brackets for the savings rate. For conve-
" nience, we have assumed that all observations in a bracket were located
at a single point (the approximate midpoint of the bracket) and have
labeled the values of X and Y accordingly. Across the top of the table
are the ten distinct values of X = income (in thousands of dollars), which
we refer to as x; ({ = 1, . . ., 10). Down the left-hand side of the table
are the nine distinct values of Y = savings rate, which we refer to as ¥

Table 1.1 Joint frequency distribution of X = income and Y = savings rate.

X
Y 0.5 1.5 2.5 3.5 4.5 5.5 6.7 8.8 12.5 17.5
.50 .001 .011 007 .006 .005 .005 .008 .009 014 .004
40  .001 002 .006 .007 .010 .007 .008 .009 .008 .007
.25 .002 .006 .004 .007 .010 .011 .020 .019 .013 .006
.15 .002 .009 .009 .012 016 .020 .042 .054 .024 .020
.05 .010 .023 .033 .031 .041 .029 .047 .039 .042 .007
0 .013 .013 .000 .002 .00l .000 000 .000 .000 .000
-.05 .001 .012 .011 .005 .012 016 .017 014 .004 .003
-.18 .002 .008 .013 .006 .009 008 .008 .008 .006 .002
=25 .009 009 010 006 .009 .007 .005 .003 .002 .003
. plx) 041 093 .093 082 .113 .103 .155  .155  .113 .052

Source: Adapted from R. Kosobud and J. N. Morgan, eds., Consumer Behavior of Individual
Families over Two and Three Years (Ann Arbor: Institute for Social Research, The University of

Michigan, 1964), Table 5-5.
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(g=1...,9). So there are 90 = 10 X 9 cells in the cross-tabulation.
In the ¢, cell one finds

plx;, 3,) = the proportion of the 1027 families who reported
the combination (X = x; and Y = y)).

This table gives the joint frequency distribution of Y and X for this data
set.
Here is some general notation for a joint frequency distribution of
variables X and Y, where X takes on distinct values x; ¢ = 1, ..., I) and
Y takes on distinct values y; (j = 1, . . ., J). The joint frequencies p(x;, y,)
are defined for each of the I X J cells. Clearly 2,3 p(x;, y;) = 1, where
s =2, 2 = 2!-:1. From the joint frequency distribution it is easy to

calculate the marginal frequency distribution of X:
px) = 2 plxs, 37)
j

= proportion of observations having X = x;
@=1...,D.

Then Z;p(x;) = Z;(Z;plx, y)]1 = 1.

Return to the joint frequency distribution of Table 1.1. For each of
the ten columns, add down the rows to get the marginal frequency
distribution p(x) in the last row—the bottom margin—and observe that
the entries in the last row do add up to 1.

Evidently, the empirical relation between Y and X is not a deterministic
one. For if it were, then in any column of the body of the table, there
would be only a single nonzero entry. But in every column, there are
several nonzero entries. Indeed, in most columns, all nine entries are
nonzero. Corresponding to each value of X, there is a whole set of
values of Y rather than a single value of Y. What we see is a distribution
rather than a function. This is characteristic of the real world: empirical
relations are not deterministic, not exact, not functional relations.

Now focus attention on the distribution of Y corresponding to a
particular value of X. Take X = x;, say, and ask what proportion of the
observations that have X = x;, also have the values Y =y, ..., 5. The
answers give the conditional frequency distribution of Y given X = x;:

(x:5 95)

P()’jlxi)=m G=1,....])
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4 1 Empirical Relations

It follows for eachi = 1, ..., ] that

= P& y) _ Zipl y) _ ple) _
2 POl = X = = T T pe

Divide the entries in each column of Table 1.1 by the column sum.
The resulting Table 1.2 gives the conditional frequency distributions of
Y given X, one such distribution for each distinct value of X. Observe
that each column sum in this table is equal to 1. The nondeterministic
character of empirical relations is again apparent. If ¥ = g(X) as in
theoretical economics, each column in the body of Table 1.2 would have
a single unity, all other entries being zero. But Table 1.2 does not look
like that.

So we face a dilemma. We would like to use economic theory to guide
our analysis of data, and to use data to implement the theory. But the
savings-income relation in economic theory is deterministic, while in the
empirical data it is not deterministic. How shall we resolve the dilemma?

The theory seems to say that all families with the same value of X
should have the same Y. If so, the data seem to indicate that these
families did not do what they should. Perhaps they tried to, but made
mistakes? If so, the conditional distributions are all due to error—there

~Table 1.2 Conditional frequency distributions of ¥ = savings rate for given values of

= income.
)
D X
oY 0.5 1.5 2.5 3.5 4.5 5.5 6.7 8.8 12.5 17.5
) .50 024 118 075 073 044 .049 .052 0568 124 077
) 40 024  .022 .064 .086 .088 .068 .052 058  .071 .135
D) 25 .049 .064 .043 .086 .088 107 129 123 115 115
) .15 049  .097 .097 .146 142 194 271 348 212 384
.05 244 247 355 378 .363 281 303 252 872 135
)0 317 140 .000 024  .009 .000 .000 .000 .000 .000
)—.05 024 129 118 .061 .106 .155 .109 090 .035 .058
:)—. 18 049 .086 140 073 .080 .078 .052 052  .063 .038
.25 220 .097 .108 .073 .080  .068 .032 019 .018 .058
)I‘otal 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
)mle -.012 .065 .048 099 079 .083 112 129 154 161
J
J

N

1.2 Means 5

is a true value of Y for each value of X, but the families erred in their
savings behavior, or perhaps in reporting savings to the interviewer.
This is surely possible, but to rely on errors alone is unappealing.

We know that the families differ in characteristics other than income
that may be relevant to their savings behavior. The gap between theory
and reality might diminish if the theory introduced niore explanaiory
variables, X», . . . , X;. Then instead of looking at p(yjlxi) we would be
looking at p(y;|%y: - - - , Xu)- Presumably there will be less dispersion of
Y within those narrowly defined cells than there is in the coarsely defined
cells of our tables. But even then the empirical relation would not be
deterministic. For example, consider all households who have the same
income, family size, and race. We would still see differences in their Y
values. Because a gap would remain in any case, for present purposes
we may as well continue with the single-X case.

1.2. Sample Means and Population Means

To resolve the dilemma, we first reinterpret the economic theory. When
the theorist speaks of Y being a function of X, let us say that she means
that the average value of Y is a function of X. If so, when she says that
g(X) increases with X, she means that on average, the value of Y increases
with X. Or, when she says that g(X) is constant, she means that the
average value of Y is the same for all values of X. With that interpretation
in mind, let us re-examine our data set, seeking the empirical counter-
part of the theorist’s average value.

Here is some algebra that shows how to calculate the average of a
frequency distribution. First, for the variable X = income: if the mar-
ginal frequency distribution of X is given by p(x)) ¢ = 1, ..., ), then
the marginal mean of X is

my = ; x;p(x;).
Similarly, the marginal mean of Y is my = Z;y;p(y;). Further, if the
conditional frequency distribution of Y given X = x; is p(y;|x) (j = 1,
., J), then the conditional mean of Y given X = x; is

My = %:yjp(yjlxi)'
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There are I such conditional means, one for each distinct value of X.
Observe that the average of the conditional means equals the marginal
mean:

; mylx,-P(xi) = 2 [; )‘,’P(}’jlxi)_ px)

= zl: ; ¥ip(x;, 3;)

= ? % [2 Py | = ? Yip(3;) = my.

Return to Table 1.2. The conditional means of Y have been calculated,
one for each of the ten values of X, and are presented in the last row
of the table. If we extract the top row (the x,) and the bottom row (the
my| ), we have the conditional mean function, or cmf, for Y given X, which
we will refer to as myx.

The cmf is a deterministic relation—that is, a function—in our data.
The cmf specifies how the average value of Y is functionally related to
X in the data set. For an economist who is concerned with the relation
of the savings rate to income, this cmf my |y is the most interesting
feature of the joint frequency distribution. We can plot it, and study it
in terms of the economic theorist’s concerns: Does myx vary with X?
Does it vary linearly with X, that is, is Am/AX constant?

In Figure 1.1, the ten points that make up the cmf are plotted and,
for convenience, are connected by line segments. Looking at the plot,
we see a cmf that is too ragged and erratic to be taken seriously by a
theorist. So a gap remains between theory and reality.

To proceed, we recognize that the theorist who discussed the relation
between the savings rate and income was not talking about myx for
these particular 1027 families in 1960-1961. If the Survey Research
Center had happened to interview a different 1027 families, or even a
1028th family, or even the same 1027 families in a different year, we
would have had a different p(x, y) table, different p(y|x) columns, and
no doubt a different my |y function.

The next step is obvious. We suppose that what we observe is only a
sample from a population. Our cmf displays sample means, not population
means. Presumably the theorist was referring to population means, not
sample means. It will be adequate for present purposes to think of the
population itself as represented by a joint frequency distribution, one
that refers to millions of families rather than to our 1027. (For conve-

1.2 Means 7
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Figure 1.1 Conditional mean function: savings rate on income.

nience, we continue to suppose that the X, Y pairs are confined to the
same 90 combinations.) In the population the joint frequencies are gi.ven
by m(x;, y,), say, with Z,3,m(x;, ) = 1. So in the population, the marginal
frequencies of X are

w(x;) = 2 (x5, ¥;)s
J
and the conditional frequencies of Y given X are
w(y; | %) = W, y)mwxs).
Further, the population mean of X is
Wx = 2 x;mw(x;),

and the population conditional means of Y given X are

By = ? yj’"'(}’j | x;).
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1 Empirical Relations

We have arrived at the following position. When a theorist talks about
Y = g(X), she is really referring to the population conditional mean
function py,x = g(X), which is indeed a function of X. We now have
the theorist referring to the population features mw(x, y), w(y|x), Py x
while the empirical material refers to the sample features p(x, y), p(y|x),
my|x- This lcaves us with the gap between the hypothetical population
7’s and w’s and the observed sample p’s and m’s.

1.3. Sampling

Imagine this physical representation of the population and sample. Each
family in the population is represented by a chip on which its (X, Y)
pair is printed. The millions of chips are in a barrel. The joint frequency
distribution in the barrel is w(x, y). We draw 1027 chips with replace-
ment, record the x, y combinations, and tabulate the (relative) frequen-
cies as p(x, ). Our p(x, y) table is just one of the possible p(x, y) tables
that might have been obtained in this manner. Our data set is just one
sample from the population. In general none of the possible sample
p(x, y) tables will be identical to the population 7(x, y) table, and none
of the possiblc sample my | x functions will coincide with the population
Py x function.

The dilemma has been substantially resolved. The questions that
remain include: What sort of samples come from a population? How
do sample joint frequency distributions, conditional frequency distri-
butions, and ¢mf’s depart from the population joint frequency distri-
bution, conditional frequency distribution, and cmf? How can we best
use a sample to learn about the population from which it came? How
confident can we be in our conclusions? These are precisely the ques-
tions that arc addressed in classical statistical theory.

1.4. Estimation

A large part of empirical econometrics is concerned with estimating
population conditional mean functions from a sample. That is, econo-
mists very ofien want to learn how the average value of one variable
varies in a population with one, or several, other variables.

If so, what remains to be discussed? After all, in introductory statistics
courses, we have learned all about estimating population means. In

Exercises 9

particular we have learned that the sample mean is an attractive esti-
mator of a population mean—perhaps even that it is the best estimator.
That attractiveness should carry over to the present situation, where we
are concerned with a population conditional mean function. A popula-
tion cmf is just a set of population means, and our joint sample can be
viewed as a collection of conditional subsamples. So it is natural to use
the sample conditional means as estimates of the population conditional
means. That is, it is natural to take my|,, as the estimate of y,, thus
taking my | x as the estimate of pyx, bearing in mind that m # p.

But is that always the right way to proceed? Suppose that an economic
theory says that the population cmf for the savings rate on income is
linear: py|x = a + BX, with a and B unknown. As Figure 1.1 shows,
our sample myx is not linear in income—the ten my s do not fall on
a straight line. As empirical economists who wish to be guided by eco-
nomic theory, shall we retain the ten sample my s as they stand? Or
shall we smooth the sample my,’s by fitting a straight line to the ten
points, obtaining m§ x = a + bX, and use those m§, = a + bx; @ = 1,
..., 10) as the estimates of the jy|,, thus using a and b as the estimates
of a and B? If we decide to smooth, how shall we fit the line? And do
we know that the smoothed estimates are better than the sample means
as estimates of the population means? Or suppose a theory said that the
population cmf is exponential: py;x = aX®. How should we fit that
curve?> And does the smoothed sample line m§, x still tell us anything
about the population curve pyx?

These are typical of the issues that arise in this book. To address
them seriously, we turn to a review of the framework provided by the
random variable—probability distribution model of classical statistics.

Exercises

The following all refer to the empirical joint frequency distribution of
Tables 1.1 and 1.2.

1.1 Calculate the marginal frequency distribution of Y. Then calculate
the mean of the conditional means of Y, verifying that it equals the
marginal mean of Y (up to round-off error).

1.2 Calculate the conditional frequency distributions of X given Y,
and the conditional mean function of X given Y.
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1.3 Plot the two conditional mean functions my|x and myy on a single
diagram, using the horizontal axis for x-values and the vertical axis for
y-values. Comment on the differences between those two functions.

. 1.4 Let Z = savings (in thousands of dollars), so Z = XY. The savings
of a family with income x; and savings rate ;18 z; = Xx;3;, so that the
mean savings for the families in our sample is given by

my = z ? x;;p(%:5 3;)-

Will this equal mymy? That is, can mean savings be obtained by multi-
plying mean savings rate by mean income? Explain.

2 Univariate Probability Distributions

2.1. Introduction

The general framework of probability theory involves an experiment
that has various possible outcomes. Each distinct outcome is represented
as a point in a set, the sample space. Probabilities are assigned to certain
outcomes in accordance with certain axioms, and then the probabilities
of other events, which are subsets of the sample space, are deduced.
Let S denote the sample space, A denote an event, and Pr() the prob-
ability assignment. Then the axioms are 0 < Pr(A) < 1, Pr(§) = 1, and,
where A,, Ay, . . . are disjoint events, Pr(U; 4;) = Z,Pr(4)).

We proceed somewhat more concretely. The distinct possible out-
comes are identified, that is, distinguished, by the value of a single
variable X. Each trial of the experiment produces one and only one
value of X. Herc X is called a random variable, a label that merely indicates
that X is a variable whose value is determined by the outcome of an
experiment. The values that X takes on are denoted by x. So we may
refer to events such as {X = x} and {X = x}. We distinguish two cases
of probability distributions: discrete and continuous.

2.2. Discrete Case

In the discrete case, the number of distinct possible outcomes is either
finite or countably infinite, so one can compile a list of them: x,,
Xg, . . . . The convention is to list these mass points in increasing order:
%; < % < . ... The assignment of probabilities is done via a function
flx), with these properties:

O

COO000CO0OO0O0OOOOOOOOLOLOOOOOOOLLOOLVOOLOLD

-

QO C Ol




T T T Ty eV D0O000000000000000000000.

12 2 Univariate Distributions

flx) = 0 everywhere,

flx) = 0 except at the mass points x,, Xp, . - . ,
zf(x;) = 17

where =, denotes summation over all the mass points. The function f()
is called a probability mass function, or pmf.

The initial assignment of probabilities is Pr(X = x) = f(x). That is, the
probability that the random variable capital X takes on the value low-
ercase x is f(x). Then the probabilities of various events are deducible
by rules of probability theory. For example, supposing that the list is in
increasing order, Pr(X = x;) = 22_.f(x;). For another example, if x is
not a mass point, then Pr(X = xo) = f(xo) = 0.

Observe that the pmf f{(-) has exactly the formal properties that p(-)
had in univariate frequency distributions. (And observe the perverse
notation: we used p(-) for frequency distributions, and now use f(:) for
probability distributions.) Because of the formal resemblance, it may be
helpful to interpret the pmf f(;) as the m()) of Chapter 1, namely the
frequency distribution in a population.

Here are several examples of discrete univariate probability distri-
butions:

(1) Bernoulli with parameter p (0 = p < 1). Here

foo =@ —p"7? forx=0,1,

with f(x) = 0 elsewhere. So Pr(X = 0) = f(0) = P’a-p=1-p
Pr(X = 1) = f{1) = p'(1 — p)° = p, and Pr(X = x) = f(x) = 0 for all other
values of x. Observe that f(x) = 0 everywhere, that f(x) = 0 except at
the two mass points x = 0 and x = 1, and that 2 flx) = f0) + f(1) = 1,
as required. So this is a legitimate pmf.

In what contexts might the Bernoulli distribution be relevant? That
is, for what experiments might it be appropriate? A familiar example
is a coin toss: X = 1 if heads, X = 0 if tails. The Bernoulli pmf says that
PriX=1)=pPriX=0)=1-p. Special cases are p = 0.5 (fair coin),
and p = 0.7 (loaded coin). A more interesting example concerns unem-
ployment. Let X = 1 if unemployed, X = 0 otherwise, the experiment
being drawing an adult at random from the U.S. population. The
Bernoulli pmf says that the probability of being unemployed is p.

2.2 Discrete Case 13

(2) Discrete Uniform with parameter N (N positive integer). Here
flx) = 1N forx=1,2,...,N,

with f(x) = 0 elsewhere. Observe that f(x) = 0 everywhere, that f(x) = 0
except at the N mass points, and that Z,f(x;) = I/N + ... + 1/N = 1.
So this is a legitimate pmf.

In what contexts might a discrete uniform distribution be relevant?
A very familiar example is the roll of a fair die: X = the number on the
face that comes up, and N = 6. This discrete uniform pmf says that
PriX=1)=PrX=2)=...=Pr(X = 6) = 1/6.

(3) Binomial with parameters n, p (n positive integer, 0 < p < 1). Here

!
flx) = ;!—(n—n;—x-)-!p"(l - forx=0,1,2,...,n,

with f(x) = 0 elsewhere. (Recall factorial notation: 0! = 1, 1! = 1, 2! =
2,31 =6, ....) Observe that f(x) = 0 everywhere, that fix) = 0 except
at the mass points, and (as can be confirmed by summing from 0 to n)
that Z,f(x) = [p+ (1 — p)I" = 1.

In what contexts might the binomial distribution be relevant? Suppose
we toss n identical coins at once, and let X = number of heads. That is,
we run the Bernoulli(p) experiment n times, independently, and record
the number of I's. Or if we observe an adult over n months, let X =
number.of months unemployed. The binomial distribution may be
appropriate.

Special cases of the binomial include:

(@) n=1f0)=1xp%l - p)' = (1 —p),
fy=1xp1-p"=p.

So the binomial distribution with parameters (1, p) is the same as the
Bernoulli distribution with parameter p.

(b) n=2:f(0)=1xp°(1 - p)® = (1 - p)?,
f) =2 xp'1 - p)' = 2p(1 - p),
fi2)=1xp(1 - p)°=p*

Clearly (0) + A) + Q) =[p+ (1 ~p)° = 1.

(4) Poisson with parameter A (A > 0). Here

fx) =e N/l forx=0,1,2, ...,
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with f(x) = 0 elsewhere. Observe that f(x) = 0 everywhere, that flx)y=0
except at the mass points, and (using the series expansion

f=3 N =1+N+NR+N6+..)
x=0
that 3,f(x;) = 1. In the Poisson distribution, the number of distinct
possible outcomes is countably infinite.
Applications of the Poisson distribution might include the number. of
phone calls received at a switchboard in an hour, or the number of job
offers an individual receives in a year.

2.3. Continuous Case

In the continuous case, we again consider an experiment whose outcomes
are distinguished by the value of a single real variable X. But now there
is a continuum of distinct possible outcomes, so we cannot compile them

in a list. .

The assignment of probabilities is done via a function fix) “.Iith thes.e
properties: f(x) = 0 everywhere, [« fix) dx = 1. This fun-cuon f@) is
called a probability density function, or pdf. The initial assignment .of
probabilities via fix) is as follows. For any pair of numbers a, b with

as<b
b
Pr(asXsb)=f flx) ax.

That is, the probability that the random variable X lies in the closed
interval [a, b] is given by the area under the f(x) curve between the

points a and b. .
To see what we are committed to in the continuous case, consider

several specific events:
(1) A={-w=Xsw}

Here ¢ = —», b = ®, so Pr(4) = [~ f(x) dx = 1, as it should, since A
exhausts the sample space.

@) A={X=b={-o=X=b}
Here a = —, so Pr(A) = [°.. f(x) dx.

2.3 Continuous Case 15

3) A={X=a}={a=X=a}

Here b = a, so Pr(A) = [ flx) dx = 0.

Consider (3), which says that in the continuous case Pr(X = x) = 0
for every x. This means that the probability that X takes on a particular
value x is zero, for every such particular value. And yet on every run
of the experiment some value of x is taken on. Is that a contradiction?
No, not unless one confuses two distinct concepts, zero probability and
impossibility. In the continuous case, a zero-probability event is not an
impossible event. Although this seems awkward, no other assignment
of probabilities to events of the form {X = x} is possible when the distinct
possible outcomes form a continuum.

Further, the following events all have the same probability, namely

I fx) dx:
A =f{e=X=<8),
As ={a < X = b},

A2 = {a = X < b},
Ag={a< X < b}
For example, A, = A, U A, where 4, = {X = b}. But A, and 4, are
disjoint, and Pr(4,) = 0, so Pr(4,) = Pr(4,).
The cumulative distribution function, or cdf, is defined as

mwfma

with ¢ being a dummy argument. The cdf gives the area under the pdf
from —e up to x, so F(x) = Pr(X = x). Some properties of a cdf are
immediate:
e F(—®) = 0, F(®) = 1.
* F(-) is monotonically nondecreasing (because f{(t) = 0).
* Wherever differentiable, dF(x)/dx = f(x), because F = [ f(t) dt, and
the derivative of an integral with respect to its upper limit is just the
argument (the integrand) evaluated at the upper limit.

In the continuous case the cdf is convenient because

Prle=X=<b) = f:f(x) dx = fwf(x) dx — f;f(x) dx

= F(b) — F(a).

The cdf could have been introduced in the discrete case as F (x) =
Pr(X = x), but it is not so crucial there.

OO
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16 2 Univariate Distributions

Here are several examples of continuous univariate probability dis-

tributions:
(1) Rectangular (or continuous uniform) on the interval [a, b], with

parameters a < b. The pdf is
flx) = 1 —a) fora=x=4,

with f{x) = 0 elsewhere. Observe that f(x) = 0 everywhere, and that
00 a b o0
f f(x)dx=f 0dx+f [ll(b—a)]dx+f 0 dx
—o0 —cc a b

= [1/(6 — @)]xlla = 1.

(Note: The symbol || is used to denote an integral to be evaluated.) So
this is a legitimate pdf. It plots as a rectangle, with base b — a and height
1/(b — a); the area of the rectangle is base X height = 1. The cdf is

. 0 forx < a,
F(x) = f faydt =3 (x — a)(b —a) fora=x=h,
- 1 for b < x.

(2) Exponential with parameter A > 0. The pdf is
fle) =\ e ™ forx >0,

with f{x) = 0 for x < 0. The relevant indefinite integral is
f ANe Mdt=2X\ j e Ndt =N (e M=\ = —e N,

so the cdf is

_J0 forx =0,
Fx) = {l ~e¢™ forx>0.

The exponential pdf and cdf for A = 2 are plotted in Figure 2.1.

The exponential distribution may be appropriate for the length of
time until a light bulb fails. It may also be relevant for the duration of
unemployment among those who leave a job, with time being measured
continuously.

(8) Standard Normal. The standard normal distribution plays a central
role in statistical theory. The pdf is

fixy = (2m)y~ 12 exp(—x2/2),

2.3 Continuous Case - 17
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Figure 2.1 Exponential distribution: pdf and cdf, X = 2.

which plots as a familiar bell-shaped curve, as in Figure 2.2. Some
features of the curve are apparent by inspection of the pdf formula.
The curve is symmetric about zero: f(—x) = f(x). The ordinate at zero
is f(0) = 1/V(2m) = 0.3989. The slope is

f'x) = 2m)™"? exp(—2%/2)(—x) = —xf(x).

So f'(x) > 0 forx < 0, f'(x) = 0 forx = 0, f'(x) < 0 for x > 0. The

second derivative is f'(x) = —[xf'(x) + fix)] = —[—x2f(x) + flx)] =

(x® - 1)f(x). So the curve has inflection points at x = 1 and x = —1.
The cdf is

F(x) = Pr(X <x) = f ) fo) de.

No closed form is available, but the standard normal cdf is plbtted in
Figure 2.2 and tabulated in Table A.1l. The tabulation is confined to
x > 0, which suffices because the symmetry of f(x) about 0 implies that
F(—x) =1 — F(x).
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F(x)

f(x) , F(x)

1 3 4 L L i

s t t + =t + t + {
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Figure 2.2 Standard normal distribution: pdf and cdf.

(4) Standard Logistic. The pdf is
fix) = /1 + &)°.

It is easy to verify that this pdf plots as a symmetric bell-shaped curve,
very similar to the standard normal, and that the cdf is

F(x) = f_ f) dt = €N(1 + ).

(5) Power on interval [0, 1] with parameter 6 > 0. The pdf is
fix) =02 for0=x=1,

with f(x) = 0 elsewhere. The relevant indefinite integral is

fe £ ldt=19 ft"“ dt = (6/0) t* = ¢,

2.4 Mixed Case 19
so the cdf is
0 forx<O,
Fix)=14x° for0=x=<1,
1 forx>1.

The power pdf and cdf for 8 = 3 are plotted in Figure 2.3. The power
distribution may have no natural application, but we will use it for
examples because the integration is so simple.

2.4. Mixed Case

A mixture of the discrete and continuous cases may also be relevant.
Let X = dollars spent in a year on car repairs, the experiment being
drawing a family at random from the U.S. population. An appropriate
model would allow for a mass point at X = 0, with a continuous distri-
bution over positive values of X.

), F(x)

2.5

20

0.5

0.0

0.0

Figure 2.3 Power distribution: pdf and cdf, 6 = 3.
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20 2  Univariate Distributions

92.5. Functions of Random Variables

We now have in hand a stock of univariate distributions to draw upon.
Once probabilities are initially assigned via f(x), we are committed to
many other probabilities. Here are two trivial examples:

(a) Suppose that X ~ Poisson(1), that is, the random variable X has
the Poisson distribution with parameter 1. Let A = {2 <X =4} To
find Pr(4), write A = A, U A,, where A, = {X = 3}, 4, = {X = 4}.
Because A, N A, = 0, it follows that Pr(4) = Pr(4,) + Pr(4y) = f(3) +
f(4). But f(x) = e '1%/x! = 1/(ex!), so f(3) = 0.0613, f(4) = 0.0153, and
Pr(A) = 0.0766.

(b) Suppose that X ~ standard normal. Let A = {|x| < 2}. To find
Pr(A), the calculation is

Pr(|X] < 2) = Pr(-2 < X < 2) = F(2) — F(-2) = F(2) — [1 — F(2)]
=2 F(©@) - 1 = 0.954,

using Table A.1 to get F(2) = 0.977.

Now suppose ¥ = h(X) is a (single-valued) function of X. Let B be any
event that is defined in terms of Y. Then B can be translated into an
event defined in terms of X, so we can deduce Pr(B). Indeed we can
deduce the probability distribution of the random variable Y.

We illustrate the procedure with a few examples.

(1) Suppose that the pmf of X is

1/8 forx = -1,
fix)=42/8 forx= 0,
5/8 forx= 1,

with f(x) = 0 elsewhere, and suppose that Y = X?. The possible outcomes
for Y are 0 (which occurs iff X = 0) and 1 (which occurs iff X = —1 or
X =1). Now Pr(Y = 0) = Pr(X = 0) = 2/8, and Pr(¥ = 1) = Pr(X = —1
orX=1)=Pr(X = —1)+ Pr(X = 1) = 1/8 + 5/8 = 6/8. So the pmf of
Yis

(= | 1& fory=0,
3/4 fory =1,

with g(y) = 0 elsewhere.

2.5 Functions 21

(2) Suppose that X ~ standard normal and that

1 fX<-1,
Y=42 if-1=X=2,
3 if2<X

Then Pr(Y = 1) = F(—1), Pr(Y = 2) = F(2) — F(—=1),Pr(¥ =3) = 1 —
F(2), where F(-) denotes the standard normal cdf. So, referring to Table
A.l, the pmf of Y is

0.159 fory=1,
g(y) =410.818 fory=2,
0.023 fory =3,

with g(y) = 0 elsewhere.

(3) Suppose that X ~ rectangular on the interval [—1, 1] and that
Y = X°. Now the pdf of X is f{x) = 1/2 for —1 = x =< 1, with f{x) = 0
elsewhere. It may be tempting to say that Pr(Y = y) = Pr(X = -Vfy) +
Pr(X = Vj), but this will not help since all three events have zero
probability. Instead, we proceed via cdf’s. The cdf of X is

0 forx < —1,
Fx)=<s(1 +x)/2 for—-1=x=1,
1 forx > 1.

Let G(y) = Pr(Y = y) be the cdf of Y. Clearly Y is confined to the interval
[0, 1], 50 G(y) = 0 fory < 0. Fory =0,

Gy)=PrY =9y) = PT(X2 =y = Pr(—\/y— =X= \/5)
= F(Vy) — F(-Vjy).

Now for0 =y =1,
F(Vy) = F(=Vy) = (1 + Vy)/2 — (1 — Vy)I2 = Vjy,

while for y > 1, F(Vy) — F(=Vy) = 1 — 0 = 1. So the cdf of ¥ is

0 fory=0,
G(y) =4 Vy for0<y=1,
1 fory>1
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Figure 2.4 Distribution of a function.

Finally, we get the pdf of y by differentiating its cdf:

0 fory=0,
g(y) = G(y)/ay = 1/(2Vy) forO0<y=1,
0 fory > 1.

Plotting the pdf as in Figure 2.4, we see a curve that slopes downward
over the unit interval; it runs along the horizontal axis elsewhere.
The shape of the pdf of Y may not have been anticipated from in-
specting the rectangular shape of the pdf of X and the parabolic shape
of the function Y = X2,

(4) Linear Functions. Suppose that the continuous random variable X
has pdf f(x) and cdf F(x) and that Y = a + bX is a linear function of X,
with a and b > 0 being constants. To find the pdf of ¥, we follow the
approach of (3). The cdf is

G(y) =Pr(Y =y) = Pr(a + bX = y) = PriX = (y — a)/b]
= Fl(y — a)/b] = F(x),
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where x = (y — a)/b. So the pdf of Y is
g(y) = G'(y) = [9F(x)/ox](ox/dy) = fix)/b = (1/b)f[(y — a)/b].

If b had been negative, then the 1/b would have been replaced by
1/(—b). .

As a special case, suppose that X ~ standard noimal and that ¥ =
a + bX, with b > 0. The pdf of X is f(x) = 2m 2 exp(-—x2/2), so the
pdf of Y is

g(y) = (1/b) (2m) ™2 exp{—[(y ~ a)/b]*/2}.

This specifies the (general) normal distribution with parameters a and b,
which will be discussed in Chapter 7.

Exercises

2.1 One ball will be drawn from a jar containing white, blue, yellow,
and green balls. The probability that the ball drawn will be green is
0.25, and the probability that the ball drawn will be yellow is 0.14. What
is the probability that the ball drawn will be white or blue?

2.2 The probability that family A will buy a car is 0.7, the probability
that family B will buy a car is 0.5, and the probability that both families
will buy is 0.35. Find the probability of each of these events:

(@) Neither buys.
(b) Only one buys.
(c) At least one buys.

2.3 In a city, 65% of the families subscribe to the morning paper, 50%
subscribe to the afternoon paper, and 80% subscribe to at least one of
the two papers. What proportion of the families subscribes to both

papers?

2.4 Consider two events A and B such that Pr(A) = 1/2 and Pr(B) =
1/3. Find Pr(B N not A) for each of these cases:

(a) A and B are disjoint.
(b) B C A.
() Pr(B N A) = 1/7.

,
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24 2 Univariate Distributions

2.5 Consider two events A and B with Pr(A) = 0.5 and Pr(B) = 0.7.
Determine the minimum and maximum values of Pr(A N B) and the
conditions under which each is attained.

2.6 Consider an experiment in which a loaded coin (probability of
heads is 5/6) is tossed once and a fair die is rolled once.

(a) Specify the sample space for the experiment.
(b) What is the probability that the coin will be heads and the number
that appears on the die will be even?

2.7 Discuss the appropriateness of the Bernoulli distribution as a
model for unemployment.

2.8 Consider these seven events:

A={X=1} B={X=2} C={X=3}
D={Xiseven} E={1<X<5} F=CUD
G=CND ’

Consider also these three discrete probability distributions:

(a) Bernoulli with parameter p = 0.4.
(b) Discrete uniform with parameter N = 9.
(c) Binomial with parameters n = 2, p = 0.4.

For each distribution calculate the probability of each event. Treat 0 as
an even number.
2.9 Consider these three events:
A={X=2}, B={X=3} C={X=4}
Consider also these two discrete probability distributions:

(a) Binomial with parameters n = 4, p = 0.6.
(b) Poisson with parameter X = 1.5.

For each distribution calculate the probability of each event.
2.10 Consider these five events:

A={0=X=172}
D = {1/4 < X =< 3/4}

B ={X=1/2}
E={1<X=2}

C=1{X=12}
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Consider also these two continuous probability distributions:

(a) Rectangular on the interval [0, 2].
(b) Power on the interval [0, 1] with parameter 6 = 2.

For each distribution calculate the probability of each event.
2.11 Consider these six events:

A={0=X=1} B={0=X=2}
D={-1=X=1} E={-2=X=2}

Cc={1=X=3}
F={-3=X=3}

Consider also these three continuous distributions:

(a) Exponential with parameter A = 2.
(b) Standard normal.
(c) Standard logistic.

For each distribution calculate the probability of each event.

2.12 For each of the following, use the cdf approach to obtain the
pdf of ¥:

(a) X distributed exponential, Y = 2 X.

(b) X distributed rectangular on (0, 1), ¥ = —log(X). (Note: In this
book, “log” always denotes natural logarithm.)

(¢) X distributed standard normal, ¥ = X2
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3.1. Expectations

Our discussion of empirical frequency distributions in Chapter 1 placed
considerable emphasis on the mean, my = 2x;p(x;). In probability dis-
tributions, the mean again plays an important role. The name for mean
in a probability distribution is expectation, or expected value.

Suppose that the random variable X has pmf or pdf f(x), a situation
that we write as X ~ f(x). Then the expectation of X is defined as

> xflx) in the discrete case,

EX) = fim

xf(x) dx in the continuous case.

Let Z = h(X) be a function of X. To obtain the expectation of Z, one
might first deduce g(z), the pmf or pdf of Z, and apply the definition:
E(Z) = 2;2g(z;) or fZ+ 2g(z) dz. Equivalently, one can get the expectation
of Z = h(X) as

2 hix)f(x;) in the discrete case,

E(Z) =4 (=
f h(x)f(x) dx in the continuous case.

The symbol W is also used to denote an expectation, so we will write
Px = E(X) and u; = E(Z).

Example. Suppose X ~ Bernoulli(p). This is a discrete distribu-
tion with f{0) = 1 — p, f(1) = p, where 0 = p = 1. We calculate E(X) =
0(1 — p) + 1(p) = p. Also, let Z = X°. Then E(Z) = 0%(1 — p) + 1% =

3.2 Moments 27

p. Observe that E(X) = p, so (unless p = 0 or p = 1) the expected value
of X will be a value of X that never occurs. Observe also that p =
EX® # [EX)]P = p2, so in general the expectation of a function is not
the function of the expectation: E[A(X)] # h[E(X)] = h(px).

Example. Suppose X ~ rectangular on [0, 2]. This is a contin-
uous distribution with fix) = 1/2 for 0 = x = 2, f(x) = 0 elsewhere. We
calculate

EX) = E, xf(x) dx = fo : (/2) dx = (1/2) L i,

But f x dx = x%/2 and (x*/2)]13 = 2. So E(X) = (1/2)2 = 1. Also, let Z =
X2. Then

2 2
E@Z) = fo (x%/2) dx = (1/2) fo x% dx.

But [ x* dx = x*/3 and (x*/3)]|3 = 8/3. So E(Z) = (1/2)(8/3) = 4/3. Observe
again that E(X?) = 4/3 = 1 = [EQ)]™.

Caution: There are distributions whose expectations are infinite, or
do not exist, but we ignore those possibilities throughout this book.

3.2. Moments

The moments of X are the expectations of integer powers of X, or of
X* = X — uy. For nonnegative integers 7,

E(X) is the rth raw moment, or moment about zero, of X,

E(X*) is the rth central moment, or moment about the mean, of X.
Each of the moments provides some information about the distribution.
Taking r = 1, we have E(X) = n and E(X*) = 0. Taking r = 2, we have

the second raw moment E(X®), and the variance:

EX*®) = V(X) = o*.
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Table 3.1 Expectations and variances of illustrative distributions.

Distributions EX) VX)
Discrete

(1) Bernoulli, parameter p 4 p(l —p)
(2) Discrete uniform, parameter N (N + 1)/2 (N? - 1Y/12
(3) Binomial, parameters n, p np np(l — p)
(4) Poisson, parameter A A A
Continuous

(1) Rectangular on the interval [a, b] (a + b)/2 (e a)¥12
(2) Exponential, parameter A /A 1/A2

(3) Standard normal 0 1

(4) Standard logistic 0 w23
(5) Power on [0, 1], parameter 6 0/(1 + 0) 0/[(1+6)2(2+0)]

The variance of a random variable X is the expectation of the squared
deviation of X from its expectation. It serves as a measure of the spread
of the distribution. If V(X) = 0, then X is a constant, and conversely.

For the distributions introduced in Chapter 1, Table 3.1 gives the
expectations and variances.

3.3. Theorems on Expectations

Several useful theorems on expectations and moments are easy to estab-
lish:

T1. LINEAR FUNCTIONS. For linear functions, the expectation
of the function is the function of the expectation, and the variance of
the function is the slope squared multiplied by the variance. That is, if
Z = a + bX where ¢ and b are constants, then

E(Z) = a + bEX), V(@) = bV(X).
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Proof (for continuous case).

EZ) = J’(a + bx)f(x) dx = ]af(x) dx + fbxf(x) dx

=ajf(x)dx+bfxf(x)dx=&l+bE(X)=a+bE(X).

Then Z* = Z — E(Z) = a + bX — [a + bE(X)] = bX — bE(X) = bX*, so
V(Z) = E(Z*?) = E(bX*)? = PPE(X*?) = b*V(X). =

(Note: The symbol [ is used in this chapter as shorthand for JZ..) A
parallel proof applies to the discrete case.

T2. VARIANCE. The variance of a random variable is equal to the
expectation of its square minus the square of its expectation. That is,

V(X) = EX*) - E*(X).

Proof. Write V(X) = E(X*?), where X* = X — E(X). Now X** = X* +
E*X) — 2E(X)X, so using T1 extended to handle two variables gives
E(X*?) = E(X?) + EXX) — 2E(X)E(X) = E(X®) — E¥X). u

(Note: EX(X) denotes [E(X)]%.) Because E(X*?) = 0, we can conclude that
E(X?) = E*(X), with equality iff V(X) = 0, that is, iff X is a constant.

T3. MEAN SQUARED ERROR. Let ¢ be any constant. Then the
mean squared error of a random variable about the point ¢ is

EX—c? =0+ (c — p)

Proof. Write X —¢) = X — n) — (c — p) = X* — (¢ — W) So‘

X — 0 = X** + (c — p)® — 2(c — p)X*. Then using T1 gives
E(XX = ¢ = EX**) + (c — W° — 2(c — pEX™).
But E(X*) = 0 and E(X*?) = ¢

T4. MINIMUM MEAN SQUARED ERROR. The value of ¢ that
minimizes E(X — ¢)®is ¢ = p.

Proof. From T3, E(X — ¢)® = ¢® + (¢ — w)°. But (¢ — w)® = 0 with

. equality iff c — p = 0, thatis, iff c=p. =
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3.4. Prediction

Thus far, the expected value of a random variable is simply the mean
in its probability distribution. We now offer a practical interpretation.

Suppose that the random variable X has a known pmf or pdf f(x). A
single draw will be made from the distribution of X. You are asked to
forecast, predict, or guess the outcome, using a constant ¢ as the pre-
dictor. What is the best guess, that is, what is the best predictor? Suppose
that your criterion for good prediction is minimum mean squared fore-
cast error. Then you will choose ¢ to minimize E(U?, where U =
X — ¢ is the forecast error. By T4, the solution to your problem is ¢ = p.
The best predictor of a random drawing from a known probability
distribution is the expected value of the random variable, when the
criterion for predictive success is minimum mean squared forecast error.

When you use p as the predictor, the forecast error is X — p = ¢,
say, so the expected forecast error is E(€) = 0, and the expected squared
forecast error is E(€®) = EX — p)? = o°. A predictor for which the
expected forecast error is zero is called an unbiased predictor. So W is an
unbiased predictor, but there are many unbiased predictors. Let Z =
p + W where W is any random variable with E(W) = 0. Then Z is
also an unbiased predictor of X, because EX — Z) = E(X — p — W) =
EX — p) — E(W) = 0 — 0 = 0. But (unless W is correlated with X),
EX - 2)? = 0%+ V(W) = ¢

Different criteria for predictive success lead to different choices: It
can be shown that to minimize E(|U|), you should choose ¢ = median(X),
and that to maximize Pr(U = 0), you should (in the discrete case!)
choose ¢ = mode(X). In econometrics, it is customary to adopt the
minimum mean squared error criterion; as we have seen, this leads to
the expected value as the best predictor. This is true even when, as in
a Bernoulli distribution, the expected value is not a possible value of X.

3.5. Expectations and Probabilities

Any probability can be interpreted as an expectation. Define the variable
Z which is equal to 1 if event A occurs, and equal to zero if event A
does not occur. Then it is easy to see that Pr(A) = E(Z).
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How much information about the probability distribution of a random
variable X is provided by the expectation and variance of X? There are
three useful theorems here.

MARKOV INEQUALITY. IfY is a nonnegative random variable,
that is, if Pr(Y < 0) = 0, and £ is any positive constant, then Pr(Y = %) <
EY)lk.

Proof (for continuous case). Write

3 k o
E(Y) = fo () dy = fo W(y) dy + fk ¥(y) dy =a + b,

say. Now a = 0, so E(Y) = b. Also b = k [ f(y) dy = k Pr(Y = k). So
EY)=kPr(Y = k). m

CHEBYSHEV INEQUALITY #1. If X is a random variable, ¢ is
any constant, and d is any positive constant, then Pr(}]X — ¢| = d) <
E(X — o).

Proof. Let Y = (X — ¢)?, so Y is a nonnegative random variable, and
X —¢| =2d & Y = d% Let k = d&°, and apply the Markov Inequality to
get EY)=dPr(Y = d°). =

CHEBYSHEV INEQUALITY #2. If Xis a random variable with
expectation E(X) = p and variance V(X) = ¢°, and d is any positive
constant, then Pr(|X — p| = d) < o*/d>.

Proof. Apply Chebyshev Inequality #1 with¢c = . ®

How much information about the expectation of a function is pro-
vided by the expectation of a random variable? As we have seen in T1,
for linear functions the expectation of the function is the function of
the expectation. But if ¥ = A(X) is nonlinear, then in general E(Y) #
R[E(X)]: the direction of the inequality may depend on the distribution
of X. For certain functions, we can be more definite.

.Let EX) = ., Y = k(X), 0Y/3X = h'(X). Let Z be the tangent line to

[
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32 3 Expectations: Univariate Case

h(X) at the point p, that is, Z = k() + A'(p)(X — ). Since Z is linear
in X, while k() and A'(p) are constants, we have

E(Z) = h(n) + h'(w) EX — @) = h(p).

If Y = h(X) = Z everywhere, then regardless of the distribution of X,
we are assured that E(Y) < E(Z) = h(p). Now, a concave function lies
everywhere below its tangent line, no matter where the tangent line is
drawn. Thus we have shown

JENSEN’S INEQUALITY. IfY = A(X) is concave and E(X) = p,
then E(Y) < h(w).

For example, the logarithmic function is concave, so E[log(X)] =
log[E(X)] regardless of the distribution of X. Similarly, if ¥ = A(X) is
convex, so that it lies everywhere above its tangent line, then E(Y) =
h(p). For example, the square function is convex, so EX® = [EX)P
regardless of the distribution of X, as we have already seen.

Exercises

3.1 Verify the entries of expectations and variances in Table 3.1,
except those for the standard normal and standard logistic. Note: The
following definite integral is well known:

f t"e"* dt = nl/a™*' for a > 0 and n positive integer.
0

3.2 For each of the following distributions for the random variable
X, calculate E(X) and V(X):

(a) Discrete uniform, parameter N = 9.
(b) Binomial, parameters n = 2, p = 0.4.
(c) Binomial, parameters n = 4, p = 0.6.
(d) Poisson, parameter A = 3/2.

(e) Rectangular on the interval [0, 2].
(f) Exponential, parameter A = 2.

(g) Power on [0, 1], parameter § = 2.
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3.3 Suppose X has the power distribution on [0, 1] with parameter
8 = 5. Let Z = 1/X". Find E(Z), E(Z?), V(Z).

3.4 Suppose X has the exponential distribution with parameter X =
4. Let Z = exp(X). Find E(Z), E(Z*), V(2).

3.5 Suppose X has the rectangular distribution on the interval [0, 3].
Let Z = F(X) where F(.) is the cdf of X. Find E(Z).

3.6 Suppose X ~ f(x). Let Z = F(x) where F(.) is the cdf of X. Find
E@).

3.7Let A = {X = 1} and B = {|X — | = 20}. Consider these three
distributions: (i) Rectangular on the interval [0, 2], (ii) Exponential with
parameter A = 2, (iii) Power on [0, 1] with parameter 6 = 3.

(a) For each distribution, use the Markov or Chebyshev Inequality to
calculate an upper bound on Pr(A) and Pr(B).

(b) For each distribution, use the appropriate cdf to calculate the
exact Pr(A) and Pr(B).

(c) Comment on the usefulness of the inequalities.




4 Bivariate Probability Distributions

4.1. Joint Distributions

The focus in this book is on relations between variables, where the
relations are not deterministic ones. So we need more than one variable
in our probability distributions. We take up the bivariate case in detail.
Consider an experiment that has various distinct possible outcomes.
The outcomes are distinguished by the values of a pair of random
variables X, Y. The values they take on are labeled x, y. Each trial of the
experiment produces one value of the pair- (x, y). We refer to the pair
(X, Y) as a random vector, a name that merely indicates a set of random
variables whose joint values are determined by the outcome of an exper-
iment. As in the univariate situation, we distinguish two cases.

Discrete Case

In the discrete case, there are a finite, or countably infinite, number of
distinct possible values for X, and also for ¥, and thus for the pair (X, Y).
So we can list the distinct possible pairs, say as the column and row
headings of a two-way array. The points on the list are called mass peinis.
There is a function f(x, ), called the joint probability mass function, or joint
pmf, of the distribution. It must satisfy these requirements: f(x,y) = 0
everywhere, f(x, y) > 0 only at the mass points, and

b §f(x,-, y) =L

The joint pmf gives the basic assignment of probabilities via:
PriX =xY =9y) = f(x,y).

Probabilities of other events then follow in the usual fashion.
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If we enter the f’s in the cells of the two-way array, we have a table
that looks like an empirical joint frequency distribution, such as that for
savings rate and income. But now the entries in the table are probabil-
ities rather than frequencies, or if you like, they are frequencies in a
population rather than in a sample.

Example: Triromial Distribution with parameters n, p, q. Here n is
a positive integer, 0 = p<1,0=<g¢ =< 1, and p + ¢ < 1. The joint pmf
is:

n!
fxlyl(n — x —

- x  p o AEmEy)
forx=0,1,...,nandy=0,1,...,n — x, with f(x, y) = 0 otherwise.
This might be a relevant model for the labor force status of individuals
over n months, using a three-way breakdown of status for each month:
employed, unemployed, or not in labor force. The variables over an n-
month period would be X = number of months employed, Y = number
of months unemployed, and n — X — Y = number of months not in
labor force.

Continuous Case

In the continuous case, there is a continuum of distinct possible out-
comes for X and also for Y, and thus a two-dimensional continuum of
possible outcomes for the pair (X, Y). There is a function f{(x, y), called
the joint probability density function, or joint pdf, of the distribution. It
must satisfy these requirements: f(x, y) = 0 everywhere, and

f:o f:f(% y) dy dx = 1.

The joint pdf gives the basic assignment of probabilities as follows. For
anya <b,c=d:

b d
Pr(aSXSb,cSYSd)=J jf(x,y)dydx.

Probabilities of other events follow in the usual fashion. As in the

- univariate case, the pdf does not give the probability of being at a point:

Pr(X = x, Y = y) = 0 everywhere, even where f(x, y) # 0.
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Figure 4.1 Roof distribution: joint pdf.

Example: Roof Distribution. The joint pdf is
fx,y)) =x+y for0s=x=land0=y=1,
with f{x, y) = 0 elsewhere. Clearly f(x, y) = 0 everywhere, and

f_: fwf(x,y) dy dx = J: fol ( + y) dy dx
= fol (xy + y¥2)ll5 dx

1
= J' (x + 1/2) dx = (x*/2 + x/2)|5
0

=12+ 12=1.

So this is a legitimate joint pdf. The plot in Figure 4.1 accounts for the
name “roof distribution.” We will use this joint pdf as an example
because the integration is simple.

The joint cumulative distribution function, or joint cdf, may be defined
as Flx,y) = [T Pufls,)dtds =PriX =x, Y =< y).
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4.2. Marginal Distributions

We proceed to implications of the initial assignment of probabilities in
a bivariate probability distribution.

Discrete Case

LetA={X=x}and A, ={X=xY =y} forj=1,2,.... Recognizing
that A = U; A; is a union of disjoint events, we calculate

Pr(X = x) = Pr(4) = ; Pr(4;) = %f(x, y) = f1®),

say. This new function fi(x) is called the marginal pmf of X. Observe
that f;(x) = 0 everywhere, that f;(x) > 0 only for points in the list, and
that

S At =3 @f(x,-,yj)] -1

i

So f\(x) is a legitimate univariate probability mass function. Similarly,
fo(y) = Z;f(x:, ) = Pr(Y = y) is the marginal pmf of Y. The subscripts 1
and 2 merely distinguish the two functions.

Example. For the trinomial distribution, we can verify that

! X n—x
fix) =—[;!—(7lp:—;—)ﬁp(l -p",

forx =0,1,...,n, with fi(x) = 0 otherwise. This is recognizable as
the pmf of a binomial distribution with parameters =, p.

Continuous Case

LetA={a=X=bl={a=X=b —o=Y =} Then

b 00 b
Pr(a < X = b) = Pr(4) = f Lf( ,y) dy dx = f filx) dx,

say, where

he = [ ey .
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This new function f(x) is called the marginal pdf of X. Observe that
fi(x) = 0 everywhere (since it is the integral of a nonnegative function)
and that [ fi(x) dx = [Z. [Z. flx, y) dy dx = 1. So f,(x) is a legitimate
univariate pdf.
Similarly, f5(y) = JZ« f(x, y) dx is the marginal pdf of Y.
Example. For the roof distribution,

1
filx) = f (x+9y)dy=(xy + y2/2)I[(1, =x+1/2 forO=sx=<1,
0
with f)(x) = 0 elsewhere. Figure 4.2 plots this marginal pdf.

4.3. Conditional Distributions

We continue to draw’implications of the initial assignment of probabil-
ities in a bivariate distribution.

f1lx)
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i
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0.0 02
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0.0 0.2 0.4 0.6 08 10

Figure 4.2 Roof distribution: marginal pdf.
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Discrete Case

Let A = {X = x}, B = {Y = y}. In probability theory, if Pr(B) # 0, one
defines the probability that A occurs given that B occurs as

Pr(A|B) = Pr(A N B)/Pr(B).
Now in the discrete case, Pr(A N B) = f{x, y) and Pr(B) = fy(y). so
Pr(A|B) = f(x, ))lf2(3) = gi(x[y),

say, a function that is defined only for y such that fy(y) # 0.
For any such y value, observe that g,(x|y) is a function of x alone,
g1(x|y) = 0 (because f(x, y) = 0 and f5(y) > 0), and

; gl(xily) = ; Lfgxi,)’)/fﬂ)’)] = [;f(xi’y)] /f2(}’)

= fa(Nffo(y) = L.

So for any y value with positive mass, g,(x|y) is a legitimate univariate
pmf for the random variable X. It is called the conditional pmf of X
given Y = y, and may be used in the ordinary way. For example, the
probability that the random variable X takes on the value x given that
the random variable Y takes on the value y; is Pr(X = x|Y = y) = &:(x]| ¥i)-

Running across j, there is a set of conditional probability distributions
of X—one distribution of X corresponding to each distinct possible value
of Y. Conditioning on Y may be viewed as partitioning the bivariate
population into subpopulations. Within each subpopulation, the value
of Y is constant while X varies.

Similarly, go(y|x) = f(x, y)/fi(x), defined for all x such that fi(x) # 0, is
the conditional pmf of Y given X = x. There is one such distribution
for each distinct value of X. The pattern here is precisely the same as
in the empirical joint frequency distribution of income and savings rate.

Continuous Case

In the continuous case, we proceed rather differently. For each y such
that f5(y) # 0, define the function

gilxly) = fix, »ifa(y),
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leaving g,(-|y) undefined elsewhere. This g;(x|y) is called the conditional
pdf of X given Y = y. It is easy to confirm that gi(x|y) = 0 everywhere
where defined, and that

[ ety = [ tawoprond=| [ ey as] /1o
= f(0lf2(3) = 1.

So for any y value with positive density, g,(x|y) is a legitimate univariate

pdf for the random variable X.
There are an infinity of such conditional distributions, one for each

value of Y. Each of them can be used in the ordinary way. For example,
b
Pra=X=oly =y = | gl ds

Observe that we have succeeded in defining Pr(A|B) even though
Pr(B) = 0. This would be nonsense in the discrete case, but it is quite
meaningful in the continuous case, where zero probability events do

occur. .
For a quite distinct example, suppose we want Pr(4|B), where A =
{a = X = b} and B = {c =Y = d}. Provided that Pr(B) # 0, we have

ﬁmwy=HMHBWW&=[[£%@ﬁ@¢4/fﬁ@¢»

Similarly the conditional pdf of Y given x, defined for all x such that
fl(x) ;é 0: iS g2(y|x) = f(x, y)/{fl(x)

Example. For the roof distribution, go(y|x) is defined only for
0 = x < 1. There

g01%) = fle YAk = (x + e + 1/2) for0=y=1,

with go(y|x) = O elsewhere. Figure 4.3 plots this function for x = 0,
0.5, 1.

Mixed cases may arise in a bivariate population. For example, if ¥ =
family income and X = number of persons in family, then a natural
model would have X discrete and Y continuous. In such situations, the
joint distribution is most conveniently specified in terms of the marginal
pmf of the discrete variable and the conditional pdf of the continuous
variable.
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Figure 4.3 Roof distribution: conditional pdf’s.

Exercises
4.1 Curved-roof Distribution. Consider the continuous bivariate proba-
bility distribution whose joint probability density function is
fe,y) =302 +y)/11 for0=x=2,0=<y=1,

with f(x,y) = 0 elsewhere. The plot of this pdf in Figure 4.4 accounts
for its name.

(a) Show that the marginal pdf of X, plotted in Figure 4.5, is
filx) = 3(2° + 1)/22 for0 =x=2,

with f(x) = 0 elsewhere.

(b) Derive f,(y), the marginal pdf of Y.

(c) For 0 =< x =< 2, derive gy(y|x), the conditional pdf of Y given X,
plotted in Figure 4.6 forx = 0, 1, 2.




42 4 Bivariate Distributions

AS 20

N

0
/
b

VB A0
7

.

)

/

4

(/

;

0-0

Figure 4.4 Curved-roof distribution: joint pdf.
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Figure 4.6 Curved-roof distribution: conditional pdf’s.

4.2 For the curved-roof distribution, let A = {0 = ¥ =< 1/2}. Calculate
Pr(A), and calculate Pr(A|x) for x = 0, 1, 2.

4.3 For the curved-roof distribution, derive g,(x|y), the conditional
pdf of X given Y.
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5 Expectations: Bivariate Case

5.1. Expectations

Suppose that the random vector (X, ¥) has joint pdf or pmf f(x, y). Let
Z = KX, Y) be a scalar function of (X, Y). Then the expectation of the

random variable Z is defined as

f i f h(x, y)f(x, y) dy dx in the continuous case,

E(Z) =
2 2 hix; y))f(x;, 3;) in the discrete case.
i

If in fact Z is a function of only one of the two variables, then its
expectation is also computable from the marginal distribution of that

variable. That is, if k(x, y) = h,(x), then
E(Z) = E 2 by (x:)f(xi yj) = 2 hy(x;) [? Sl y,-)]
i g i
= 2 hy(x)f1(x:)-

(Note: Here and subsequently, we will usually report derivations for
only one of the two cases, discrete and continuous. The understanding

is that a parallel derivation applies to the other case.)

The moments of the joint distribution are the expectations of certain
functions of (X,Y), or of (X*, Y*), where X* = X — EX), Y* =Y —
E(Y). For nonnegative integers 7, s:

E(X'Y®) is the (r, s)th raw moment, or moment about zero,
E(X*¥'Y*) is the (r, s)th central moment, or moment about the mean.

5.1 Expectations . - 45

In particular,

0: EX'Y’) =EX) = px,
0: EX**Y*%) = E[X — E(X)]? =VX) =o%,
1L EX*Y*) = E{[X — EX)I[Y — E()]} = CX,Y) = 0xy.

I, s
2, s
I,s

’

7
r
r

The last of these is called the covariance of X and Y. Thus the covariance
of a pair of random variables is the expected cross-product of their
deviations from their respective expectations.

The standard deviation of a random variable is the square root of its
variance. So the standard deviation of X is o = V&2, and similarly for
Y. The correlation coefficient, or simply correlation, of a pair of random
variables is the ratio of their covariance to the product of their standard
deviations. So the correlation coefficient of X and Y is

P = CX, N)[[VVX)VV(Y)] = ox,/(ox0y).

Some useful theorems are readily established:

T5. LINEAR FUNCTION. Suppose that Z = a + bX + cY, where
a, b, ¢ are constants. Then

E(Z) = a + bE(X) + cE(Y),
V(Z) = BPV(X) + FV(Y) + 2bcC(X, Y).

Proof. For the expectation,
EZ) = 2 E (@ + bx; + cy)f(x:, 3;)
i
=aX 2 fle,y) + b2 x; [zﬂxi'yj)] +e2y, [Ef(xf,yﬂ]
t 7 1 J 7 i
a 1 + b E x;fl(xi)

MR EZE
For the variance, V(Z) = E(Z*?), where

Z* = Z — E(Z) = b[X — EX)] + c[Y — E(Y)] = bX* + cY*.
Expanding the square gives Z** as a linear function of X*2, ¥*2, and

X*Y*. Use the rule for expectation of a linear function, extended to
handle three variables. =
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T6. PAIR OF LINEAR FUNCTIONS. Suppose that
Z, =a, + bX + ¢;Y, where ay, b,, ¢, are constants,

Zy = ay + boX + ¢oY, where ay, by, ¢, are constants.

Then C(Zl, ZQ) = blbgv(X) + C1C2V(Y) + (blCQ + bgcl)C(X, Y).
Proof. Extend the approach used for V(Z) in the proof of T5.

T7. COVARIANCE AND VARIANCE.

C(X,Y) = EXY) — EX)E(Y) = C(Y, X).
V(X) = EX?) - E*(X) = CX, X).

Proof. C(X,Y) = E(X*Y*) = E{[X — EX)]Y*} = E(XY*) — EX)E(Y*)
= E(XY*) = E{X[Y — E()]}
= E(XY) — EX)E(Y). ®

Example. For the roof distribution introduced in Section 4.1,
these moments are calculated by integration in the joint pdf:

E(X)=E¥) =112, EX)=EQY®=5/12  EXY)=13.

Then

5/12 — 49/144
1/3 — 49/144

11/144 = V(Y),
—1/144.

V(X) =EX?% - E*X)
C(X,Y) = EXY) — EX)E®Y)

5.2. Conditional Expectations

In a bivariate probability distribution, the conditional expectation of Y given
X = x is the counterpart of the sample conditional mean my|, that was
introduced in Chapter 1.

DEFINITION. Let the random vector (X, Y) have joint pdf f(x, y) =
g2(3]%)f1(x), and let Z = h(X, Y) be a function of (X, Y). The'n the con-
ditional expectation of the random variable Z, given X = x, is

R

5.2 Conditional Expectations 47

E@l) = | bt gl dy
in the continuous case, and similarly in the discrete case.

The symbol E(-]x) denotes an expectation taken in the distribution
g2(y1x), so E(Z|x) = p, is just the expected value of hy(Y) = k(x, ¥) in
a particular univariate distribution. If we then allow X to vary, we get a
set of conditional expectations, denoted collectively as E(Z|X) = Kz|x-

To illustrate the concepts, consider some special cases. Here a, b, ¢
are constants, X is a random variable, and x is a particular value of that
variable. Given X = x, then any function of X alone is constant. With
that in mind, the following results are immediate:

@) LetZ = h(X). Then-E(Z|x) = h(x).

(i) Let Z = hy(X)Y. Then E(Z|%) = hy(:)E(Y|x).

(i) LetZ =a + bX + c¥. Then E(Z|x) = a + bx + cE(Y|x).

(iv) LetZ =Y. Then E(Z|x) = E(Y|x) = py,,, the conditional expec-
tation of Y given that X = «.

() LetZ = (Y — pyx). Then E(Z|x) = E(Y|x) — pyj, = 0.

(vi) LetZ = (¥ — wyx)°. Then E(Z|x) = V(Y|x) = O3, the conditional
variance of Y given that X = x.

(vii) LetZ = (Y — py). Then E(Z|x) = E(Y|x) — py = pyje — By

(viii) Let Z = (¥ — py)°. Then E(Z|x) = 63, + (byx — pp)>

Proof of (viii). WriteY — py, = (¥ — Byix) + (Ryix — Ky), SO

Y - IJ'Y)2 =¥ - P'Y]x)2 + (byix — l-l-Y)2 + 2(“‘Y|X = pp)Y - Pyix)-

Take expectations conditional on X = x, using (v), (vi), and the condi-
tional constancy of (hyjx — py). ®

Now allow X to vary, so that E(Z|X) is itself a random variable, taking
on the values E(Z|x). Several key theorems are easily established:

T8. LAW OF ITERATED EXPECTATIONS. The (marginal)

expectation of Z = (X, Y) is the expectation of its conditional expec-
tations: '

E(Z) = Ex[E(Z|X)].

OCOQOOOCOOOOOOOLOOOOOOOOLOOOLC ODDO'J‘\
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48 5 Expectations: Bivariate Case

read as “the expectation over X,” is the expec-

: The symbol Ex,
(Note e sy X f X. The subscript may be

tation taken in the marginal distribution o
omitted if there is no risk of confusion.)

Proof.

E@) = E., E h(x, y)f(x, y) dy dx
B j . f " e, gy 0] dy dx

- f [ f_: hix, »)g2(y1%) dy] filx) dx

=j EZ|x)f(x) dx. ®

T9. MARGINAL AND CONDITIONAL MEANS. The .(fnar-
ginal) expectation of Y is equal to the expectation of its conditional

expectations:
py = E(Y) = Ex(EQY|X)] = Elbyx)-

T10. ANALYSIS OF VARIANCE. The (marginal) variance.of Y
is equal to the expectation of its conditional variances plus the variance

of its conditional expectations:

o2 = V() = Ex[V(Y|X)] + Vx[E(Y|X)] = E@¥x) + V(irix)-

Proof. Write V(Y) = E(Z) where Z = (Y — py)% and apply T8 to item
(viii) in the list above.

T11. EXPECTED PRODUCT. The expected product of X anc} Y
is equal to the expected product of X and the conditional expectation

of Y given X:
E(XY) = Ex[XE(Y|X)] = EXpyix)-

5.3 Conditional Expectation Function 49

T12. COVARIANCE. The covariance of X and Y is equal to the
covariance of X and the conditional expectation of Y given X:

CX, pyix) = EXpyix) — EX)E(nyx) = E(XY) — E(X)E(Y)
= C(X, Y).

5.3. Conditional Expectation Function

As we have seen, the conditional expectation of Y given that X = x is

E(Y|x) = pyj, = f_ yga(y|x) dy.

As we change x, that is, allow X to vary, we get E(Y|X) = pyx, a function
of X, known as the conditional expectation function, or CEF, or “population
regression function” of Y given X. Similarly, V(Y|x) is the conditional
variance of Y given that X = x, and V(Y|X) is the conditional variance
function, or CVF, of Y given X. The shapes of the CEF and CVF are
determined ultimately by the joint pmf or pdf. (Note the confusing
language: the CEF and CVF of Y given X are, mathematically speaking,
functions of X.)

Example. For the roof distribution, the CEF of Y given X is
defined only for 0 < x =< 1. There

1
E(Y|x) = Jo [y(x + 9)/(x + 1/2)] dy

=[x + 1U2))xy*2 + y'13)|[o = [1/(x + 1/2)](x/2 + 1/3)

= (3x + 2)/(6x + 3).
This function is plotted in Figure 5.1.

The deviation of ¥ from its CEF has certain characteristic properties.
Let € =Y — E(Y|X). Because € is just the deviation from a (conditional)
expected value, we have

G.1)  E@€|X) =0,

(5.2)  V(e|X) = ofx.
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Figure 5.1 Roof distribution: CEF and BLP.

From these it follows that
(6.3) E(e) =0,
64) CX, e =0,
55 V() = E(¥x),
(5.6) If Z = k(X), then C(Z,€) = 0.
Proofs. By T8 and Eq. (5.1), E(€) = Ex[E(€|X)] = Ex(0) = 0. By T12

and Eq. (6.1). C(X, €) = C[X, E(e|X)] = CX, 02) = 0: By T10, Eq. (5.2),
and Eq. (5.1). V(e) = E(of|x) + V(e x) = E(@yx)- Finally,

C(Z,€) = E(Ze) — E(Z)E(e) = E(Ze) = Ex[ZE(€|X)] = E(Z0) = 0. =
We conclude that the deviation of Y from the function E(Y|X) is a

random variable that has zero expectation, and zero covanar-xce wt}t}l}
every function of the conditioning variable X. No other function o

yields deviations with the latter property.

5.4 Prediction 51
5.4. Prediction

Recall the univariate prediction problem introduced in Section 3.4: The
random variable Y has known pmf or pdf f(y). A single draw is made
and you are asked to predict the value of Y. The best constant predictor
¢, in the sense of minimizing E(U? where U = Y — ¢, is ¢ = py. For
that optimal choice of ¢, we have U = ¥ — p,, with EU) = 0 and
E(U%) = E(Y — py)’ = 0},

Now consider this prediction problem for the bivariate case: The
random vector (X, Y) has known joint pmf or pdf f(x, y). A single draw
is made. You are told the value of X that was drawn and asked to predict
the value of Y that accompanied it. You are free to use any function of
X, say h(X), as your predictor. What is the best predictor, in the sense
of minimizing E(U?) where U = Y — h(X)? The answer is h(X) = EY|X).
That is, the best predictor of Y given X is the CEF. '

Proof. Let h(X) be any function of X, let U =Y - h(X), e = Y —
E(Y|X), and W = E(Y|X) — h(X), so that U = € + W, with Wbeing a_
function of X alone. For a particular X = x, we have W = E(Y|x) —
h(x) = w, say. So at X = x, we have U = € + w, so U=+ uw+ 2we,
S0

E(U|x) = E(€°|x) + w® + 2uE(e|x) = o}, + P,
using Egs. (5.1) and (5.2). Across all X,
E(U?) = Ex[E(U|X)] = E(o}1x) + E(WP).

The last term is nonnegative and vanishes iff W = 0, that is, iff A(X) =
EY|X). =

For the optimal choice of A(X), the prediction error is U = Y —
E(Y|X) = €, with E(U) = E(e) = 0, E(U®) = E(¢®) = E(0}x). From T10
we see that E(Y|X) is a better (strictly, no worse) predictor than E(Y).
Both predictors are unbiased, but in general, the additional information
provided by knowledge of the X-value improves the prediction of Y.

Continuing with the bivariate setting of the prediction problem, sup-

pose that we confine the choice of predictors to linear functions of X:

)OO
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h(X) = a + bX. The best such function, in the sense of minimizing E U,
where U = Y — h(X), is the line

EX(Y|X) = o + BX,
where

B= Oxv/0% o = py — Brx
This line is called the linear projection (or LP) of Y on X, or best linear
predictor (BLP) of Y given X.

Proof. Write U =Y — (a + bX), and use the linearity of the expectation

operator to calculate

AE(Uda = E(@@U%/da) = 2E(UdU/da) = —2E(U)

3E(U?)/ab = E(dU*%/ab) = 2E(UaUlab) = —2E(XU).

The first-order conditions are E(U) = 0 and E(XU) = 9, which together
are equivalent to E(U) = 0 and C(X, U) = 0. Substituting for U, we get

E(Y) = a + bE(X),
C(X,Y) = bV(X).
The solution values are denoted as « and B, and it can b¢ confirmed
that they locate a minimum. ®
The minimized value of the criterion is
E(UY) = VIY — (@ + BX)] = V(¥) + B*V(X) - 2BCX, Y)
= V(Y) - B*V(X).

Example. For the roof distribution, use the moments previously

obtained to calculate

B = (—1/144)/(11/144) = —1/11, a= 1712 — (-1/11)7/12 = 7/11.

So EX(Y|X) = 7/11 — (1/1DX. This BLP is plotted along with the CEF
in Figure 5.1. =
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The deviation of Y from its BLP has several characteristic properties.
Let U =Y — E¥(Y|X) = Y — (o + BX). Then we have

(5.7 EU) =0,
(5.8 CX,U)=0,
(5.9)  V(U) = V() — BV(X).

Proofs. The first-order conditions are equivalent to E(U) = 0 and
C(X, U) = 0. With E(U) = 0, we have V(U) = E(U%. =

We conclude that the deviation of Y from the function E¥(Y|X) is a
random variable that has zero expectation, and zero covariance with
the conditioning variable X.

5.5. Conditional Expectations and Linear Predictors

We have just developed two predictors of Y given X: the CEF, which is
the best predictor, and the BLP, which is the best linear predictor. We
were already familiar with the marginal expectation E(Y), which is the
best constant predictor. It will be useful to recapitulate the connections
among these concepts.

Because E(Y|X), E*(Y|X), and E(Y) solve successively more con-
strained minimization problems, it is clear that, as a predictor of Y, the
BLP is worse (no better) than the CEF, and better (no worse) than the
marginal expectation.

A sharp distinction between the CEF and the BLP refers to prediction
errors. Let U = Y — E*(Y|X) and € = Y — E(Y|X); then U has zero
covariance with X, while € has zero covariance with every function of X.

A pair of theorems relates the BLP to the CEF:

T13. LINEAR APPROXIMATION TO CEF. The best linear
approximation to the CEF, in the sense of minimizing E(W?) where W =
E(Y|X) — (a + bX), is the BLP, namely EX(Y|X) = o + BX, with B =
CX, V)V(X), a = EY) — BE(X).

Proof. This is formally the same linear prediction problem as was
solved in Section 5.4, except that W plays the role of U and E(Y|X) plays
.the role of Y. So the solution values must be
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o = E(y) — BEX), b= CX,pyp)/VIX).

But E(py|x) = E(Y) by T8, and CX,uyix) = CX,Y)by T12. ®

T14. LINEAR CEF. If the CEF is linear, then it coincides with the
BLP: if E(Y|X) = a + bX, then b = C(X, Y)/V(X) = B and a = E(Y) —

BE(X) = a.

With this as background, we may be able to clarify the concept of
linear relation as used in empirical econometrics. One often reads that a
dependent variable Y is assumed to be a linear function of X plus an
error (or disturbance). Some care in interpreting such statements is
needed. Taken by itself, Y = @ + bX + U is a vacuous statement. When
supplemented by E(U) = 0, it amounts only to stating that E(Y) = a +
BE(X). When further supplemented by C(X, U) = 0, it amounts only to
announcing that the BLP is being labeled as a + bX. But to say thatY =
a + bX + U, with E(U|X) = 0 for all X, is to assume something, namely
that the CEF is linear.

Finally, referring back to Chapter 1, we see that the CEF is the
population counterpart of the sample conditional mean function myx,
while the BLP may be viewed as the population counterpart of a certain

smoothed sample line m§x.

Exercises

5.1 Curved-roof Distribution. Recall the bivariate distribution introduced
in Exercise 4.1, whose joint pdf is

fix, 5 = 3(x* +y)/11 for0=x=20=y=1,

with f(x, y) = 0 elsewhere. Figures 4.4, 4.5, and 4.6 plotted f(x, y), the
marginal pdf f;(x), and selected conditional pdf’s go(y|x).

(@) For 0 < x = 2, find the CEF of Y given X.
(b) Calculate E(X), E(Y), EX®), E(Y?), EXY), V(X), V(Y), C(X, Y).

(c) Find the BLP of Y given X.
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Figure 5.2 Curved-roof distribution: CEF and BLP.

Ed) fomment on Figure 5.2, where the CEF and BLP are plotted
€) \ }111 th;a ﬁgur(;, the BLP appears closer to the CEF at high ratl;er
an low, i ,
e values of x. Why does that happen? Hint: See Figure

5.2 For the joint pmf in the table below:

(@) F?nd the conditional expectation function EY|X)
(b) Find the best linear predictor EXY|X). .
(c) Prepare a table that gives E(Y|x) and E*(Y |x) forx = 1, 2, 3

x=1 x=2 x=3

y=0 0.15 0.10 0.15
y=1 0.15 0.30 0.15

5.3 Suppose that the random variables Z (= permanent income in

- thousands of dollars) and W (= transitory income in thousands of

cocoe |
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dollars) have zero covariance, with E(Z) = 42, E(W) = 0, V(Z) = 2500,
V(W) = 500. Further, X (= current income in thousands of dollars) is

determined as X = Z + W.

(a) Calculate E(X), C(Z, X), C(W, X), and V(X).

(b) Find the BLP of current income given permanent income.

(c) Predict as best you can the current income of a person whose
permanent income is z = 54.

(d) Find the BLP of permanent income given current income.

(e) Predict as best you can the permanent income of a person whose

current income is x = 54.
(f) Comment on the relation between the answers to (c) and (e).

5.4 For the setup of Exercise 5.3, suppose also that Y (= consumption
in thousands of dollars) is determined as Y = (6/7)Z + U where U (=
transitory consumption in thousands of dollars) has E(U) = 0, V(U) =
250, C(Z, U) = 0, C(W, U) = 0. Find E*(Y|Z), the BLP of consumption
given permanent income, and also find E*(Y|X), the BLP of consump-
tion given current income. Comment on the distinctions between these

two BLP’s.

5.5 Provide a counterexample to this proposition: If V;, V,, V3 are
three random variables with V, = V, + V;, then V, and V5 must have
nonzero covariance. Hint: Use the setup of Exercise 5.3.

5.6 The random variables X and Y are jointly distributed. Let € =
Y — E(Y|X) and U = Y — E¥*(Y|X), where E(Y|X) is the CEF and E*(Y|X)
is the BLP. Determine whether the following is true or false: C(e, U) =
Vie).

5.7 Suppose that the criterion for successful prediction were changed
from minimizing E(U?) to minimizing E(|U}), where U = Y — k(X).

(a) Show that the best predictor would change from E(Y|X) to
M(Y|X), the conditional median function of Y given X, defined as the
curve that gives the conditional medians of Y as a function of X.

(b) Comment on the attractiveness of the conditional median function
as a description of the relation of Y to X in a bivariate population.
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5.8 In a bivariate population, let us define the best proportional predictor
of Y given X as the ray through the origin, E**(Y|X) = X, with vy being
the value for ¢ that minimizes E(U?), where now U = ¥ — ¢X.

(a) Show that y = E(XY)/E(X?).

(b) Is E**(Y|X) an unbiased predictor? Explain.

() Let U =Y — vX. Does C(X, U) = 0?

(d) Find the minimized value of E(U?).

(e) Compare this E(U?) with those that result when the marginal
expectation is used, and when the BLP is used.




6  Independence in a Bivariate Distribution

6.1. Introduction

We can recognize at least three possible responses to the question, How
is ¥ related to X in a bivariate population?: the conditional pdf’s (or
pmf’s) go(y|x), the conditional expectation function E(Y|X), and the best
linear predictor E¥(Y|X). Correspondingly, we can recognize three pos-
sible responses to the question, What does it mean to say that Y is not

related to X in the bivariate population?

6.2. Stochastic Independence
In any bivariate probability distribution we can write the joint pdf (or
pmf) as the product of a conditional and a marginal pdf (or pmf):
flx,y) = go(ylx)fi(x) for all (x, y) such that f,(x) # 0.
To start, we say that Y is stochastically independent of X iff
g:03|x) = f5(») for all (x, y) such that f(x) # 0,

where f§(y) does not depend on x. In other words, the condition_al
probability distribution of ¥ given x is the same for all x-values; that is,
the conditional probability distribution does not vary with—*is indepen-
dent of "—X. One implication of stochastic independence is immediate:

the marginal pdf of Y is
700 = [ &l s = [ fro0 ds = ) [ fi69 s

= f3(y).

6.2  Stochastic Independence 59

(Note: In this chapter the symbol [ is used as shorthand for [Z..) That
is, if the conditional distribution of Y is the same for all values of X,
then the marginal distribution of Y coincides with that common condi-
tional distribution. So

Y is stochastically independent of X iff f(x, y) = fi(x)f5(y).

That is, Y is stochastically independent of X if and only if the joint pdf
(or pmf) factors into the product of the marginal pdf’s (or pmf’s). In
that event, the conditional pdf (or pmf) of X given Y is

&ixly) = fx, )9 = [LELOVfR(9) = fil).

We conclude that Y is stochastically independent of X if and only if X
is stochastically independent of Y. So stochastic independence is a sym-
metric relation, which leads us to the equivalent, more traditional

DEFINITION. X andY are stochastically independent iff

fix,9) = fitx)fo(y) for all (x, y).

For brevity, the unqualified term independent is often used instead of
stochastically independent.

The following implications are straightforward.

If X and Y are independent, then:

I1. If Ais an event defined in terms of X alone, and B is an event
defined in terms of Y alone, then Pr(A N B) = Pr(A)Pr(B); that is, A
and B are independent events.

12. IfZ = h(X)is a function of X alone, then Z and Y are independent
random variables.

Proof. Recall from Section 2.5 how, in a univariate distribution, one
goes from f(x), the pdf or pmf of X, to g(z), the pdf (or pmf) of the
function Z = A(X). Apply the same method here to go from each g;(x|y)
to a gf(z|y). If g,(x|y) is the same for all y, then g¥(z|y) must also be the
same for ally. m :

00000,
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I13. Let Z, = hy(X) be a function of X alone, and Z; = hy(Y) be a
function of Y alone. Then Z, and Z, are independent.

Proof. By 12,Z, and Y are independent. Apply 12 again with Z, taking
the role of Y, and Y taking the role of X. ®

6.3. Roles of Stochastic Independence

Stochastic independence will play several roles in this book.

* Independence serves as a stringent baseline for discussing relations
among variables. If X and Y are independent random variables, then it
is certainly appropriate to say that there is “no relation” between them
in the population.

* Independence serves as a device for building a joint distribution
from a pair of marginal distributions. If X ~ fi(x), Y ~ fo(y), and X and
Y are independent, then f(x, y) = fi(x)fa(y)

Example: Tossing Two Coins. Suppose X ~ Bernoulli(p) and
Y ~ Bernoulli(p), so for all (x, y) with x and y being 0 or 1,

L0 =pa-p' L)Y =pPA-p7

What is the joint distribution of (X, ¥)? That is, how does one fill in the
probabilities of the four possible paired outcomes? Without an assump-
tion of independence (or some other information), we cannot fill them
in; with it, we can.

A couple of remarks on this example:

(1) If X and Y are independent, then we will have a random vector
(X, Y) in which the two random variables are independent and identically
distributed. We will then say that (X, Y) is a random sample of size 2 from
the Bernoulli(p) population.

(2) “Independent” and “identically distributed” are distinct concepts.
We might have had X ~ Bernoulli(p) and Y ~ Bernoulli(p*), with p* #
. in which case the variables would not be identically distributed. Or
we might have had them both Bernoulli() but not independent.

Independence serves as a device for building up a behavioral model.
For example, suppose ¥ = 1 if a household purchases a car, Y = 0 if

6.4 Mean-Independence . 61 .

not, for the population of households in 1990. Suppose further that ¥
is determined by X = income and U = taste for cars, according to this
rule:

_J1 ifa+bX+U>0,
Y = .
0 fa+bX+U=0.

Here a and b are constants, X and Y are observable, while U is an
unobserved variable. How does the probability of car purchase vary, if
at all, with income? Suppose that U ~ standard normal, with X and U
independent. The question is, what is Pr(Y = 1{x) at income level x?
Now

Y=1 & @+bu+U)>0 & U>—(a+ bx).
So
Pr(Y = 1|x) = Pr{U > —(a + bx)|x] = 1 — F[—(a + bx)]
= F(a + bx),

where F(.) denotes the standard normal cdf. Here F(a + bX) is not the
cdf of income, but rather the CEF of the binary variable Y, conditional
on the continuous variable X. Observe how the assumption of indepen-
dence was used to assert that U|x ~ standard normal for every x.

6.4. Mean-Independence and Uncorrelatedness

We turn to less stringent concepts of the absence of a relation between
the variables in a bivariate distribution.

Mean-Independence

In any bivariate probability distribution, we have
EY|x) = fygg(y|x) dy.

We say that Y is mean-independent of X iff
E(Y|x) = u§ for all x such that fi(x) # 0,

wh.ere k¥ does not depend on x. In other words, the conditional expec-
tation of Y given x is the same for all x-values; that is, the population
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conditional mean does not vary with—"is independent of "—X. One
implication of mean-independence is immediate: the marginal expec-

tation of Y is
Ky = Ex[EY|X)) = E(u§) = ui,

by the Law of Iterated Expectations (T8, Section 5.2). That is, if the
conditional expectation of Y is the same for all values of X, then the
marginal expectation of Y coincides with that common conditional

expectation.
Another implication is:

M1. IfY is mean-independent of X, and Z = A(X) is a function of X
alone, then Y is mean-independent of Z.

Proof. 1f h(-) is one-to-one, then the implication is immediate, because
E(-|2) is equivalent to E(-|x) with x = k7' (z). Otherwise, let i(k? denote
the set of all i such that z(x;) = z,, and let 2, denote summation over
all i in that set. Then the joint probability mass at the point (z,,', ;) 1s
¥z ) = Zipflx 3), s0 that the marginal probability mass at z; 1s

fte) =Sy =3 [gf(xi, ] = S fis)

itk)
So the conditional probability mass for y; given z, is

g0yl = et = | S ssylafi) /| B
= E gz()’j‘xi)ww
i(k)

say, with Z,w; = 1. Then

E(Y|z) = 2 ng?()’jlzh) = ?)’j [(2,0 gz(yj|xi)wa]
7 i
= %} Wy [? ngg(yjlxi)] = % wy E(Y|x;).

If E(Y]x,) is constant across all i, then E(Y|z,) will be constant at that
same value across all k. ®

What is the connection between independence and mean-indepen-
dence? If two distributions are the same, they must have the same mean,
so independence implies mean-independence. But two distributions
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may have the same mean, and yet have different variances, or third
moments, or medians. So mean-independence is weaker than stochastic
independence, because it refers only to the expectation rather than to
the entire distribution. Nevertheless, to the extent that economists do
interpret “the relation” between Y and X to refer to the population
conditional mean function, then it is mean-independence rather than

stochastic independence that should serve as the natural baseline for
“no relation.”

Mean-independence is not a symmetric relation: if ¥ is mean-inde-
pendent of X, then X may or may not be mean-independent of .

Example: Three-point Distribution. Suppose that (X, Y) is discrete,
with f(x,y) = 1/3 at each of three mass points, namely (1, —1), (0, 0),
and (1, 1). Then

E¥|lx=1)=0= EY|x = 0),
but

EXly=-1)=1, EXly=0)=0, EX[ly=1=1.

Uncorrelatedness

Recall the definition of the covariance in a bivariate probability distri-
bution:

CX,Y) = E{[X - EQJIY - EM)]}-

We say that Y is uncorrelated with X iff C(X, Y) = 0. Clearly, uncorrelat-
edness is a symmetric relation.
What is the connection between uncorrelatedness and mean-indepen-

dence? Two results will shed some light:

M2. IfYis mean-independent of X, then Y is uncorrelated with X.

Proof. By T12 (Section 5.2), C(X,Y) = C[X, E(Y|X)). if E¥|X) = py
for all X, then C(X,Y) = C(X, uy) = 0, because py is a constant. B

M3. IfYis mean-independent of X, and Z = h(X) is a function of X
alone, then Y is uncorrelated with Z.
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64 6 Independence

Proof. By M1, Y is mean-independent of Z. Use M2 with Z playing
theroleof X. =

Clearly, mean-independence is stronger thax? unc9rrelatedness. The
three-point distribution example illustrates this. With f(x,y) = 1/3 at
each of the three mass points, namely (I, -1), (0,0), and (1,'1), we
calculate C(X,Y) = 0. But X is not mean-independent of Y in that

example. ‘ .
Indeed, Y can be uncorrelated with many functions of X without

being mean-independent of X. What is true is that:

M4. If Y is uncorrelated with E(Y|X), then Y is mean-independent
of X.

Proof. Let Z = E(Y|X),s0Y = Z + e with C(Z, €) = 0. Then C(¥, 2) =
CZ + €,2) = C(Z,Z) + CZ, e = V(Z) =0, with equality iff Z is

constant. H

6.5. Types of Independence

One useful way to distinguish among uncorrelatedness, mean-indepen-
dence, and stochastic independence is in terms of the joint moments of
. . Y S
the probability distribution, namely the E(X'Y’), where r- and s are

positive integers. We see that:

If Y is uncorrelated with X, then E(XY) = E(X)E(Y).
Proof. C(X,Y) = E(XY) — EX)E(Y). =

If Y is mean-independent of X, then E(X'Y) = E(X NE(Y) for all r.
Proof. Let Z = X" = h(X). Then by M3, CZ,Y)=0. m

If Y is independent of X, then EXY") = EXNE®Y®) for all r, s.

Proof. By 13, X" and Y* are independent; hence they are uncorre-

lated. =
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Another informative distinction between uncorrelatedness and mean-
independence concerns prediction:

If Y is mean-independent of X, then E(Y|X) = E(Y) for all X, the CEF
of Y given X is a horizontal line, and the best predictor of Y given X is
E(Y). If Y is uncorrelated with X, then E¥(Y|X) = E(Y) for all X, the
BLP of Y given X is a horizontal line, and the best linear predictor of Y
given X is E(Y).

Recalling the discussion of deviations in Sections 5.3 and 5.4, we may
now say that:

If e =Y — E(Y|X), then € is mean-independent of X.
If U =Y — E*(Y|X), then U is uncorrelated with X.

In applied econometrics, one sometimes reads that “X and Y are
uncorrelated, so there is no relation between them.” This statement is
ambiguous. Only if “the relation” of Y to X refers to the BLP rather
than to the CEF would such a statement be appropriate. One also reads
that “there is no linear relation” between Y and X. That statement too
is ambiguous, and should not be interpreted to say that “there is a
nonlinear relation” between Y and X. Properly speaking, “no linear
relation” means that C(X,Y) = 0, so the best-fitting linear relation
between Y and X is a horizontal line. And that leaves two possibilities
open: perhaps the CEF is also a horizontal line (Y is mean-independent
of X), or perhaps the CEF is a curve, the best linear approximation to
which happens to be a horizontal line.

Example. For the three-point distribution introduced in Section
6.4, the CEF E(X|Y) is V-shaped (nonlinear), while the BLP E*(X|Y) is
horizontal because C(X, ¥) = 0.

Example. let Y = earnings and X = age. Because of natural
life-cycle development, it is plausible that E(Y|X) plots as an inverted
U. If so, it is quite possible that E*(Y|X) is horizontal.

6.6. Strength of a Relation

In some contexts, it is interesting to measure the extent of dependence
between ¥ and X in a bivariate population. It seems natural to base such
measures on the analysis of prediction.
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Recalling the definition of the correlation coefficient (Section 5.1), we

show:

CAUCHY-SCHWARTZ INEQUALITY.
If p = C(X, YY[VVX)VV(Y)], then 0 = pP =1

Proof. From B = C(X, Y)/V(X) and Eq. (5.9), it follows that
p? = CX(X, V)[VX)V(Y)] = BVX)V(Y) = [V(¥) = VI)IV(Y).

Sop* =1 — V(U)Y/V(Y). But 0 = V(U) = V(Y). ™

If p?> = 1, we say that X and Y are perfectly correlated. This p?, the
population coefficient of determination, measures the proportional reduc-
tion in expected squared prediction error that is attributable to using
the BLP E*(Y|X) rather than the marginal expectation E(Y) for pre-
dicting Y given X. It is commonly used as an indicator of the strength
of “the linear relation” between Y and X in a population.

Example. For the roof distribution,
p? = (—1/144)%[[(11/144)(11/144)] = 1/121.

A related measure relies on the CEF rather than on the BLP. Refer-
ring to the Analysis of Variance formula (T10, Section 5.2), define the
correlation ratio for Y on X as

n? = Vx[EX|X)JV(Y) =1 — Ex[VY|X)YV(Y).

Clearly 0 = w2 =< 1. This m? measures the proportional reduction in
expected squared prediction error that is attributable to using the CEF
E(Y|X) rather than the marginal expectation E(Y) for predicting Y given
X. It may be used as an indicator of the strength of the relation of Y to
X, when “the relation” is interpreted to be the CEF. Because the BLP
solves a constrained version of the prediction problem solved by the
CEF, it follows that p® =< m?, with equality iff the CEF is linear.

One should not confuse either of these measures of strength with
measures of steepness such as the slope of the BLP, E*(Y|X)/0X = B,
or the slope of the CEF, 4E(Y|X)/6X. In most economic contexts, slope,
rather than strength, will be of primary interest.
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Exercises

6'.1 Supp<?se that X, and X, are stochastically independent l;ernoulli
variables, with parameters p, and p, respectively. Let ¥ = XX, and W =
.;( 11 + X,. Determine whether each of the following statements is true or
alse.

(@) The random variable Y is distributed Bernoulli with parameter

Pipo-
(b) The expectation of W2 is equal to p% + pg.

6.2 Two economists know the joint distribution of X = price and ¥ =
quantity. One decides to predict quantity given price, using the BLP
E*(Y!X); his prediction erroris U = Y — E*(Y|X). The other decides to
predict price given quantity; her prediction error is V = X — E¥(X [Y).
Letoxy = C(X,Y), oyy = C(U, V), and p = correlation of X and Y.

(a) Show that oy = —(1 — p%) Gy
(b) What does that result imply about the sign and magnitude of oy,
as compared with the sign and magnitude of oy, ?

6:3 Suppose that Z = XY, where X and Y are independent random
variables. Show that V(Z) =V(X)V(Y) + E*X)V(Y) + EXY)V(X).

6.4. Suppose Fhat Z = XY, where Y is mean-independent of X and the
FOHdlt]OI.lal variance of Y given X is constant. Show that the conclusion
in Exercise 6.3 is still correct.

§.5 Suppose that Y = Z — X is independent of Z and of X. Show that
Y is a constant.

6.6 SuRRose that Y = Z/X is independent of Z and of X, where X and
Z are positive random variables. Show that Y is a constant.

6.7 Suppose that X and W are independent random variables with
EX)=0,EX") =1,EX® =0,EW) = 1, EW? = 2. LetY = W +
WX,

(a) Find the CEF E(Y|X) and the BLP E*(Y|X).

(b) Change the assumption E(X?) = 0 to E(X®) = 1. Find the CEF

E(Y|X) and the BLP EX(Y|X).

{c) Which relation remained the same in going from (a) to (b)? Which
changed? Why?

CCCO0000000000000000000000000000000000000.
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7 Normal Distributions

7.1. Univariate Normal Distribution

Recall from Section 2.3 that the random variable Z has the standard

normal distribution iff its pdf is
flo) = exp(—-z2/2)/ V(27).

It can be shown by integration that

EZ)=0, EZ»=1, E(Z» =0, EZY)=3.

Suppose Z ~ standard normal, and let X - :
are cgfxstants with b > 0. By the linear function rule (T1, Section 3.3),

= g + bZ, where a and b

EX)=a+bEZ) =4, VX =§V@) ="V,
so we may as well rewrite the linear function as
X=p+oZ with o > 0.
As in Section 2.5, to find the pdf of X, first find its cdf:
G(x) = PriX s x) = Pr( + 6Z < x) = Pr[Z = (x — p)/o]
= F(2),

with z = (x — p)/o; here F(-) denotes the standard normal cdf. So the

pdf of X is
glx) = 3G(x)/ox = oF (2)/dx = [0F(2)/0z)(9z/ox) = f)eo,

with z = (x — p)/o. That is,

glx) = o~ @m) exp(—2/2) = exp{-l(x — w/e? 2V (2wa?).

7.2 Standard Bivariate Normal 69

We write this as X ~ N(w, o®). This is a two-parameter family, the
(general) univariate normal distribution with parameters w and ¢®. The
standard normal distribution is the special case X ~ N(0, 1). Observe
that E(X) = w and V(X) = ¢”, as the notation suggested.

What we have shown is that if Z ~ N(0, 1) and X = pn + ¢Z with
¢ > 0, then X ~ N(j, 0®). But, as can be verified, the argument reverses:
if X ~ N(p, 0% and Z = (X — p)/o, then Z ~ N(0, 1). The conclusion is
that

X ~ N, 0% iff (X — o ~ N(0, 1).

It follows that there is no need to tabulate cdf’s for general univariate
normal distributions: the N(0, 1) cdf table suffices to provide the prob-
abilities of events for any N(p, 6%) distribution. Just translate the event
in terms of X into an event in terms of Z. (Remark: For b < 0, use the
fact that —Z ~ N(0, 1)) _

An immediate implication is that a (nontrivial) linear function of a
normal variable is itself normal. That is:

IfX ~ N(, 0% and ¥ = a + bX with b # 0, then ¥ ~ N(a + by, b%0?).

Proof. It suffices to show that Y = a* + 6*Z where Z ~ N(0, 1). Let
Z=X-plo,s0X=n+0Z ThenY =a+ bX =a + b(p + 0Z) =
(@+ bp) + boZ =a* + b*Z. =m

The trivial case b = 0 is ruled out because it would make ¥ be a constant.
Some writers allow 4 = 0, and would say that Y = g has a “degenerate
normal distribution.”

7.2. Standard Bivariate Normal Distribution

Suppose that U,, U, are independent N(0, 1) variables. Let p be any
constant with |p| < 1, and let

Z,=1U, Zy = pU, + V(1 = p*)U,.
We show that the joint pdf of (Z,, Z,) is

(1) gln, %) = @m 7L ~ p)) exp(~w/2),
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with
(1.2) w= (2 + 7 — 2pz,2)/(1 — p°).

Proof. The joint pdf will be the product of conditional and marginal
pdf’s: g(z;, ) = h(z2]2,) fi(z1). Clearly Z, ~ N(0, 1) so

filz) = flw),

with u, = z,, where f(-) denotes the N(0, 1) pdf. Next, for given Z, =
z,, we see that

Zy=pz; + V(1 — P2)U2

is a linear function of U,, with U, ~ N(0, 1) independently of Z,. So
by the linear-function result in Section 7.1, we know that Z|z, is nor-
mally distributed, with E(Z,|z,) = pz, and V(Z,|z,) = (1 — p°). That is,
Zs)z, ~ N(pz;, 1 — p?). So the conditional pdf is

h(zzlzx) = f(u2)/V (- 02 s
with 4, = (2o — pz;)/V(1 — p?). So the joint pdf is
g(zl, 29) =f(u1)f(u2)/ V(1 — 92)
= @m)7 (1 - p?) 2 exp[— (2 + ud)/2].
But
uj +uj =4+ (2 — p1)(1 — p7)
= [(1 - pA)Z} + 23 + p2] — 2pnz)/(1 — §°)
=@ + 4 — 2p2,2)/(1 — p*). ®

The pdf in Egs. (7.1)—(7.2) defines a one-parameter family, the stan-
dard bivariate normal, or SBVN, distribution with parameter p. We write
this as (Z,, Z;) ~ SBVN(p). Figures 7.1, 7.2, and 7.3 plot the SBVN(p)
distribution for three values of p; the variables are labeled x and y.

It is easy to verify that the derivation reverses, so that

(Z,, Z,) ~ SBVN(p) iff U,, U, are independent N(0, 1) variables,

where U, = Z,, Us = (Z, — pZ,)/V(1 — p*). Consequently, we can deduce
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£, W)

Figure 7.1 SBVN distribution: joint pdf, p = 0.

LW

Figure 7.2 SBVN distribution: joint pdf, p = 0.6.
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A\

Figure 7.3 SBVN distribution: joint pdf, p = —0.6.

properties of the SBVN(p) distribution directly by relying on the rep-

resentation in terms of U,, Uy. If (Z,, Zy) ~ SBVN(p), then
EZ,)=EU) =0, V(Z)=VU)=1,

C(Zy, Z) = C[U, pU, + V(1 = p*)Us]

pC(U,, Uy) + V(1 — p*)C(U,, Uy) = p.

So, as the notation suggested, p is the correlation of Z, and Z,. Further,

Zl -~ N(O: 1)’ Z2IZ1 ~ N(ch 1- p2)a

and
p=0 L= ZQIZIN.N(O, 1) forallzl
= Z, and Z, are independent.

Of course the roles of Z, and Z, can be reversed.

So in the SBVN distribution, the marginals are normal, the condi-
tionals are normal, the conditional expectation functions are linear, the
conditional variance functions are constant, and uncorrelatedness is
equivalent to stochastic independence. Figure 7.4 plots selected contours

e p——
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/ EOAY)

Figure 7.4 SBVN distribution: contours and CEF’s, p = 0.6.

of the SBVN(0.6) distribution along with the two CEF’s; the variables
are labeled X and Y.

.er ca'n calculate the probabilities of various events in an SBVN
distribution by translating into a standard normal event.

Example. Suppose (X,Y) ~ SBVN(0.6). Find Pr(Y < 2|x = 2).

We know that U = (Y — px)/V(1 — p%) ~ N(0, 1), so at x = 2, we have

8]8: (Y - 1.2)08,and Y =2 U =< 1. So Pr(Y = 2|x = 2) = F(1) =
.341.

7.3. Bivariate Normal Distribution

Sugpl)ose that (Z,, Z;) ~ SBVN(p). Let p,, g, 03 > 0, 0y > 0 be constants
and let ’

Xi=m toZ, X,=py+0yZ,
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We show that the joint pdf of X;, X; is
(7.3) b(xy, xo) = exp(—w/2)/(2mY),
with
(74  w=E+ 25— 2mn)(1 - p)
7y = (% — py)/oy,
29 = (xg — Wo)lTg,
I? = ajoi (1 — ¢
Proof. The joint pdf will be the product of conditional and marginal

pdfs: d(xy, x2) = &, (x1)holxo|%,). Now X; = p; + 0,Z, where Z,~N@©,1),
)

bilxy) = f(zl)/o'n

with z; = (x, — p1)/o,. Turn t0 Xo = po + 0,Z,. For given X, = x;, that
is, for given Z, = (x; — w,)o, = z;, we see that

Zglzy ~ N(pzy, 1 — P,
and that X, is a linear function of Z,. So X,|x, ~ normal, with
E(Xo|%y) = po + GoE(Zs|2;) = e + pO2Z1,

V(Xolx,) = 02V(Zs|2)) = o3(1 — p°).
That is,

Xolx, ~ Nlpe + poazy, 031 = ),

with z; = (x; — p)/o,. So the conditional pdf is
halxa|2y) = flug)os VT = pD)),

with 4, = [xa — (1te + pOz,)V[02V(1 — p?)]. So the joint pdf is
ey, 1) = Gyl haliealx,) = flz)flupl[o105 VAT = PO

Multiply out and rearrange. ®

The pdf in Egs. (7.3)~7.4) defines a five-parameter family, the (ger;—
eral) bivariate normal, or BVN, distribution, with parameters [, {2, 01,
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03, and @, = po,0, We write this as (X,, X5) ~ BVN(p,, po, 03, 03,
0,2). It is easy to verify that the derivation reverses, so that

(X1, X5) ~ BYN(Wy, o, 07, 05, 0y5) iff  (Z,, Zy) ~ SBVN(p),

where Z, = (X, — pu)/oy, Zy = (Xy — pg)loy, p = 0,9/(0,05).
Referring back to Section 7.2, we have an equivalent statement:

(X1, X3) ~ BVN(j, o, 03, 03, 013)

iff U, and U, are independent N(0, 1) variables,
where

U, =&, — w)oy,

Up = [Xs —~ (he + posZ))V[o, V(1 — p?)],

p = 09/(0,0y).

7.4. Properties of Bivariate Normal Distribution

As a result of the derivation and its reversal, we can directly deduce
properties of the general bivariate normal distribution. The marginal
distribution of X, is normal: X, ~ N(u,, ¢3). The conditional distribution
of X, given x, is normal: X,|x, ~ N[py + poszy, o2 (1 — p%)], with 2, =
(xy = p1)loy.

Let 0,3, = po,0,, and write

Re + pO9z; = Mo + pOo(x; — wy)loy

(ke = (poo/ay )] + (poy/oy) x,

a + Bx,,
where a = p, — By, B = poy/o, = g,,/07. Also,

o3(1 = p%) = of[1 - oly(olo})] = of — B%o} = o7,
say. So we can write

Xo|x, ~ N(a + Bx,, o).

|
|
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As for the moments, we have found that
EX)) = + 0.E(Z,) =
VX)) = otV(Z)) = o1,
C(X,, Xp) = 0,05C(Zy, Zy) = 0,09p = 0o

And we also have seen that g,, = 0> p = 0= Z, and Z, independent

= X, and X, independent.
We restate these properties for reference.

If (X1, X5) ~ BVN(y, pig, OF, 03, O1g), then:

P1. The expectations, variances, and covariance are:
EX;) = p1,  EX2) = e
VX)) =0}, VX)) =03 CXiXa) = 0w

thus justifying the symbols used for the parameters.

P2. The marginal distribution of X is normal:
X; ~ N(pas a})-

P3. The conditional distribution of X, given X, is normal:
XX, ~ (e + BX), 0%,
where
2 2
B=oulod, a=p—PBm, O = oy — Bol.

Observe that the CEF is linear and the conditional variance is constant.

P4. Uncorrelatedness implies stochastic independence: If o3 = 0,

then X, and X, are independent.

Of course, the roles of X; and X, can be reversed throughout. We

can also see that

P5. A (nontrivial) pair of linear functions of X, and X, is distributed
bivariate normal: If Y, =a;, + bX; + Xy, and Y, = ay + boX; + ¢oXo,
where the a’s, b’s, and ¢’s are constants, with bics — bye; # 0, then

7.5 Remarks . 77

(Y1, ¥Y) ~ BVN. The condition b,c; — byc; # 0 rules out constancy of
either variable or perfect correlation between the variables. Some writers
drop the condition and refer to “degenerate bivariate normal distribu-
tions.”

Proof. It suffices to show that Y, and Y, can be expressed as linear
functions of W, and W, where (W, W,) ~ SBVN(p). =

We can calculate the probabilities of various events in a BVN distri-
bution by translating into a standard normal event.

Example. Suppose (X,Y) ~ BVN(2, 4, 6, 5.5, 3). In order to
find Pr(Y = 2|x = 2), calculate = 3/6 = 0.5, « = 4 — 0.5(2) = 3, 0% =
55 — (0.5 6 = 4. We know that Z = [Y — (3 + 0.5%))/V4 ~ N(0, 1),
soatx = 2, wehave Z=(Y —4)/2,and Y = 2 & Z = —1. We find
Pr(Y =2(x=2)=F(-1)=1-F(1) =1 - 0.841 = 0.159.

7.5. Remarks

* Because it has linear CEF’s, constant conditional variances, normal
marginals, and normal conditionals, the BVN is convenient for illustra-
tion of theoretical concepts. There is another reason for our interest:
the BVN arises as the limiting joint distribution of sample means in
random sampling from any bivariate distribution (see Chapter 10).

* There is a lot more to a BVN distribution than marginal normality
of its components. Figure 7.5 plots a2 non-BVN distribution that has
normal marginals. The joint pdf is:

d(x, 5) = 22f(x)f(y), wherez=1ifxy>0,z=0ifxy <0,

and f(-) denotes the N(0, 1) pdf. The joint pdf is nonzero only in the
NE and SW quadrants. The marginal pdf of X is

60 =] ownd= [ sy =20m [ g
For x > 0, 2f(y) = f(y) for y > 0, and #(y) = 0 for y < 0. So for x > 0,

f_: #(y) dy = fo ) dy =172,
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Figure 7.5 Non-BVN distribution with normal marginals.

Similarly for x = 0. So b,(x) = 2f(x)(1/2? = f{x). That is, 1X ;u‘:f (t(:;el};)gl);
symmetry, ¥ ~ N(0, 1), so both marginals ar’e norma .1' he Joo!
distribution is not BVN, and_indeed the CEF’s are not linear,

CO:“Iir‘: ‘: Kl;a\lfll\)Id;i:t;l:u?iz:l?zl?;:;elatedness implies indepe.ndence. 1.3ut
two univariate normal variables may be: unﬁcqrrelated wxzhog;v:;l:ti
independent. After all, their joint distribution may not be

normal.

Exercises

7.1 The random variable X is distributed N(3, 16). Calculate each of
~ the following.

(© Pr(X = 3).

b) Pr(X > 5).
o (£) Pr(|X|= 3).

PrX = 7).
(a) Pr( © Pr(X = 0).

d)Pr(—-1 <X <I11).

7.9 The random variable X is distributed N(3, 16). Let Y = 3 — X/4.

Calculate Pr(3.25 < Y < 4.25), and Pr(Y > X).
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7.3 The pair of random variables X and Y is bivariate-normally dis-
tributed with parameters py = 3, p, = 4, 0% =9, a2 = 20, and Oxy =
6. Calculate each of the following.

(@) E(Y|x = 3).

(d) V(Y|x = 6).
(g) Pr(Y = 8).

(b) E(Y|x = 6).
(e) Pr(Y = 8|x = 3).

(©) V(¥|x = 3).
(f) Pr(Y = 8)x = 6).

7.4 For the setup of Exercise 7.3, let U = Y + X. Calculate EW), V(U
and Pr(U = 3).

7.5 Suppose that Z ~ N(42, 2500), W ~ N(0, 500), that Z and W are
independent, and that X = Z + W. Calculate the conditional expectation
function E(Z|X). How do you know that the CEF is linear?

7.6 Suppose that ¥, = X + Z,, ¥, = X + Z,, where X, Z,, Zy are
independent random variables with E(X) = 100, V(X) = 100, E(Z,) =
0, V(Z,) = 20, E(Z,) = 0, V(Z,) = 40.

() Find the best linear predictor of Y, given Y,.

(b) Find the expected squared prediction error that results when that
BLP is used.

(c) Suppose that Y, and Y, are bivariate—normally distributed. Could
you improve on your predictor? If so, how? If not, why not?

7.7 Suppose that X = wage income and U = nonwage income are
bivariate-normally distributed with E(X) = 30, E(U) = 5, V(X) = 185,
V(U) = 35, C(X, U) = 15. Also, total income is ¥ = X + U. All variables
are measured in thousands of dollars. A person reports her total income

to be y = 20. Calculate the probability that her wage income is less than
20.

CCOCCOCOOOOOOOOOOOOOOOOLOOOODOOOOODDOOODD:




\'CC‘C*GOCOOOOOOOOOOOOOOOOOOOQOOOQOOOQOQOOOi)Of'

8 Sampling Distributions: Univariate Case

8.1. Random Sample

We have been discussing probability distributions, that is, populations.
We now turn to samples, which are sets of observations drawn from a
probability distribution. We continue to treat the population probability
distribution as known, deferring until Chapter 11 the practical problem
that really concerns us, namely how to use a single sample to estimate
features of an unknown population.

We start with a univariate probability distribution for the random
variable X. Let X,, . . . , X, denote independent drawings from that
population. That is, they are the random variables that are the outcomes
when the same experiment is repeated n times independently. Then
the random vector X = (X, . . . , X,))' is called a random sample of size
n on the variable X, or from the population of X, or from the probability

distribution of X. The values that X takes on will be denoted as x = (x;, .

., x,). (Note: Boldface type is used to denote vectors, which are
generally to be thought of as column vectors, and the prime, ', is used
to denote transposition.) The concept of (stochastic) independence,
introduced in Section 6.2 for the bivariate case, is now being applied to
the multivariate case: a set of random variables is independent iff their
joint pdf (or pmf) factors into the product of their marginal pdf’s (or
pmi’s).

Strictly speaking, the term “random sample” refers to the random
vector X, but in common usage a single draw, x, on that vector is also
called a random sample. Observe that in the term “random sample,”
the adjective “random” has a much stronger meaning than it did in the

term “random variable.”

SO
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' If X = (X, e »X,)" 1s a random sample on X, then the X;’s are
mdej.w?ident and identically distributed. If f(x) is the pmf or pdf of X, then
the joint pmf or pdf for the random sample X is ’

gn(x) = gn(xl’ ceey xn) =f‘](xl) i 'fn(xn) =f(xl) " 'f(xn)

= 1:[ fx2),

using f() = f(-) for all 7, and independence across i. (Note:

I1; is shorthand for IT7_,.) ot (Rotes The symbol
Here are some examples of the joint pmf or pdf for random samples.
(1) Bernoulli(p). The pmf of the random variable X is

fw) =p1 = p)™

with f{x) = 0 elsewhere. Then for any n X 1
. vector h
are all either O’s or 1%, !  whose clements

R N [T

i

forx =0, 1,

= p(x,-{-. . -+x")(l R ‘P)(l—xl+l_x2+. - ‘+l—-x")
= pzi"i( 1 - ‘,b)(ﬂ—):i".'),

where 2, is shorthand for 27_,. For any other x, gn(x) = 0.
(2) Normal(p., o%). The pdf of the random variable X is A

flx) = 2mo®) ™2 exp{~[(x — w/o1%2}.

So for any n x 1 vector x,
g.(x) = (2mo®) ™% exp { - 2 [ — ;;.)/012/2}.
(3) Exponential(\). The pdf of the random variable X is
flx) = N exp(—\x) forx > 0,

with f(x) = 0 elsewhere. So for any n X 1
all positive, y vector x whose elements are

gn(X) = \" exp (—)\ 2 x,~>.

For any other x, g.(x) = 0.
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8.2. Sample Statistics

Let T = h(X,, . . ., X,) = h(X) be a scalar function of the random
sample. Then T is called a sample statistic. The values that T = h(X) takes
on will be denoted as ¢ = h(x). Sample statistics include the sample mean,

)_( = (Xl + ..+ X::)in = (I/W)ZX,,

the sample variance,

§*= (1) 3 (X, - X%,

the sample'mw moments (for nonnegative integers 7),

M; = (1) 2 X,

and the sample moments about the sample mean (for nonnegative inte-
gers 7),

M, = (1m) 2 X - X).

The formulas used here are convenient when the observed data come
in a list, the elements of which need not be distinct. If the data come in
the form of a frequency distribution, one may use equivalent formulas
as in Chapter 1. (Caution: Here i runs from 1 to n, the numl?elt of
observations; in Chapter 1, i ran from 1 to I, the number of distinct
values.)

Other sample statistics include the sample maximum, and the sample
proportion having X less than or equal to some specified value ¢

Any sample statistic T = h(X) is a random variable, because its vzflue
is determined by the outcome of an experiment. In random s.am.plmg,
the probability distribution of T, known as its sampling distribution, is
completely determined by A(-), f(x), and n.

Evidently it is possible to derive the sampling distribution of T = A(X)
from knowledge of f(x) and n. As an illustration, consider the sam_ple
mean in random sampling of size 2 from a continuous distribution
whose pdf and cdf are f(x) and F(x). The cdf of T = (X, + X5)/2 is

G@t) = Pr(T = t) = Pr(X, + X, = 2) = Pr(X, = 2t — X))

2t—x)

fixa) ds |

f:: f;_x}f(xl)f(xﬂ dxg dx) = f f(xl)[

—x

8.3 Sample Mean 83

= j_ JEOFQ@t — x,) dx, = [_ F(2t — x)f(x) dx,
say. So the pdf of T is g(t) = aG(1)/ot = 2 [ f(2t — x)f(x) dx

Example. Suppose that X ~ exponeniial(A), so thai its pdf is
ftx) = X exp(—\x) for x > 0 and f(x) = 0 elsewhere. Then for ¢ > 0,

2t

gty =2 A exp[—A(2t — x)] N exp(—Ax) dx
(¢]

2t

= 2\ exp(—2\f) | dx
(4]
= 4N* exp(—2\0),

with g(#) = 0 elsewhere. The integration here is confined to the interval
0 < x < 2¢ because either flx) or f(2t — x) is zero elsewhere.

The same logic applies to other sample statistics, and extends to random
sampling with n > 2. In many cases, we will report rather than derive
the sampling distributions.

8.3. The Sample Mean

We report the sampling distributions of the sample mean in random
sampling, sample size n, for three populations:

1) IfXx ~ Bernoulll( p), then Y ~ binomial(n, p), where ¥ = nX.

(2) If X ~ N(u, 6°), then X ~ N(p, o*/n).

(3) If X ~ exponential(\), then W ~ chi-square(k), where k = 2 and
W = k\X.

The chi-square distribution (with parameter k) will be discussed in Sec-
tion 8.5. Its cdf is tabulated in Table A.2.

How does one use such information to calculate the probabilities of
events defined in terms of X, that is, to get points on the cdf F, (¢c) =
Pr(X = ¢)? The approach is familiar: translate the event into one whose
probability is directly tabulated. We illustrate the procedure with our

three examples.

-~
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84 8 Sampling: Univariate Case

(1) Bernoulli(p). For given n and p:
X<¢ & Y=nX=n=c¥

Go to a table, found in some statistics texts, which gives the binomial

say.
G(c*; n, p). Alternatively,

(n, p) cdf G(:; n, p), say, and read off F,(c) =
use the binomial(n, p) pmf formula and sum up the appropriate terms.
(2) Normal(p., o®). For given p and o’

T<c & Z=@&- ple/Vn) = (— wie/Vn) = c*,

say. Go to Table A.1, which gives the standard normal cdf ®(.), say, and

read off F,(c) = ®(c*).
(3) Exponential(N). For given n and \, calculate k = 2n. Now

X<c¢ & W=kX=<k\=c*

say. Go to Table A.2, which gives the chi-square(k) cdf G,(-), say, and

read off F,(c) = Gi(c®).
We see that the sampling distribution of the sample mean differs as

the population differs, and as the sample size differs. What can be said
in general—that is, without reference to the specific form of the parent
population—about the expectation and the variance of the sample

mean? Now
X = ()X, +--- + (IImX,

is a linear function of the n random variables X;. Extending what we
know about expectations and variances of linear functions of two vari-
ables (T5, Section 5.1) to the n > 2 case, we calculate
E®) = (IMEX,) +---+ (IUmEX,) = (Unp + .- + (Ump = p,
VE®) = Und)V(X,) + - - + (ImV(X,) + 1mHCXK,, X) + - - -

= (Im)e®  +...+ (Im)e® = (nin)o® = °/n.

This establishes our key result:

SAMPLE MEAN THEOREM. In random sampling, sample size n,
from any population with E(X) = p and V(X) = a°, the sample mean

X has EX) = p and V(X) = ¢°/n.

8.4  Sample Momenss 85

8.4. Sample Moments

The Sample Mea
n Theorem must cove
. T other ot
in random sampling. sample statistics as well,

Sample Raw Moments

ge;’z;ll fror’n Section 3.2 the definition of the population rth raw moment:
(X") = ., say. The corresponding sample raw moment is .

M; = (1m) 3 X;.
LetY = = : Y
e X',s0Y; = Xi. Then M! = (ImZY,=Yisa sample mean, and

Y=(¥,...,7,) isarandom
s Ly a .
must 2pply to M = 7. Now sample on the variable Y. So the theorem

E(Y) = EX) = p/,
V(Y) = E(Y?) — EXY) = EX¥) ~ [EQ)]® = ps, — (m)?
So N

EM;) =), VM) = [ng, — (0)%Vn.

Sample Moments about the Population Mean

gf;al_l alfo_ the definition of the population rth central moment:
W) = m,, say. The corresponding sample statistic is ;

MF=(1m)3 (X, - py.

’ H 1 ) T ( / )
it 1

VIM¥) = (pg, — p2)/n.

For example, for r = 2, we have M§ = (Im)Z(X, — w2, with

EQMF) = p,,

EM%) = o, VME) = (g — pdn.

W )
e refer to M# as the ideal sample variance: in practice M§ cannot be

. computed, because . is unknown




86 8 Sampling: Univariate Case

Sample Moments about the Sample Mean

Consider the rth sample moment about the sample mean:

M, = (lm) 2 X —X).

LetY = (X — X),s0oY; = (X; — X), and M, = Y. However, the Y;’s are
not independent random variables. To see this, let

U=X,-X, U=X-2X,
and calculate
C(U,, Us) = C(X;, X,) + CX, X) — C(X,, X) — C(X2, X)
= 0+ VXY - VX)n — VX)n = —V(X)n.
The U;'s are correlated and hence cannot be independent. So the ¥; =

U? are presumably not independent either. If so, the Sample Mean
Theorem does not apply to sample moments about the sample mean.

(To reinforce the presumption, consider the case n = 2: there U,
_U2, so Yl = iY2.) ] .

The expectation and variance can still be obtained by brute force. We
confine attention to the sample variance

$2 =M, = (1/n) 2 X; - X~
As a matter of algebra, |
SE-X =2 - w - K- w)?
| =3 - W a@ - - 2X - ) 2K~ W)
=3X - p)’ — nX — )’

So M, = M — (X — p)°, whence
E(Mj) = EMZ) — EX — p)° = pp — VX) = pp — pao/n
= o¥(1 = Un).
In similar fashion it can be shown that
VM) = (n — D*pg — [(n = 3)/(n — DIpayn®
= (g — pD/n — 2ps — 2ud)/n® + (g — 3p)n’.

8.5 Chi-square and Student’s t 87

A couple of remarks on the relation between the sample variance and
the ideal sample variance are useful here. First, because M, = M§ —
(X — w2, it follows that M, < M3 in every sample. Second, if = is large,
then

EM,) = py = 0® = EM$),  V(My) = (uy — udin = V(M3),

suggesting that when the sample size is large, the distributions of the
statistics M, and M# will be quite similar. We will formalize this sugges-
tion in Section 9.6.

8.5. Chi-square and Student’s ¢ Distributions

As a preliminary to further discussion of sampling from a univariate
normal population, we introduce two other univariate distributions.

(1) Chi-square Distribution. If Z,, . . . , Z, are independent N(0, 1)
variables, and W = 3!_ 72 then the pdf of Wis

g(w) = (1/2)(w/2)**"" exp(—w/2)/T(k/2) for w > 0,
with g(w) = 0 elsewhere. Here I'(n) is the gamma function:
r1/2) = V, ra) =1, Fn)=@®n - 1HI'n - 1).

We write this situation as W ~ x?(k). The pdf defines the chi-square
distribution, a one-parameter family. Figures 8.1 and 8.2 plot the pdf
for selected values of %, while the cdf is tabulated in Table A.9.

The derivation reverses: if W ~ x°(k), then W can be expressed as
the sum of squares of & independent N(O, 1) variables. Recall from
Section 7.1 that

Z~N@O,1) > E@Z)=0,E@Z%=1,EQZ=3.

So V(Z% = 3 — 12 = 2. Because the Z;s are independent N(0, 1) varia-
bles, we have

k k
EW) =23 E@Z)=Fk VW)=73 V(Z = 2k
i=1 =1

The parameter , traditionally called “the degrees of freedom,” is simply

the expectation of the variable W.

OOOOOOOOOOOOOQOOOOOOOOOQOOOODOTDOOO<
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10

©

Figure 8.1 Chi-square pdf’s: £ = 1, 2.

For future reference, we also report that

V(k —2) fork>2,
[k — 2}k — 4)] fork > 4.

E(1/W)
E(1/W?)

(2) Student’s t-distribution. If Z ~ N(0, 1), W ~ X°(k), with Z and W
being independent, and U = Z/NV/(WIk), then the pdf of U is

i

_ Tk + /2] 927\ —[(k+1)/2]
- 2W\RT )a)l Ik )
&) = TwaraR) (1 )

We write this situation as U ~ #k). This pdf defines the Student’s ¢-
distribution, a one-parameter family. The parameter k is again called
“the degrees of freedom.” The pdf is symmetric, centered at zero, and
similar in shape to a standard normal pdf. The cdf is tabulated in many
texts. »

The derivation reverses: if U ~ t(k), then U can be expressed as
ZIN(Wik) = VEZINW, where Z ~ N(0, 1) is independent of W ~ x2(k).

8.5 Chi-square and Student’s t 89
&
z 9]
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Figure 8.2 Chi-square pdf’s: k= 3,5,7,9.

So
< some of the moments can be calculated conveniently from those of
the standard normal and chi-square distributions. In particular:

E(U) = VRE@Z)E(IIVW) = VROE(I/NW) = 0 fork > 1

V(U) = E(U?) = E(kZ*W) = kE(Z)E(1/W)

=ki(k — 2) fork > 2.

;)Observe that E(U ) = 0, and that for large k, V(U) = 1. Indeed, for t =
o , t_he {(k) distribution is practically indistinguishable from :; N(@© 1_)
istribution. More formally, as £ — o, the cdf of the Student’s t-dis’tri-

bution, namely G,(.)
’ #(+), converges to the st
on this in Section 9.6. g e standard normal cdf F(.). More
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8.6. Sampling from a Normal Population

Now we can fully characterize the joint sampling ('iistribution of the1
sample mean and sample variance, in random sampling from a no:lma
population. We have X ~ N, 09, and X, . .., X, as the random

sample.

Standard Normal Population

First suppose that X ~ N(0, 1). For convenience, use Y rather than X
as the name of the variable. So the random sample is Y, e ’*Yi’
the sample mean is ¥ = ZY;/n, and the sample variance is V* =

(Y — ¥)’In. _
The joint distribution of ¥ and V* has these features:
F1*.  Vn¥Y ~ N(O,1),
F2x.  nV*~xi(m— 1),
F3%*, Y and V* are independent,

Fa*.  Vin - DY/NVV* ~gn — 1).

Proof. Evidently all four items will be established iff we can write

.+ 22

@1 Va¥=2z, nV¥=Z;+.

where Z,, Z, . . . , Z, are independent N(0, 1) variables. Then F1*—F3*
follow immediately, while F4* follows by

Vin — DYVV* = VaVIVnV¥(n — 1)] = Z,/NV[nV¥(n — 1)}
A more general version of Eq. (8.1) will be established later: see Exercise
91.1. For now, we cover only the case n = 2. Let

Z, = (¥, + Yo)/V2,  Zy= (Y, — V3)/V2.

Since Y, Y, are BVN, it follows that Z,, Z; are BVN. Calcul‘ating mci;ms,
variances, and covariances then shows that Z, and Z; are independent

N(0, 1) variables. Now Z, = V27, and
Y, - T =Y, - (¥, +Y)2=(,—Yy)2= Z,/V?2,

—Z,/V?2,

Y2 - 7
so V¥ = Z2/2 + Z2/2

Z: =

i o A N

8.6 Normal Population 91

General Normal Population
Now suppose X ~ N(u, 0%). The sample mean is X = 2.X;/n, and the
sample variance is §* = (X, — X)¥n. Let Y = X - po,soX = u +
oY, with Y ~ N(0, 1). Then

X=p+o¥ > X-p=0¢¥ > VaX - wo = Vay,

Xi-X=0o,-7) > SX-X=3 (-7,

nS? = ¢*nV* > W = aS%0® = nV¥,

S=oVV* > U=Vn- D)X - S =Vn- HP/NVV*

Because F1*~F4* hold for the special N(0, 1) population, we conclude
that:

FI. X ~ N(w, o/n),
F2. W = nS%a® ~ x%(n — 1),
F3. X and $? are independent,

F4. U=Vmn-1)X-p)/s~tn—-1.

These features completely specify the joint distribution of X and S2 in
random sampling from a normal population.
Here are a few further remarks.

* Observe the contrast between these two results:
Z = VnX ~ wo ~ N0, 1),
U=Vn- D)X - p/S~tn— 1.

It is sometimes said that the first gives the distribution of X when o? is
known, while the second gives the distribution of X when o is unknown.
But this, of course, cannot be correct. Actually the first gives the distri-
bution of a certain linear function of X (whether or not ¢® is known),
while the second gives the distribution of a certain function of X and
§? (whether or not o2 is known). The practical distinction is rather that
the first is usable for inference about p when &? is known, while the
second, as will be seen in Section 11.5, is usable for that purpose even
when ¢® is unknown.

* Recalling that for large £, the (k) distribution is virtually indistin-
guishable from the N(0, 1) distribution, we may, when = is large, treat

|
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U as if it were Z. Indeed, we may use the “limiting distribution” for U,
namely the standard normal, as an approximation for the distribution
of U, even for moderate n. More on this in Chapter 9.

o Observe the contrast between the sample variance M, = $? and
the ideal sample variance M§. Because M$ = (In)Z(X; — p)? is the
mean of the squares of n independent N(0, ¢”) variables, we know that
nM3le® ~ x*(n), while we have seen that nMyla® ~ xim — 1). It is
sometimes said that “one degree of freedom is lost” when X is used in
place of p, a remark that sounds like punishment for a crime. A less
dramatic statement is that the expectation is reduced by one.

Exercises

8.1 Suppose that X;, X, are independent drawings from a population
in which the pdf of Xis flx) = 1 for0 = x = 1, with f(x) = 0 elsewhere.
Let T = (X, + X,)/2. Find the pdf of T.

8.2 Suppose that Y, Y,, Y5 are independent drawings from a popu-
lation in which the pdf of Y is

f3) = (@ + )16 for 0=y =4,

with f(y) = 0 elsewhere. Let Z = (Y, + Yy + Y;)/3. Calculate E(Z) and
V(Z).

8.3 Consider these alternative populations for a random variable X:

(a) Bernoulli with parameter p = 0.5.
(b) Normal with parameters p = 0.5, a® = 0.25.
(c) Exponential with parameter A =2

Let A be the event {0.4 < X = 0.6}. For each population, find E(X),
V(X), and Pr(A). :

8.4 Now consider random sampling, sample size 10, from the popu-
lations in Exercise 8.3. Let X denote the sample mean, and let B be the
event {0.4 < X = 0.6}. For each population, find EX), V(X), and Pr(B).
Comparing these results with those in Exercise 8.3, comment on the
effect of increasing sample size on the distribution of sample means.

LY
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8.5 Let X an.d $? denote the sample mean and sample variance in
random sat.n.phng, sample size 17, from a N(10, 102) population. Find
the probability of each of these events:

A={X=149} B= {61=X=149} C = {§% = 92.04}
D=BNC E={4X - 10)S < 1.746} F ={X = 10 + 0.53S}
(Note: For E and F, a Student’s ¢table will be required.)

(a) Use the definite integral formula
n ~al — n
fo e dt = nlla™' fora> O0andn positive integer,

to show that
EX) =172, EX*)=1/2, EX%=3/4, EX-=s302.

(b) Consider random sampli i i
pling, sample size 20, from this population
andlet T=(X*+... + X32,)/20. Calculate E(T) and V(T). PO ’

8f:7 Let X denote. the sample mean in random sampling, sample size
n, from a population in which X ~ exponential(\). So EX) = 1/A
Consider the sample statistic T = 1/X. -

() Is E(T) greater than, equal to, or less than A? Justify your answer
by reference to Jensen’s Inequality (Section 3.5).
(b) Suppose N = 2 and n = 10. Calculate E(T) and V(T).

8.8 Rc.call that if X ~ exponential(\), then in random sampling
;;niplgnmze n, one has W = 2n\X ~ x*(2n). So it must be the case tha;
v = 2,_,V; where the Vs are independent x*(2) variables. To reconcile

1€se two results, show by reference to their pdf’s that the chi-s uare(2
distribution is the same as the exponential(1/2) distribution. ? )




9 Asymptotic Distribution Theory

9.1. Introduction

As we have seen in Chapter 8, the probability distribution of the sample
mean in random sampling depends on the parent population and on
the sample size. For three specific parent populations, we have reported
the distribution of the sample mean. For any parent population, we
have shown that E(X) = p and V(X) = a°/n. Now we develop additional
information about the distribution of X that is valid for all parent
populations. The information concerns asymptotic properties ot the distri-
bution of the sample mean.

As n gets large, E(X) stays at p while V(X) = a°/n goes to zero. So it
is plausible that the distribution of the sample mean becomes degenerate
at the point p as 7 goes to infinity. On the other hand, consider the
standardized sample mean

Z =X - EQVV®N"? = & - wle/Vn) = VaX - pio.

By linear function rules, we see that E(Z) = 0 and V(Z) = 1 for every
n. So it is plausible that the distribution of the “standardized sample
mean approaches a nondegenerate limit as n goes to infinity. If so, we
might want to use that limiting distribution to approximate the distri-
bution of Z even when the sample size is modest. If we do that, we will
be approximating the distribution of X itself, because (for given n, .,
o) an event that is defined in terms of X can be translated into an event

that is defined in terms of Z.
These remarks will be formalized as follows. In random sampling

from any population with E(X) = p and V(X) = a*:

9.1 Initroduction 95

:Law of L:?rg‘e Numbers. The probability limit of X is .
Central Limit Theorem. The limiting distribution of Z is N(0, 1)
* The asymptotic distribution of X is N(w, o%/n). o

To .clarify the situation, consider a set of charts that refer to random
sampling from the exponential(1) population, a situation where we
know the exact sampling distribution of X (and hence of Z). Figures 9.1
and 9.2 show the pdf’s and cdf’s of X for n = 5, n = 30 :'mdgn : 90
Ol:?serve how the distribution becomes increasingly concer’ltrated at thc;
pom,t # = 1 as n increases. In contrast, Figures 9.3 and 9.4 show the
p'df s anfi cdf’s of Z for n = 5, n = 30, and n = 90. Observe how the
distribution becomes stabilized as n increases, taking on the appea
of the. N(0, 1) distribution. As we shall see, those asymptotic pl:o ertics
prevail regardless of the population. propertie
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Figure 9.1 Sample mean pdf’s: exponential(1) population.
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Figure 9.2 Sample mean cdf’s: exponential(1) population.
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Figure 9.3 Standardized sample mean pdf’s:

exponemial(l) population.

9.2 Sequences of Sample Statistics 97
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Figure 9.4 Standardized sample mean cdf’s: exponential(1) population.

9.2. Sequences of Sample Statistics

To proceed systematically, think of a sequence of sample statistics,
indexed by sample size. For example: X, = sample mean in random
sampling, sample size 1; X, = sample mean in random sampling, sample
size 2; .. . ; X,, = sample mean in random sampling, sample size n. Each
of these random variables has its own pdf (or pmf), cdf, expectation,
variance, and so forth.

More generally, let T, be a sequence of random variables, with cdf’s
G.(t) = Pr(T, = t), expectations E(T,), and variances V(T,). In what
follows, T, may refer to the nth variable in the sequence, or to the
sequence as a whole. We will use “lim” throughout as shorthand for
“limit as n — «.”

We define three types of convergence.

Convergence in Probability. If there is a constant ¢ such that lim G,(t) =
0 for all ¢t < ¢ and lim G,(¢) = 1 for all ¢ = ¢, then we say that (the
sequence) T, converges in probability to c, or equivalently that the probability
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limit of T, is c. We write this as T,, = ¢, or as plim T,, = ¢. Let 4, =

{IT, — ¢| = €} where e > 0, so
Pr(A,) =1 — G,(c + € + Pr(T, = ¢ + €) + G,(c — ¢€).

Iff T, converges in probability to ¢, then lim Pr(4,) =1 -1+ 0+ 0=
0. So an equivalent way to define convergence in probability of T', to ¢
is that

lim Pr(|T, — c| =€) =0 foralle>0.

Convergence in Mean Square. If there is some constant ¢ such that
lim E(T, — ¢)> = 0, then we say that (the sequence) T, converges in mean
square to c. Two consequences are immediate:

C1. If T, is a sequence of random variables with lim E(T,) = ¢ and
lim V(T,) = 0, then T, converges in mean square to c.

Proof. E(T, — 0)? = W(T,) + [E(T,) — c]?. Take limits. ®

C2. If T, converges in mean square to ¢, then T, converges in prob-
ability to c.

Proof. Let A, = {|T, — ¢| = €} where € > 0. Applying Chebyshev
Inequality #1 (Section 3.5) gives 0 =< Pr(4,) = E(T, — ¢)*/e. Taking
limits gives 0 < lim Pr(A,) =< 0, whence lim Pr(4,) = 0. =

Convergence in Distribution. If there is some fixed cdf G(¢) such that
lim G,(f) = G(#) for all ¢ at which G() is continuous, then we say that
(the sequence) T, converges in distribution to G(-), or equivalently that the
limiting distribution of T, is G(-). We write this as T, 2 G(-). Evidently
convergence in probability is the special case of convergence in distri-
bution in which the limiting distribution is degenerate.

9.3. Asymptotics of the Sample Mean

We apply these concepts to the sequence of sample means in random
sampling from any population.

9.3 Asymptotics of Sample Mean 99

LAW OF LARGE NUMBERS, or LLN. Inrandom sampling from
any population with E(X) = p and V(X) = ¢, the sample mean converges
in probability to the population mean.

Prooé We have E(X') = wand V(X,) = o*/n, so lim E(X,) = p and
lim V(X,) = 0. So X, converges in mean square to p by Cl, hence X,
converges in probability to p by C2. =

CENTRAL LIMIT THEOREM, or CLT. In random sampling
from any population with E(X) = p and V(X) = o? the standardized
sample mean Z = VX - w)/o converges in distribution to N(0, 1). Equiv-
alently, VnX - p) converges in distribution to N(0, ¢®).

Proof. See DeGroot (1975, pp. 227-233).

- Associated with the CLT is an approximation procedure. The limiting
cdf of Z, = Vn(X, — w)lo will be used to approximate the exact cdf of
Z, for sample size n. If the cdf of Z, is H,(c*) = Pr(Z, < ¢*), then we
will approximate H,(c*) by ®(c*), where ®(.) is the N(0, 1) cdf. This
procedure uses the limit of a sequence as an approximation to a term
in the sequence; the error in this approximation is arbitrarily small if »
i1s large enough. This is quite analogous to using 1/(1 - ) to approxi-
mate the finite sum 1 + b + 5* + ... + 5" in Keynesian multiplier
analysis (where 0 < b < 1). Of course the approximation may be poor
when n is small.

Approximating the cdf of the standardized sample mean Z, by the
N(0, 1) cdf amounts to approximating the cdf of the sample mean X,
by the N(w, o*/n) cdf. For,

F(¢) = Pr(X, < ¢) = Pr[VaX, — w)/o < Va(c — p)o]
Pr(Z, = c¢*) = H,(c*),

with ¢* = Vn(c — wo. V\Lhen we use the approximation F,(c) = ®(c*)
we are in effect treating X,, as if it were distributed N(w, 0*/n). So we
say that the asymptotic distribution of X, is N(, 0*/n), and write

‘)_(n 4 N(M, 0-2/7’!)

DO
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More generally, whenever we have a sample statistic T, and parameters
8 and ¢° (that do not involve n), such that the standardized statistic
(T, — 8)/db converges in distribution to the N(0, 1) distribution, we
will say that T, is asymptotically distributed N, &*/n), and may refer
to 0 and $2/n as the asymplotic expectation and asymplotic variance of T,.

Observe again the distinction between the limiting disiribution of the
sample mean, which is degenerate at |, and the asymptotic distribution of
the sample mean, which is N(p, o?/n). Clearly the latter provides more
useful information.

It is tempting to be cynical about the relevance of asymptotic theory
to empirical work, where the sample size may be modest. But in fact

the approximations are typically quite accurate.

Example. Consider random sampling, sample size 30, on the
random variable X, where X ~ x2(1). Find Pr(A) where A = {X = 1.16}.
Since E(X) = 1 and V(X) = 2, we have X 2 N(1, 2/30), whence Pr(A) =
®(c*), where ¢* = (1.16 — 1)/V(2/30) = 0.62, and ®(.) is the N(O, 1) cdf.
From the standard normal table, ®(c*) = 0.73. For the exact calculation,
rely on the fact that W = nX = 3.X; ~ x%(30). From the x*(30) table,
Pr(A) = Pr(W = 34.8) = 0.75. The approximation is very good even

though the sample size is modest.

9.4. Asymptotics of Sample Moments

The asymptotic results for the sample mean must apply directly to the
entire class of statistics that can be interpreted as sample means in

random sampling. As in Section 8.4, that class includes the sample raw
moments M. = Y, where Y = X". In particular, for the sample second

raw moment, Mg = 3.X2/n, we have

My = ps,
VaMy — pa)Vips — ug?) = NO, 1),
My A N, (b —ped)nl,

where p.. = E(X") denotes the population rth raw moment.

9.5 Asymptotics of Functions 101

m;he A/;lkas_s also includes the sample moments about the population
an My = Y, where Y = (X — ). In particular, for the ideal sample
variance M§ = Z(X; — w)*/n, we have ’

M;‘ _P> p’2s
VMg ~ o) Vipg — pd) > N, 1),
Mg 2 N, (e — pa)nl,

h = — )
where n, = E(X — u)” denotes the population rth central moment.

9.5. Asymptotics of Functions of Sample Moments

E:;ls :\;oulo: be th‘e .end of the story except that we are often concerned
i mple statistics t'hat are not interpretable as sample means in
rane ;)Sr.nsiayfi‘l:gl.li'iyplclall);, the st:attistics are .f}mctions of such sample
distributions forqfunct;:nzsofo;ie;;;nigzzr al?lhty ll'imits ;fl’nd o Phone
' or s - For a linear function, there
::1 :;V};rzbl[ir;; 17f‘ T; ; a + le,, where a and b are constants, that :io not
o Varia[’)le o n « 18 itself a sample mean in random sampling on
a + bX, whence

)

w0, VT, - 0)d > NO, 1), T, * NG, %/n)

with 6 = g + bp. and ¢? = p202.
- fyutt) the sampled statistics are not always that simple. For example, we
e concerned with 7 = 1/X, which is a inear i X.
, nonlinear f
we may be concerned with the sample variance unetion ob . Or

$* =3 X - X = Mf - X - wy?,
which is a function of M#* and X 1
nd X 1 i
xamle & s e t.mtiz (nonlinear in the latter). Another
U=VnX - s,

wh- . . - X
%coh c;s again a function (.)f M% and X (nonlinear in both arguments)
o erive the asymptotics of functions of sample moments, the ke.
are the Slutsky Theorems. Here T,, V,, and W_ are sequ’ences o)t:
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random variables, while the functions k( ) and the constants ¢ do not
involve n. The theorems are:

S1. If T, 5 ¢ and K(T,) is continuous at ¢, then k(T) 5 h(c).

$2. IfV, 5 ¢ and W, > ¢,, and h(V,, W,) is continuous at {c1, €2)s
then k(V,, W,) > h(c;, €3)-

$3. IfV, 5 ¢ and W, has a limiting distribution, then the limiting
distribution of (V,, + W,)) is the same as that ofc+ W,.

S4. IfV, > cand W, has a limiting distribution, then the limiting
distribution of (V,W,) is the same as that of ¢W,,.

Theorems S1 and S2 say that the probability limit of a continuous
function is the function of the probability limits. Further, S3 and S$4
refer to the situation in which one variable has a probability limit and
another variable has a limiting distribution. In their sum or product,
the first variable can be treated as a constant as far as limiting distri-
butions are concerned. For example, if V,, 2 cand W, > N(O, ¢?), then
(V, + W,) 2> N, 0% and (V.W,) 2 N(0, o).
The other key tool is

S5. Delta Method. 1If Va(T, — 8) = N(O, &%) and U, = h(T,,) is contin-
uously differentiable at 8, then
ValU, — h(@)] & §{0, (1’ (0)°$7}.

Equivalently, if T, = N(8, &%) and U, = k(T,) is continuously differ-
entiable at 9, then

U, 2 N{h(®), ['(8)] ¢°/n}.

Here again the understanding is that the function h(-) does not involve
n. What S5 says is that the asymptotic distribution of U, = KT,) is the
same as that of its linear approximation at 0, namely U} = h(®) +
h'(OXT, — 0).

For proofs of $1-85, see Rao (1973, pp- 122, 124, 385-386). Here is
an intuitive argument for S1: By continuity, h(T,) will be confined to a
neighborhood of k(c)-provided that T, is confined to a neighborhood

9.6  Asymptotics of Sample Statistics 103

(;fbc. T:‘e probabi]it.y of the latter event can be made arbitrarily close to
A zl/ t}ai ing n sufﬁcn?ntly' large, so the same is true of the former event
rll | ere 1s some intuition for S5: By the mean value theorem of
ca — —_ ’ o
be[c‘:e:;, ;U,, h(®)] = h'(TN(T, — 6), where T, lies in the interval
pemeen ! » and el.) sbgl Va[U, — h(®)] = k'(T)Vu(T, — 6). Because T
m probability to 6, so does 72, and hence b inuity
onv . > s continuit
(TS copverges in probability to ~’(8). Then it is not sury risin F:y
asymptotically, U, behaves like U*. g 8

9.6. Asymptotics of Some Sample Statistics

We apply the theory to two sample statistics.
Sample Variance. Recall that

O.1) My =Ms— (X - n?=hMsX),

§I{kw_here2M% = S‘. = 3(X; — X)*/n is the sample variance, and M# =
AX; — w)/n is the ideal sample variance. By the LLN ;

‘w?; - o, X - K.
So by S2,
My = hME, X) > h(py, 1) = py — (1 — p)? = p,.

That is, the probability limi 2 .
’ y limit of §* is the s:
Next, rewrite Eq. (9.1) as s the same as that of M¥, namely ¢°.

92)  VaM, — ) = VaM§ — p,) — U2,
where U = V(X — p). By the CLT,
VaM§ — ) 5 N0,y — pd).

f/y_&irlear ft:nction rules, E(U) = VaEX — p) = 0, and V(U) =

inr:n(X) = °/V/n. Because lim E(U) = 0 and lim V(U) = 0, U converges
ean square to 0 by C1, and hence U > 0 by G2. So U2 % 0 b g

whence by S3 we conclude that reh

VM, ~ py) B N(O, py — pd).

'\T/flé(l]twi:, the 2limiting distribution of Vn(§? — o) is the same as that of
- _ ;
tribm.g ;r )é pamely N, py — pd). Equivalently, the asymptotic dis-
ion of §° is the same as that of M3, namely N[a?, (n, — w3)/n]
4 4 2 .

olelolololoYoleTeTolotoToY
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Sample t-ratio. Let U = V(X — p)/S and Z = VaX - Wy, so U =

(6/S)Z. Now Z 2 N(0, 1) by the CLT, and o/ 5 1 (using §* = ¢®, and

S1). Soby S4, U 2, N'(0, 1). That is, the limiting distribution of U is the
same as that of Z, namely N(0, 1). The same conclusion will follow if

one uses V(n — 1) instead of Vn in defining the sample {-ratio, as is

sometimes done.

Exercises
9.1 Discuss Exercise 8.4 in the light of the asymptotic theory of this

chapter.

9.2 In random sampling, sample size n = 20, on the variable X where
X ~ exponential(2), let T = $7_,X2/n. In Exercise 8.6, you found E(T)
and V(T). Use the CLT to approximate the probability that T is less

than or equal to 1.

9.3 As in Exercise 8.7, let X denote the sample mean in random
sampling, sample size n, from a population in which the random variable
X ~ exponential(A). For convenience, let § = E(X) = 1/\. So EX) = 6,
V(X) = 6%n, plim X = 0, and the limiting distribution of VaX ~ 8) is
N(0, 8%). Consider the sample statistic U = 1/X. :

(a) Use a Slutsky theorem to show that pim U = \.
(b) Use the Delta method to find the limiting distribution of

VaU — \).

(c) Use your result to approximate Pr(U = 5/2) in random sampling,
sample size 16, from an exponential population with A = 2.

(d) Find the exact Pr(U = 5/2).

9.4 The probability distribution of the random variable X is given by
Pr(X = 1) = 1/3, Pr(X = 2) = 2/3. In random sampling sample size n,
let T = 2., X3/n. For n = 98, approximate Pr(5 = T = 6).

9.5 In a population, the random variable X = length of unemploy-
ment (in months) has the exponential distribution with parameter A = 2.
Consider random sampling, sample size n = 21. Let T = proportion of
the sampled persons who have been unemployed between 0.4158 and

Exercises 10
) 5

1 months. Ap i
! Proximate the probabilj i
Hint: Define the random valfi)ablea ility that T lies between 0.4 and 0.5.

U={1 if0.4158 <x <1,
0 otherwise.

9.6 In ac 1 .
to 490. Twoeirr[ma;;:pz(r)lfc)lulauon the random variable ¥ has variance equal
ent random . qua

The first . samples, each of
sample mean is used as the predictor of :;12: 526(1’0?;6 draw;l.
sample

prediction error.

(b) Approximate th
! € probabilit ..
14 in absolute valye. ity that the prediction error is less than




10  Sampling Distributions: Bivariate Case

10.1. Introduction

Having acquired considerable information abO}lt t.he distribut?ons of
sample statistics in random sampling from a um\./arl'flte populam.)n, we
proceed to bivariate populations. Consider a bivariate population n
which the pmf or pdf of (X, Y) is f(x, y). The first and second moments

include

E(X) = l-’-'x: E(Y) = p‘)'r
VX) = o2, V(¥)=o0; CXY)=ox

And for nonnegative integers (7, 5), the raw and central moments are
EXY) = p,,  EX¥Y®) =,

where X* = X — py, Y* =Y — p,. For example, oo = o5 (formerly
called po), Moz = o}, and py; = Oxy- ] ] .

A random sample of size n from this population Fonsmts of n inde-
pendent drawings: the random vectors (X, Y;) fori=1,...,nare
independently and identically distributed. Of course X; and Y; need not
be independent; indeed C(X;, Y;) = Oxy- Indepem.ience runs across the
n observations, not within each observation. The joint pmf or pdf of the
random sample is

gn(xl’ V1> X2 Y25 -+ - v s x",y") = 11=_Il f(xi’ yl)

Sample statistics are functions of the random sample. They include not
- T T 2 .. ..

only the single-variable statistics X, 7Y, Si, S5, but also the joint stausFlcs

that involve both components of the random vector (X, ¥). A leading

example is the sample covariance

10.2 Sample Covariance 107

Sxy = (I/n) E X; = X, ~ Y).

We may also be concerned with the joint distribution of several statistics.
For example, the two sample means

X=(ImXIX, Y=Um 27,

are a pair of random variables that have a Jjoint sampling distribution.
We already have their expectations and variances. We can calculate their

covariance by T5, the linear function rule (Section 5.1), extended to n
variables:

CX,Y)= (1> > ; CX, Y)) = (IIn*) 3 C(X, Y;)
= (1/m®)noy, = Txyin,

using the independence and identically-distributed features of random
sampling. This result on the covariance of two sample means is quite

ar;alogous to the result on the variance of a single sample mean, V(X) =
ox/n.

All previous conclusions for the univariate case apply to the single-
variable statistics, but we have additional conclusions as well. We confine

attention to general results that are applicable regardless of the form
of the population.

10.2. Sample Covariance

The theory for the sampling distribution of the sample covariance,

Sxy = (1/n) 2 X; — X)(¥, - Y)= My,

say, runs quite parallel to that for the sample variance.

Ideal Sample Covariance

Consider first the ideal sample covariance, namely the sample second joint
moment about the population means:

fi=0mZ X =)t — ) =Um) IV, =7,

"CC‘(f“OOCC)GOOOQOOOOOOQOOQOOOODOOODOOOOOQOOOOH‘
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: le
— = X¥Y*, Now 1% 300 Vn isa random Samp
say, where V = X*y*, soV; = X; o v i; a sample mean in random

iable V = X*Y*, so MY, .
- thlei:n\;l(r)l: the variable V. Hence the earlier theory for sample means
samp

applies.

The population mean and variance of V are

E(V) = EX*Y*) = C(X, Y) = Oxy = P 2
V(V) = E(V?) — EX(V) = E(X*¥2Y*%) — EXX*Y*) = poe — Bur-

So we have the exact results
EMY) = EV) =E(V) =#Pn~ o'x:,
VMY, = V(V) = V(V)n = (ke — p)/n,
and also the asymptotic results
M = B
VMg, = ) 2> N0, e ~ B
ME, 2 Ny, (pae — #300).

Sample Covariance

i i e second
Now turn to the sample covariance itself, namely the sampl

ebra,
joint moment about the sample means. As a matter of alg

(10.1)  Sxy = My, = Mf) — X — p — Py

So
E(Sxy) = Oxy — C()—(,-Y) = Oxy — Oxyln = (1 — 1/m)axy,

which is quite parallel to ESH =1 - I/n)a®. And direct calculation

gives 3
V(Sg) = (0 = Di(par = B3/ + 200 = Dibzobor)

XY .
which is quite parallel to the exact result for V(S?) in Section 8.4. As for
asymptotics, we obtain

2
Sxr B Oxr, Vn(Sxy — Oxn) 2 N0, o — B11)-
5 gy, X — Bx) 2 0, and (¥ — Wy)

. . *
Proof. First, in Eq. (10.1), Mty using Slutsky Theorem S2

5 0, so Sy converges in probability to Oxy,
(Section 9.5) twice. Next, rewrite Eq. (10.1) as

103 Pair of Sample Means 109

(102)  VaM,, — ) = VaM¥f, — p,,) — UW,
where

U=Va®X - py), W=Va®@ - pu).

Since U > 0 and W > 0, we have (UW) 5 0 by S2. So by S3 the
limiting distribution of Vn(S,, — Oxy) is the same as the limiting distri-
bution of Va(M¥, — w,,). ®

We conclude that the asymptotic distribution of the sample covariance
is the same as that of the ideal sample covariance:

Sxy * Nloxy, (e — “’?l)/n]’

which is quite parallel to the asymptotic result for the sample variance
in Section 9.6.

10.3. Pair of Sample Means

Now turn to the joint distribution of the pair of sample means, X and
Y. We proceed to asymptotics. For a random vector, convergence in
probability means that each component of the vector converges in prob-
ability, and convergence in distribution means that the sequence of joint
cdf’s has as its limit some fixed joint cdf. For convenience we drop the
subscript “n” that identifies a sequence. The key theorems are:

BIVARIATE LAW OF LARGE NUMBERS. Inrandom sampling
from any bivariate population, the sample mean vector (X, ¥) converges
in probability to the population mean vector (jy, py).

BIVARIATE CENTRAL LIMIT THEOREM. In random sam-
pling from any bivariate population, the standardized sample mean
vector, [Va(X — Mx)oy, V(Y — Ry)/Oy], converges in distribution to
the SBVN(p) distribution, where P = 0xy/(0x0y). Equivalently, in

random sampling from any bivariate population, (X, ¥) 2 N (Mxs Wy,
o%/n, aiin, Gyyin).

These theorems apply directly, of course, to any pair of sample
moments that can be interpreted as a pair of sample means in random
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ols for deriving asymptotics for functions

ing. But again we need to . :
sampling. But 2g heorems S1-S4 extend in the obvious

of sample means. The Slutsky T
way, while S5 generalizes to the

2
BIVARIATE DELTA METHOD. If (T, To) = B‘VN(Ol, 6o, bi/n,
$iin, byo/n) and U = KTy, Ts) is continuously differentiable at the point
21 thy

(6,, 83), then U ~ N[A(8,, 62), &?/n}, where
&% = k0] + h3ds + 2hihadia,
By = hy(8,, 05) = oh(T, T2)/aT, evaluated at T, = 8;, T = 0y,
ho = ho(8,, 85) = (T, T,)/dT, evaluated at T, = 0,, To = 05.
T,) is the same

In other words, the asymptotic distribution (?f U = kT,
as that of its linear approximation at the point (8;, 05), namely

U* = h(eh 92) + hx(el, 62)(T1 - 91) + h2(91» 92)(T2 - 05).

The understanding is that the function (-, -) does not involve 7.

10.4. Ratio of Sample Means

To illustrate the application of this theory, consider the ratio of ‘sar.n[.)let
means. T = X/¥, with the proviso that p, # 0. The asymptotic Jloxr}
distribution of X and ¥ is given by the Bivariate CLT, and the analysis

for T starts with

T= X/? = h(X» _Y-), h(V"X* p‘}’) = M‘X/F‘Y = es
say, where h(., -) is the ratio function. We recognize that

E(T) = EXIY) # EXVEY) = px/py = 6.

' P
But X 5 py and ¥ 5 p, by the LLN (Section 9.3), so that T — 0

by S2.
Proceeding, we calculate

h (X, Y) = ohloX = 117,
hy(X, ¥) = ohleY = —XIY?,

hl(l"“x5 p‘Y) = 1/|J"Y’
ho(pxs My) = _'}*x/ﬂ?/ = —0/py.

So the Bivariate Delta method gives

T 4 N8, &*/n),
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where ¢%/n is the (asymptotic) variance of the linear approximation to
T at the point (uy, wy), namely

T™* =8+ (I/py)X - Px) — (0/py)(Y — Hy)

=0+ ()X — py) = 0F — ).
That is,
(103) &% = (/) %0} + 6%2 — 200,,).

10.5. Sample Slope

In Section 5.4, we introduced the population linear projection (BLP) of
Y on X in a bivariate distribution, namely the line E*(Y|X) = o + BX,
with

B = ox/o%, = Ky — Bpy.

The corresponding feature in a sample is the sample linear projection (or

sample LP) of ¥ on X, namely the line Y=A+ BX, with
B = 8y,/S% = M, /My, A=V ~ BX.

To further illustrate application of our theory, we seek the asymptotic
distribution of the statistic B, the sample slope, in random sampling from
any bivariate population.

Ideal Sample S lope

We first treat a simpler statistic, the ratio of the corresponding sample
moments taken about the population means, B* = M¥,/M%,, which we
refer to as the ideal sample slope. Now

My = (1) ZX¥F =V, Mgy = (Un) S X = 7,

say, where V = X*7*, W = X*2 X* = X — |, y* =y — Wy SO
B* = M$/M3, = VIW

is a ratio of sample means in random sampling on (V, W), and the
machinery of Section 10.4 applies directly.

|
CCCCcoOCOOOO0O00OCOO000OOOOOTOO00O00OOO0DDODDN:!




VWU LULOUUO0LOwULO0O00QLLOOLLODOO0O0Q0O0O00000020OD0:

U

P IR ¥
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Because Wy = EX*Y*) = Oxy and By = E(X*Q) = o% we have
v/ = B, 80

B* 5 oyylox = B.
And similarly, we have
B* & N(B, ¢"/n),
with
(10.4) ¢ = (Upy)loy + BP0l — 2Bovwl

and covariance of V.and W in terms

It remains to express the variances
distribution of X and Y. Calculate

of the parameters of the bivariate
o2 = V(V) = E(V®) — EXV)
= E(X*?Y*?) — EXX*Y¥) = pge Wi
o2, = V(W) = EW?) — E%(W)
= E(X**) — EXX**) = a0 ~ P20
Gyw = C(V, W) = E(YW) — E(V)EW)
= E(X*°Y¥) — EQCYFEX*) = pa1 — Paibeao-

So in Eq. (10.4) the term in square brackets can be written as

Poe — WL+ B (Mo — p2o) — 2B(is; — Raibeo)
= Moo T le’«;o — 2By

using fheoP = K1 Thus
(105) &° = (e + B0 — 2B1)/ Heo-

Sample Slope

Now return to B = M; /Mo, the sample slope itself. We know that
immediately by S2 that

My, = gy and Mgy = Paos SO it follows i
B 5 wyi/peo = B.

Next write

B-—B=(B*—B)+(B—B*).
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As a matter of algebra,
B — B* = (1/M%)[(My, — M%) — (M11/Mgo) (Moo — M5l

SO

Va(B — B¥) = (IM§)[VaM,, — M) = (M1/Mag) V(Moo — M)l
Since Mo > oo, (M})/Mso) = wi/bsos \/;‘(Mn - MY) - 0, and
V(Mg — M) 2> 0, it follows that V(B — B*) <> 0. So by S3 the

limiting distribution of V(B — B) is the same as that of Vn(B* — B).
Equivalently, the asymptotic distribution of B is the same as that of B*.

We conclude that
B £ NB, $°m),

with ¢ as given in Eq. (10.5).

10.6. Variance of Sample Slope
Because the sample slope is very commonly used to measure the sample
relation between two variables, we should learn more about its sampling

distribution. In Eq. (10.5), the denominator of b2 is p3, = VA(X), while
the numerator can be written as

oo + B2 — 2Bus, = EX**Y*%) + BZE(X*) — 2BE(X*°Y*)
= E[X**(Y* — BX*)?] = E(X**U),

say, where
U=Y*—BX*= (¥~ py) = BX — px) =Y — (o + BX)
is the deviation from the population BLP. So

-(10.6) &% = EX¥?UHIVEX).
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A special case arises if E(U?|X) is constant over X. Let o’ denote that
constant value of E(U?|X), and calculate

E(X*2U?) = Ef[EX*U2|X)] = ExIX**E(U*|X)] = E(X**0”)
= ¢?E(X*?) = o’V(X).

So in this special case, $* = o*/o%, which may look familiar to those

who have studied “linear regression analysis.”
Perhaps the only situation that ensures the constancy of EU?|X) is a

population in which the conditional expectation function E(Y|X) is
linear in X (so that U = ¥ — E(Y|X), with E(U?|X) = V(Y|X)), and the
conditional variance function V(Y|X) is constant over X. (We know one
population, the bivariate normal, that has those features.) In this situ-
ation we can say that, for given sample size n, the asymptotic variance
of the sample slope will be large if the conditional variance of Y is large

and/or the marginal variance of X is small.

Exercises

10.1 Given a data set with n paired observations (x; y,), let ¢; = y; —
(a + bx;), where a and b are constants to be chosen to minimize ;e

(a) Show that the solution values are

b={3 =90 - p|/[Sw-9] a=3-

(b) Referring to Section 10.5, show that the sample linear projection
§ = A + Bx has this least-squares property.

10.2 These statistics were obtained in a sample of 30 observations

from a bivariate population f(x,y): Zx; = 30, Zy; = 120, >x? = 150,
Eiy,? = 1830, Zx;5; = 480. Here Z; denotes summation over i from 1

to 30.

(a) Calculate the sample means, sample variances, and sample covar-

iance.
(b) Find § = a + bx, the sample linear projection of y on x.
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10.3 For the savings rate—income data of Chapter I:
(a) palculate tbe sample linear projection of y = savings rate on x =
income. Hint: The sample covariance can be calculated as
10
Sxy = i=21 [ximy |, p(%)] — mym,.
(b) Comment on the relation between this line and the conditional
mean function that was plotted in Figure 1.1
10.4 A bivariate population f(x, ) has these moments:

E(X*j) =10 E(Y*% = —40 E(X**v*) = 320
E(X*") = 14880 E(Y**y = 12000 E(X*2Y*2) = 1596000

Here X* = X — E(X),Yy* =y - E(Y).

E(X*Y*) = 360

() Find the BLP, EX(Y|X) = o + BX.
(b) Eongder random sampling, sample size 30, from this population.
e; X be the sample mean of X, S% be the sample variance of X
and B l?e the slope in the sample linear projection of Y on X,
Approximate the probability of each of these events: -

Ay ={X =32}, A,={s=128}, As = {B = 5}.
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11  Parameter Estimation

11.1. Introduction

We have accumulated considerable information about the probability
distributions of sample statistics in random sampling from univariate
and bivariate populations. In some cases we have the complete exact
sampling distribution, in some cases only its expectation and variance.
In many cases, we have the asymptotic sampling distribution. The infor-
mation was obtained by deducing features of the distributions of func-
tions of random variables (the sample statistics) from knowledge of the
distribution of the original variables (in the population).

The practical problem is, of course, quite the opposite: it calls for
inferring (or guessing, or estimating) features of the population from
knowledge of a single sample. This problem is not trivial, because the
same sample might arise in sampling from many different populations.
We are turning from deduction to inference.

We will have a single random sample (y1, . - -
unknown population ¥ ~ f(y). We are interested in some feature of the

population, a parameter 6, say. Our task is to find an estimate of 9, a
single number that will serve as our guess of the value of the parameter.
Naturally the estimate will be a function of the sample data. How shall
we process the sample data to come up with an estimate? That is, what
function A(y,, - . . ,y,) shall we choose as our estimate?

Now the sample y = (51, - - - > y.)' is a single observation on the
random vector Y = (Y, . . ., ¥,,)'. For a function h(y), the estimate that
we calculate, t = A(y1, - . -+ Ya)s will be a single observation on the random
variable T = k(Y). The random variable T is referred to as the estimator,
as distinguished from the value ¢ that it happens to take on, which is

the estimate.

y ¥n)' drawn from an
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11.2. The Analogy Principle

Pe'rhgps the most natural rule for selecting an estimator is the analogy
pm.zczple. ‘A population parameter is a feature of the population. To
estimate it, use the corresponding feature of the sample.

Here are some applications of this principle, that is, examples of
analog estimators.

* To estimate a population moment, use the corresponding sample
moment. For § = p, use T =Y. For § = ¢°, use T = §2.
th' To es;imate a function of population moments, use the function of

€ sample moments. For the population BLP = x
B = SXK/S,%. For the populatioanIIjP intercept aSI——(-)p:YB— B: XYi:g’Auf
Y - PX. For o®/n, use $*n. This sort of application of t}fe, analo
principle is also referred to as the method of moments. ®

. .
that’l}“l(; ::t;msat::. Pr(Y = ¢), use the sample proportion of observations

*To est?mate the population median, use the sample median.

*To estimate the population maximum, use the sample maximum.

. Tl"o. estimate the population BLP E*(Y|X) = a + BX (the line that
minimizes expected squared deviations in the population), use the
sample least-squares line ¥ = A + BX (the line that minimizes ,the mean
of squared deviations in the sample). As shown in Exercise 10.1, this
gives the same answers for A and B as above. -

. T<.) estimate a population CEF p,x, use the sample conditional mean
function my,x, discussed in Chapter 1.

T.he analogy principle is constructive as well as natural. Once we
f:leafle which feature of the population is of interest to us, we will almost
inevitably recognize an estimator for it. Adopting the an;dogy principle
as the start.ing point in a search for estimators leads immediatel pto
some questions. Are analog estimators sensible from a statistical p)cl)int
of view? ﬂow reliable are they? What shall we do when an analo
estimator is unreliable, or inadequate? What shall we do when there arg
several analog estimators of the same parameter? (For example, if th
p().pu!ation fx) is symmetric, then the population mean ang r’nediari
comgde, but the sample mean and median are distinct.) For a compre-
hensive development of the theory, see Manski (1988). P

To address such questions here, we turn to the classical criteria for
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11.3. Criteria for an Estimator

Let T = h(Y,, ..., Y,) be a sample statistic with a pdf (or pmf) g(),
and moments E(T), V(T), etc. We may be sampling from a univariate
population (with each Y; a scalar) or from a bivariate population (with
each Y; a two-element vector).

Choosing an estimator T amounts to choosing a sampling distribution
from which to get a single draw. So the issue becomes: what probability
distribution would we like to draw from? When we choose an estimator,
we are buying a lottery ticket; in which lottery would we prefer to
participate? Presume that the prize in the lottery is higher the closer T
is to 8. We would like T = 6, but that ideal is unattainable. The only
sample statistics with degenerate distributions are the trivial ones, those
for which A(Y) = constant. It is easy enough to pick such a function,
for example, K(Y) = 3, but that is hardly an attractive estimator unless
g = 3. What we ask is that T be close to 8, whatever the value of 8 might
be.

A natural measure of distance between the random variable 7" and
the parameter 6 is the mean squared error (MSE), E(T — 0)°. We used the
MSE measure in discussing prediction of a random variable in Section
3.4. Now the target is a fixed parameter rather than a random variable,
but again it seems desirable to have a small value for E(T — 0)>.
According to T3 (Section 3.3), the MSE of T about 8 can be written as

E(T - 8 = V(I) + [E(T) - oF".

Define the bias of T as an estimator of 8 as E(T) — 6 = E(T — 0). So the
MSE of T as an estimator of 8 equals the variance of T plus the squared
bias of T as an estimator of 0. In general, both variance and bias depend
on the unknown parameter 6, and it is not feasible to find a T that
minimizes E(T — 0)? for all 0. Still, small MSE is desirable.

It also seems desirable to have an estimator for which the expected

deviation from the parameter is zero:

DEFINITION. T is an unbiased estimator of 0 iff E(T — 0) = 0, for
all 6.

For unbiased estimators, MSE = variance, which leads to a popular
criterion, namely minimum variance unbiasedness:

11.3 Criteria for an Estimator 119

DEFINITION. T is a ming ) ] ;
P mimum variance unbiased estimator, or MVUE,

(1) E(T — 0) = 0 for all 6, and
(1) V(T) = V(T*) for all T* such that ET*—-06)=0

The MV iteri .
oo A UE (:‘rxterion may be operational even when minimizing MSE
. €ast, it may be operational if we restrict the class of estimators

Estimation of Population Mean

iu;n[;osve( ;,I)lat wg are random sampling on the variable Y, where EY) =
= o" are unknown. To estimate the i o
= population m

analogy principle suggests that we use the sample mean Y N(:)aixrrl b the

Y=(Wm3Y, E@=EY) =4
So Y is a linear unbiased estimator of K. But there are many other linear

unbiased estimators of w. Let T = 3.¢.V.
Then o

where the ¢’s are constants.
ED =E(Ser) =S ab) = p 3o,
V(T) =2 V() =03 &

So any linear function of the ¥;s with intercept equal to 0 and sum of

slopes equal to 1 will be unbias
’ ed for w. To find
the ¢/s to minimize 3,;c? subject to E,»i: = 1. Ectthe pestof these,choose

Q=Zcf—)\<2q- 1),

where X is a Lagrangean multiplier. Then
0Q/dc; = 2¢; — \ t=1,...,n
BQ/B)\ = - (2 C; — 1).

Zettiiig the derivatives at zero gives ¢; = M2 for all 7, and S.c, = .S
:¢; = n\/2, whence N = 2/n, whence ¢; = 1/nfor alli. It can be 'c:)nﬁrriiet(:!)

;
\
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120 11 Parameter Estimation

that the first-order conditions locate a minimum, so the optimal choice

is T = S(l/n)Y; =Y.
We have established the following:

THEOREM. In random sampling, sample size n, from any popula-
tion, the sample mean is the minimum variance linear unbiased estimator,

or MVLUE, of the population mean.

This result is strong in that it applies to any population, but weak in
that only linear functions of the observations are considered.
Let us evaluate some other analog estimators with respect to the

criteria introduced here.
Population Raw Moment. For 8 = p! = E(Y°), the analogy principle

suggests M; = (1/n)Z,Y; as the estimator. Since this is the sample mean
in random sampling on the variable W = Y?, we conclude that M; is the
MVLUE of p., where “linear” now means linear in the Y*’s. Similarly,
in the bivariate case, M/, is the MVLUE of p;,, where “linear” now
means linear in the X'Y”s.

Population Variance. For 0=, =EY — Bry)? = o? (with py unknown),
the analogy principle suggests M, = §2, the sample variance, as the
estimator. As we have seen (Section 8.4), §? cannot be interpreted as a
sample mean in random sampling. And indeed, this analog estimator
is biased: E(S?) = 6%(1 — 1/n). But the bias is easily removed. Define
the adjusted sample variance »

=3 -Vin-1= nS%(m — 1).
Then E(S*?) = 0%, so §*° is unbiased. But we have no general result
* here on minimum variance unbiasedness.
Population Covariance. For estimating the population covariance, the
adjusted sample covariance S%y = nSxy/(n — 1) is unbiased, but not

necessarily minimum variance unbiased.

Population Maximum. For 8 = max(Y), the analogy principle suggests
T = max(Yy, . . . , ¥,) as the estimator. But T =<0and Pr(T = 0) < 1,
so E(T) < 6. This analog estimator is biased, and there is no obvious
way to remove the bias.

Population Linear Projection Slope. For B = Oxyloy (with py and py
unknown), the analogy principle suggests B = Sxy/S% as the estimator.
This is a nonlinear function of sample moments. We can adjust the
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numerator and denominator to remove their biases, but this will not
remove bias in the ratio, because the expectation of a ratio is not gen-
erally equal to the ratio of expectations. Indeed, this analog estimator
w'ill in general be biased, and there is no obvious way to remove the
bias. (An important exception occurs when the population CEF is linear:
see Section 13.2) o

11.4. Asymptotic Criteria

As we hzfve seen, evaluating analog estimators on the basis of their exact
exp.ectauon and variance may run into an impasse, for the exact distri-
butfon may well depend on specifics of the population. Progress is
avaflable if we rely on asymptotic, that is, approximate, sampling distri-
butions. We put an » subscript on 7, as in Chapter 9, to emphasize the
dependence upon sample size, and introduce two classical criteria.

lDEl;‘II; ITION. T, is a consistent estimator of 6 iff T, %> 6. Equiva-
ently, T, is a consist i iff i 0
e €y> " istent estimator of 8 iff lim Pr(|T, — 8] = €) = 0 for

.Consm.ency is attractive because it says that as the sample size increases
indefinitely, the distribution of the estimator becomes entirel
trated at the parameter value. e
The sample mean is a consistent estimator of the population mean in
ran.dom sampling. The Law of Large Numbers says precisely that
taklrfg 6 = M T =Y. By the same law, any sample raw moment is a;
consistent estimator of the corresponding population raw moment in
randpm sampling. Further, by the Slutsky Theorems S1 and S2, an
continuous function of the sample moments is, in random sam li;1 Z
consistent estimator of the corresponding function of the po Pl)llatgi;)n
moments. Fo.r example, §* = M, = Mf — (X — p)? = h(M*p)—() is a
consistent estimator ofa® =y, = h(pg, ), and B = S,,/82is a c2(;nsist
estimator of B = gy, /05, i -
- ’rl“;e;z r;s :; Eler;feral F;l)q;lesymp-ti_on that analog estimators are consistent
o randon pling. The mtult.lon.run.s as.follows. The analog estimator
. nction of the frequency distribution in the sample. The parameter
is. the same function of the probability distribution. The sample fre-
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i encies,
quencies will, as n gets large, converge to the population frequ

i ility distribution.
that is, to the probability dis ‘ -
Typically there are many consistent estimators of the same parame

For example, in sampling from a symmetric pogulatlon, b;)th Lhz (s;r)n}')llz
mean and the sample median are consistent estimators ol {t [Pr. ro
discriminate among consistent estimaters of the same‘pz;r.a:ieb ;t{m‘,s_
turn from degenerate limiting distribx.mons to asymput).tlcn Olimal tons:
Typically the consistent estimators will have asymptotic

butions, centered at the parameter value.

DEFINITION. T, is a best asymptotically normal, or BAN, estimator of
0 iff

iy T, % N, $%/n), and
8) $? =< ¢*? for all T* such that T} A N@O, d*2m).

No other member of the class of consistent, ;?symptotxcally n(l):maasl :u:
mators of 8 has an asymptotic variance that is smaller than the asymp
totic variance of T,. .
In effect, the BAN criterion 1s
criterion. Throughout econometrics, \ :
exact results are available, best asymptetxc.normahtyz
asymptotic efficiency, is the customary criterion of choice.

the asymptotic version of the MV(.JE
except for those situations in which
sometimes labeled

11.5. Confidence Intervals

it is a good idea to accompany

i i arameter
In reporting an estimate ofap , company

it with some information about the reliability ef the estu;lator,sample o
i iability— t to which it varies from

about its unreliability—the exten jar A
is the standard deviation ot the es :
sample. The natural measure is t : . tor
Oftep;l that information is presented in the form of a cenﬁdence ;nte;;e !
Suppose that ¥ ~ N(p, ¢?). Then in random samphng,;a_mp e s)/ ,
— = 9 _ o o ~

the sample mean Y is distributed N(p, o°/n), so Z nY — ®

N(O, 1). Let

A = {|Z]| = 1.96},
so Pr(A) = F(1.96) — F(-1.96) = 0.975 — 0.025 = 0.95, where F(:) is
the N(0, 1) cdf. Now

e
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A ={|Y - p| = 1.966/Vn}
={p - 1.960/Vn <Y = n + 1.966/Vn}
={Y - 1.960/Vn < p < ¥ + 1.960/Va}.

So the statement, “The parameter w lies in the interval ¥ + 1.960’/\/5,”
is true with probability 85%. We say that ¥ = 1.960/Vn is a 95%
confidence interval for the parameter w.

To get a confidence interval for p at a different confidence level, just
use a different cutoff point: for example, ¥ + 1.645¢/V7n is a 90%
confidence interval for w. For a given confidence level, a narrow con-
fidence interval is desirable: it indicates that the sample has said a lot
about the parameter value. What produces a narrow interval, obviously,
is a small standard deviation, o/Vn, that is, a small o2 and/or a large n.

Now suppose that the random variable ¥ is distributed (not necessarily
normally) with E(Y) = p and V(¥) = o®. Then in random samp-
ling, sample size 7, the sample mean Y is asymptotically distributed
N(p., 0'2/n). So, by the logic above, Pr(4) = 0.95, and we say that Y +
1.960/Vn is an approximate 95% confidence interval for the parameter .

In practice these results will not be operational, because o? is
unknown. Consider the sample ¢-ratio U = VY — w)/S, where §2 is
the sample variance. Recall from Section 9.6 that U 2 N (0, 1). So by
the logic above, ¥ * 1.965/V7 is an approximate 95% confidence
interval for the parameter . The statistic $/V7 is called the standard
error of ¥, as distinguished from its standard deviation, c/\V/n.

The logic extends to construct approximate confidence intervals for
parameters other than the sample mean. Suppose that T, is a sample
statistic used to estimate a parameter 6, and that T, % N@®, ¢*/n). If ¢*
is known, then T,, = 1.96¢/V'n provides an approximate 95% confidence
interval for the parameter 6. More practically, when we have $% a
consistent estimator of ¢, then T, + 1.96$/Vn provides an approximate
95% confidence interval for the parameter 6.

Example. The sample variance S is used to estimate the popu-
lation variance o®. Recall from Section 9.6 that S A N (0, d*/m), with
% = o — 13o. So let $2 = M, — M3, and report $% + 1.96¢/Vn as
the approximate 95% confidence interval for o°.

The reasoning is the same as that used above to get ¥ = 1.965/Vn as
an approximate 95% confidence interval for p. The statistic $/Va is
called the (asymptotic) standard error of T,

D0«
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A few remarks on confidence intervals:
* Perhaps the only proper exception to using the 1.96 rule for 95%

confidence arises when Y is normally distributed. For then we know
(Section 8.6) that the exact distribution of V(n — DY — pIS is
tn — 1), so the Student’s ¢-table can be consulted for the critical value
to replace 1.96. There may be other exceptional cases in which the exact
distribution of the sample ¢-ratio is known. But, common practice not-
withstanding, there is no good reason 1o rely routinely on a t-table
rather than a normal table unless Y itself is normally distributed.

o It is good practice to report the standard error of a parameter
estimate along with the estimate itself. Conventionally, the standard
error is put in parentheses underneath the estimate. Readers can then

construct (approximate) confidence intervals as they see fit.
« It is common practice, but not good practice, to report the “t-statistic”
(ratio of an estimate to its standard error) instead of (or even in addition

to) the standard error. More on this in Section 21.3.

Exercises
11.1 In random sampling, sample size n, from a univariate popula-
tion, let 7 = ¢Y, where Y is the sample mean.

¢ to minimize the MSE of T as an estimator of p. = E(Y).

(a) Choose
ess of your result.

(b) Comment on the practical usefuln

-n random sampling from 2 bivariate population f(x, y),

objective is to estimate the parameter 6 = py — Px-
f married couples, with Y =

s. The sample statistics X, Y,

11.2 In size
suppose that the
For example, the population may consist 0
husband’s earnings and X = wife’s earning
sz, §2, and Syy are available.

(a) Propose a statistic T that is an unbiased estimator of 8. Show that

it is unbiased.
(b) Find its variance V(T) in terms of the popul
covariance of X and Y.
(c) For the practical case,
covariance are unknown,
Show that it is unbiased.

ation variances and

in which those population variances and
propose an unbiased estimator of V(T).
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( )

11. i
P known, but2the' p oand V(Y,) = 2. The population variances
samples of ,sizes n lrclcommon e?‘PeCtathn s unknown. Random
I The o sla an] ng respectlvely are drawn from the two popu-
the sample means nYlp ;rslc;il rl_e’ m’depend?m. 't Is proposed to combine
common mean 5. 1 2 linearly into a single estimator of the

a) Consi . . .

() thon51der lilll possible linear combinations of ¥, and ¥,. Determin
e one that is minimum vari 1 5 :

‘ ance unbiased as i
) Verlty ther the an estimator of ..
variance of that estimator i
s less than i

of each of the two sample means. fhe variance

N(ll.45§0u are interested in estimating 6 = @, — W, where ¥
~ > N
R, 50) and Y, ~ N(uy, 100). You can afford a total of 100 obsell‘va—

tions. Detelnlllle llOW I]lally yOU SllOUId dlaw on ) alld llow Illally
1

peirlr;ins:np;p;ose that ¥, = X + U, and ¥, = X + U,, where X =
permaner f:;crorQnei Y.1 = current income in year 1, and Y, = current
meome un():for 1. t 1s.known t.hat U, and U, have zero expectations
200, V0L ;g(z)ited with X. It is also known that V(X) = 400, V({U,) =
B frzm - .O,. and C(U o .Ug) = 6.0. A random sample of size 110 is
o rom the Jth pr.oba'blllty distribution of ¥, and Y,. The objective
P 0 im: ( )., which is unknown. The sample means are ¥

2. Consider all linear combinations of the sample means thalt a::

unbiased estimato A‘( a
I
. s ()i IE( )y Ild ﬁnd the one [hat has minimurin var i"

11.6 A random sampl .
Sa2 = 8310. mple from a population has n = 30, Sx, = 120,

(a) Cal i i
) o culate .unbxased estimates of the population mean, the po
ion variance, and the variance of the sample mean ’ popt

(b) Provide an approxi
imat .
lation mean. PP ate 95% confidence interval for the popu-

11.7 A random sam
' . ple from a Bernoulli lati
t10n§ with ¥ = 1, and 65 observations with ll")?—-pl(; auion has 35 observa-
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(a) Calculate unbiased estimates of the population mean, the popu-
lation variance, and the variance of the sample mean.
(b) Provide an approximate 95% confidence interval for the popu-

lation mean.

11.8 A random sample from an exponential population with
unknown parameter N has » = 50, Z;x; = 30.

(a) Calculate an unbiased estimate of the population mean. Is that

estimate consistent? Explain briefly.
(b) Calculate a consistent estimate of the parameter \. Is that estimate

unbiased? Explain briefly.
(c) Provide an approximate 95% confidence interval for A.

11.9 These statistics were calculated in a random sample of size 100
from the joint distribution of X and Y:

X =2, 52 =5, Y=1, SZ = 4, Sxy = 3.

Construct an approximate 95% confidence interval for the parameter
0 = E(X)/E(Y).

11.10 We are interested in estimating the proportion of the popula-
tion whose incomes are below the poverty line, a prespecified level of
income. Let Y = income and ¢ = poverty line, so the parameter of
interest is 8 = Pr(Y < ¢) = G(c), where G(-) is the unknown cdf of
income. For random sampling, sample size n, from the population, the
analogy principle suggests that we estimate 8 by T = proportion of the
sample observations having ¥ = c.

(a) Find E(T) and V(T). Is T unbiased? Is T consistent? Explain.

(b) Show that T # N6, (1 — 6)/n].

11.11 For the setup in Exercise 11.10, suppose now that it is known
that Y is normally distributed, with known variance but unknown mean.
So 8 = G(c) = F[(¢c — p)/a], where F(.) is the standard normal cdf and
o is known. Because 0 is a function of the population moment ., the
analogy principle suggests an alternative estimator of 8, namely U =
F[(c — Y)/o], where Y is the sample mean in random sampling, sample

size n.

(a) Show that U is consistent. Is it unbiased? Explain.
(b) Find the asymptotic distribution of U.
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(©) ;):,lv ;lliledbasis of t?eir asymptotic distributions, which estimator of
you preter to use, T or U? Hint: Two us
s : : eful f:
the standard normal pdf and cdf, f(2) and F(z), are acts sbout

0F(z)/0z = f(z),
[ﬂﬁ%@ﬂ~%M<Q&f&ﬁw@wda

J
i
\
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12 Advanced Estimation Theory

12.1. The Score Variable

Our discussion of parameter estimation has been general with respect
to the population: we have not assumed knowledge of the family to
which the population belongs. Now we turn to estimation in more
completely specified situations, where the family, that is, the form, of .
the pdf or pmf is known up to a parameter of interest. The value of
that parameter is then a missing link needed to complete the specifica-

tion of the population.
Suppose that the rando
function is known except

likelihood variable
L =logflY; 8) = L(Y; 9),

m variable Y has pmf or pdf f(y; 9), where the
for the parameter value 6. Define the log-

and the score variable

Z = d log f(Y; 6)/30 = aLlia0 = z(Y; 0).
e that both L and

We write Y rather than y as the argument to emphasiz
selves random

Z, being functions of the random variable Y, are them
variables. The score variable plays several roles in the theory. First we

establish:

ZERO EXPECTED SCORE (or ZES) RULE. The expected value

of the score variable is zero.

Proof. For convenience treat the continuous case. Since Zisa function

of Y, its expectation 1s
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EZ) =f2(y; 0)f(y; 0) dy = IZfdy-
(Note: In this chapter, [ is shorthand for [Z_, and the arguments of

th ) f( 3 ) ?

ff(y; ) dy =1 for all 6.
Differentiating both sides with respect to 0 gives
f (3f128) dy = 0.

( .
NOte IICI (S alld Sul)sequelltly 1t 1s aSSuIﬂCd tllat [l 1€ Y €O tegr on

0f190 = (d log fI88)f = z(y; O)f = zf,
sofzfdy=0. m

12.2. Cramér-Rao Inequality

On 01 (8] 1
(4 '] e i l]l (8] \% astanda]d fO ) 1
Of 6 m Iandom Samphng‘ We ShOW

CRAMER-

ample fi?e l;AfO INEQUALITY, or CRI. In random samplin

E(T) = , from an f(y; 6) population, if T = A(Y v &
) = 0 for all 6, then V(T) = U[nV(Z)). .-, Y,) and

Proof. First, consider th =
for all 8. That is, e case n = 1. Here T = h(Y) with E(T) = @

f h(y)f(y; 8) dy = 6 for all 0.
Differentiating both sides with respect to 0 gives
f h(y)f dy = 1,

which
" gec :;ytshtehzét E(TZ) = 1. Because E(Z) = 0, it follows that C(T, Z) =
auchy-Schwarz Inequality (Section 6.6), which sa):s that




130 12 Advanced Estimation Theory

t be the case that

i nity: it mus tha
rrelations cannot exceed unity B V) aebich s

squared €O e V(TYV(Z) = 1, or V(T)

V(T)V(Z) = CX(T, Z). So her
the CRI for n = 1.

Proceed to the cas
pdf of the random sample.
all 6. That is,

. e = 0.
J"'Jh(ylr o »)'n) gn(yh LI ’ym 6) dyn dyl

ng both sides with respect to 8 gives

the joint
= gy, -+ - , ¥.) denote
i ;;Zth: hg(Y?),l. .., Y, with E(T) = 0 for

Differentiati

th (ag/ae)dyﬂ~-~dy1= 1.

But . e
agla0 = (@ log glad)g, &= I=Il f(y:5 8),

so log g = Z;log fly:; 8) = Z;log f:» say. Thus ]
. = .= nl,
3 log gl/a® = 2 (8 log f./38) = 3, z(y:; 0) >z

3 i
i

W \ i ble. SO
b

J'“-J'hnigdyn'-‘-dyx =1,
= E@Z)= 0,1t follows that

hwarz Inequality,
so V(T) =

Because EZ)
1/n. By the Cauchy-Sc

which says that nE(TZ) = 1.
= 1/[n*V(Z)}). But V(@) = V(@)n,

nC(T,Z) = 1, so C(T, Z)
V(TV(Z) = 1/n?, so V(T)
V[nV(Z)]. ®

h an estimator, but rather sets 2

ide us wit
The O e wh Pro"lde timators can be assessed. If we

inst which unbiased estma : VT =
iltanda;dtoal%igl\i or have located, an unbiased estimator T with V(T)
appe ’

i is, lower-vari-
1/[nV(Z)], then we can stop searching for a better (t}txa;t tlksler:v;rs e
ance) unl,)iased estimator, because the CRI tells us tha

such that E(T*) = 6 and V(T¥) < V().

Examgple. Suppose that Y ~ Bernoulli(0), so its pmf is
X .

fiy; 8) = @1 — 9" fory=0,1

12.2  Cramér-Rao Inequality 131

As a random variable

fv; 0) = 671 - 47",
So

L=logf="Ylog8+ (1~7Y)log(l - 0),

Z =0L30 =Y/6 — (1 -Y)(1—8)= (Y - 0)[o(l — 0)].
We know (see Table 3.1) that E(Y) = 0 and V(¥) = 6(1 — 0). So

E(Z) = EY — 0)/[6(1 — 6)] = 0,

V(Z) = V(Y)[8(1 — 6))* = 8(1 — 8)/[6(1 — 8)]2 = 1/[6(1 — 1.
The expectation illustrates the ZES rule. The variance formula implies
by the CRI that if T is an unbiased estimator of 6, then

V(T) = U/[nV(Z)] = 8(1 — 6)/n.

The sample mean ¥ has E(Y) = 0 and V) = V(¥)n = 9(1 — 0)/n =
U[nV(Z)]. It follows that Y is the MVUE of 0 in random sampling from
a Bernoulli population. This conclusion is considerably stronger than
the previous general result that ¥ is MVLUE (see Section 11.3), for now
the class of estimators considered is no longer confined to linear func-
tions of the observations.

For the normal distribution, as well as for the Bernoulli, the sample
mean is the MVUE of the population mean.

There is another way to state the CRI. Recall that Z = § log /80, with
EZ) = [ z(y; 0)f(y; 6) dy = 0. Define the information variable

W = —aZ/36 = —4* log f1a6>.

This too is a random variable. We show:

INFORMATION RULE. The expectation of the information var-
iable is equal to the variance of the score variable.

Proof. Differentiate E(Z) = [ zf dy = 0 with respect to 6:

f (92f798) dy = 0.

Now

\
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a(zf)/98 = z(3f1a8) + (8730)f = (0 log fla8)f — wf
=2f—wf = @ - w)f.

So [ (2 — w)f dy = 0. That is, E(Z* — W) = 0, s0 E(Z% = E(W). But
EZ) = 0,s0 V(Z) = EZ*) = EW). ®

Example. For the Bernoulli distribution we have seen that the
score variable, Z = (Y — 8)/[6(1 — 0)], has v(Z) = U@ — 0)]. The
information variable is W = —aZ/88 = (1 + Z — 20Z)/[6(1 — 0)]. With
E(Z) = 0, we see that E(W) = 1/[6(1 — 0)].

With E(W) = V(Z), we can restate the CRI conclusion as V() =
/[nE(W)]. This restatement is useful because for some distributions,
E(W) is easier to calculate than V(Z). It also accounts for the label
“snformation variable”: the larger the expected information variable is,
the more precise the unbiased estimation of a parameter may be.

12.3. ZES-Rule Estimation

A second role of the score variable is to provide an estimator of 0. Recall
au analogy that suggested the sample mean as an estimator of the
population mean (Section 11.2). An instructive way to restate that
s follows. Because E(Y — p) = 0, we can characterize g as

= 0. Now the sample analog of the
- ¢), so let

analogy is a
the value for ¢ that makes E(Y — ¢)
population average E(Y — c) is the sample average (1m)2(Y;

us estimate p by the vallxe for ¢ that makes (1/n)Z(Y; — ¢) = 0. The

resultis ¢ = (1/m)2Y; =Y.

With that in mind, we will use the ZES rule to obtain an estimator of
8. Suppose that we are drawing a random sample from a population in
which the pdf or pmf f(Y; 0) is known except for the value of the
parameter 8. The score variable is Z = z(Y; 0). Because E(Z) = 0, we
can characterize 0 as the value for ¢ that makes E[«(Y; ¢)] = 0. Now, the
¢), so let us estimate 0 by the
value for ¢ that makes (1/n)Zz(Y;;¢) = 0, or equivalently that makes
3,2(Y;; ¢) = 0. Changing notation somewhat, let T be the solution value,
and let Z = z(Y;; T). Then by construction, the ZES-rule estimator T

sample analog of E[(Y; o)) is (I/m)Zz(Y;;

satisfies ,Z; = 0.
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o (f‘a)c\t;mple. Suppose that Y ~ exponential(), so N =

’ T}; - ;;The(n /z% =log\ = \Y,and Z = (I\) - Y. Let Z, = (1/T) -
i Then 3.Z, = (n/T) — 3,¥, = a[(1/T) — 7]. Setti is at i

T = 1/Y as the ZES-rule estimator of . " eting this at zero gives

esrrjatsé(:;d[lj :nderi;r'ation of the asymptotic distribution of ZES-rule
§. Using a linear approximation at the point 6 i

the definition of the information variable W = —aPZ/:e v:':iltr::d reclivg
Z; =Y T) = «(Y; 0) + [92(Y; 0)/30)(T — 0)=2,-W(T - 9)

where W; = —4Z,/30. So |

;Zsza—a—mzm.

By construction, 2,-2,- = 0, whence

T—95225/2wi=7/w’

where Z = W=

wherez - o( :lrfl)"iiZi atr,ld W = (I/n)Z,W;. We may neglect the approxi-
sampling on t.h en, because Z and W are sample means in random
asymp[ogtic . e' l\;ar{ables Z and. W, the problem amounts to finding the
B o lS_tI‘lPuthl'l of a ratio of sample means, as in Section 10.4
W); COnclude, ch;TE(f})l'a}rlld W 5 E(W) = V(Z), so that (T-60) > 0
estimator of 6. Furtiler, lx(;e rl:l:\z]eor may not be unbiased, is a consistent

V(T ~ 0) = VaZiW = \/W)VaZ.

By the CLT and LLN, we k e
5o by 54, » we know that VaZ 2 N0, V(Z)]and W > E(W),

V(T — 8) 2 N0, $3),
with ¢* = V(Z)/[EXW)] = 1/V(Z). Equivalently,
T ~ N{8, /[nV(Z)]}.

Observe i i
e t:‘]at t'he asymptotic variance of T is at the lower bound for
stimation of 0, which is a i
‘ ) , n attractive pro
o oiase ' property. Indeed there
o tyglptotlc version of the Cramér-Rao Inequality that says that th
0 c - . . e
o lp())wer b\:rla(;lce of a consistent estimator cannot be less than the
und. So the ZES-rule estimator is a BAN estimator. In this

- sen i
se, of all the analogies to draw on for an estimator of 0, the ZES
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rule is the best. Of course, to use it, we must have knowledge of the

form of the population pdf or pmf.

exponential example. Recall
(Caution: Do not confuse
e results for E(1/W) and

Example. Continue the preceding
(Section 8.3) that W = ERY ~ X2(k) with k = 2n.
this W with the information variable.) Using th
E(1/W?) reported in Section 8.5, we find

ET)=nN@m—1, VD= 2\2/[(n — D*(n — 2]

2/n, we see for large 7 that E(T)

While E(T) > \ and V(T) > X

also V(T) = N?/n, which is the CRI lower bound.

12.4. Maximum Likelihood Estimation
There is another approach, which is better known,

rule estimation.
Consider a population in
pmf f(y; 0), with the function

Under random sampling, sampl

Vs 0) = {If(ys; 0).

f known but the

201> - - -

g this as 2 function of y1, - - -

We are accustomed to readin
also be read as

0, but mathematically it can
[ Y I When that is done we T

. for 0:
Y 0) = ].:If(yi; 0).

P = POy, - In) = Ens -

The maximum likelihood, or ML, estimator O

maximizes the sample likelihood function £. Now to maxi

may as well maximize its logarithm,
log £ = E log f(y:: 8) = 2 L,

where L; = log f(3:; 0)- Differentiating with respect to 6 gives

3 log /60 = 2 oL/38 = Sz, =2 Y 0).

i

= \ and

that produces ZES-

which the random variable Y has pdf or
parameter 6 unknown.

e size n, the joint pdf for the sample is

, y for given
a function of 6 for given
efer to it as the likelihood function

f 8 is the value for 9 that
mize &£ we
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Setting this at zero gi

gives Z;z(y; T) = 0, which remai
the ML i ¢ , which remains to be sol
el estimator .T- Observe that this first-order conditi sowed fo.r
precisely the equation for ZES-rule estimation ion (FOC) is

Example. Su Y ~ .
Then ppose ¥ ~ Bernoulli(8), so Z = (¥ — 6)/[6(1 — 6)].

; Z; = 2 (Y; — 0)/[6(1 — 8)].

The FOC chooses T to make
Z Z;=2 ;- TY[T1 - T) =0,

that is, to make 3(Y;, — T
’ i i ) = 0. SO EY = =

f : .Y; =nT, whence T =Y.

;-;OH rme_d that this locates a maximum. So the ML esti v tean b
ernoulli parameter 9 is the sample mean stimator of the

We hav ..
orinciple Z Se;?iteldh:)w }tlhe ML principle, or, for that matter, the analo
for an unkﬁg o the ZES rule, constructively provides an estimatgy

R ;Nn Parameter when the population family is known o
e logari,thm rsflfhinl(-)lt(hlez; an;logy that leads directly to maxirr;izing

' ikelihood function. In th ;
charact . In the population,
cterized as the value for ¢ that maximizes the }e)xpectatioil Cj;‘ tlt:e
e

log-likelihood variabl I
L= ;
e e log f(Y; ¢). The argument runs as follows.

Dic) = log fly; ¢) = log fiy; 8) = log [f(y; €)/f(; O)]-

Because logari i
garithm is a convex functi
. ction )
(Section 3.5) that , we see by Jensen’s Inequality

E[D(c)] = log E[f(y; o)/f(y; 8)]

with equality if ¢ = 6. But

E . . -
[f(y; e)f(y; 6)] = f [Ay; o)f(y; 8)1f(y; 8) dy = ff(y; ¢)dy =1

usin i

! ;g (I;he?:r iaiztszhzslttj}’l(y; c). is a pdf. So E[D(c)] < log(1) = 0, with equalit

meom log ket }Z dat 6 is the value for ¢ that maximizes the populatior)I

hon 0Bk d.00 varlable.. As we have seen, the ML estimator h
ponding property in the sample: the ML estimator T irs tl?:

Yelele \ .
Q0000000000000 00OCO0OO0000ODOIDOD
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value for ¢ that maximizes the sample sum (hence the sample mean) of

the log-likelihood variable.

An advantage of this alterna
that arises when the FOC has multiple solutions,
he choice is resolved by taking the solution that

Je mean log-likelihood variable.
ties of ML estimators. Consider random sam-

ose score variable is Z = 8 log fiY; 0)/06 and
W = —0Z/38.

tive analogy is that it resolves a choice
as may happen in
glob-

nonlinear cases. T
ally maximizes the samp

We restate the proper
pling from a population wh
whose information variable is

If T is the ML estimator of 0, then:
T > 6,
V(T — 8) > N(0, $*), where &’

T 4 N, &°/n),
T is a BAN estimator of 0.

= UV(Z) = VEW),

ML estimation is invariance: If a = h(B) is

A convenient property of
d T is the ML estimator of 8, then A =

a monotonic function of 0, an
K(T) is the ML estimator of a. Example
of w, then (provided that i # 0) 1/ is the ML estimator of
§? is the ML estimator of ¢?, then S is the ML estimator of 0.

Exercises
12.1 The random variable X has the power distribution on the
[0, 1]. That is, the pdf of X is

flx; 0) = gx®! for0=x=1,

0 elsewhere. The parameter 8 is unknown.

with flx; 8) =
random sampling, sample size 7.

(a) Show that the maximum likelihood estimator of 0 is

where Y = —log X. (As usual,
(b) Find the asymptotic distribution ¢

s: When Y is the ML estimator
1/p; when

interval

Consider

T = 17,
“log” denotes natural logarithm.)
£ T, in terms of 0 and n only.

i
i
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12.2 The random variabl
parameter A. e Y has the exponential distribution with

(a) (I::(;(C:illl;?g éizc;mVTable 3.1) what is known about E(Y) and V(Y)
e , V(Z), and E i ’
B v (W). Do your results satisfy the rule
b
(b) g:;;npf;letel th'e se?tence: In random sampling, sample size n, from
pulation, for T to be an unbi im: its vari
s b greaten than or et iased estimator of \, its variance

12.3 The random vari . )
cter 1 ariable Y has the Poisson distribution with param-

(a) Explall’l Why [he sam ple mean alld tlle SaIIlple V 1 re

n s

(E) gind E(T), V(T), E(T*), and V(T*).
E ) Ff)mment on your results in the light of the CRI
¢) Find the MSE of T and T* as estimators of \. .




13 Estimating a Population Relation

13.1. Introduction

the questions raised in

o address systematically
Y and X in a bivariate

We are now prepared t
the relation between

Chapter 1 about estimating

population.

By way of review, first consider estimating 2 population mean in

random sampling from a univariate population. We have learned that

the sample mean 7 is an unbiased and consistent estimator of the
L N(w, 0°/n). At least two analogies

population mean K, and that ¥ =
lead to Y as the estimator of w. First, the population mean is the best

constant predictor of Y in the populaton: R is the value for ¢ that
minimizes E(U?), where U = Y — ¢. The sample mean has the analogous
property in the sample: Y is the value for ¢ that minimizes Sufln, where

is the value for ¢ that makes E(U) =0 in the

u;, =9y — ¢ Second, W 1
population. The sample mean has the analogous property in the sample:

¥ is the value for ¢ that makes Z;ui/n = 0.
Next consider a bivariate population, in W
nis EX(Y]X) = o + BX, with

hich the population linear
projectio

B= UXY/(I?(’ o = Py ~ Brx
In random sampling, consider the sample linear projection, Yy =A+
BX, with

B=SylSx, A= Y - BX.

We have learned (Sections 10.5 and 10.6) that the sample slope B

consistently estimates B, and that

13.2 Linear CEF
. 139
B -~ N(B, ¢2/n),

where &° = E(X**U2)/V¥(
: X)and U = Y — E* .
for the i ' EX(Y|X). A simi
as th: ;:tt:rrlcfpt A.fAt least two analogies lead to thelrllilll*nl::*lr?reSu,;t holds
imna * =
prejection is thoerbo E (¥Y|X) = a + BX. First, the population lf BX
minimi 2 est linear predictor of ¥ given X in th oear
PTOjeCtlizOersl i(U )’hWhere now U =Y — (a + bX) Thee spaopullam'm: "
Suflin, whergsnct)»:3 uanjlogom property in the sample: itm rrr’ai;ilrlnn'ear
least-squares analogy iSe-cy ‘ d_ (@ + bx;). This may be referred to as 1:;3
E(U) = 0 and E(X-U ) —03 i th}f population LP is the line such thai
et C ) -— in the po ula[‘ .
gﬂaTl;)ligsous properties in the sample: it)mal::: EE}Z Sjn(;ple LP has the
). may be referred to as the i"‘StTumenta[_“"“l" and Yxu,/n =
analogy. variable, or orthogonality
With this background ’
. » We can proceed to estimati
expectat H - R imation of th e
ofpthe cl;r; f;lsml::tlon EY IX).‘ We will suppose that the funf:tci((;ndlltzonal
h(X; ©) is kno nown; that is, E(Y|X) = h(X; 0), where th anction
wn up to the values of one or mo ¢ tunction
ment(s) of the vector 0. ' re parameters, the ele-

13.2. Estimating a Linear CEF

Suppose that the i
'PP! population CEF is known i
;. t
;ou_’m;les w léh the BLP: that is, E(Y]|X) = a -l? g;( hvrvlii;}llr.BThen t;li -
= Wy — Buy. Th \ ) = Oxylo
again the sam;le LlS tr:::nZ]nal)(; gl—e * PPy, so the natural esfi:na)t(oinii
distribution is as above. y ¥ = AT BX, for which the asymptotic

In fact, when E(Y|X) is li
’ yis li .
and B. We show near, A and B are unbiased estimators of o

THEOREM. I i
n random sampling from a population in which

E(¥Y|X) = a + BX
) , the sample i
estimators of « and p. ple intercept A and slope B are unbiased

Illls IS a surprisin re. ult € 1‘. all(i 1 (0]
€ n nllneal fullC[lOI]S Of
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i i lgebra:
Proof. Begin with some 2lg B .
S2=0mSX-X"= S X2 - X0 = (1) 2 X; — X)X
X~ - i -
- - .
Sy = (Un) 2 X: = X); — Y)= 2 XY/n — X

= () T X = XY

v \2
B = Sis? = 3 (%~ R, [Sa-B

= %/ & - }‘()Q]Yi
= 2 WiYi’
say, where the random variables

Wi=(Xi")—()/h§l(Xh—}_()2 G=1,...,n

y of the X/'s. As a matter of algebra,
2
SWX, =1, Swi=1 [Z(Xi—X)].

X’s, that is, condition
the values of the W;

are functions onl
2 Wi = Os
i

i i n the
on a given set of observations O

Now condition OS¢ 1
R Conditional on X = X,

on X = x = (%, . '
are constants, which we write as

w,-=(x,~-3'c)/h§l(x,,—§)2 G=1,...,mn).

The expectation of the slope B conditional on X 1§

BBl = B (S Wlx) = 3 EWLlx) = Zub0)
= > wia + Bx) =0‘2wi+ Bzitwixiz B,
| have
wx = 1 by the algebra above. We
Sw; = 0 and Siw;x; 1 by ¢ b
Z‘ZICBT;T= B for all x, so B is mean-_indepfndent of X, and E(B) = B
Similarly, for the intercept A =Y — BX, we have

E(A|x) = EF|x) — EB|x)E = (@ + Bx) — Bx = a.

We have E(A]x) = a for all x, so EA)=o0. ®
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There is a subtlety in the derivation, namely the step that equates
E(Yi|x) to E(Y;|x) = a + Bx,. This step is justified by the random
sampling assumption. To clarify what is involved, it suffices to show
why E(Y,|x,, x5) = E(Y,|x,). Consider the conditional pdf of ¥, given
both x; and x,:

g(yxlxl, Xg) = f(}’n Xy x2)/f2(x1s Xg).

Independence across the observations implies that the trivariate density
in the numerator factors into

f1s 21, x5) = g1(y1s x1)f1(x2),

and, in conjunction with “identically distributed,” implies that the bivar-
iate density in the denominator factors into

f2(x1, xg) = fl(xl)fl(x2)'
So

gnlx, xp) = &1y, x)lfi(x)) = g2(,’)’1lx1)-

When two distributions are the same, their expectations are the same.
That is,

E(Yllxu x9) = E(Yllxl)'

This calculation extends to further conditioning, and of course to i =
2,...,n. Thus the step from E(Y;|x;) = o + Bx; to EYx) = a + Bx,
is justified under random sampling. Observe how linearity of the CEF
is crucial to the argument.

As for the variance of B, under random sampling from a population
with linear CEF, we have:

VBl = V(S Wlx) = 3 vl = 3 uivers),

and V(B) will equal the expectation (over all x) of those conditional
variances, using the Analysis of Variance formula (T10, Section 5.2),
with Vx[E(B|X)] = 0.

A particularly sharp result is obtained if ¥ is variance-independent of
X, that is, if the conditional variance function V(Y|X) is constant. This

will be referred to as the homoskedastic case. If V(Y|X) = &7, say, for all
X, then Adld) =




142 13 Estimating a Population Relation

VB|x) = S wie’=0"2 w? = 0" / > (i — %2 = (a*m)(1/s2),
l i de that

where s2 = Zx; — x)?/n is the sample variance of X. We conclude tha
V(B) = Ex[V(BIX)] = (0%m)E(1/S%).
ce is approximately (o®m) (1/0%), which is
e of B found in Section 10.6.
with o2 and E(1/83) unknown, we geF a
of V(B) = $%/(nS%), with
hown that $% and 1/S%

For large n, this exact var.ian
indeed the asymptotic varianc

In this homoskedastic case,
standard error for B by taking the square root
§$2=73Semande =Y, — A — BX;. It can be s
are consistent for o° and 1/0‘§.

13.3. Estimating a Nonlinear CEF

The preceding theory for estimating linear CEF’s apzplies alsvil tot ;:ze
nonlinear CEF’s. For example, if EY|X) = a 4; B?( . th;en. ; Ee(ylx) Z
surely applies to E(Y|Z) = a + BZ, where Z = X°. Similar yi e
a + B/X, then the theory applies to E(Y|Z) = « + BZ, w;:h l:nowr.l
What is critical, it now appears, is that the CEF be linear in the un
arameters a, B. . ‘
’ But suppose that the population CEF is nonline
eters. For example, suppose that we kl']OW E (;’IX )d >
d 0, unknown. How shall we estimate ), and B . -
el::iglain2we appeal to the least-squares and instrumental-variable anal

= exp(8, + 0:X), with

ogies. ) . ; it is the best predictor
(1) The CEF is the best predictor. In particular, it is P and 0,

of the form h(X; ¢;, ¢) = exp(c; + coX). In tl21e population, 6,
are the values for ¢, and ¢, that minimize E(U"), where

U=Y — exp(c; + ¢X) = Y — h(X; ¢y, €2)-

So in the sample, let
u; =y; — exp(c; + C9X;),

i 2 i inimize the
and choose ¢,, ¢ to minimize (1/n) Z;u; or, equivalently, to min
2 . .
criterion & = &(cy, ¢3) = Z;u;. The derivatives are

6¢/661 = 2 2 u,-(au,-/acl) = _2 ; u,-h,-,

ar in unknown param-
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ad/dcy = 2 3 udu;ldcy) = —2 2 uhx,,

where h; = h(x;; ¢,, ¢y). So the FOC’s are

2, hiui = 0’

2 hxu; = 0.
On the proviso that these locate a minimum, we have a pair of nonlinear
equations to be solved for the nonlinear least Squares, or NLLS, estimators
of 6, 0,.

(2) The deviations from the CEF have zero expectation and zero
covariance with X. That is, let U = ¥ — E(Y|X); then E(U) = 0 and
E(XU) = 0. So let us choose as estimates of 0,, 05, the values of €ys €9
that make 2;u;/n = 0 and Zxu,/n = 0. Equivalently, we choose them to
satisfy

This is a pair of nonlinear equations to be solved for the instrumental-
variable, or IV, estimators of 8,, 0,.

In the linear CEF case, where i(X; c,, ¢,) = ¢; + ¢, X, the two analogies
produce the same estimators, because ou;foc, = —1 and du,/dc, = —x,.
Further, in the linear CEF case we haye explicit solutions. In the non-
linear CEF case, NLLS and IV estimators do not coincide, and further
we will need to rely on numerical solutions. It is not hard to show that
both our analog estimators are consistent (though not unbiased), and
to obtain their asymptotic distributions: the derivation is similar to that
used for the ZES-rule estimator (Section 12.3). Which analog estimator
is preferable may depend on the population family. If the conditional
distributions of Y given X are normal with constant variance (that is, if
U ~ N(0, o) independently of X), and the marginal distribution of X
does not contain the parameters 0,, 0,, 02, then it is easy to verify that
the NLLS estimators are also ML, and hence BAN.

Observe that NLLS estimation can itself be viewed as a type of IV
estimation. The NLLS FOC's Shu/n = 0 and Zhxuin = 0 are the
sample analogs of E[A(X)U] = 0 and E[g(X)U] = 0, where g(X) = h(X)X.
Since deviations from a CEF have zero expected cross-product with
every function of X (Section 5.3), such sample analogs are legitimate.
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144 13 Estimating @ Population Relation
13.4. Estimating a Binary Response Model
To illustrate the opportunities that arise when more is specified about
the population, we take up a leading example of a hnq_rlll__i,r;‘ear CEF,
namely a binary response model, more specifically the@b:bit model. Here
Y is a binary variable, one that takes on only the values O and 1, and
EXY|X) = F(6, + 0,X),
where F(-) is the standard normal cdf. Section 6.3 contains a story that
leads to this model.
We consider three estimators for the probit model: nonlinear least
squares, instrumental variables, and maximum likelihood.
For NLLS, one minimizes the criterion & = &1 C3) = S.uZ, where
u; =¥ - F;, F;= F(vy), v; = € T CXie
Let f(-) denote the standard normal pdf, so fi = fw) = oF;/ov;. The
derivatives are
adlac, = 2 2 udufdc,) = -2 E u,fi
a¢/aC2 = 2 2 ui(aui/a(;2) = "'2 E uif,-x,-.
So the FOC’s are
Zf,u, =0, Zf,vx,-ui = 0.
On the proviso that these locate a minimum, We have a pair of nonlinear
equations to be solved for the NLLS estimators of 9, and 0,.
For 1V estimation, we seek the values of ¢y, C2 that make Zu;/n = 0
and Sxu/n = 0. Fquivalently, we choose them to satisfy
Su=0, > % = 0.
for the IV

This is a different pair of nonlinear equations to be solved,

estimators of 8;, 8a.
Maximum-likelihood, or ZES-

probit model automatically spe
tribution of Y given X. Because Y is a binary variable with EY\X) =

F6, + 6:X), it is clear that conditional on X, the variable Y has 2
Bernoulli distribution with parameter F(8, + 8,X). Because the param-

rule, estimation is available because the
ditional dis-

cifies the form of the con
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eters 0, and 8, do not a i

.. : ppear in the marginal distributi
maximize t ; . ginal distribut

s lzenhkellhood it sgfﬁces to maximize the condl?tinfolr lA')i’ t'o
o likeli pting an example in Section 12.2, we see th &t eli-
og-likelihood variable is ’ that the conditional

z ,)l l:gll (I )z) lcg(l 12)‘
W p i .

Z,. = . =

10 = 0L,/00, = (y/F))f; — [(1 — y)/(1 — F)If:
=wly, — F) = wu,

Z?i = 3L,/362 = w,-x,-(y‘: - F') = wx;u;

say, where w; = f/[F(1 — F,
i = S ). B ;
¢, and ¢ to satisfy )1. Both have expectation zero. So we choose

2 wa; = 0, 2 wxu; = 0,
which are yet another pai
. air of 3 .
ML estimators of 6,, (')zp nonlinear equations to be solved, for the
The three estimat . .
ors are distinct and will di .
three are i and will differ in
model Onc:rcl:;ti:t (lthouhgh not unbiased) for 6, and 0 anlzoiatrlz? te 1;11
’ solve the choice a : > probit
to the BA X mong the estimat .
N property of ML estimation. More on all thi(s)riil l;}é;.ppezgng
1on 29.5.

13.5. Other Sampling Schemes

Thus far.
, we have confined i

. attention to i

campline schoms random samplin

am fOrgestimati Osnme}y be relevant in practice. We expﬁ)regt.h:?ut Ot'h?r

e o cotimation of the population relation between Y and ;055;:)11‘
e not randomly drawn from the bivariate pop’ 1w ion

ulation

S, Y = g‘z()’lx)fl(x)-

Selective Sampling

Suppose that th )
e sampling is explici .
that the ili g 1s explicitly selective on X .
only on g){rc;lftblllg that a particular (X, Y) draw will b :i‘:tl:. mdthe sense
the releva.nt m;b (X) = probability of retention as a functiolrrnl . f pends
rginal pdf of X is no longer f(x) but rath of X. Then

er
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f169 = b / | weorico) ds.
(Note: In this chapter the symbol [ is shorthand for [Z.)

Example. For studying the relation of savings y to income x, we
might be oversampling high-income households by using Y(x) = 0.5 for
x =< d, Y(x) = 1.0 for x > d, where dis a prespecified level of income.
By assumption, gs( y|x) is not affected by this selective sampling-scheme,
so the new joint pdf is

¥x, 9) = g0|0ff®)-

If the successive observations are independent, then
randomly sampling (X, ¥) from a new,

the conditional pdf go(y|x) has not change
so the theory of the preceding sections app
are the same, estimators of the new

original CEF.
This argument does not carry over to

is linear). The explicit-on-X selection produces implicit-on-Y selection.

The marginal pdf of Y changes from fy(y) to
1) = [ P e = [ olofren de

Presumably the margin
and their covariance, are different in the selected popula

BLP E*(Y|X) is presumably different. Another way to see th

(T13, Section 5.5) the best linear approxi
it minimizes E(W?), where W = E(Y|X) —

fi(x), one should presume that the values of a and b th

1) wzf’{‘(x) dx differ from those that minimize i) w2f1(x) dx. If the two
1l consistently estimate

BLP's are different, then the sample LP, which wi
the BLP of the new population, will not serve for the original BLP.

This negative conclusion also ap
E(X|Y). The new conditional pdf for X given Y, namely

ghxly) = f*@x NIEG),

we are in effect

selected, population. Because
d, neither has the CEF E ¥Y1X),
lies. Because the two CEF's
CEF will serve as estimators of the

BLP estimation (unless the CEF

al expectations and variances of both variables,
tion. If so, the

is is to recall

mation property of the BLF:
(a + bX), and the expectation

is taken over the marginal distribution of X. Because ff(x) differs from
at minimize

plies to the “reverse” CEF, namely

.X=(x1,-.
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?rr:rs;lr:ll;bgr-di.ffelrs from g,(x|y). So the new EX|Y) presumably differs
1ginal one, and the results obtained i 1i
selected population i i in sa'mp o o e
I pop are mappropriate for estimating the original
Blj/;)ffe conclléde that explicit selection on X alone affects both of the
. lsa,uz::q: C‘{.fi(s |Y) asf\gell; Et(helse effects are sometimes labeled selection
bias. not aftect E(Y|X)—so random sampling fr i

. . TR . . . om th )
inal joint probability distribution is not needed wherf) a CgEF is the fa:;:i

Varying Marginals

Anoth i
tributis; defp;rture from random sampling arises if the marginal dis-
m o cbanges from observation to observation. There is no
theg:) a smg}e bivariate population from which the sample is drawn. If
servations are independent joi .
, the ’
the obs p Joint pdf of the sample x’s

g(xl’ AR ] xn) = Hfli(xi)7

wl(lelre t‘he f1(-) functions vary over i. Provided that the conditional pdf
fﬁ ¥|x) 1s the same at all observations, then the CEF EY|X) will remzin
€ same at each observation. If so, then | i
‘ ea . , east square
pr;a‘te, and is indeed unbiased if the CEF is linegr. T apprer
pre:ir;zzot;leire 1tsh no longer a single bivariate population, best linear
n the population is not well-defi :
procic . ned, unless one use
fu,f;,}(lx,)/n, say, as a marginal pmf for X. To assess asymptotics, one need:
rther specification: how do the f(-)’s develop as n grows?

Nonstochastic Explanatory Variable

eAar;hez]tarseri:l gsgc:;i case (?f the‘ va.ryin.g-marginals scheme arises if at
a3 rvacon the (;Eatrgmal distribution of X is degenerate, that is to
the econom’etr';c literanSJ:en ti}fizoitsalljnequal N C}Z:Ch ot ). In
he , s known as the nonstochastic (or non-
med(i(;l;l;;)l?;gﬁfvei:tdh) éalcfla:latom vana,ble case. Another description is strat-
b i,s i o v du(-;ls of X aeﬁn.mg the strata, or subpopulations.
i i,s an b.t e observau(.ms are independent, then least
o eeimat un 1ased._ To verify this, return to Section 13.2,
ze the fact that there is only one possible value of the v
- » %,)', so the conditioning can be suppressed. s
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There is no longer a single bivariate population, but a population
BLP might be defined by using the empirical frequency distribution of
the n values x; as a marginal pmf for X. To consider asymptotic prop-
erties, some supplementary information is needed: how does the x; series
develop as n grows?

It is sometimes said that the nonstochastic explanatory variable case
requires that the researcher “controls,” “sets,” or “manipulates” the
values of the conditioning variable. This is ambiguous or misleading.
For example, if X denotes gender, a researcher may decide to collect a
sample consisting of 50 men, followed by 25 women. If so, the sample
values of X are nonstochastic as required, but the researcher has not
controlled, set, or manipulated the gender of any individual in the

population.

Exercises

13.1 Consider a random sample of size n from the joint distribution
of (X, Y), where Y|X is Bernoulli with E(Y|X) =F(8X), with F() being
the N(0, 1) cdf. Determine whether the following statement is true or
false: The ZES-rule estimator of 6 is the value for ¢ that satisfies

Sdxily: — Flex)l} = 0.

13.2 Consider a random sample of size n from the joint distribution
of (X,Y), where Y|X is exponential with parameter A = 1/exp(6X).
Determine whether the following statement is true or false: The
maximum likelihood estimator of © is the value ¢ that minimizes

=iy — explex)).

13.3 In Exercise 5.8, we introduced the best proportional predictor,
or BPP, of Y given X. It is E**(Y|X) = X, where y = EXY)EX?).
For estimating v, the analogy principle suggests the statistic

T = 3,X,Y,/Z,X2. Assume random sampling.

(a) Show that T is a consistent estimator of v.
(b) Show that T 4 N(y, $*/n), where

$? = E(UXYEXX®) = $3/o],

say, with

Exercises : 149
U=Y - vX,
b7 = E*(x?),
bz = E(UPX?) = E[(Y? - 2yXY + YIX3 X3
= EX’Y®) — 2yE(X%Y) + YE(XY).

(c) Propose i i
! Pose a consistent estimator of ¢* for use in co i
Pproximate confidence interval for Y ieng an

X
Y 1 2 3 4 5

Construct an a i
Pproximate 9 :
the BPP of p ghvon X 5% confidence mterval for v, the slope of




14  Multiple Regression

14.1. Population Regression Function

In most economic contexts, the relation of interest involves more than
two variables. Economists might consider how the output of a firm is
related to its inputs of labor, capital, and raw materials, or how the
earnings of a worker are related to her age, education, race, region of
residence, and years of work experience. So we will move from simple
regression (one conditioning variable) to multiple regression (several con-
ditioning variables).

The setting for this is a multivariate population in which the k-variate

random vector (¥, X, . . . , X;) has joint pdf (or pmf) f(y, %2, -+« + 5 Xa)-

The conditional probability distribution of Y given Xy, . . ., X, 18
described by the conditional pdf (or pmf)

g(ylxz, ey xp) = (%, s x)filxe, - - - Xi)-
Here fi(xg, - - - 5 %) 1S the “joint-marginal” pdf (or pmf) of X, ..., Xy

it is “marginal” in that it is integrated (or summed) over one variable,

but “joint” in that it still refers to several variables.
The conditional expectation function, or population regression func-

tion, of ¥ given Xy, . . . , Xk is

E¥|Xy, ..., X)) = f_w yg(yl %9, - - . » %) dy.

The CEF traces out the path of the conditional means of Y across
subpopulations defined by the values of the X’s. As in the bivariate case
(Sections 5.3 and 5.4), the CEF has some distinctive characteristics in

the population.
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(1) The CEF is the best predictor of ¥ given the X’s. That is, let U =
Y‘—. h(. )s whe2re h( ) = hXs, . . ., X;) is any function of th; X’s; to
ml(X;;m%Z; EcgU ‘), .choofse h()=E{Y|X,,...,X,). ’

e deviation from the i i
independent of all of the X’s. (':FElzll;thlz,s lietr: :xl;’/ec_tag?; |;nd N mf;nj
then E(ef.Xg, .., X,) = 0. It follows by the Law of Iterated E2;< e:c.ta,tiok)’
(T?, Section 5.2), that E(e) = 0 and E(¢|X;) = 0 forj=2 b k An;
so it follqws that € is uncorrelated with evéry function of ’the :X:s -

‘Tl-lere. 1s another feature of interest in any multivariate prol;abilit
;d(lstrlbutl;n, namely the population linear projection, or BLP, of ¥ or);
PN ¢

E¥Y|Xg, ..., X)) =By + BoXo + ... + BiXs,

where. the B’s are chosen to minimize expected squared deviations of ¥
That is, let U = Y — &( ), where A( ) is any linear function of the X’s.
If we choose A( ) to minimize E(U?), the solution is E*(Y |X. X '
More explicitly, write U = Y — (¢, + EJ{!=2(,}"XJ'). Then woood)

dE(U?/ac, = —2E(U),

EWUPac; = —2EX;U)  (j=2,...,k).

Equating these & derivatives to zero to locate the minimum gives the
first-order conditions

EWU) =0, EX;U)=0 (J=2,...,k),

which taken together are equivalent to
E(U) = CXy, U) = ... =C(X,, U) = 0.

tS}ilebstltluting goxil U };gives the system of k linear equations that determine
values of the £ f’s in terms of lati i
covartances of b X L population means, variances, and

‘A's 1r¥ the bivariate case (Sections 5.4 and 5.5), the BLP has some
distinctive characteristics in the population.
W(l_) The BLP is the best linear approximation to the CEF. That is, let

. =7()— K ?, 'where r( ) is the CEF and &( ) is any linear function
of the X’s; to minimize E(W?), choose h( ) = EX(Y|X, X,)

nin s oo Xp).

2) The. deviation from the BLP has zero expectation and is uncor-

related with each of the X’s, as shown in the FOCss.
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152 14 Multiple Regression

As in the bivay‘iate case, we draw on the analogy principle to suggest
an estimator of’'the BLP, or equivalently of a linear CEF. Suppose that
we have a sample of n observations from the multivariate population.

These data take the form

}’1 Xyg « - xl]' R Y )

Y X2 oo - . x,j oo X

yn Xpo o o« . x”j e voe Xpp
The first subscript indexes the observations ¢ = 1, ..., n); the second
subscript indexes the conditioning variables (j = 2, . . ., k). The aim is

to process these data to get estimates of the BLP parameters, the B’s.
The least-squares analogy suggests that we take as the estimates of the
B’s, the values for the ¢’s that minimize the criterion

n
2
¢=¢(CI’C2""’Ck)='2:lui’
i=

where
u; =9 = (€ + CoXig + - - F CaXan)

Solving that problem may be referred to as “running the LS linear
regression” of Y on X, . . . , Xj.

This minimization problem is a purely algebraic one that can be posed
without reference to population CEF’s or BLP's: find the best-fitting
line in a body of data, where fit is measured in terms of sum of squared
sample deviations. In the remainder of this chapter, we explore LS
linear regression in isolation from its probability setting.

14.2. Algebra for Multiple Regression

It is convenient to define a variable X,, called “the constant,” that is
equal to 1 at all observations, and thus to add a column with elements
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x; = 1 to the display of the data above. Given the n observations on Y,
Xy, . . -, X, the criterion to be minimized is ¢ = = 47, where
U =9 — (Gxa F CaXig T e Cxy).
Differentiating ¢ with respect to the ¢; (for j = 1, .. ., k) gives

= —2 2 xijui.

So the first-order conditions for the minimum are
2xu=0  (G=1,...,k.
This is a system of % linear equations in ¢, . . . , ¢,.

At this point, it is convenient to adopt a vector notation. Define the
n X 1 vectors '

y= {y.-}, x, ={xp} ..., x = {xa},
and the n X 1 vector
u=y— (x;6, +---+x0) = {u}

(Note the convention: Typical elements of vectors are identified by curly
brackets.) Then the criterion may be written as

b=uu=d,...,q)

and the FOC’s may be written as

G=1,...,k).

A matrix formulation is even more convenient. Define the n X k matrix

4 —
xju=0

X =(x},...,X),
and the & X 1 vector ¢ = (¢, . . ., ¢;)". Then the criterion may be written
as

¢ = u'u = ¢(c),
where

u =y — Xc,
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and the FOC'’s may be written as

X'u = 0.
Let c* denote a solution value for ¢, that is, X'(y — Xc*) = 0 or,
equivalently,
X'Xc* = X'y.

This system of k linear equations in the k elements of c¢* is known as

the set of normal equations for LS linear regression. Here Q = X'X =
{x;x;} is the & X k symmetric matrix of sums of squares and cross-
products of the explanatory variables, while X'y = {x/y} is the k X 1
vector of sums of cross-products of the explanatory variables with the
dependent variable.
Two cases arise when we consider solving the normal equations. Case
1, the full-rank case, holds when the k X k matrix Q is nonsingular,
equivalently when Q is invertible, has rank %, has determinant |Q| # 0.
Case 2, the short-rank case, holds when Q is singular, equivalently when
Q is not invertible, has rank less than k, has determinant |Q| = 0.
In Case 1, the normal equations Qc* = X'y have a unique solution,

which we denote as
b= Q 'X'y.
The claim is that b is the unique minimizer of the criterion: that is,
(b) < &(c) for all ¢ # b. In Case 2, the normal equations Qc* = X'y
have an infinity of solutions, none of which is expressible in terms of
the inverse of Q. There the claim is weaker, namely that if c* is a
solution, then &(c*) = &(c) for all ¢, with equality iff ¢ also satisfies the

normal equations. Both claims will be verified in Section 14.5.
Confining attention to the full-rank case, we introduce some termi-

nology and notation. The least-squares coefficient vector is
b=Q 'X'y = Ay,
where A = Q7'X' is k X n. The fitted-value vector is

¥ = Xb = XAy = Ny,
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where N = XA = XQ7'X' is n X n. The residual vector is
€=y~ 9=Iy-Ny=(aI-Ny=My,

where M=1-N=I-XA=1 Iyt -
=1-XQ 'X'isn X n. The minimi
value of the criterion, the . - 1 he minimized
line, is b(b) = e'e. sum of squared residuals from the least-squares
Here are some easil i ;
- y verified properties of the
matrices that prove useful in the sequel: QAN and M

QY =q7,

AX = @Q'X)X=QlQ-1,

AA = (@X)EQ N = QQQ = @,

N’ =AX =XQ X' =XQ'X'=N,

NN = (XA)XA = X(AX)A = XIA = XA = N,

M =I-N=I-N=M,

MM =(I-NI-N)=I-N-N+NN=I-N=M,
NX = (XA)X = X(AX) = XI = X,

MX =(I-NX=X-NX=X-X=0.

Obser ixQ i
o andv; tl;at t.l;e k X k matrix Q is symmetric, while the n X n matrices
re aempotent. (A square matrix T is sai i i
o T q : i1s said to be idempotent iff
T . .
datao riiziipl)t(ul_ate the algebra of multiple regression: we are given the
o thz and = (X1, . . ., X;), and asked to find the linear combination
b I_I;ns of X that comes closest to y in the least-squares sense
uniqu,eprgv;ﬁefi that Q = X'X is nonsingular, the vector b = Ay is thc;
coefficient vector that solves inimizati
the minimization b
unique co . ‘ problem, the
< y= Ny gives the values of the linear combination, and the v;ct
e = My gives the residuals. ’ >

14.3. Ranks of X and Q

lI—:s discussing the normal equations, we distinguished two cases with
ranfl:ect t(i the k X k symmetric matrix Q = X'X: the full-rank case where
(Q) = £, and the short-rank case where rank(Q) < k. We now show
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that these are equivalently described in terms of the n X k matrix X:

the full-rank case has rank(X) = k, the short-rank case has rank(X) < k.
Letd = (d,, ..., dy) beanyk X 1 vector. Then the n X 1 vector

v=Xd=xd, + -+ + X4

is a linear combination of the columns of X, and the scalar
v'v = (d'X')(Xd) = d'X'Xd = d'Qd

is a sum of squares.

Suppose that the rank of X is less than &, the number of its columns.
This means that there is a nontrivial linear combination of the columns
of X that equals the zero vector. That is to say, there is a k X 1 vector
d # 0 such that v = Xd = 0. For that same d, we have Qd = X'v = 0,
so that there is a nontrivial linear combination of the columns of Q that
equals the zero vector. That is to say, the rank of Q is less than k, the
number of its columns. Conversely, suppose that the rank of Q is less
than the number of its columns. That is to say, there is a vector d # 0
such that Qd = 0. For that same d, let v = Xd. Then v'v = d'Qd =

d'0 = 0, which means that v = 0 (because a sum of squares is zero iff
all its elements are zero). That is to say, the rank of X is less than the
number of its columns.

We have shown that rank(Q) < k & rank(X) < k, and that rank(Q) =
k < rank(X) = k. (In fact it can be shown that rank(Q) = rank(X).)

Therefore, the two cases may be restated as

Case 1. Full-rank case: rank(X) = k.
Case 2. Short-rank case: rank(X) < k.

This description in terms of X is more useful; it permits us to think
directly about data situations in which the short-rank case occurs.

14.4. The Short-Rank Case

The rank of a matrix cannot exceed the number of its rows or the
number of its columns. So the short-rank case is guaranteed to arise
when n < E, that is, when the number of observations is less than the
number of explanatory variables. But the short-rank case may arise
even when n = k That will happen when one of the xs is an exact
linear function of the others. For example, suppose that with n = 100,
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k = 4, it happens that x, = x; + X,. Then the nonzero vector d =
(1, 1, 0, —1)" will satisfy Xd = 0, so rank(X) < 4.
‘ Why does rank(X) < % rule out unique solution to the normal equa-
;1((Ims Qs =hX')(rl? From a mechanical point of view: suppose that Qc* =
and that d # 0 sad = =
c*y‘l- e satisfies Xd = 0 and hence Qd = 0. Let ¢c** =
Qc** = Q(c* + d) = Qc* + Qd = Qc* = X'y,

so ¢**, which is different from c*, also satisfies the normal equations
From a more fundamental point of view: the minimization problerr;
seeks the coefficient vector ¢ such that the linear combination X¢ =
X6, + - -+ + x4¢, comes closest to the observed vector y in the least-
squares sense. But if rank(X) < k, then there is a nonzero vector d
which when added to c, gives a different set of coefficients (c + d) tha;
generate the very same linear combination: X(c + d) = Xe. So the same
best-fitting linear combination is expressible in different ways

In Fhe short-rank case, how does one locate a solution to th.e normal
equations? Suppose that rank(X) = k* < k, and without loss of generality
suppose that rank(X*) = k*, where X* consists of the first k* columns
of X. Let Q* = X*'X*, and let b* = Q*7'X*'y. Then c* = (b*', 0')’
where the 0 is (¢ — k*) x 1, solves the original normal equatior;s In,
wo.rds, run the LS linear regression of y on X* (a full-rank case) ;md
assign zero values to the coefficients on the remaining columns of X

14.5. Second-Order Conditions

We now verify that the FOC’s locate the minimum of &(c) = u'u, where
u =y — Xc. Let c* solve the FOC’s, so X'u* = 0 with u* = - Xc*
For any ¢, let d = ¢ — ¢*; then ’ .

u=y-Xe=y-X(c*+d)=y - Xc* - Xd = u* — Xd.
Because X'u* = 0, we have
d(c) = u'u = uw¥'u* + d'X'Xd = d(c*) + v'v

;ay, ?vhere v= Xd. Because v'v is a sum of squares, we know that v'v =

v, w1(t)h e}:lquahty iff v = 0. It follows that ¢(c) = d(c*), with equality iff
— , that . .ff — . e _ o . ;

M 15 iff Xd = 0, that is iff Qd = 0, that is iff ¢ also solves the
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If rank(X) = k, then the only vector d that satisfies Xd = 0 is the zero
vector, so &(c) = &(c¥) iff d-= 0, that is, iff ¢ = b. This verifies the claim
that in the full-rank case, b uniquely minimizes ¢: ¢(c) > &(b) for all
¢ # b. If rank(X) < k, there are many vectors that solve the FOC’s: they
differ from one another by vectors d # 0 that satisfy Xd = 0. This
verifies the claim that in the short-rank case, $(c) = ¢(c*) with equality
iff ¢ also solves the FOC’s.

We can draw some other implications from the fact that d'Qd = v'v
is a sum of squares. Recall the matrix-algebra concept of definiteness.
A square symmetric matrix T is nonnegative definite iff for every d, the
scalar d'Td is nonnegative, and is positive definite iff for every d # 0, the
scalar d'Td is positive. If the sign of d'Td depends on d, then T is said
to be indefinite. Now a sum of squares is nonnegative, and is zero iff all
of its elements are zero. We conclude that Q = X'X is nonnegative
definite, and further that Q is positive definite iff Xd = 0 implies d =

0, that is iff rank(X) = &.

Exercises

14.1 Let X and y be

1 2 14
1 4 17
X = 1 3 ] y= 8
1 5 16
1 2 3

Calculate the following, using fractions to maintain precision. Feel free
to factor out a common denominator in displaying a matrix.

(@ Q =X'X, |XX|, Q7"
(b) A =Q7'X’, b= Ay.
() N =XA, ¢=Ny.
(d M=1I-N, e= My.
(e) tr(N), tr(M).
(Note: If T is a square matrix, then tr(T) = trace(T) = sum of diagonal

elements of T.)
14.2 For a certain data set with n = 100 observations, the explanatory
variables include x;, = 1, x, = a binary variable that is equal to 1 for
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malels and equal to zero for females, and x; = a binary variable that is
equal to 1 for females and equal to zero for males. Will the X matri
have full column rank? Explain. o

14.3 Let X be an n X k matrix whose rank is k, and let

Q=X'X, A=Q'X, N=XA, M=I-N
Recall that
b= Ay, =Ny, e = My,

alzz the vectors of coefficients, fitted values, and residuals that result
when an n X 1 vector y is linearly regressed on X. Show the followi
as concisely as possible. e

(@ AN=A, AM=0, = =

(b) NX=X, MX=0. Y=o Mo

(©) Ny =9, Ne =0.

(d) My =0, Me =e.

() X'y =X'y.

() y'y = yXb=b'X'y = b'Qb = §,

(8) e'e = y'My=y'y - yy.

14.4 Show that every idempotent matrix is nonnegative definite.

14.5 Let m,; and n, denote the i i
i i e ith d
Show thar 0 = m oy oonoie the ith 1agonal elements of M and N.

N
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15 Classical Regression

15.1. Matrix Algebra for Random Variables

i ion, that
i i ish a model for multiple regress .
I O e e e eStabhsd ;mpling scheme that support running

i i ification an e
a population specifica : P aration,

lli,S 1123; regression to estimate population paramc:iterls.m :])ithprandom

we develop a general matrix-algebra system for dealing

variables. '
Setting aside the regression ap

random variables whose jomnt pc
variances, and covariance

of n
plication, letY,, ..., Y, be a set

df (or pmf) is fOy, - - - - y,,).. The
s are (for ¢, h = 1,...,n)k

expectations, )
=g, = Ou-
E(Y,) = B vy, = 0'? = Ojis C(Y,, Y)) = Ou ih
il = i
i nn X 1 vector @,
It is natural to display these in an n X 1 vector Y, a
and an n X n matrix %, where:
Y 'J-l 011 . . . (T]n
1
- . 2= Ohi
Y= ’ r= ’
)', Pen Tnl - . . Opn
n

n we adopt the matrix-algebra convenfton 0];
overriding the statistical convention O
and write the n X 1 random

At the risk of some confusio

lowercase characters for vectors, ding
uppercase characters for random variables,

vector and its elements as

y=0Op--- s Ya) -

matrix) is defined to be the vector

] dom vector (Oor . '
e A ements. The variance matrx of a

(or matrix) of expectations of its el
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random vector is defined to be the matrix of variances and covariances
of its elements. We write

Eyy=p, V() =%

Whenyisn X 1, then pisn X 1,and 3 isn X n symmetric.
Let€ =y — p ={y, — w;} be the n X 1 vector of deviations of the ¥'s
from their respective expectations. So

€€’ = (y — )y — ' = {0 — m)(3 ~ m)}

is an n X n symmetric random matrix whose elements are the squares
and cross-products of those deviations. Then

E(€) = E(y — p) = {E(y) — m} = {m; — pg} = {0} = 0,
E€e) =El(y -y - w1 ={o} =32 = V(y) = Ve).

The covariance matrix of a pair of random vectors is defined to be the
matrix of covariances between the elements of one vector and the ele-
ments of the other vector. Thus if z = {z,} is an m X 1 random vector
and y = {y;} is an n X 1 random vector, then

Cz, y) = E{[z - E@]ly — E(y)]'}

is the m X n matrix whose (k, i)th element is C(z, y:), while C(y, z) is
the n X m transpose of that matrix.

Here are a set of rules for calculating expectations, variances, and
covariances of certain functions of y. Throughout we suppose that the
n X 1 random vector y has expectation vector E(y) = p and variance
matrix V(y) = 3, and write € = y — K. The first two rules, which refer
to linear functions, are straightforward generalizations of T5 and T6
in Section 5.1.

R1. SCALAR LINEAR FUNCTION. letz = g + h'y, where the
scalar g and the n X 1 vector h are constants. Then the random variabie
z has

E() =g+ WE(y) =g + h'p.

Further, let z* = ; — E(z). Then z* = h'y — h'p, = h'(y — n) = h'e,

‘and % = (h'e)® = (h'e)(h'e) = (h'e)(e'h) = h'ee’h. So

V() = E(z**) = E(h'ee’h) = h'E(ee’)h = h'V(e)h = h'Sh.
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i e see
variance V(z) must be nonnegative, W

: i lar . . "
Incidentally, since the 52 3 is nonnegative definite, and is posiive

that every variance matrix
definite iff it is nonsingular.

ON. Letz =g+ Hy, where the

NCTI
R2. VECTOR LINEAR FU H are constants. Then the Ex1

k x 1 vector g and the k X n matrix
random vector z has

E(z) = g + HIL.

u * =7 — I * = - = , and z*z*'
Further, let z z — E(z). Then z H(y (18] He

I
Hee'H'. So

V(z) = E(z*z*') = EHee'H') = HE(ee')H' = HXH'.

! x n random
R3. MEAN SQUARES. Let W = yy'. Then the n X 7

matrix W has expectation E(W) = S+

Proof. Write
' ! '+ e€',
yy' = (n+ O + € = ppFpel T eh TE

which, since p is constant and E(e) = 0, implies

Egy)=pp' +2. ®

Let w = y'y. Then the scalar random

F SOQUARES. ,
R4. SUM O Q o) + Wi

variable w has expectation E(w) =

Proof. Write
y'y = tr(y'y) = tw(yy) = tr(W),
SO |
E(y'y) = Eltr(W)] = t{E(W)] = (S + B
Ny = w(@) + uE'w) = r(S) +

s a linear operator, and that if AB and BA
en tr(AB) = tr(BA). H®

= tr(Z) + tr(pr

using the facts that trace 1

are both square matrices, th
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R5. QUADRATIC FORM. Let w = y'Ty, where the n X n matrix

T is constant. Then the random variable w has expectation E(w) =
tr(TX) + pw'Tp..

Proof. Write y'Ty = tr(y'Ty) = tr(Tyy’) = tr(TW). Then
E(y'Ty) = E[tr(TW)] = tr[E(TW)] = tr[TE(W)]

I

tr{TE + pp')] = r(TZ) + tr(Tpp)
tr(TX) + p'Tp. =

R6. PAIR OF VECTOR LINEAR FUNCTIONS. Letz, = g +
H,y, z; = g, + Hyy, where the m, X 1 vector g1, the my X 1 vector g,,

the m; X n matrix H,, and the my, X n matrix H, are constants. Then
C(z,, z,) = H,ZHj.

Proof. Let z} =z, — E(z,) = H,¢, and z§ = 2, — E(zy) = Hye. Then
z¥z3' = H,ee'H), so

C(z,, 25) = E(z}z3') = H,E(ee’) H, = H,3H,. m

15.2. Classical Regression Model

We now set out the statistical model that is most commonly used to
Justify running a sample LS regression to estimate population parame-
ters. That is, we provide a context for the data, one in which we observe
a drawing on an n X 1 random vector y and an n X k matrix X =

(X1, . . ., X,). The classical regression, or CR, model consists of these four
assumptions:

(15.1)  E(y) = XB,
(15.2)  V(y) = o1,
(15.3) X nonstochastic,
(15.4)  rank(X) = k.

The understanding is that we observe X and y, while B and o® are
unknown,
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i 1 random
We interpret the assumpuons briefly. In general, ann X 1 .
vector y = (y V) will have expectation vector | and variance
Is = ¢ 3 Jn

matrix 2, with

/0’]‘ . . . G]n

Mon Ont - . Opp

i ifferent
So in general, the elements of a random vector.y will have‘ dxtf}fli o
expectations, different variances, and free covariances. But in

model, we have

(15.1) p=XB,

which says that p, = x{B, where x! is the ith row of X. (Caution: go
not confuse x! with the transpose of the ith column of X.? CoPsequen y;
all n of the unknown expectations, the s, are e).(presmble in 1;elr)mii f)f-
k unknown parameters, the B/s. The n e':xpect.atxons may well be ¢ cle
ferent, but they all lie in the same k-dimensional plane in n-space.

Further, in the CR model, we have

(15.2) = =g,

which says that 0; = o2 for all 4, and that o;; = 0 for all A # i. Thus the

i CcOor-
random variables y,, . . ., ¥n all have the same variance, and are unco

related. Further, we have

(15.3) X nonstochastic,

which says that the elements of X are constants, that is, degener;]:e
random variables. Their values are fixed in repea.tecl samples, unli le
the elements of y which, being random variables, will vary from sample

to sample. Finally, we have

(15.4) rank(X) = k,
which says that the n X k matrix X has full column rank; its k& columns

i i i ix algebra sense.
are linearly independent in the matrix alg :
In Chapter 16, we will return to the interpretation of the CR model,

and to the population and sarpling assumptions that underlie it.
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15.3. Estimation of

We proceed to the estimation of the unknown parameters B and o°.
We have a sample (y, X) produced by the CR model. How shall we
process the sample data to obtain parameter estimates? The proposal is
to use ihe sample LP, that is, to run the LS linear regression of y on X.
Because rank(X) = k, the normal equations of LS linear regression will
have a unique solution, namely

b = Ay, where A = Q7'X".

This & X 1 random vector b is our estimator of B.

What properties does the estimator have? The matrix A is constant
because it is a function of X alone. Hence b is a linear function of the
random vector y, and R2 of Section 15.1 applies. Recalling that AX =
I and that AA’ = Q_', we calculate

E(b) = AE(y) =AXB) =(@AXB=1Ip =8,
Vib) = AV(y)A' = AZA'= A(6°DA’ = 0’AA’ = 0°Q"".

So the LS coefficient vector b is an unbiased estimator of the parameter
vector B, with E(bj) =B, forj=1,..., k And the variances and
covariances of the k random variables in b are given by the appropriate

elements of the k X k matrix ¢°Q™":
Vig) = 0%¢",  Cllw, b) = 0%,

wherc ¢” denotes the element in the hth row and jth column of Q.

15.4. Gauss-Markov Theorem
We now show that the LS estimator has an optimality property.

GAUSS-MARKOV THEOREM. In the CR model, the LS coeffi-
cient vector b is the minimum variance linear unbiased estimator of the
parameter vector (.

Proof. Let b* = A*y, where A* is any k£ X n nonstochastic matrix.
Then b* is a linear function of Y, that is a linear estimator. Rule R2
gives
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E(M*) = A*E(y) = A*XB,
V(b*) = A*V(y)A*' = o A*A*". -
i *X = j * = A + D, where
Clearly b* will be unbiased for B iff A*X = 1. Write A*=A
A = Q7'X’ and D = A* — A. Observe that

A*X = AX + DX = I + DX,
A*A* = (A + D)(A + D)’ = AA’ + DD’ + AD + DA

. : ' = O, that
So the unbiasedness condition A*X = I is equivalent to 11))'X= 0). So if
is, to DXQ™' = O, that is, to DA’ = O (and hence to A '

b* is a linear unbiased estimator of B, then

V(b*) = g*(AA’ + DD') = V(b) + ¢°DD". .
The matrix DD’ is nonnegative definite and the scalar o?is Pgsxtl\‘;ea,listo
a?DD' is nonnegative definite. ConSequ?ndy’ Vb®) = V(l?)’ “;Ift b: Cl-_ b iZ
iff DD’ = O, that is, iff D = O, that s, iff A* = A, that s, 1

every sample. ®

Some explanations are in order: ' = vector
* The matrix DD’ is nonnegative definite because for any kX

ic form h'DD’h = (D’'h)'(D'h) = v'v = 0. . B
h,:}llt? g‘u:::ia:l;re random vectors, we say that V(t*) = V(¢) iff V(t¥)

t) is nonnegative definite. ' ) -
V((;bserve thi implications of the nonnegative defimteness t(;lfe X(En)ear
V(b). Element by element, b is preferable to b*, anyno T near
unbiased estimator of B, because its elements h,ave sma —erhYB ances
But also consider a linear combination of the (3; :, say,:))*—’rher,1 e
h is a constant k X 1 vector. Let ¢ = h'b and le't t =* h V h=0 %
and t* are unbiased for 6, but V(t*) — V.(t) = h. [V(b*) -f 1@) ar;or;lbi—
b is also preferable to b* for constructing esumators ol lne

nations.

15.5. Estimation of ¢ and V(b)

For estimation of the parameter o?, we dra\«f (3n the LS .resid;\:;\é \:13;::
e = My. The matrix M is constant because 1t is a function o ol R2.
. i i i f the random vector y,

Hence e = My is a linear function o he " ;e
applies. Recalling that MX = O and MM’ = MM = M, we ca
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E(e) = ME(y) =MXB) = MX)B =O0B =0,
Vie) = MV(y)M' = M(c’I)M’ = oMM’ = ¢®M.

Thus, considered as random variables, the residuals ey, ..., e, have
zero expectations, generally different variances, and nonzero covari-
ances. Now calculate the expectation of the random variable e'e, the
sum of squared residuals. Apply R4, with e playing the role of y:

E(e'e) = tu{V(e)] + [E(e)]'[E(e)] = tr(c°M) + 0’0 = 2 tr(M).
But N = XA and AX =1, so
tr(N) = tr(XA) = tr(AX) = tr(L,) = k.
Hence for M = I — N, we have
trM) = tr(I — N) = tr(I,) — tr(N) = n — k.
So
E(e'e) = o*(n - k).
Defining the adjusted mean squared residual,
6% = e'e/(n — k),

we have E(6%) = E(e'e)/(n — k) = ¢® So 62 is an unbiased estimator
of 0%, .
Finally, we estimate the variance matrix V(b) = a’Q7, by

Vb) = 62Q7".

Because E(6%) = o2 and Q_I is constant, it follows that
EV(b)] = 0°Q™" = v(b),

so that V(b) is an unbiased estimator of V(b). In particular,
&5, = 6%¢¥

is an unbiased estimator of V(b)) = 0‘?. = 0'2 jj. T'he square root of the
7 /] q
estimated variance,

&bj = quﬂ,

sexrves as the standard error of bj.
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168 15 Classical Regression

Exercises

15.1 Suppose that the random vector x has E(x) = p, V(x) = %, and
thaty = g + Hx, where

1 2 1 2
2 1 2 1
(3, =-(i ) (). me( 2.
3 2 1 4
Calculate E(y), V(y), E(yy"), E(y'y), C(y, %), and C(x, y).

15.2 Suppose the CR model applies with n = 40, o® = 4, and

~ _ [40 10 _ (3
S ]
Let b be the LS coefficient vector and ¢ = b'b. Find E({).
15.3 The CR model applies with ® = 2, and
~_ [% 2 (3
xx=(5 ). 8-(3)
A sample is drawn and the LS coefficients ; and b, are calculated.

(a) Guess, as best you can, the value of by. Explain.

(b) Now you are told that b, = 4. Guess, as best you can, the value

of by. Explain.

15.4 The CR model applies along with the usual notation. For each
of the following statements, indicate whether it is true or false, and

justify your answer.

(a) The random variable ¢ = b’b is an unbiased estimator of the

parameter 6 = B'B.
(b) Since § = Nyj, it follows that y = N7'y.

(c) Since E(§) = E(y), it follows that the sum of the residuals is zero.
(d) If b, and b, are the first two elements of b, t; = b, + by, and t; =

bl - b2, then V(tl) = V(t2).

Exercises ' 169

15.5 Show that the LS coefficients b = A
: = Ay are uncorrelated wi
residuals e = My. Hint: See R6, Section 15.1. ed with the

. 15.6 Suppose t.hat the CR model applies to the data of Exercise 14.1.
€port your estimates of the B; parameters, with standard errors in
parentheses beneath the coefficient estimates. Also report 62




16  Classical Regression:
Interpretation and Applcation
16.1. Interpretation of the Classical Regression Model
It is instructive to compare our specification of ;he' classic.al gegressmn
model to the more customary one. Our CR model is specified as
(16.1) E(y) = XB,
(16.2) V(y) = ¢’L
16.3) X nonstochastic,
(16.4) rank(X) = k. | .
Judge et al. (1988, pp. 178—183) specify a “General Linear Statistica
Model” as follows (notation has been slightly changed):
(16.1%) y=XB + €, | .
(16.2%) X is a known nonstochastic matrix with linearly independent
columns,
(16.3%) E(e) = 0,
(16.4%) E(ee’) = o°L -
The two models are equivalent. Judge etal.’s € is sx.mply thcet(izi:ﬁ' :inc=e
i ts expe
vector, the deviation of the random vector y from its exp -

XB. In that style, for a scalar random variable y 2wu_h Ez(y% h'-;e 2ne

V(y.) = ¢?, one might write y = p. + €, E(ﬁ) =0,E(€)=0".

serious objection to doing so, except that. it ten ‘
i ing it as mer

a life of its own, rather than treating . :

random variable from its expected value, Doing so may make one

ly the deviation of a
hink

ds to give the disturbance °

I
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of p as the “true value” of y and of € as an “error” or “mistake.” For
example, Judge et al. (1988, p. 179) say that the disturbance € “is a
random vector representing the unpredictable or uncontrollable errors
associated with the outcome of the experiment,” and Johnston (1984,
p- 169) says that “if the theorist has done a good job in specifying all
the significant explanatory variables to be included in X, it is reasonable
to assume that both positive and negative discrepancies from the
expected value will occur and that, on balance, they will average out at
zero.” Such language may overdramatize the primitive concept of the
difference between the observed and the expected values of a random
variable. In any event, we will want to distinguish between the disturbance
vector € = y — p, which is unobserved, and the residual vector e =
y — ¥, which is observed.

In what situation would the CR model be Justified? Suppose that
there is a multivariate population for the random vector (hxe ...,
%), with pdf or pmf f(y,xy, . . ., x,). Expectations, variances, and
covariances are defined in the usual manner:

E(}’) = p'_p V()’) = 03: C(xh’ x]) = Ohji C(x]; )’) = O-jy;

and so forth. Suppose further that the conditional expectation function
of y given the x’s is linear,

E(ylxo, ..., %) = By + Poxo + -+« + B,
and that the conditional variance function of y given the x’s is constant,
Viylx, . . .
say. We write these compactly as
(16.5)  E(y|x) = x',

where x = (x,,

2
’xk)=0-a

V(y|x) = o?,

<o x) withx, = 1,and B = By, ..., By

As for sampling schemes, the most natural one to consider would be:

Random Sampling from the Multivariate Population. Here n independent
drawings, (y,, x}), . . ., (9> X,,), are made, giving the observed sample
data (y, X). In this scheme, the rows of the observed data matrix, namely
the (y;, x;), are independent and identically distributed across i. So from
Eq. (16.5), it follows that E(y]|x;) = x/B and V(y:|x;) = ¢°. But also
E(y) = , for all 4, V(y;) = O'f for all 7, and the X matrix is random. So
this sampling scheme does not support the CR model, in which the
expectations of the y; differ and the X matrix is not random.
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172 16 CR: Interpretation and Application

Instead of random sampling, we will rely on:

Stratified Sampling from the M ultivariate Population. Here n values of the
random vector x are specified. These values, the x; ¢ = 1, ..., n),
define n subpopulations, or strata. In the ith subpopulation, or stratum,
the pdf or pmf of the dependent variable is g(y|x,), with E(y[x,) =
x!B = w,;, say, and Viy|x;) = o?. A random drawing is made from each
is drawn from subpopulation 1, y, is drawn
The successive drawings are indepen-
ntically distributed;

subpopulation. That is, y,
from subpopulation 2, and so on.
dent. In this scheme, the sampled y's are not ide

e drawn from different subpopulations. The list of n selected x;

they ar
so the expectations of the

vectors is maintained in repeated sampling,
successive y's will depend only on z. We can then write E(y;) instead of

E(y:|x,), and similarly we can write V(y;) instead of V(y:|x;). There
is no need for all the x;’s to differ: the relevant requirement is that
rank(X) = k, so we need k linearly independent (in the matrix-algebra
sense) x;’s. As discussed in Section 13.5, stratified sampling does not
require that the researcher control the x values in the sense of imposing
them on the subjects.

Under stratified sampling, it does not make sense to use the sample

to estimate the population means and variances of the x’s and y. The
sample on x is not randomly drawn from the population joint distri-
bution of x, and consequently the sample on y is not randomly drawn
from the population marginal distribution of y. Still, as in the bivariate
case (Section 13.5), while stratification on x does induce a new marginal
distribution for x and y, it preserves the conditional probability distri-
butions of y given x. That suffices when we are concerned with the
conditional expectation of y given x.

This stratified sampling scheme, also known as the nonstochastic
explanatory variable scheme, will support the CR model. We adopt it
now in order to simplify the theory. In Chapter 25 we will see how the
conclusions carry over to the more natural scheme of random sampling.

Setting aside the sampling aspects, it is useful to compare this discus-
sion of the underlying assumptions of the CR model with that in other
textbooks. Johnston (1984, p. 169) seems to say that for the CR model
to be correct, the theorist must have “done a good job in specifying all
the significant explanatory variables.” Judge et al. (1988, p. 186) say
that “it is assumed that the X matrix contains the correct set of explan-

atory variables. In real-world situations we seldom, if ever, know the
correct set of explanatory variables, and, consequently, certain relevant
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variabl i
yarab ee; ”rr;iay be excluded or certain extraneous variables may be
lude iﬂ e;e the correct set of explanatory variables” seems to mean
aoles that “could have or act i
ually determined th
we have observed” (ibid., p. 178). ¢ oucomes that
Such requi i
| Such tf:qu;rements are very stringent, and have a causal flavor that
ot pd_xtlo the explicit specification of the CR model. An alternativ
sition 1s less stringent and is fi ‘ )
ree of causal la ing i
position &+ . . nguage. Nothing in the
CR ma ;it;l itself r.equlrl;rs an exhaustive list of the explanatory vagriables
ssumption about the directi i ’
T on of causality. We have in mij
nor Pt about t} ! ! y. We have in mind
fu_]n t.t pr’obablhty distribution, in which any conditional expectation
cti i i
und on 1is conceivably of interest. For example, suppose that th
0 . - ’ e
rance ;n G\{ector (.?, X9, x3) has a trivariate probability distribution. On the
one b r}l1 : ,bwe. might be .mterested in E(y|x,, x5), but on the oth‘er hand
poSSiblge ! et 1nltlerefstehd in E(y[x,) or, for that matter, in E(xy|xs, y). It is
at all of those CEF’s are lin the
ear, and that n f i
- ] one of them is
may be true that causal relations are the most interesting ones
’

16.2. Estimation of Linear Functions of

In the CR model we deal wi
with an n X 1 rand
o : om vector y. In
[}1:: C; v:;cct)c();E Iwou]c? lilé.ive }:‘5 (y) = pand V(y) = 3. One thirzlg thatg f;l:l::sl
special 1s the assumption that p = i
ha : r = X, that is, p, = x’
Then unknown p,’s may well be distinct, but all of them ar o &B.
In terms of only £ unknown B’s © expressible
I i '
. : ;1(1;: SRNmot_iel: we estimate 3 by b, and thus estimate p=XBb
Foy = s 1}; —h ¥, rather than by y itself. Now E(¥) = p, and alsc):
A ,estim aot:) ' th(; ﬁtt‘e:};value vector and the observed vector are
s ot p. Why is it preferable t y?
as follows. Because V(y) = ¢®I and I:;/()") = 0'2N0 :zseehya;v?n arswer s

V(y) = V($) = o0 - N) = oM.

T};;i?}llaizlsx é\i :oM’M 1s nonnegative definite, so Viy) = V(¥).

o X;bpz A =a stngle ;lemerlxt of p, say p.;: the preferred estimator

i estim;tor rils,y, Y li:’re n/ denote's the ith row of N. A simpler

e ¥ = hjy, where h; is the n X 1 vector with a 1 in
nd zeroes elsewhere. Observe that fi; is a linear function of
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all n of the y’s, while y; is a function of only one of them. Evidently in

the CR model it is desirable to combine information from all the obser-
ctation of a single one. Such a

vations in order to estimate the expe
preference is clear in random sampling from a univariate population,

where all the observations have the same expectation. In the CR model,

the preference persists even though the expectations are not the same.
The reason is that the expectations are linked together, being functions

of the same k B;’s.

Now, pi = xPisa special case
general case is 6 = h'g where his a nonrandom k X 1 ve
special cases are of interest. For example, takeh = (0,0,1,0,..., 0y',
then 6 = Bs; or take h = ,1,-1,0,..., 0)’, then 8 = Bs — Bs. As
indicated in Section 15.4, the preferred estimator of such a 8 in the CR
model is ¢ = h'b. We elaborate on that point here.

By linear function rules, E(f) = h'E(b) = h'S = 6, so that ¢ is an
unbiased estimator of 6. Further, V() = h'V(b)h = 0'2h’Q_lh. We can
express ¢ as a linear function of y: ¢t = h'b = h'Ay = w'y, where w =
A'his n X 1 and nonstochastic. Consider all linear functions of y that

might be used to estimate 9: t* = w*'y, where w* is 2 nonstochastic

n X 1 vector. We have

of a linear combination of the B’s. The
ctor. Other

E@x) = w¥'p = w¥XB, V() = wHIw* = oTw* w¥,

so £* is unbiased iff w*'X = h’. In that event, we can write
hQ 'h = w¥XQ 'X'w¥ = wH'Nw¥,

and thus write

V() = 6®h'Q'h = g”w*'Nw*.

Observe that
V) — Vi) = a®w* (I — N)w* = 2w Mw* = 0,

Thus the natural estimator of 6 =

because M is nonnegative definite.
E in the CR model, where “linear”

h'@, namely ¢ = h'b, is in fact MVLU
means linear in y.
In practice, we will want to give some indication of the reliability of

our estimate of 0. To estimate V(t), replace a® by 42. The resulting

standard error fort = h'bis &, = ¢ (h'Q7'h).
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To recapitul i
ate:
o e ;)C tor ;1 il: CR.model, whether our interest is in estimating
. , imating one of its el
B, e . .
a linear combination 0 of its el e, or i e
c s elements, the preferred i
use LS linear regression. procedure s to

1 ode P 9

In the CR mod ;
el, to estimate th
. e =
conclusion was to use §; = parameter p; = E(y;) =
13

estimator are

’
e . x;B, our
ib. The expectation and variance of this

E@) = V($) = o*x/Q7'x; = o’n,,
where n; i 1 i .
n; is the ith diagonal element of N. Now suppose that
we are

interested in estimating a point on the CEF say W,
> 0

= ’ .
some k X | vector, xoB, where x, is

bl The para?:;::cessa‘nly one of the points at which we have

o dran pameter Ko is the expectation of y,, where Yo is

e gb. m the subpopulation defined by x = x vause

ol 2 linear o’m ination of the elements of B, the prefe ?
S fbg = x¢b, which has expectation and varian}c):e

Because
rred estimator

E(jig) = -
(o) = o, Vl(fig) = 0*x5Q " ',

Tl; ::;;?:‘iard error for this estimator is c}\/m

1 . . . *
- pred(i)cr;’tire forlecasnfng, 1s a distinct problem. "Ighere the objecti

) value of y,, a single rand : ctive
populatio - gle random drawing fro
P~op= xéB.nT(:neeﬁne(fj-b Yy X = Xo. If we knew B, our Prec%ictio:ln \;(})llell;ul?_
Eleg) = 0 and prediction ezrror would be €, = y, — po, with ex be
B, but we havVeal‘lance E(eg) = V(yo) = o°. In practice, we do 1?;: tl?rt:on
calculated b Thea ns:tmplf fro‘;n the CR model, from which we h:v:
. . : ural predictor will be g, = x!
dictor is used, the prediction error will be % lio 9 :K o,jl:‘ ‘xﬁﬁn that pre-
0 0 1

E(u) = E(y,) = E(fio) = 0,
V(u)

V(90) + Viiko) = 2C(30, flo) = 0* + 0°x{Q 'x
0
= o*(1 + x;Q7"xy),
taking th i
g the covariance to be zero on the understanding that the drawi
rawing

on y, is indepen
A (}j) thclent (?f the sample observations y. This predictor is
variance of the prediction error has two additive

Y OO00000I00GDO00D30.
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- de
onents: the variance of the prediction error that would be ma

iance of the estimator of po. The
f the estimate of

comp:
were o known and used, and the var e
«srandard error of forecast,” which is the square ro0

V(u), is given by 6 V(1 + x,Q ™ 'Xo).

16.4. Measuring Goodness of Fit

jective is to
In empirical research that relies on the CR m;:de:,h;trllet ;)Eﬁc:;:/:data”
estimate the population parameter vector B, rat er O e e i
or to “explain the variation in th‘e dependent varia et..mates rtheless 1
is customary to report, along with the parameter esti

standard errors, a measure of goodness of fit. least souares. Given
To develop the measure, return to the algebra of least sq .

the LS linear regression of
data ,X=(x,...,x,,),wehaverun i
chn ;1( o}l,)taining ti1e coefficient vector b, the ﬁtted-valuiveito; z; 'z:n(=1
Zhe res;dual vector e. Observe that y = § + e, and that §'e = (

b'(X'e) = b’0 = 0, by the FOC’s. So

yy=@G+eF+e=3y+ee
which algebraically is
a 2
(166) Sy =35+ X6

. . £
is i . i osition) of sum of squares: the sum 0
This is an analysis (that is, decomp ) s]; s of the fited

lues is equal to t
squares of observed va e o
of squares of the residuals.
vall'l‘le:tlﬁ)gs ;hye _S—u;‘ 5 + qZ-e» so the mean of the observed values equals
u ’ iYi T iJi iCis

the mean of the fitted values plus the mean of the residuals:
j=3+e
Now if z = 0, then § =3, so nj? = ny°, which subtracted from the
ow = 0, ,
decomposition in Eq. (16.6) gives

67 G- =2@E-»+Zd

L m
This is an analysis of variation, where variation 1s deﬁge(ci{ tl(: be 1ihe suan
i t the me
iati the sample mean. Provided tha
of squared deviations about .
resigual is zero, the variation of the observed values 15. eqlllal to the
variation of the fitted values plus the variation of the residuals.

16.4 Goodness of Fit 177

Divide Eq. (16.7) through by Z(y; — 7 to get
2 (- >
(168) R*=gG——v=1-——.
20 -° N

The measure R?, which will lie between zero and unity, is called the
coefficient of determination, or squared multiple correlation coefficient. It
measures, one says, the proportion of the variation of y that is accounted
for (linearly) by variation in the x;s; note that the fitted value §; is an
exact linear function of the x;'s. In this sense, R? measures the goodness
of fit of the regression.

Consider an extreme case:

RP=1 & Ze=0 © ee=0 & e=0 & y = Xb,

in which case the observed y's fall on an exact linear function of the x’s,

The fitis perfect; all of the variation in y is accounted for by the variation
in the x’s. At the other extreme:

RE=0 & Z(5-5°=0 & j=5 foralli

in which case the best-fitting line is horizontal, and none of the variation
in y is accounted for by variation in the x’s.

From our perspective, R has a very modest role in regression analysis,
being a measure of the goodness of fit of a sample LS linear regression
in a body of data. Nothing in the CR model requires that R” be high.
Hence a high R* is not evidence in favor of the model, and a low R? is
not evidence against it. Nevertheless, in empirical research reports, one
often reads statements to the effect that “I have a high R?, so my theory
is good,” or “My R? is higher than yours, so my theory is better than
yours.”

In fact the most important thing about R? is that it is not important
in the CR model. The CR model is concerned with parameters in a
population, not with goodness of fit in the sample. In Section 6.6 we
did introduce the population coefficient of determination p?, as a mea-
sure of strength of a relation in the population. But that measure will
not be invariant when we sample selectively, as in the CR model, because
it depends upon the marginal distribution of the explanatory variables.
If one insists on a measure of predictive success (or rather failure), then
6* might suffice: after all, the parameter o is the expected squared
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forecast error that would result if the population CEF were used as the
predictor. Alternatively, the squared standard error of forecast (Section
16.3) at relevant values of x may be informative.

Some further remarks on the coefficient of determination follow.

« One should not calculate R when z # 0, for then the equivalence
of the two versions of R? in Eq. (16.8) breaks down, and neither of them
is bounded between 0 and 1. What guarantees that z = 0? The only
guarantee can come from the FOC's X'e = 0. It is customary to allow
for an intercept in the regression, that is, to have, as one of the columns
of X, then X 1 vectors = (1,1,...,1). We refer to this s as the
summer vector, because multiplying s’ into any vector will sum up the
elements in the latter. If s is one of the columns in X, then s'e = 0is
one of the FOC’s, so ¢ = 0. The same conclusion follows if there is a
linear combination of the columns of X that equals the summer vector.
Also if y and X,, . . . , X, all have zero column means in the sample,
then z = 0. But otherwise a zero mean residual is sheer coincidence.

* We can always find an X that makes R? = 1: take any n linearly
independent n X 1 vectors to form the X matrix. Because such a set of
vectors forms a basis for n-space, any n X 1 vector y will be expressible
as an exact linear combination of the columns of that X. But of course
“fitting the data” is not a proper objective of research using the CR
model.

« The fact that R? tends to increase as additional explanatory variables
are included leads some researchers to report an adjusted (or “cor-

rected”) coefficient of determination, which discounts the fit when kis large

relative to n. This measure, referred to as R* (read as “R bar squared”),

is defined via

1-R*=@m— (1 - R¥/(n - k),

which inflates the unexplained proportion and hence deflates the
explained proportion. There is no strong argument for using this par-
ticular adjustment: for example, (1 — k/n)R? would have a similar effect.
It may well be preferable to report R?, n, and k, and let readers decide

how to allow for n and k.

* The adjusted coefficient of determination may be written explicitly

as

(16.9) R?=1- [2 e?/(fz - k)]/[Z (yi — »¥ln — 1)]-

i
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-It is sometimes said that in the CR model, the numerator Sell(n ~ k)
is an unbiased estimator of the disturbance variance, andl lthat the
denominator 2 (y; — 5)2/(11 — 1) is an unbiased estimator of the variance
of y. The first claim is correct, as we know. But the second claim is not
co.rrect: in the CR model the variance of the disturbance is the same
thing as the common variance of the y,, namely ¢°.

Exercises

16.1 Continuing the numerical example of Exercises 14.1 and 15.6
assume that the CR model applies. Let 8 = B, + B,. Report your estimate
of 0, along with its standard error.

16.2 The CR model applies to E(y) = XB with ¢® = 1. Here X is an
n X 2 matrix with

-2 3/

You are offered the choice of two jobs: estimate 8, + Bo, or estimate
B, — Bz: You will be paid the dollar amount 10 — (¢ — 0)%, where ¢ is
your estimate and 8 is the parameter combination that you have chosen
to estimate. To maximize your expected pay, which job should you take?
What pay will you expect to receive? . .

1_6.3 In a regression analysis of the relation between earnings and
various personal characteristics, a researcher includes these explanatory
variables along with six others:

% = { 1 if female _J1 if male
0 if male 8 0 if female

but does not include a constant term.

(a) Does tl'le sum of residuals from her LS regression equal zero?
(b) Why did she not also include a constant term?

lfi.4 Consider the customary situation, where the regression includes
an mtercept, and the first column of X is x;, = s, the summer vector
Let M, =T — x,(x{x,) 'x}. .

CCf‘C»OCCCC‘OOOOOOOOQOOOOOOOOOQODOOOOO‘K’L‘)DOQ"}DOW);
24
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(@) Show that M,y is the vector of residuals from a regression of y
on the summer vector alone.

(b) Show that y'M,y = S(y; — )"

(c) Further suppose that the CR model applies to E(y) = XB. Apply
R5 (Section 15.1) to show that

E[S0.- 57| = @ - 1o” + BXEXBn,

where B, is the (¢ — 1) X 1 subvector that remains when the first
element of B is deleted, X, is the n X (k¢ — 1) submatrix that
remains when the first column of X is deleted, and X§ = M;X,.

(d) Evaluate the claim that in Eq. (16.9), the denominator of the
adjusted coefficient of determination is an unbiased estimator of
the variance of the dependent variable.

16.5 GAUSS is a mathematical and statistical programming language,
produced by Aptech Systems, Inc., Kent, Washington. We will rely on
it frequently in the remainder of this book, presuming that it is installed
on a computer available to you. Appendix B provides some introductory
information about GAUSS; other information will be provided as hints
in subsequent exercises. Version 1.49B of GAUSS is used here; modi-
fication to other versions should be straightforward.

Here is a GAUSS program to re-do Exercise 14.1. Enter it, run it,
and print out the program file and the output file.

/* ASG1605 */ output file = ASG1605.0UT reset; format 8,4;
letx1=11111;1letx2=24352;lety=14178163;

X = x17x2; Q = X'X; dq = det(Q); QI = invpd(Q);
A=QI*X';N=X*A; I =eye(5); M=1—-N;

trn = sumc(diag(N)); trm = sumc(diag(M)); b = A*y; yh = N*y; e = M*y;

"Q = " Q; ?;"detQ = " dg; ?;
"Qinverse = " QI; ?;

"N = " N; 3" M = 7 M; ?;
"r(N) = " trn; "tr(M) = " trm; ?;
"= b’; ?;

"vhat' =" yh'; 2;" e =" e'; end;

16.6 The algorithm used in Exercise 16.5 is not an efficient way to
run LS linear regressions. Here is a more sensible way, which may serve
as a starting point for your own future regression programs. The pro-
gram also calculates the sum of squared residuals. Enter the program,
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personalizing it by completing names for the program and output files
and also entering your name. Run and print. ’

/% —1606 */ output file = —1606.0UT reset; format 8,4;
"Student name 3N
leex1=11111; letx2=24352;lety= 14 17 8 16 3;

3(’-_— X1_X2;"Q=' X'X; QI = invpd(Q); b = QI*X'y; sse = y'y — b'X'y;
b = b I sse = " sse; end;
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17.1. Regression Matrices

In this chapter we explore a variety of algebraic and interpretive results
that may be relevant for empirical applications of multiple regression.
Associated with any n X & full-column-rank matrix X are the matrices
Q=XX, A=Q'X, N=XA, M=I-N
Multiplied into any n X 1 vector, the matrices A, N, M will produce
respectively the coefficients, fitted values, and residuals from the LS
linear regression of that vector upon X. With that in mind, we can
interpret the results
MX = O.

AX=I, NX=X,

Suppose we regress the jth column of X, namely x;, upon all the columns
of X (including the jth). Since LS linear regression chooses the linear
combination of the columns of X that comes closest to x;, it is obvious
that it will produce 1 as the coefficient on the jth explanatory variable,
and 0’s as the coefficients on all the other explanatory variables. It is
equally obvious that the fit will be perfect: the fitted values will equal
the observed values and the residuals will all be zero. That is,

Ax; = d;, Nx; = x;, Mx; = 0,
where d; is the jth column of the & X k identity matrix. Assembling those
unusual regressions forj =1, ..., &k, we have indeed

AX =1, MX = O.

NX =X,
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17.2. Short and Long Regression Algebra

In eml?irical work, it is common to run a series of regressions, with
successively shorter (or longer) lists of explanatory variables. We develop
some algebra that is relevant to this practice.

Given as data the n X 1 vector y and the n X k matrix X = (x,, . . .
x,:), whose rank is k, we regress y on X. That is, we choose ¢ to minimize’
u'u, where u = y — Xc, producing the coefficient and residual vectors

b = Ay, e = My,
where

A=XX)'X', M=1I- XA,
and

AX =1, MX = O, X'e = 0.

Partition X as X = (X,, X,), where X, is n X &, and X, is n X k.
Correspondingly, partition b as (b}, b)), where b, is k; X 1 and b, is
ky X 1. As a result of the fit, we have

b,

(17.1) y=Xb + e = (X,,X,) (b
2

>+e=X,bl+X2b2+e.

Because X'e = 0, we know that Xje = 0 and Xie = 0.
Suppose that we shorten the list of explanatory variables and regress
y on only the first k; columns of X. Regressing y on X, that is, choosing
the &k, X 1 vector ¢, to minimize u*'u* where u* = y — X;¢,, is a full-
rank problem. The resulting coefficient vector and residual vector are
bf = Ay, e* = M)y,
where
A = (XiX)7'X], M =1-XA,

and of course

AX, =1, MX, =0, e*=0.
As a result of this fit, we have

(17.2)  y = X,b} + e*.
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How are b} and e* related to b, and e? That is, how is the short
regression (Eq. 17.2) related to the long regression (Eq. 17.1)? Here “short”
and “long” refer to the length of the list of explanatory variables.

To obtain the relations, consider the auxiliary regressions. Regress each
column of X, in turn upon X; to obtain a set of auxiliary regressions:

xj=xlfj+xj* (j=k1+1,...,k),

where f; = A;x; and X} = M,x;. Assemble all these as

(17.3) X, = X,F + X§.

Here

F= (fkl“'l’ . s ey fk) = A]Xg

is a k; X ko matrix, each column of which contains the coefficients from
the regression of a column of X, upon (all the columns of) X,, and

X5 =i xF = M X,

is an n X k, matrix, each column of which contains the residuals from
the regression of a column of X, upon (all the columns of) X,. Because
X has full column rank, so does X¥: see Exercise 17.3.

Use Eg. (17.1) to calculate

(17.4) bf = A,y = A(X,b, + Xoby + €) = b, + Fb,,

because A,e = (X;X;) 'X}e and Xje = 0. Wf\at Eq. (17.4) says is that
the coefficients on X, in the short regression are a mixture of the
coefficients on X, and on X, in the long regression, with the auxiliary
regression coefficients serving as weights in that mixture.

Use Eq. (17.1) again to calculate

(17-5) et = Mly = M](lel + X2b2 + e) = ngg + e,

because Mye = (I — X;A))e and Ae = 0. What Eq. (17.5) says is that

the residuals from the short regression equal the residuals from the

long regression plus a mixture of the elements of Xj, with the elements

of b, serving as weights in the mixture.
Use Eq. (17.5) along with the facts that X§' = X;M,, Mje = e, and

Xie = 0 to calculate

(17.6) e*'e* = e'e + byX§'X3b,.

17.3  Residual Regression 185

feczguritsu?n (17.6) Zays that the sum of squared residuals from the short
sion exceeds the sum of squar i 1
. ed residuals from the 1
] ' ong regres-

sion by'the honnegative quantity v'v, where v = X3b,. So shoxjgtenign a
egr i ‘
rrg :ssmln_ f(‘:fannot improve the fit. The two sums of squared residugals
Z) ifgza _10 :; = 0, that is, iff X§b, = 0, that is (because rank(X$) =
\ ﬁe, o e =0. s.xmp-lcr argument leads to the same conclusion: runnin
the ¥ rt regression is equivalent to running the long regression subjecgt

. 'e constraint that the coefficients on X, be zero; a constrained
mmimum cannot be less than a i ’

n unconstrained one, and ini
_ : , the

are equal iff the constraint is not binding s

We hav i .
. ave emphasized the contrast between the short and long re
sions, but there are exceptional cases: 8 BTy

(I) If b, = 0, then b} = b, e* = ¢, and e*'e* = e'e

(2) Ilf )%XQ = O (each variable in X, is orthogonal, in the matrix-
a ge ra sense, to every variable in X,), then F = A,X, = O and
X3 = X5, sob¥ = b, although e* # e. o a“

17.3. Residual Regression

When i

regren Swiv:nrz? tl;en l())(ng 1regressmn of y on .X, and X, rather than a short
oo arc s ey;ﬁn t; a o;lfe, to get cgefﬁcxents on X,, it is natural to say
Beming o j‘fe :3 e fect 3f X2“ after controlling for X,,” or “after
ot ¢ 1 cts o X,, or “after holding X, constant.” We can

p some a gebra that gives content to that language
Co.n51der the residual regression. Regress y on X§ = I\E X

matrlx. of residuals. from the auxiliary regressiorzl f o
coefficient vector will be O T on X The

c; = Ay,
where

Af = XEXH) XY = (X§'X9) 7'M,
Now

Mly = Ml(le] + X2b2 + e) —_ Xg:b2 + e

XiXf = XiM)X, = X;M{M,X, = X§'X},
Xoe = 0.
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So
co = Ay = by,

which is the &, X 1 lower subvector of b, the coefficient vector in the
long regression of y on X. To restate the result, the b, subvector of b

is obtainable by a two-step procedure:

(i) Regress X, on X, to get the residuals X¥,
(ii) Regress y on X§¥ to get the coefficients b,.

Because A¥M, = Aj, it is also clear that we obtain the same by, by a
double residual regression, regressing y* = M,y on X%. With b, in hand,
we can complete the calculation of the long-regression coefficient vector
b, by regressing y on X, alone, obtaining b* = Ay, and then recovering
b, as b, = bf — Fby, where F = AX,.

The residual regression result, namely b,
language used above. For ¢, indeed relates y to X, “after controlling
for the effects of X,” in the sense that only X§—the component of X,
that is not linearly related to X;—is used to account for y. For example,
in looking for the relation of earnings to experience in a regression that

also includes education, we are in effect using not experience, but only
the component of experience that is not linearly associated with edu-

= ¢y, gives content to the

cation.
The situation here is quite reminiscent of the distinction between

partial and total derivatives in calculus. Indeed bf = b, + Fb, has the
same pattern as dy/dx; = ayldx; + (dxo/dx ,){3y/dx5).

17.4. Applications of Residual Regression

The residual regression results are remarkably useful for theory and
practice.

Trend Removal. A popular specification for economic time series takes
the form E(y,) = 2}=,Bjx,j, where ¢ indexes the observations, x; = 1, xo =
t, and xg, . . . , X; are conventional explanatory variables. Here x, allows
for a linear trend in the expected value of the dependent variable. The

uld the trend term be included in the regression, or

question arises: sho
thout the

should the variables first be “detrended” and then used wi
trend terms included? In the first volume of Econometrica, Frisch and
Waugh (1933) concluded that it does not matter. The residual regression
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results =
result 1apply. Let.X, = (X, Xp) and X, = (x3, . . ., X;). The coefficients
on ! E.It}tle; set will be the same whether we include X, in the regr(-‘ssion
alor gxw*xtf 25 o}: alternatively first detrend X, (by calculating the resid
§ trom the regression of X ose
2 on X,) and then use onl
detrended explanatory variables. ythose
Seasonal Adj 1
patterzm;v :d]wtmeit. Some macroeconomic variables show a scasonal
- When tracking such a variable, it i o
U it is useful for som :
to “deseasonalize,” or “ just, st thin e
, seasonally adjust,” the variabl
e oasonalize,” or , ariable. Suppose that we
variable y, quarter by qu
' , arter, for m i
being the value fo - ’ ook o
r year ¢, quarter h. Suppose tha ing for
peing the . 1 . ppo t we are looking for a
ulsmess cycle pattern in this series, but we notice that first q&uart
values i i - T
values are 'tg/plcally low and third-quarter values are typically high. It
g sensible to deseasonalize before judging, say, whether the S'Lr-ies
is now i i , P
s now att ;1 cyclical peak. A conventional way to deseasonalize is to
e the ¥1> Yo Y35 3 ‘
clelate the se?sc?nal means, i, Js, Js, ¥4, say, and express each obser-
: a deviation from its seasonal mean: y% = y, — 3,. Thesc y*
- ! ) . S S
om rae s:ason}zllll)l/ adjusted series. (The grand mean j can be added bick
store the level of the series.) Th i i
-) The cyclical standing of the vari;

. : riable
m?lth?e more apparent in the y* series than in the y series.
Obserljasalculatlon can be performed by regression. We have n = 4z

. o
° ons on y, arranged by quarters within years. Define the f
seasonal dummy variables”: o

1i .
= {0 mhquar-ter 1 Xy = {1 in quarter 2
otherwise 0 otherwise
1 .
x5 = {0 mhquar'ter 3 X, = {l in quarter 4
otherwise 0 otherwise

L =
Aet X; - (xl,‘xi,, X3, x'4). Then regress y on X, to get coefficients b* =
A dlj};,sted S :iselsduas y* =h M,y. These residuals form the season:a\lly
o - (Agan the grand mean can be added to restore the

To verify the assertion, ob in vi

. , observe that in view of the arran
;fle.da;a (seasons within years), X, = (I, I, . . ., I)’, where eizglzrf]'tt}?f
b o w5 L and Xl = 0 3. 0 5. 0 e
or i1s bY = (3, s, ¥s, 34)', and th i *

M}ly = {yu — 3}, as asserted. v ¢ residuals are y* =
e zrn:ar Re‘gresswn 1.uith Seasonal Data. Suppose that we are interested in

-Tegression relation between y and a set of explanatory variables X

s Xo.

|
|
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Ordinarily we would regress y on the summer vector § = {a,...,ny
and X, to get an intercept and a set of slopes. But if y and X, have
seasonal components in them, we might want to remove the seasonals
first. We have already done this for y. To deseasonalize X, regress X,
on the seasonal dummy variables X,, getting coefficients F = A, X, and
residuals X3 = M,X,. Then regress the seasonally-adjusted dependent
variable y* = M,y on the seasonally adjusted explanatory variables X§
to get the slopes c,. Residual regression theory tells us that

co = A¥y* = A}y = by,

which are the coefficients on X, in the long regression of y on (X, Xo).
Running the regression on seasonally adjusted data in effect allows for
parallel shifts in the relationship of y to X,—that is, separate intercepts
for each of the quarters. To recover those intercepts, use b, =

b} — Fb,.
Deviations from Means. In simple regression, where there is only one
explanatory variable along with the constant, §; = a + bx;, the LS slope

and intercept can be calculated as

b=[;m—»'cxy.-—y)]/[;(x,-—?cf], a=7- I

It is also true that
C[e-m)/[pe-s)

Deviations from the mean are residuals from regression on the summer
vector, so these well-known formulas are applications of residual regres-

sion theory.
Turn to multiple regression of y on X = (x,, X,), where x; is the

summer vector. The fitted regression is
¥ = x,b, + Xsby,

where b, is the intercept and b, is the slope vector. Here
M,=1I- 1;:1(1n:’1x,)_1x’1 =1 — (1/n) x,x}

is the idempotent matrix which, when multiplied into any column vector,
produces deviations from the column mean. So y* = M,y and X§ =
M, X, are the variables expressed as deviations from their respective
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means. Residual regression theory says that the slopes can be calculated
as .

by, = (X§'X$)7'X¥'y = (X§'X$) " IX$'y*,
and the intercept recovered as

by = b¥ — Fby, = 3 — Xsbo,
where

X = AX, = (x1%))7'x{X, = (I/m) XX,

is the
Is the rtzlw vector of means of the explanatory variables. Thus the
1ar device that expresses variables as deviations about their means

case.
/

/

/

17.5. Short and Residual Regressions in the Classical
Regression Model

We have0c0n51dered the short and residual regressions from an algebrai

perspective. We now reconsider them in a statistical context SE e
that Fhe CR model applies, so that E(y) = XB, V(y) = o1 X s,
chastic, rank(X) = £. Partition as follows: ’ e

o o (f).
2

where X, isn X k;, X, is n X ke, By is k, X 1, and By is ks X 1. We have
E(y) = X,B, + XoBs.

The long regression gives
y=Xb+e=X1b1+X2b2+e,

and we know that

“)=(3) mver-ot (3 2).

where the Q’s wi i
€ Q's with superscripts denote submatrices in the inverse

Short-Regression Coefficients. Consider the regression of y on X, alone, -

If th i
e CR model applies to E(y) = X,B, + X,B,, then in general E(y) #
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X,B,. Nevertheless we can evaluate the short regression results. The
coefficient vector is b¥ = Ay. Apply R2 (Section 15.1) to obtain

E(®}) = AE(y) = A(X,B: + Xﬂ-’_’z) =B, + FBo,
VbE) = A, V(y)A; = 0?A,A} = *(X{X) 7,

(17.7)

(17.8)
using A, X; = I, A/ X, = F,and A,A] = XX

From Egq. (17.7), we conclude that in general b¥ is a biased estimator
of B,, a result known as omitted-variable bias. The exceptional cases are:

(a) Irrelevant Omitted Variables. If By = 0, then the CR model does
apply to the short regression E(y) = X,B;. Here b¥ and b, differ in any
sample but have the same expectation.

(b) Orthogonal Explanatory Variables. 1f F = O, then b* and b, coincide
in every sample, even though the CR model does not apply to the short
regression.

From Eq. (17.8) it follows that V(b,) = V(b¥). Rewrite Eq. (17.4) as
b, = b¥ — Fb,. Now

C(b, by) = A, V(y)A}' = ¢’A,A¥ = O,
because M,X; = O implies AfA} = 0. Consequently,
(17.9) V(b,) = V(b¥) + FV(by)F'.

Because FV(b,)F’ is nonnegative definite, we have V(b;) = V(b}).
Observe that the variance matrix of b} does not depend on the true
value of B, although the expectation of b} does. Whether or not B, =
0, the short-regression coefficient estimator has smaller variance. This
suggests that in practice there may be a bias-variance trade-off between
short and long regressions when the target of interest is ,. Observe
also that the short-regression coefficient vector b is an unbiased esti-
mator of a certain mixture of parameters: E(b}) = B%, where Bt =B, +
FPB,. We return to these two observations in Chapter 24.
Short-Regression Residuals. Next, turn to the short-regression residuals,

e* = M,y. We have
E(e*) = M,E(y) = My(X,B; + XoBo) = XiB.,
V(e*) = M,V(yM} = o°M,,

using M;X;, = O, M X, = Xj, M,M, = M,. So in general the

short-regression residual vector has a nonzero expectation. Because

rank(X}) = k,, the only exceptional case is By = 0. For the sum of
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squared residuals, we have e*'e* = y'M i i
with M; taking the role of T: 77, and R (Bection 15.1) applies
E(e*'e*) = ur[M,V(y)] + E(y)'M,E(y).
- o2
But M, V(y) = o*M,, M,E(y) = X¥Bs, and tr(M,) = n — &,, so
%! — 2 ’ ’

E(e*'e*) = 0® tr(M)) + B;X3'XsP, = o%(n — k) + B2X3'X4B,.
And E(e'e) = o*(n — k), so

E(e*'e*) — E(e'e) = 0%k, + ByX5'X3B,.
On the right-hand side, the firs i i
( i t te i
& nonegtive. and b vors it =r(;1.1 1s positive and the second term
inc\:’e copclude that omission of explanatory variables leads to an
increase in the expected sum of squared residuals, even if B = 0. Th
1fncrease In_expectation should come as no surprise becausz we i(no;
erouI:l.I[Eq.‘ 271.)6) that e*’e”f - e'e = byX3'X%b, = 0 in every sample, with
quaiity if b, = 0. Omitting X, never reduces the sum of sql,lared

eSlduaIS, and almOSt y > g

N :Zisidual Regression. Finally, consider the residual regression of y on
3 = M;X,. The coefficient vector is ¢; = Afy = b,. Apply R2 to )l,ind

Eb;) = AZE(y) = = ASX,B; + XoB,) = B,

Vb)) = ASV(y)AS' = 0"A3A}. = o*(X¥'X) ™! = 0%(Q%)"!
using o
AZAY = (X§'X9) 7,
and defining

Qf: = X¥'Xf = XiM, X, = XoX, — X3X,(X)X,) ' X(X,.

But by is the lower &, x 1

o subvector of b, so V. i i
southeast (ky X k,) block of the matrix V(b) =(b02;(125jls?r§wen e
proved an algebraic result: e e have

SUB
deﬁnitl\iAnTI:I-X OF Il\{VFRSE THEOREM. Suppose that a positive
atrix Q and its inverse Q' are partitioned conformably as

=& &) - (3 &),

O
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where the diagonal blocks are square. Then Q¥ = Q)
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, where

Qfs = Qo2 — Q21(Q11)_1Q12~

Exercises

17.1 Using national time series data, I run the linear regression of y,
(the summer vector) and x, (disposable income),
ients, fitted values, and

aving) on the same two
In the data, of course,

(consumption) on X,
obtaining b;, §,, and e, as the vectors of coeffic

residuals. I also run the linear regression of y; (s
explanatory variables, obtaining by, §2, and e;.
consumption + saving = disposable income, 0 y; + Yo = Xp.

(a) Use the A, N, M matrices to show as concisely as possible that
b1+b2=((1)), ?1+§’2=X2, e1+e2=0.

(b) Show that the sum of squared residuals for the savings regression
is identical to the sum of squared residuals for the consumption

regression.
(¢) True or false? (Explain briefly.) The coefficients of determination,

the R?s, are the same for the two regressions.

17.2 Let Z = XT, where X is an n X k matrix with rank k, and T is a
k X k matrix with rank k. Let b and e be the LS coefficient and residual
vectors for regression of an n X 1 vector y on X. Show that regression
of y on Z gives coefficient vector ¢ = T~ 'b and residual vector e* = e.

17.3 Suppose that the n X k matrix X = (X,, X,) has full column
rank. Let X§ = M, X, be the n X ky matrix of residuals from the auxiliary
regression of X, on X;. Show that rank(X¥) = k. Hint: Use proof by

contradiction.

17.4 Table A.3 contains a cross-section data set on n = 100 family
heads from the 1963 Survey of Consumer Finances, as taken from Mirer

(1988, pp. 18-22). The variables are:

V1 = Identification number (1, . .., 100)
V2 = Family size
V3 = Education (years)
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V4 = Age (years)
V5 = Experience (years)
V6 = Months worked
V7 = Race (coded as 1 = white, 2 = black)
V8 ;{e=g1:,r;s(t():oded as 1 = northeast, 2 = northcentral, 3 = south,
V9 = Earnings ($1000)
V10 = Income ($1000)
V11 = Wealth ($1000)
V12 = Savings ($1000)

Experience is deﬁne:d as age — education — 5. We will use this data set
presumed to be available as an ASCII file labeled SCF, frequentl ’
Run these four linear earnings regressions: >

(@) yon x,, x,.

(b) y on xy, x5, x5, x,.

(©) yon xy, xo, x3, Xy, Xs.

(d) y on xy, x5, x5, x4, x5, Xg, Xy, Xg.

i—leielyi;bfarlillrsgs; X ‘= .1; Xo = ‘education; X3 = experience; x, = x§;
5 ack, if white; x; = 1 if northcentral, 0 otherwise; x, = 1 if
south, 0 otherwise; xg = 1 if west, 0 otherwise. Y :
For f:ach regression in turn, assume that the CR model holds. R
cc;effiqent estimates, their standard errors, the estimate of o -anflp(;lrt
R". Also report the means and standard deviations of all varia,bles u:eg

in (d).
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17.5 Comment on any aspect of the regression results in Exercise 17.4

that puzzles you.

17.6 Continuing Exercise 17.4, let X, = (X;, Xp, X3, Xq) and Xp =

(Xs, Xo, X7, Xg). Write and run a program to:
(a) Calculate the auxiliary regressions of X, on X, o.btaining 'Ll:l(i
coefficient matrix F = (X!X,)"'X|X, and the residual matrix
X =X, - X,F. . i
(b) Calculate the residual regression of y on X, obtaining the coet-

ficient vector cs. . . )
(c) Use those results, along with those found in Exercise 17.4, to

verify numerically the relations b¥ = b, + Fby and ¢; = bs.

18  Multivariate Normal Distribution

18.1. Introduction

For the classical regression model we now have considerable information
on the sampling distributions of the LS statistics b and e’e. That infor-
mation, which concerns expectations, variances, and covariances, suf-
fices to justify the use of certain sample statistics as estimates of the
population parameters, and to provide estimates of their precision as
well. We have seen why the sample LS coefficient b, serves as an estimate
of Bj, and why its standard error, (“r,,). = &\/F, serves as an estimate of
its standard deviation, VV(b;) = G, =0 g7

But we need more information to undertake further exact statistical
inference for the regression parameters, that is, to construct exact con-
fidence intervals and to test hypotheses at exact significance levels. Fol-
lowing the traditional practice, we will specialize the CR model to the
case where the y’s are normally distributed, and then deduce the exact
sampling distributions of the LS statistics. As a preliminary, in this
chapter we set aside the regression context in order to develop some
general theory on the multivariate normal distribution.

18.2. Multivariate Normality

Suppose that the joint pdf of the n X 1 random vector y is
f(y) — (217)—71./2 I E | - l/2e—w/2
where

w=(y — B’ Xy — ) is a scalar,
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j is an » X 1 parameter Vector,

3 is an n X n positive definite parameter matrix,
|Z]7Y2 = 1/Vdet(2).

Then we say that the distribution of y is multivariate
normal, with parameters p and 3, and write y ~ N(, %). s

Consider a couple of special cases. Ifn=1, the.n y =' % p, =N, X =
0% w = 22, with z = (y — w)/o. So f(y) is the familiar univariate normal

density f(y) = exp(—22/2)/ V(2mo?).
0'12) )
09

normal, or multi-

If n = 2, then

_{m _{%n
=) () ==

So
lzl = 0110922 — 0?2 = 0'%0%(1 - P2),
where
p= 0-12/(010-2)y U% = 0115 0'22’ = U9y,
and
1]0'2 ‘_p/(o'l(]'g) \)
-1 _ a2yl 1 )
2 =a-e (—P«’(O'lca) 1/0'§
Also

w= (2 + 2 — 2pm2)/(1 ~ p),

with z; = (31 — B)/o, 22 = (02 — o)/Ts. SO f(y1, yo) is the bivariate

normal density of Section 7.3. .
Returning to the general multivariate case, parti

y into the ny X 1 vector y, and the ny X 1 vector y,, and correspondingly
partition p and X:

' 3. 2 )
_ (¥ - 11 12)
y= (;';) ’ a (l-*';) ’ * (221 P

We can now state these generalizations of the properties shown for the

tion the n X 1 vector

bivariate normal in Section 7.4.

Ify ~ N(w, %), then:
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P1. The expectation vector and variance matrix are E(y) = p and
V(y) = X, thus justifying the symbols used for the parameters.

P2. The marginal distribution of y, is multinormal:

y1 ~ Ny, ).

P3. The conditional distribution of y, given y, is multinormal:

yoly: ~ N(p§, 2%5),

where
nE = E(ys]ly)) = @ + B'y,,
B = (211)—1212,
a=p, - By,
3%, = V(yalys) = Soo — B'E,,B.

Observe that the CEF vector is linear in y;, and that the conditional
variance matrix is constant across y,.

P4. Uncorrelatedness implies independence: If %, = O, then y,
and y, are independent random vectors.

Proof. 1If 3,5 = O, then B = O, so pf = @ = Wy, and ¥, = Zp,.
Consequently, y,|y, ~ N(pg, Zg,) for all y,. These conditional distri-
butions are all the same—they all coincide with the marginal distribution
Yo ~ N(po, Zp9)—so the vectors are stochastically independent. ®

Of course, the roles of y, and y, can be reversed throughout.
Consider a special case. Take the bivariate normal distribution, by
setting #, = ny = 1. Then P2 and P3 specialize to

o~ ‘N‘(p“l, 0'11)» }’2|y1 -~ N((X + Byl’ 02)’

where

R = o0y, a = e — By, o? = O9g — 620'11,

as in Section 7.4.
For a second special case, set n;, = n — 1, n, = 1. Here 9o is scalar,
while y, is a vector. The variables and parameters partition as
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P — 2 O
y —4 yl , ll' = ( ) N 2 — < K 0- > N
Y2 P2 09 Og

and we have

198

Yolyr ~ N(@ + B'yr, ),
where

B= G o, a =y — Bl o’ = 09 — B'Z1:B.
Evidently this case specifies a population that could support the Cg
model: the conditional expectation function E(2}’2|Y1) =a + By, is
linear, and the conditional variance V(y,|y,) = 0" is constant.

Concluding the properties of the N(p, 2) distribution, we have:

P5. Linear functions of a multinormal vector are multinormal: If z =
g + Hy, where g and H are nonrandom, and H has full row rank, then
z ~ N(g + Hp, HXZH').

As in Section 7.4, the full-row-rank condition is required to rule out
degeneracies, by ensuring that V(z) is nonsingular, a prerequisite for
multinormality. To see the problem, suppose that 'y = (1 ¥)', and
consider z = Hy, with

11
a-(} 1)

Then z; = y, + y; = z5. So z; and zy, being linear functions of the
bivariate normal vector y, are each univariate normal. But with z; = z,,
their joint density lies entirely over the 45° line, rather than having the
characteristic bell shape of the bivariate normal. Also, if y is 7 X 1 and
H is m X n with m > n, then H cannot have full row rank, so z = Hy
will not be multinormal. Nevertheless, any subvector of z that is ex-
pressible as a full-row-rank linear function of y will be mu}tinormal.
Some texts speak of a degenerate multinormal distribution when
rank(H) < m.

. (18.4)
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18.3. Functions of a Standard Normal Vector

If the » X 1 random vector z is distributed N(0, I), then we say that z
is a standard normal vector. In that event, z,, . . . , z, are independent
standard normal variables. The multinormal pdf specializes to

fz) = (2w) ™% exp(—2z'2/2) = [I [exp(—Z/2)/V(2m)],
i=1
which is indeed the product of n standard normal densities.
We restate and extend the theory of Section 8.5 for functions of
independent standard normal variables:

(18.1) If w = z'z, where the n X 1 vector z ~ N(O0, I),

then w ~ X3(n).

That is, the sum of squares of n independent standard normal variables
has the chi-square distribution with parameter n.

(18.2)  If v = (w,/m)/(wy/n), where w, ~ x*(m) and wy ~ x2(n) are

independent, then v ~ F(m, n).

That is, the ratio of two independent chi-square variables, each divided
by its degrees of freedom, has the Snedecor F distribution, with numerator
and denominator degrees of freedom equal to those of the respective
chi-squares. The cdf of this distribution is tabulated in many textbooks.

(18.3)  If u = z/V(w/n) where z ~ N(0, 1) and w ~ x*(n) are

independent, then u ~ #(n).

That is, the ratio of a standard normal variable to the square root of
an independent chi-square variable divided by its degrees of freedom,
has the Student’s ¢-distribution. The parameter is the same as the param-
eter of the chi-square. Observe that if u ~ #(n), then u? ~ F(Q1, n), which
parallels the result that if z ~ N(0, 1), then 2 ~ x*(1).

All three arguments reverse. For example, if w ~ x*(n), then w is
expressible as the sum of squares of » independent standard normal
variables.

Consider a sequence of random variables indexed by n. Two conve-
nient asymptotic (in n) results follow:

If v ~ F(m, n) then mv > x*(m).

COOQOCOOO0OOO0O0OLOOOOOOOOLOOLOLOLILIO
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Proof. Write v = (w,/m)/(wyln), so mv = w,/(wqln). Since wo/n

(1/m)Sz% can be interpreted as a sample mean in random sampling

(sample size n) on the random variable 7%, whose expectation is 1, the

“Law of Large Numbers says wy/n 2 1. So by S4 (Section 9.5), the variable

mv has the same limiting distribution as w,/1, namely x(m). =

(18.5)  If u ~ #(n) then u = N(0, 1).

Proof. Write u = z/V(w/n). Since w/n 2 1, it follows that V(w/n) 5
V1 = 1. So u has the same limiting distribution as /1, namely N(0, 1). ®

Consequently, if = is large, then one can rely on the chi-square and
normal tables for approximate probabilities, rather than referring to

, the Snedecor F and Student’s ¢ tables.

18.4. Quadratic Forms in Normal Vectors

We now establish the distributions of certain functions of a general
multinormal vector, by reducing them to the functions of a standard

normal vector introduced above.

Q1. Suppose that the n X 1 vector y ~ N(m, 3). Let w
(y — W2y — 0. Then w ~ X*(n).

Proof. It suffices to show that w = z'z, where the n X 1 vector z is
distributed N(0, I). The steps follow.

(i) Since ¥ is positive definite, we can write 3. = CAC' where Cis
orthonormal (that is, CC' = I = C'C) and A is diagonal with all
diagonal elements positive. The diagonal elements of A are the
characteristic roots (eigenvalues) of 3., and the columns of C are
the corresponding characteristic vectors (eigenvectors) of X.

(i) Let A* be the diagonal matrix whose diagonal elements are the
reciprocal square roots of the corresponding diagonal elements

of A.
(iii) Let H = CA*C’. Then H' = H, H'H = CA™'C’ = X7', and
HIH =L ‘

(iv) Let € = y — p. Then € ~ N(0, ).

(V? Let z = He. Then z ~ N(0, I).
(vi) w = €37 'e = €' H'He = (He)'(He) = z'z. ™

Q2. ~Sdllxppose that the n X 1 vector u ~ N(0, I). Let M be a nonrandom
n X n idempotent ix wi = !
NN potent matrix with rank(M) = r < n. Let w = u'Mu. Then

Froof. It suffices to show that w = z'z
- = , where the r x i
distributed N(0, I). The steps follow. 14 r X 1 vector z, is

(1) Since M is symmetric, M = CAC’, where C is orthonormal and
A is diagonal. an

(i) Since M is idempotent, its characteristic roots are either zeroes
or ones. Since its rank is 7, there are r unit roots and n — r zero
roots. These roots are displayed on the diagonal of A, which
without loss of generality can be arranged as ’ :

A — (IrXr Orx(n—r) )
O(n—r)xr O(n—r)x(n—r) )
(iii) Partition C correspondin =
gly as C = (C,, G,), wh i

and Cyisn X (n — 7). b G here Gulsm
(iv) Because C is orthonormal, we have
G
&

c'c=<cf) (c,,cz)=(CiCl CiG\_(L o
G CC, CiG/)  \o 1./}

v) So

CC' = (C,, Cy) < ) = CiC] + GG, = 1,

B I O
CA = (C,, Cy) (0 o) = (G, 0),

= . Ci
M =CAC' = (C}, 0) (C,‘> = C,Ci.
2

(vi) Bicause the r X n matrix C} is nonrandom with rank r, the
r X 1 random vector z; = Cju is multinormal with
E(z)) = C{E(u) = C}0 = 0,
V(z)) = CiV(u)C, = CiIC, = CiC, =1.
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That is, z; ~ N(0, L,).
(vii) w = w'Mu = u'(C,C)u = (u'C))(Clu) = z;z,. ®

Q3. Suppose that the n X 1 vector u ~ N(0, I). Let M be a nonrandom
n X n idempotent matrix with rank(M) = r = n. Let L be a nonrandom
matrix such that LM = O. Let t, = Mu and t, = Lu. Then t, and t, are
independent random vectors.

Proof. 1t suffices to show that t, and t, are respectively functions of
two independent random vectors. The steps follow.

(i) Using the construction of Q2, again let z, = Ciu, and also let
z, = Cju. The n X 1 random vector z = (2, z5)' = C'u is standard
normal, with z, and z, being independent.

(i) Now M = C,C}, sot, = Mu = (C,C)u = C,(Clu) = C;z,.

(iii) Lee N=1-M =CyCy. Then LN=LI-M)=L-LM =L

(iv) Sot, = Lu = (LN)u = L(CyCj)u = LCy(Cou) = LCyz,.

(v) Thus t, is a function of z,, and t; is a function of z,. ®

Exercises

18.1 Suppose that y ~ N(p, %), with

1 2 -1 1
r=|2], =Z={-1 5 1
3 1 1 3

(a) Calculate E(s]y;, y2) and V(ys|y1, y2)-

(b) Find the best prediction of y; given that y,
(c) Calculate E(ys|y;) and V(ys|y1)-

(d) Find the best prediction of y; given thaty, = 1.
(e) Find Pr(—1 =y, = 2).

1=y,

18.2 For the 3 matrix in Exercise 18.1:

(@) Find the characteristic roots A;, Ay, A3, and a corresponding set
of orthonormal characteristic vectors ¢, ¢y, Cs.

(b) Verify that CAC' = X.
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characteristic vecto
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will replace the diagonal elemen
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19  Classical Normal Regression

19.1. Classical Normal Regression Model

We now strengthen the CR model by assuming that the random vector
y is multivariate normally distributed. What results is the classical normal

regression, Or CNR, model, which consists of the assumptions

(19.1) y ~ NXB, o’D),
(19.2) X nonstochastic,

(19.3) rank(X) = k.

Recalling the properties of multinormality, the interpretation is that
the random variables y,, . . . , ¥, are independent, with y; ~ N(wi, 02,
where p; = x/B. (Caution: x, denotes the ith row of X', not the transpose
of the ith column of X.) So the y/s are independent normal variables
that differ in their means, but have the same variance. With respect to
the underlying population, we have in mind a joint probability distri-
bution for the random vector (y, X, « « + > %) in which the conditional

distribution of y given the x’s is

2
ylxe, o X NPy + Boxg + - F Bixes 07)-
The normality refers to the conditional distribution of y given the x’s.
No normality assumption for the x's is being made, although it is true
that if the joint distribution of (y, xg, - - - » x)' 1s multinormal, then the

conditional distribution above will automatically hold. With respect to

the sampling, we continue to rely on the classical, stratified-on-x, scheme

set out in Section 16.1.
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19.2. Maximum Likelihood Estimation

llzlcz;i;sggza:on in lZhe CNR.rr?c?del, we might consider the maximum
154) e zﬁgroac - In our initial application of this approach (Section
CNR, o were rando_mly sa'mpled from a single population. In the

model that feature is lacking, but ML estimation is still possible,

- because the pdf for the vector y is fully specified up to the parameters

B and o>

Recall that if an n X 1 Ca. .
its pdf is random vector y is distributed N(, ), then

fiy) = @m) 2| Z| 72 exp(—w/2),

where

w= €'Y e,

e=y-p |Z[7=1Vde®).

In the CNR model, y is distri i
o odel, y is distributed N(j, %) with p = XB and 3 = ¢°I.

3= (oD, ] = (0¥, e= y — XB,

and the pdf simplifies to
f(y) — (2’“_)—71/2(0_2)—71/2 exp[_ele/(2o_2)].

As a pdf this is vi
viewed as a functi i 1
true values of) B and o°, and the (;)n Wh(zlse ramom X as e
, observed nonrandom X i
prue v . om X, as givens.
e can also read f{y) as a function £(B, o3 wh :
B et aa o read fly . (B, ose arguments are
hne 7 W Ourys 1 ;sh givens. Doing so, we have the likelihood
ample. The ML estimates of d o*
" for _ B and o° are the value
at maximize &, or equivalently maximize its logarithm S

L= %) = =
L(B. o) = log £ = —(n/2) log(2m) — (n/2) log(c®) — (1/2)€’ /o>,

With € = —_ e . .
B by minirz;' ] XB,, it 1s immediate that L is maximized with respect to
i .
criterion, so le::gthe ECVIG;? respect to B. But that s just the least-squares
’ e model, the M ; .. ;
the LS estimator b. L estimator of B is identical to

hI'n}slertmg the solution value for B makes €’e = e’e, with e Xb
whi “ ’ T
ch leaves the “concentrated log-likelihood function,” y ’

o ,
L*@®) = L(b, 0%) = —(n/2) log(2m) — (n/2) log(c®) — (1/2)e’e/a?

to be imi i
maximized with respect to 6®. The first derivative is
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aL*/30® = —(n/2)lo® + (1/2)e’e/a™.

Equating 8L*/d0? to zero and solving gives the ML estimator of c2r2 as
e'e/n, which differs only slightly from our previous estimator 6°. So
under the CNR model, ML estimation essentially coincides with LS
estimation.

Further, with the pdf specified up to parameters, one may evaluate
the Cramér-Rao lower bound for the variance of unbiased estimators.
Doing so would show that the LS coefficient vector b is the minimum
variance unbiased estimator of B in the CNR model: see Judge et al.
(1988, pp. 227-229) or Amemiya (1985, pp. 17-19).

19.3. Sampling Distributions

From a practical point of view, the relevant implications of the CNR
model are those that refer to the sampling distributions of the LS
statistics b and e’e. We defer discussion of e’e until Section 21.1.

The key distribution result in the CNR model is that the random

vector b is multinormally distributed:
D1. b~ NB,c*Q ™).

Proof. Recall that b = Ay, where A = Q 'X' is a constant k X n
matrix. Multiplication by a nonsingular matrix preserves rank, so

rank(A) = rank(X') = rank(X) = k. So b is a full-row-rank linear func-
tion of the multinormal vector y, and hence b is multinormal by P5

(Section 18.2). =

Any full-row-rank linear function of the multinormal vector b will
also be multinormal. Thus:

D2. Lett= Hband @ = HB, where the p X k matrix H is rllonrz—xrlldom
with rank(H) = . Then t ~ N(0, 0D "), where D = (HQ™ 'H')" .

As a special case we have:

D3. Let b, be the jth element of b. Then b; ~ N(B;, 0°¢”).
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Proof. Take H = h’, where h is the k X 1 vector with a 1 in the jth
slot and 0’s elsewhere. Then HB = Bj, Hb = bj, HQ_IH’ = qﬁ. ]

The result D2 also subsumes other linear functions of the elements of
b, such as [i; = x/b. Indeed it subsumes D1: just take H = I,.

Now proceed to quadratic functions of b. Recall from Q1 (Section
18.4) that if the » X 1 random vector y is distributed N(p, 3), then the
random variable w = (y — p)’27!(y — p) is distributed x2(n). Applying
this to D2 and D3 yields

D4. w = (t — 0)D(t — 8)/0® ~ xX(p),

D5. w; = (b — B)*(c’¢") ~ x*(1).

19.4. Confidence Intervals

We use the distribution results to construct exact confidence intervals
and regions, supposing that ¢® is known. The more practical results,
those that are operational when ¢° is unknown, are deferred until
Chapter 21. '

Rewrite D3 as

D3A. Zj = (b] - BJ)/GbI -~ N(O, 1),

where crfj = 0'2qﬁ. Then by the logic of Section 11.5, bj + 1.960',,}. 1s a
95% confidence interval for the unknown parameter B;- Intervals for
different confidence levels can be constructed: for example, in place of
1.96, use 1.645 to get a 90% confidence interval, or 2.576 to get a 99%
confidence interval. The higher the confidence level requested, the
wider the interval.

For a given confidence level, say 95%, the interval will be wide if (rfj
is large, that is, if o? is large and/or ¢7 is large. Focus on the latter
component, g7 = /g%, where

- - 2
g = xf'xf = 2 (¥
1

is the sum of squared residuals in the auxiliary regression of x; on all
the other x’s: see the Submatrix of Inverse Theorem (Section 17.5). The
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208 19 Classical Normal Regression

confidence interval will be wide (ceteris paribus) if that sum of squared
residuals is small. Confine attention to the leading case where B is 2
slope coefficient in a regression that includes a constant. Then the

auxiliary regression will also include a constant, so its coefficient of

determination, RJ2 say, is well defined. Hence

g =~ B) S 6y %"
So the interval will be wide (ceteris paribus) if Zyx; — :’cj)2 is small,
and/or if R} is large. The latter says that collinearity of x; with the other
x’s tends to produce wide confidence intervals, a topic to which we
return in Chapter 23.

To summarize, for an individual slope coefficient B;, the confidence
interval for a given level will be wide—the estimate of B, will be impre-
cise—if the population conditional variance of y is large, the variation
of x; about its mean is small, and/or the auxiliary R} is large.

The procedure developed here also applies to constructing a confi-
dence interval for a single linear combination of the elements of (. Let
0="h'Bandt=h'b, wherehisa nonrandom k X 1 vector. With p = 1,
we can rewrite D2 as z = (¢ — 8)/g, ~ N(0, 1), where o =c’h'Q 'h=
h'V(b)h. A 95% confidence interval for the scalar parameter 8 is given
by ¢t = 1.960,.

19.5. Confidence Regions

Preliminaries

Suppose that we are concerned with the parameter pair (8,, 65). From
our sample, we have constructed the two 95% confidence intervals

;, + 1.960,, o+ 1.960,.

The probability that the first interval covers the true 8, is 0.95, and the
probability that the second interval covers the true 0, is 0.95. Can we
combine these two intervals to get a 95% confidence region for the pair
(8,, 85)? The intersection of the two intervals in the (8,, 85) plane is a
rectangular region, a box. What is the probability that this random box
covers the true parameter point (8, 0,)? Let A, be the event that the
true 0, lies in the first interval, and let A, be the event that the true 0,
lies in the second interval. Then A = A, N A, is the event that the true
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Folint (9}11, 8,) lies in the box. While Pr(4,) = 0.95 = Pr(A,), it does not

ollow that Pr(A) = 0.95. So the box i t ioint

region 1s not a 95% joint confidence

‘ jndeed if A) and A, are independent events—that is, if ¢, and t, are

independent random variables—then Pr(A) = Pr(A,) Pr(4,) = (0.95)* =

2.9025, .and the box w1}l be a 90.25% joint confidence region. In general
(t,l; ty) is nonzero, so in general A, and A, are not independent events

so.b r(.A) # 0.9025. It is possible to calculate Pr(A) from the BVN dis:

t}rll ution of ¢, and ¢, and thus to ascertain the exact confidence level of

the box. By the same token it is possible to get an exact 95% box by

using an appropriate critical value in place of 1.96. Let A be the event

that the true: 61. lies in the interval ¢, + c*o,, let Af be the event that

the true 6, lies in the interval ¢, * c*0,, and let A* = A¥ N A%. Then

. . . 2.

f)rcz;:l*)the OBQ;N distribution of ¢, and t,, one can find ¢* such that
T = 0.95, and i

e and thus obtain a box whose exact confidence level is
But an alternative a ing joi

B pproach to constructing joint confid i

is simpler, and conventional as well. 8 peenee regons

Jont Confidence Region

Su i
ppose that we are concerned with the p X 1 parameter vector § =

HB. Given a sample val
propose ple value of t, and knowledge of o2, we rely on D4 to

(19.4) 0 —tD@O - t/c® =,

:; the 9.5% conﬁden'c.e region for the unknown parameter vector 0
. ;ge ¢, is the 5?{7 critical value from the x*(p) table, that is, G (c,) -
T.abl,e V\gu;re Gf,—(-) is the cdf of the x*(p) distribution. For examplé f{;'om
ol 2, fcl = 3._84, e = 5.99. The region consists of all p X 1 vectors
o satisfy the inequality. Centered at the point t, the region is an
: c;z;m:l’ b;cause the matrix D/o® is positive definite. Observe that here

otes the argum i ssari

ot gument of a function, not necessarily the true parameter
Sid"ghef rlz:ti(?nale fqr the proposal is clear. For arbitrary 0, the left-hand
fromo the inequality (19.4) is a random ellipsoid, with center that varies
ron sampl.e to sample as t varies. For the true 0, the left-hand side of
the inequality is the random variable o
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w = (t — 0)'D(t — 0)/o?,

which, according to D4, is distributed X*(p). The true parameter point
0 will lie in or on the random ellipsoid iff w =< ¢,. Let A be the event
that w < ¢,. We conclude that Pr(A) = 0.95. Thus the probability that
A occurs, that is, that the random eliipsoid covers the true 0, is 0.95.
That justifies saying that inequality (19.4) provides a 95% confidence

region for the parameter vector 6.
Regions for different confidence levels are constructed by using

appropriate critical values from the X°(p) table. The higher the confi-
dence level requested, the larger the critical value, and hence the larger
the resulting ellipsoid. ,

If we apply D4 for a single parameter 6, we get the 95% confidence
region w =< ¢,;, where w = (¢ — 0)%0?. Now, w = ¢, defines an interval
on the real line, centered at ¢{. But w = 22, where z = (¢t — 9)/o,, and
¢, = 3.84 = (1.96)>. So w = ¢, is equivalent to [z| = Ve, = 1.96. That
is, the region w =< ¢, coincides with the interval ¢ * 1.960, of Section

19.4.
It is worth noting that the w of D4 can be written as

w=(t— 0)[V®] 't — ),

because (D/c?) = (@D H ' = [V(t)]—l. So w is a natural generalization
of the scalar 22 = (t — 8)%/0;.

19.6. Shape of the Joint Confidence Region

To study the joint confidence region and its relation to univariate con-
fidence intervals, it is convenient to take the case p = 2, and further
specialize as follows. Suppose that

tl - 91 1 r
() -+{G)- C 2
where r lies between —1 and 1 to ensure positive definiteness.

Here z, = ¢, — 0, and z, = t;, — 6, are each distributed N'(0, 1), while
w, =22 and wy = 75 are each distributed x2(1). The relevant 95% critical

values are ¢, = 3.84 and ¢ = \/c_l = 1.96. The box, centered at the

%
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sample point (tl., t2), which is defined by intersecting the intervals |z,| =
¢ ar.xd |z3] = ¢, is not a 95% confidence region. However, consider the
variable

w=(0 — t)D@O - t)/o° = 2/ (D/c?)z,

where z = (z), z,)'. With
Vi) =c’D ! = (l T) ,
we have

Dic® = (@D ) =(1-2Y L 77
-r 1/’
— 2 2
SO :u - (21 + 23 — 2r2;2,)/(1 — 7°). For the true 0, the theory says that
w~ X (2),. §0 a 95% confidence region for 0 is w =< ¢,, where ¢, = 5.99
the 5% critical value from the x*(2) table. We can write the region as

2, 2
7y + 25 — 212129 < (1 — 7).

'In the 0,, 8, plane, this is an ellipse centered at (¢,, t,). For conve-
nience, let us translate the axes so the origin is now located at the point
.(tl, tz). The ellipse is centered at the origin in the z,, z, plane. We
illustrate the possibilities with two figures. b P

Figure 19.1 refers to the case r = 0, which arises when the estimators
are uncorrelated. The ellipse is just a circle,

2 2
Zl + Z2 = 62’

centered at the origin with radius V¢, = V5.99 = 2.45. The box is a
square centered at the origin, with each half-side equal to V. Look
alqng a coordinate axis: because V¢, > Vi, it is evident that thlére are
points in the circle that are not in the square. Look along the 45° line
emanating from the center, that is, along the ray z, = zo: the circle
passes through the point z; = z, = V/(c,/2), while the northeast corner
.of. the square is located at the point z, = z, = VZ,. Since V{c /2) < Ve,
It is ev1de.nt that there are points in the square that are not irf the circlel’
This exhibits the distinction between intersecting two univariate 95‘7.
confidence intervals and constructing a 95% joint confidence region. i
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Figure 19.1 Confidence ellipse and box: r = 0.

Figure 19.2 refers to the case r = 0.6. Here we have a proper ellipse,
5+ 25— 2729 = co(l — %),

centered at the origin. The major axis of the ellipse runs along the 45°
line, so its vertices can be located by setting z, = 2, = 2, say, and solving
the equation 2+ 22 — 2922 = cy(1 — %) to get 2 = co(1 + 1)/2. So the
northeast vertex is located at the point z; = 2z = V[co(1 + 7)/2]. The
minor axis of the ellipse runs along the —45° line, so its vertices can be
located by setting z;, = z, and z, = —z, say, and solving the equation 2+
22— 2r2(—2) = ¢o(1 — 7%). The solution is 22 = ¢co(1 — 71)/2, so the southeast
vertex is located at the point z; = V[co(l — 1)/2], 20 = — Veo(1 — 7)/2].
Specifically, with r = 0.6, the northeast vertex is located at (2.19, 2.19)
and the southeast vertex is located at (1.09, —1.09). Here again we see
points in the ellipse that are not in the square, and points in the square
that are not in the ellipse. As compared with the circle that prevailed
when r = 0, which intersected the 45° line at the point [V(cs/2),
V{(cl/2)] = (1.73, 1.78), the ellipse has been stretched out in one direc-
tion and pulled in somewhat in the other.
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Figure 19.2 Confidence ellipse and box: r = 0.6.

Exercises

1_9.1 The CNR model applies with k = 4, X'X = I, ¢ = 2, and
B = 0. Let t = b’b. Find the number ¢ such that Pr(t > ¢) = 0.10.

19.2 The CNR model applies to E(y) = XB, with ¢® = 7 and

X'X = 4 1
1 2/°
A sample gives these LS estimates: b, = 3, b, = 2. Determine whether

the point B, = 2, B, = ~2 lies within the 95% confidence region for B.

19.3 The CNR model applies to E(y) = Byx, + Byxo, with 02 = 2 and
2 4)°
Your sample has b, = 3, b, = 2.

() Construct a 95% confidence interval for 0 = B: + B..
(b) Construct a 90% confidence region for the pair (8,, B,).




20 CNR Model: Hypothesis Testing

20.1. Introduction

We proceed to another type of statistical inference, the testing of
hypotheses about the population parameter vector B. We suppose that
the CNR model holds, so that

y ~ N(XB, a’l), X (n X k) nonstochastic, rank(X) = k.

We continue under the assumption that o2 is known, so that the distri-
bution results of Chapter 19 are applicable.

20.2. Test on a Single Parameter

Suppose that we have a hypothesis about the jth regression coefficient,
specifically the null hypothesis that B; = B, where 7 is a specific number.
We propose the following 5%-significance-level test against the alternative
hypothesis that B; # Bf. With a sample in hand, accept the null hypothesis
if By lies within the 95% confidence interval for §;, namely b; + 1.960‘,,{.;
reject the null hypothesis otherwise. Equivalently, calculate the test statistic

z = (b = BjYos,
and compare its absolute value with the critical value 1.96.

If || > 1.96, then reject the null hypothesis B; = [3;.
If || =< 1.96, then accept the null hypothesis B; = B;.

o]

The rationale is as follows. Think of b;, and hence z, as a random

variable rather than the value obtained in a particular sample. Let A be

20.2 Test on a Single Parameter 215

the event {|z’| > 1.96}. The probability that A occurs depends on what
the true value of B; is. If the true value is B;, so that the null hypothesis
is true, then the random variable z is identical to the random variable
z; defined in

Consequently, Pr(A|B; = B7) = 0.05. So the significance level, namely
the probability of rejecting the null hypothesis when it is true, is 5%.

Suppose a sample has |z| > 1.96. If the null is true, then a low-
probability event has occurred. The probability of the event is so low
that its occurrence is taken to be evidence against the null; so the
decision is to reject the null. Heuristically, the point estimate b; is so far
from the hypothesized parameter value §; that it is implausible that &,
has in fact been drawn from a distribution with expected value {;.
However, finding a sample with |z’| = 1.96 is not surprising when the
null is true, so then the decision is to accept the null.

When |29 > 1.96, one says that b; is significantly different from B at the
5% level; when |zf| < 1.96, one says that b; is not significantly different
from B; at the 5% level.

Several lessons are immediate:

* Rejection of the null is not proof that the null is false. After all,
there is a nonzero probability of rejecting the null if it is true: Pr(|z| >
1.96|B; = B7) = 0.05. Loosely speaking, when the null is true, in 5% of
the samples drawn from the population, the decision will be “reject the
null.”

* Acceptance of the null is not proof that the null is true. After all,
different null hypotheses would also have been acceptable. Indeed if
the null had been B, = B;°, where B is any other point that happens
to lie in the confidence interval b 1.960,,1,, it too would have been
accepted as a null hypothesis.

* If oy, is large, then the 95% confidence interval is wide, and widely
diverse null hypotheses about B; are all acceptable at the 5% level. In
that situation, the sample contains little information about the true value
of B;. The LS estimator 4 may well be the best estimator, but it need
not be a precise estimator.

The test procedure adapts to handle a null hypothesis about 8; at
different significance levels. Further, to test a null hypothesis about a
single linear combination of the elements of B: accept iff the null 6° lies
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216 20 CNR: Hypothesis Testing

in the confidence interval for 8, equivalently, iff the test statistic 2° =
(t — 8°)/o, is in absolute value less than or equal to the critical value.

It is good practice to use correct wording in reporting the outcome
of a test: it is the estimate b;, not the parameter (3, whose significance
is being assessed; and the test is being conducted at a 5% significance
level, say, not at a 95% confidence level or at a 95% significance level.

20.3. Test on a Set of Parameters

Next suppose we have a joint null hypothesis about B, specifically about p
linear functions of B. Let 8 = HP, where the p X k nonrandom matrix

H has rank p. Our null hypothesis is
0 = 0°,
where 0° is a specific numerical p X 1 vector. By appropriate choice of
H, this subsumes the situations where the hypothesis concerns the full
vector B, or .a ky X 1 subvector B, or a single element B;.
We propose the following 5%-significance-level test against the alter-

native hypothesis that 8 # 8°. With a sample in hand, accept the null
hypothesis if 8° lies within the 95% confidence region for 0 given by

w= (0 —t)D@O — t)/o? = Cps

reject the null hypothesis otherwise. Here t = Hb, while ¢, is the 5%
critical value from the xz(p) table; that is, G,(c,) = 0.95 where G,(:) is
the cdf of the x2(p) distribution. Equivalently, calculate the test statistic

w® = (t — 6°)'D(t — 8°)/c".
If w° > c,, then reject the null hypothesis @ = 0°.

If w° =< ¢,, then accept the null hypothesis = 0°.

The rationale is as follows. Think of »° as a random variable rather
than as the value obtained in a particular sample. Let A = {w® > c,}.
The probability thai A occurs depends on the true value of 0. If the
null hypothesis is true, so that 8 = 0°, then the random variable v° is
identical to the random variable w defined in

D4. w=(t — 0)YD(t — 8)/a® ~ X’(p).

20.4 Power of the Test 217

Because Pr(w > ¢,) = 1 — G,{c,) = 0.05, we have Pr(A|0 = 6°) = 0.05,
so the significance level, namely the probability of rejectingmthe null
hypothesis when it is true, is 5%. Suppose that a sample has v° > ¢,. If
the null hypothesis is true, then a low-probability event has occurred.
The probability of the event is so low that its occurrence is taken to be
evidence against the null. Heuristically, the point estimate t is so far
from the hypothesized parameter value 0° that it is implausible that t
has in fact been drawn from a distribution with expectation 6°. But
finding a sample with w° =< ¢, is not surprising when the null is true.
Because V(t) = o®D~!, we can write

w® = (t — 0°)[V(R)] 't — 0°),

which shows that »° measures the deviation t — 0° in the same way that
z; measures the deviation b, — B;, that is, relative to the variability of
the estimator.

The discussion of ellipses and boxes in Section 19.6 implies that one
cannot tell the outcome of the test of a joint hypothesis from the out-
comes of univariate tests of its separate components. It is quite possible
to accept each of the separate null hypotheses 0; = 67 tested one by one,
while rejecting the joint null hypothesis 6; = 67 ( = 1, ..., p). There
is no paradox here: the conjunction of two hypotheses may be unten-
able, even though either hypothesis by itself is tenable.

20.4. Power of the Test

To test (at the 5% significance level) the null hypdthesis 0 = 0° against
the alternative @ # 0°, we have proposed the test statistic

W’ = (t - 6°)'D(t ~ 69/0”,

and the decision rule: reject the null iff w° > ¢, where ¢ is the 5% critical
value in the x*( p) table. Our rationale was that the event {w® > ¢} is rare
when the null hypothesis is true: Pr{(w° > ¢)|0® = 6°] = 0.05. Why choose
this particular rejection region, w® > ¢? Taking as the rejection region
any other interval for w° whose probability is 0.05 when the null is true
?vould also provide a test at the 5% significance level. Indeed, one might
Just toss a fair 20-sided die and reject the null iff the “1” turns up; that
would also provide a 5% significance level test of the null 8 = 6°.
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To understand our choice, one must consider the power function for
the test, namely the probability of rejecting the null @ = 0°, as a function
of the true parameter value 8. The “rare if null true” r'auonale .fo.r
rejecting the null when the event w® > ¢ occurs would lose its fo‘rce if it
turned out that the event w° > ¢ was even rarer when the null is fals?,
that is, if it turned out that Pr{(w® > ¢)|3 # 6°] < 0.05. Our claim is

that
Pri(w® > ¢)|0] = 0.05,

with equality iff @ = 0°. That is, the power of the test, namely -the. proba-
bility of rejecting the null, is everywhere greater than. the‘ 51gn1ﬁcaf1ce
level, except at @ = 0°. Further, the power is increasing mn a sensible
measure of the distance between the hypothesized and true value‘ of 0.
Tests that use a different rejection region may not have. those c.lesmable
properties. For example, the power of the 20-sided-die test 1s every-
where equal to its significance level. .

The argument rests on the distribution of w® as a function of 0. We
first focus on the expectation, showing that E(w°) increases as 6 departs
from 0°. Define the random miss vector,

m=t-—0°
and rewrite the test statistic as
w® = m’(D/G2)m.
Now E(m) = Et) — 6° = HB — 6° = 0 — 0° = p, say, and V(m) =

V(t) = ¢°D~'. (Caution: Do not confuse p = E(m) with p = E(y) =
XB.) Use R5 (Section 15.1, with D/o? playing the role of T) to calculate

E@®) = tr[(D/c})o?D '] +p'(D/c)p
= tr(L,) +p'(DIc®)p
= 2 +p'(D/a®)p.

Because D/o? is positive definite, we conclude that E(w°)‘ = p, with
equality iff @ = 0, that is, iff 6 = 0°. The farther the null is from the
truth, that is, the larger the magnitude of the p X 1 vector p, as
measured by the nonnegative scalar 1/ (D/o®)p., the larg'er is E(w®). Inci-
dentally, the calculation so far does not rely on normality.

20.5 Noncentral Chi-square 219

Finding that E(w°) rises as 8 departs from 6° makes it plausible that
Pr(w® > c) also rises as @ departs from 6°. But to establish the latter
requires examination of the probability distribution of w° as a function
of the parameter 6.

20.5. Noncentral Chi-square Distribution

The relevant distribution theory starts at the level of Section 18.3:

Suppose that the n X 1 random vector z is distributed N(a, I). Let
w = z'z. Then w ~ x*(n, A\?), where A% = a’av.

That is, the sum of squares of n independent N(a;, 1) variables has the
noncentral chi-square distribution with degrees of freedom parameter 7
and noncentrality parameter A = Z,a?. The familiar (central) chi-square
distribution is the special case that arises when a = 0. Table A.4 gives
a small display of 1 — G¥(c;; \?), where G#(-; A\?) denotes the cdf of the
x2*(k, \?) distribution, and ¢, is the critical value relevant for testing at
the 5% significance level. That is, ¢, is defined by G¥c,; 0) = Gulcy) =
0.95; thus ¢; = 3.84, ¢; = 5.99, ¢; = 7.81. In each column of the table,
we see that the probability of exceeding ¢, increases with \2. (Caution:
This table records the complement of the cdf, not a cdf itself as Table
A2 did.)

Retracing the steps used in the proof of Q1 (Section 18.4), it follows
immediately that:

Q4. Suppose that the n X 1 vector y is distributed N(j, ). Let w =
y'2"'y. Then w ~ x**(n, \?), where A2 = p'3 " 'p.

Now return to the CNR model. As a linear function of b, the p X 1
miss vector, m = t — 0°, is distributed N(p, 6°D7'), with p = 6 — 6°.

Applying Q4 to our test statistic w° = m'(D/c*)m, gives a new distribu-
tion result for the CNR model:

w® ~ x**(p, \), with \2 = (8 — 6°)'D(@ — 0°)/c>.

So the power of our test is given by
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220 20 CNR: Hypothesis Testing
Pr{(w® > ¢,)|0] = 1 — G}(c,; A), with \* = (8 — 6°)'D(0 — 6°)/c”.

Observe that the probability distribution of the test statistic w° depends
on 0 only through the scalar A% For a given significance level, that is
for a given c,, the power in 8-space will be constant along ellipsoids
centered at 0°. As 0 departs from 0°, that is, as we move farther out
along a ray through 6 — 0°, the scalar A? increases, and so the power
increases. Observe also that the power depends on the direction, not
merely upon the magnitude, of 6 — 6°.

This argument completes the rationale that supports the joint hypoth-
esis test procedure of Section 20.3. It also supports the single hypothesis
test procedure of Section 20.2, because that, as we have seen, is equiv-
alent to a joint test with p = 1.

Actually, for p = 1, one can deduce the noncentral chi-square prob-
abilities from the N(0, 1) cdf. The calculation runs as follows. Suppose
w° ~ x¥*(1,\?). Then v° = z°%, where 2 ~ N(\, 1), that is, (2" — A) ~
N, 1). Let A = {w° > ¢} = A, U Ay, where

A ={2>Ve={-N>Vc- N}
Ay ={< -V} ={ - N <—-(Ve+ N}

Now Pr(4,) = 1 — F(Ve — \) = F\ — V&), and Pr(4,) = F[—(\ + Vo)),
where F(-) denotes the N(0, 1) cdf. Because A, and A, are disjoint, we
have

Pr(w° > ¢) = Pr(A) = Pr(Al)i + Pr(Ay) = FO\ — Vo) + F[-(\ + Vo)l.

For example, suppose A*> = 1, and ¢ = 3.84. Then A = 1 and Ve =
1.96, so

Pr(w® > ¢) = F(—0.96) + F(—2.96) = 0.168 + 0.002 = 0.170,

as in Table A.4.

Exercises

20.1 The CNR model applies to E(y) = XB. You know that ¢® = 2
and that
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3 1
X'X =
x=(3 3).

In a sample of 32 observations, the LS coefficients are b, = 2, b, = 2.

(a) Test at the 5% significance level the joint null hypothesis that
Br =3 =By

(b) State the alternative hypothesis against which you are testing.
20.2 The CNR model applies to E(y) = XB, with 0® = 7 and

4 1)
1 2/
The null hypothesis B, = 1 will be tested at the 10% significance level,

against the alternative that B, # 1. What is the probability of rejecting
that null hypothesis, if the true value of B, is 3?

X'X=(

20.3 The regression slope b in a CNR model is distributed N(B, 1). |

The r_lull hypothesis B = 0 will be tested at the 10% significance level
by using the statistic z° = b/o,. That is, the null will be rejected if and
only if |z°] > 1.645.

(a) Write and run a program that tabulates the power of the test at
these 9 values of the true parameter B:

-2 -15 -1 =05 0 05 1 15 2

(b) Redo (a) for the situation where b ~ N(B, 4).
(c) What do your two tables tell you about the effect of Uf on the
power of the test?

_GAUSS Hint::
The command cdft
Ppoint c. ’

20.4 The pair of regression slopes b,, b, in a CNR model is distributed
BVN(B,, .[32, 1, 1,7) with » = 0.6. The joint null hypothesis 8, = 0
Ba = 0 will be tested at the 5% significance level by using the statistic

w® = (bf + bg — 27b,by)/(1 — 7).

That is, the null will be rejected iff w° > 5.99.
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(a) Write and run a program that tabulates the power of the test at
these 9 values of the true parameter pair (B;, Bo):

_1, 1 0, 1 la 1
_1,0 OyO 1,0
_1y_1 0)_1 ‘l’-l

(b) Redo (a) for the situation where r = —0.6. ‘
(c) What do your two tables tell you about the effect of the sign of
the correlation 7 on the power of the test?

21  CNR Model: Inference with o Unknown

21.1. Distribution Theory

Thus far, the procedures for constructing confidence intervals and
regions for B, and for testing hypotheses about its elements, have
required knowledge of 6®. We now extend the theory to obtain proce-

dures that are operational in practice, where a® is unknown. It is natural
to use

6% = e'el/(n — k)

in place of %, and thus to use
z = (b — B))o,

in place of z; = (b, — B;)/o,, and
» = (t — 0)D(t — 0)/6°

in place of w = (t — 0)'D(t — 0)/c”. To assess the distribution of the
new statistics, we draw on some additional implications of the CNR
model.

For the CNR model in which y ~ N(XB, oI), the relevant theory
resumes with

D6. w, = e'elc® ~ x*(n — k).

Proof. Recall the theory of Chapter 18 on functions of normal vectors,
and take these steps:

(i) Lete =y — XB. So € ~ N(0, 0®I) by P5 (Section 18.2).
(i) Letu = (l/o)e. So the n X 1 vector u ~ N(0, I).
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224 21 CNR: Inference

(iii) Rewritey = Xp + easy = Xp + ou. .

(iv) Then e = My = M(XB + ou) = c2rM1I , using MX = O.
(v} Soe'e= o’u'Mu, and w, = e'e/lc” = u’Mu.'

(vi) The nonrandom matrix M is idempotent with rank n — &.
(vii) So by Q2 (Section 18.4), w, ~ X*(n — k). ®

Next,

D7. The random vectors b and e are independent.

Proof. Continue the construction above. The steps:

(i) b=Ay=AXB +ou)=p+ oAu, using AX = L
(i) Lett, = (l/o)e = Muandt, = (l/o)b — B). = Au.
(iif) Since AM = O, the conditions of Q3 (Section 18.4) are met, so

t, and t, are independent.
(iv) Soe = ot, andb = f + oty are independent. ®

As a corollary, we have that any function of e is independent of any
function of b. Specifically,

DS8. Fach of the statistics e, e'e, w,, 62, V(b), is independent of each
of the statistics b, b;, t = Hb, v, w,.

. A2 .
Now turn to the statistics that use the estimator & instead of the
population parameter ¢°. Let v = @/p. Then

D9. v = (t — 0)'D(t — 0)/(pd°) ~ F(p, n — k).

Proof. Recall from Eq. (18.2) the requirement for a random variab.le
to have the Snedecor F-distribution. It suffices to show that v is the ratio
of two independent chi-square variables, each divided by its degrees of
freedom parameter. The steps:

@) 6%c? = [e'el(n — k)J/o® = (e'ela®)/(n — k) = w,/(n — k).

(i) v=dlp = (@p)(°/c®) = (wip)[wo/(n — k).

(iii) But w ~ x2(p) is independent of w, ~ xim — k). =
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Continuing, let »; = z;. Then

D10. u = (b - B)6y, ~ tn — k).

Proof. Recall from Eq. (18.3) the requirement for a random variable
to have Student’s ¢-distribution. It suffices to show that u; is the ratio of
a standard normal variable to the square root of an independent chi-
square variable divided by its parameter. The steps:

G) (&~ B)oy, = z.

(il) 6,/0, = V[6*¢"(0gP)] = V(6%c®) = VIw,/(n — k)].
(i) v = [(b; — B)oyV[64/0] = 2/Vwe/(n = R)].

(iv) But z; ~ N(0, 1) is independent of w, ~ x*(n — k). =

21.2. Confidence Intervals and Regions

Under the CNR model, to construct confidence intervals and regions
when o° is unknown, one uses the ¢ and F distribution results in the
same way that the N(0, 1) and x® distribution results would be used
were ¢® known. So the following discussion can be concise.

Confidence Intervals

For a single regression coefficient, draw on DI10. Let ¢ be the two-tail
5% critical value in the {(n — k) table; that is, G(c) = 0.975, where G()
is the cdf of the #n — k) distribution. Then b; * ¢, provides a 95%
confidence interval for B;. The rationale: the event that the random
variable & lies within ¢6,, of the fixed parameter B, is

A={B; — b, = b= B+ ct,} = {| (b — BY6,| =} ={|y] = c}.

Since D10 says that u; ~ Hn — k), we conclude that Pr(A) = G(c) —
G(=¢) = 0.975 — (1 - 0.975) = 0.95.

Alternatively, we might draw on D9, specialized to p = 1. Let d be
the 5% critical value in the F(1, n — k) table; that is, G(d) = 0.95, where
Gy(-) is the cdf of the F(1, n — k) distribution. Then a 95% confidence
interval will consist of all values B; satisfying the inequality v; < d, where
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Let B = {u; = d} be the event that the true {; lies in this interval. Now,
B is identical to A = {| ;| < ¢} because v; = |4;|* and d = ¢, so this is
the same interval we got from DI0.

In the same manner, to construct a confidence interval for a single
linear function of coefficients 6 = h', draw on D9 (with p = 1), or its
Hn — k) equivalent.

Joint Confidence Regions

Similarly for joint confidence regions: suppose we are concerned with
the p X 1 parameter vector § = HP. Let d, be the 5% critical value of
the F(p, n — k) distribution; that is G,(d,) = 0.95, where G,(:) is the cdf
of the F(p, n — k) distribution. We rely on D9 to propose

(0 — 'D(® — t)/(p6°) = d,

as the 95% confidence region for the unknown parameter vector 8. The
region consists of all p X 1 vectors @ that satisfy the inequality. Observe
that here @ denotes the argument of a function, not necessarily the true
parameter vector. The rationale for the proposal is that the true param-
eter vector O lies in that random region iff v = d,, an event whose
probability is 0.95.

It is instructive to rewrite this operational confidence region v = d, as

@ = (0 — ))D® — 1)/6° < pd,.

Observe its similarity to the ellipsoidal region w =< ¢, that would be used
were o known, namely

w=(0 - t)'DO - t)o® <,

The region v < d,, is also an ellipsoid centered at t, and indeed has
precisely the same shape as the region w < ¢,, being merely expanded.
So our previous analysis (Section 19.6) of the shape of the region, and
of its relation to the rectangular region obtained by intersecting single-
parameter confidence intervals, carries over directly.
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21.3. Hypothesis Tests

The theory just developed for constructing confidence intervals and
regions for B adapts to testing hypotheses about B when ¢” is unknown.

Single Parameter

Suppose that we have a null hypothesis about the jth regression coeffi-
cient, namely 8, = B, where B/ is a specific number. At the 5% signifi-
cance level, accept the null iff B lies in the 95% confidence interval for
B;- Equivalently, calculate the test statistic

w = (b — B;)6,

and compare it with ¢, the two-tail 5% critical value in the ¢(n ~ k) table.
If [4}] > ¢, then reject the null hypothesis B; = B}. If |u7| =< ¢, then
accept the null hypothesis B, = B;.

In presenting the results of an empirical study, a correct practice is
to report the regression coefficients b; along with their standard errors
6,. This gives readers the information they need to construct a confi-
dence interval for each regression coefficient, and to test a hypothesis
about any one of them. It is common practice to report the regression
coefficients along with their “¢-ratios” or “t-statistics,” the u]" = bj/é,,}, and
to say, if ] is large, that b; is “significant,” meaning “significantly dif-
ferent from zero.” This common practiceis not a good one, because it
encourages readers to consider only “zero null hypotheses” 8; = 0, which
are not necessarily the interesting ones. Of course, a knowledgeable
reader can always unscramble b; and u} to recover 6.

Set of Parameters

Suppose we have a joint hypothesis, one that concerns several param-

eters, specifically p linear functions of . Let 6 = H, where the p X k

nonrandom matrix H has rank p. Our null hypothesis is ® = 8°, where
0° is a numerical p X 1 vector. By appropriate choice of H, this setup
subsumes the situation where the hypothesis is about the full vector §,
or about a k, X 1 subvector Bs, or about a single element {;.

To test at the 5% significance level, against the alternative 8 # 0°,
accept the null if 0° lies in the 95% confidence region for 8, reject
otherwise. Equivalently, calculate the test statistic
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2 = (t — 68°)'D(t — 0°)/(p&>),
and compare it with d,, the 5% critical value from the F(p, n — k) table.
If v° > d,, then reject the null hypothesis @ = 6°. If v° =< d,, then accept

the null hypothesis 6 = 6°. o ‘
The power function for the F-test is very similar to that for the chi-

i i i discuss
square test discussed in Sections 20.4 and 20.5, so we need not

it explicitly.

21.4. Zero Null Subvector Hypothesis

A leading special case of a joint hypothesis arises when the null says
that several of the B/'s are zero. We refer to this as a zero null subvector
hypothesis. Without loss of generality, let those B/'s be the last k&, ele-
ments of B. Partitioning as

E(y) = XB = (X, Xy) (g;) = X,B; + XsBo.

we state the null as B, = 0. To fit it into the framework of Section 21.3,

set p = ko, H = (O, I) where the O is ky X ky, the Iis kg X ko, and 0° =
0. Then

6= HB = B‘b
11 12 e)
HQ—lHI = (0, I) (32‘ 322) (I) = Q22’
D = (HQ—IHr)—l —_ (Q22)—-1 —_ Q’{z _ nglx,;’
with X% = M,X,. So the test statistic v° becomes

v° = b§Q§2b2/ (k26'2).

t = Hb = by,

Using Residual Sums of Squares

There is another way to calculate this test statistic. Recall from Eq.
(17.6) that

— ' — akla¥ — af
biQiby, = byX§'Xib, = e*'e e'e,

where e*’e* is the sum of squared residuals from the short regression
of y on X, alone, while e'e is the sum of squared residuals from the
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long regression of y on X = (X;, X,). Recall also that 6° = e’e/(n — k).
So the test statistic can be written as

— ok _ aof
vo:_(n k)(ee ee>'

kz e'e

This version may be computationally convenient. To get the test
statistic for a zero null hypothesis B, = 0, there is no need to extract
the ky X ko submatrix V(b;) = 6°Q*2 from V(b), and invert it. Instead,
just run the appropriate long and short regressions and use their sums
of squared residuals.

The result is also analytically instructive. Large values of v° lead to
rejection of the null, and v° will be large (ceteris paribus) when the ratio
(e*'e* — e’e)/e’e is large. That is to say, the null hypothesis B, = 0 is
rejected when dropping X, from the regression leads to a large pro-
portional increase in the sum of squared residuals, that is, to a substan-
tial worsening of the fit. This is quite natural. In terms of the underlying
population, suppose that the model has

E(yIX2,. .. ,x8) = Bl + B2x2 + ...+ Bsxs,

while the null hypothesis is B85 = B, = Bg = 0, that is,
E(y|xg, ..., xg) = By + Boxy + - - + By,

This null says that the conditional expectation of the dependent variable
y given all the x’s does not in fact vary with xg, x,, xg. So the null imposes
a restriction on the CEF. To test the null, impose its restriction in
estimating the CEF, by running the short regression, and see whether
the fit is much worse than the fit obtained when the restriction was not
imposed. If the fit is not much worse, then accept the hypothesis that

the conditional expectation of y given all the x’s does not in fact vary
with xg, x,, xg.

Using R%s

Continuing, suppose that X, contains the summer vector (and perhaps
more columns). Then both the short and long regressions contain an

intercept, and so their R%s are well defined. For the long regression we
have

e'e = (1 — RY 2 (% — %
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and for the short regression we have

er'e* = (1 — R*) X (y; — 3"

So

(e*'e* — e'e)le’e = (R* — R™)/(1 — R?) = AR*(1 — R®),
where AR? is the reduction in R? that occurs when X, is (liropped from
the list of explanatory variables. For this standard situation, then, the
test statistic can be written as

. (n—k) Aﬁ)
U T 1 - R?)"

We now see that B, = 0 is rejected when dropping X, from t?le regres-
sion leads to a large decrease in R?, relative to 1 — R® (espec1ally_ when
n — k is large and/or ks is small). This version may be computationally
convenient: one needs to record only the R*s of the short and long

regressions.

All Slopes Zero

Finally suppose that X, contains only the summer vector, so B, contains
only the intercept. Then the null B, = 0 asserts that all of the §lopes
By, . - . » Bx are zero. Here the short-regression su2m <-)f §quared residuals
is e*’e* = Z(y; — 7)°, so the short-regression R™* is in effect zero. So
AR? = R?, and the test statistic simplifies to

) R2>
YT k-n\1-RY"

Evidently, an “all slopes zero” null hypothesis will be rejected when R?
is large, especially when = is large and/or k is small. ) o
The all-slopes-zero test is sometimes referred to as .the‘ test of signif-
icance of the complete regression” or the “overall s1gn1{:1cance test of
the regression.” Many packaged computer programs .routlnely calcula-te
this statistic and report it as the “regression F-statistic.” As a result,.ln
many journal articles and textbooks it is routinely reported along w1t.h
R®. Typically the regression F-statistic is large, and one sees dramatic
statements. To take a textbook example, Intriligator (1978, pp. 138-
141), with » = 12 annual observations, regresses GNP on k = 3 explan-
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atory variables (the constant, lagged GNP, and government expendi-
tures). The R? is 0.9958, so v° = 1072, while the 5% critical value from
the F(2,9) table is d = 4.26. He writes “it is clear that the overall
regression is highly significant and that the hypothesis that all [slope]
coefficients are zero is overwhelmingly rejected” (p. 140). A less dra-
matic description of the situation would run as follows. The economic
model, which allows w, = E(Y;) to vary linearly with Y;_, and G, fits
much better than a model that insists that p; = w for all i. In short, the
economic model is “much better than nothing.”

Exercises

21.1 Consider the special case of the CNR model in which the only
explanatory variable is the constant. Use the present distribution results
to derive F1-F4 of Section 8.6, the theorems on the distribution of the
sample mean and variance in random sampling from a univariate
normal distribution.

21.2 The CNR model applies to E(y) = XB, with ¢° = 1 and

=) wx-(t3)

For each of the following two samples, determine the best guess of the
random variable b, justifying your answer.

(a) A sample has e'e = 10.
(b) A sample has b, = 3.

21.3 Here are the results of two regressions run on annual time series
for the years 1935-1978:

(i) 9= 50+ 0.2x, + 0.5x; — 2.0x,, R2 = 0.80.
(i) § = 100 + 0.3x, + 0.4xs, R? = 0.76.

Determine whether the following is true or false: in equation (i), the
standard error for b, is 1/V2.

21.4 The CNR model applies to E(y) = x,B; + x,85. A sample of size
n = 102 gives these statistics:
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b=<g), Q='(f ;) e'e = 80.

Let § = B, — By. Test at the 5% significance level, the null hypothesis
that § = 1.

21.5 The CNR model applies to E(y) = XB with

~ _ [4 2
wx- (1)
A sample of size 32 gives b, = 2, b, = 5, e'e = 60. Construct a 90%
confidence interval for B, — B;.

21.6 Suppose that the CNR model applies to the earnings function
E(ylxy, ..., x5) = By + Baxg + Bsxs + Baxg + Bsxs + Boxs
+ Brx; + Baxs,
estimated in Exercise 17.4.

(@) Calculate b, e'e, 67, and V(b).

(b) Report a 95% confidence interval for the “effect of education,”
namely B..

(c) Report a 95% joint confidence region for the “effects of experi-
ence,” B3 and B,.

(d) Let 6 = B3 + 2B,%3, where Xs is the sample mean experience
(treated as nonrandom). Give an interpretation of, and a 90%
confidence interval for, 6.

-(e) Test, at the 5% significance level, the null hypothesis that “race
does not affect earnings,” that is, 5 = 0.

(f) Test, at the 5% significance level, the joint null hypothesis that
“region does not affect earnings,” that is, B = B; = Bg = 0.

22 Issues in Hypothesis Testing

22.1. Introduction

In this chapter, we take up a variety of practical and procedural topics
associated with hypothesis testing. Among the topics are: the conversion
of general hypotheses into the zero-null-subvector form, the choice of
significance level, testing against one-sided alternatives, the abuse of
tests, and inference when the normality assumption is not adopted.

22.2. General Linear Hypothesis

In general, a linear hypothesis takes the form 6 = 0°, where 6 = Hf,

His p X k nonrandom with rank p, and 0° is numerical. In Section 21.4,

we focused on the special case B, = 0, but other cases arise in practice.
For example, suppose that we have the demand function

E(Y|X,, X3, Xy) = Bi X, + BoX, + BsXs + BuX,,

where ¥ = log quantity of butter, X; = 1, X, = log real income, X5 =
log butter price, X, = log margarine price. We entertain the hypothesis
that only the ratio of the two prices, not their separate levels, matters
to the consumer. This says that the two log-price slopes are equal in
magnitude but opposite in sign, that is, B, = —Bs. This hypothesis is
expressed as 0 = 35 + B,, 6° = 0.

For another example, consider the Cobb-Douglas production func-
tion,

E(Y|K,L,N) = B, + BoK + BsL + B4N,
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with Y = log output, K = log capital, L = log land, N' = log labor. The
hypothesis of constant returns to scale says that the sum of the log-input
slopes (the elasticities) is unity. It takes the form 0 = By + Bs + B4 with
6°=1.

For a third example, consider a macroeconomic consumption func-
tion, with E(Y¥|X) = o; + ¥, X in wartime, E(Y|X) = ay + ¥.X in
peacetime. Here ¥ = consumption, and X = income. Defining the
dummy variable Z, which equals 1 if war and equals 0 if peace, permits
us to write the two functions together as

EY|X,Z)= ,Z +¥,ZX + ay(l — Z) + (1 — Z)X
=Bix; + Baxa +  Bsxs  +  Baxy

say. The null hypothesis that the function is the same in war and peace
is a joint linear hypothesis: B, = B3 and B, = B,. It is expressible as 0=
0°, with

10 -1 0 . (0
0=(01 0 —1)3’ °‘<0)'

For the general linear hypothesis in the CNR model, we saw (Section
21.8) that the F-test statistic is

2° = (t — 0°)'D(t — 0°)/(p6?),

wheret = Hband D = (H’Q"IH)_l. For the zero-null-subvector special
case, we saw (Section 21.4) that the numerator of this test statistic could
be written as

(t — 6°'D(t — 6°) = bjQkb, = e*'e* — e'e,

where e*'e* is the sum of squared residuals from the short regression
of y on X, alone, and e'e is the sum of squared residuals from the long
regression of y on X = (X, X,).

In fact any linear hypothesis can be converted into a zero-null-sub-
vector hypothesis, so that the computational convenience of short and
long regressions is available in general.

Start with 6 = HB, where the matrix H is p X k with rank p. We may
suppose without loss of generality that the last p columns of H are
linearly independent: that is, partitioning H = (H;, Hy), the p X p
submatrix H, is nonsingular. Partition X and $ conformably as X =
(X;, X,) and B = (B}, BS)'. Define the k£ X k matrix
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I o
T =
(—H;‘H1 1) ’

where the partitioning is into & — p and p rows and columns. Its inverse
is

- I O)
T '=
(1w, 7)-
Let
Z=XT = (X, Xp)T = X; — X2H;lH1, Xo) = (Zy, Zy),

which is an # X & rank-k nonrandom matrix, interpretable as the matrix
of observations on transformed explanatory variables. Also let

w181 () = (e ) = (0)

which is a £ X 1 vector of transformed parameters.
Now

XB = X(TT)B = (XT)(T'B) = Za = Zya, + Zyass,
so E(y) = XP is equivalent to
@2.1)  E(y) = Zo, + Zoa,.
Further,

0 = HB = H(Te) = (H;, Hy)Ta = Hya,,

s0 0 = 0° is equivalent to Hya, = 60°, that is, to a; = H;'0° = a3, say.
And @, = @ is equivalent to saying that Eq. (22.1) can be written as

(22.2) E(y) = Z,a, + Z,a.

Lety® = y — Z,a3, which may be interpreted as a vector of observations
on a transformed dependent variable. Then Eq. (22.1) is equivalent to

E(y’) = Z,a, + Zyai},
where af = ay — a3, while Eq. (22.2) is equivalent to
E(y°’) = Z,a,.

We have translated a general linear hypothesis into a zero-null-sub-
vector hypothesis. Because Z = XT with T nonsingular, regressing y on
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Z, or y° on Z, gives the same sum of squared residuals as regressing y
on X: see Exercise 17.2. So the kernel of the test statistic for HB = 0
can be calculated as e*’e* — e’e, where e’e is obtained from the long
regression of y on Z (or equivalently of y° on Z, or of y on X), and
e*'e* is obtained from the short regression of y° on Z,.

All this is easier done than said. For example, for the butter demand
equation, the restriction B, = —B; says that

E(y) = x,B, + xoBo + xX3Bs + x4Ps4
= x,B; + XBp + (x5 — x4)Bs
= 2,8, + 2By + zsPs,

with z; = x,, Zy = Xo, Z3 = X3 — X, The restricted regression is
implemented by running y on Z = (z;, Zy, Z3)-

For the Cobb-Douglas production model, the constant-returns-to-
scale restriction may be implemented by regressing y° = Y — N =
log(output/labor) on z; = 1, z, = K — N = log(capital/labor), and 23 =
L — N = log(land/labor).

For the war and peace consumption functions, the equal-slope restric-
tion B, = B, says that

E(y)

Xlﬁl + XQBQ + stg + X4B4
=x,8; +(xo + xg)Bs T X3Bs

=2z,B, + 2P + z3Bs,

with z, = X, Z, = X, + X4 2Z3 = Xs. This restricted regression is
implemented by running y on Z = (z,, 25, 25). If the equal-intercept
restriction B, = B; is also imposed, write

E(y) = wiB; + woPs,

with w; =z, + 23 = X, + X3, Wy = Zg = Xy + X4. Then run y on W =
(W), W) to impose the second restriction as well.

The approach we have been using amounts to solving out the hypoth-
esized coefficient restrictions to get a shorter regression that can be
fitted by unrestricted least squares. Since the approach is feasible for
any general linear hypothesis, in practice there is no need to calculate
(t — 0°)'D(t — 0°) directly to get the test statistic 7°. Just use the residual
sums of squares from the long, and an appropriate short, regression.
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Here is a final example to show how the solving-out-the-restrictions
approach works. Suppose that you have a pair of data sets to which

E(Yl) = X,B;, E(Yz) = X8,

apply, where y, is n; X 1, X, is n, X k, ypis ny X 1, and Xy is ny X k.
You want to test the null hypothesis 8; = B,. Assemble the data together

as
= E(YI)) — <X131> _ (xl 0) (‘31)
E = = —3 —
) (E(Y2) X5B2 0 X,/ \B. XB.
say. If the null B, = B, (= B°, say) is true, then
E(y) = (§;> B° = X°p°,

say. The relevant sums of squared residuals are obtainable from a long
regression (y on the 2k columns of X) and a short regression (y on the
k columns of X°). Provided that the CNR model applies to each sample,
with the same o, while the two samples are independent, the difference
between those sums of squared residuals is the kernel of the appropriate
F-statistic. This special case of a standard F-test is sometimes referred
to as a “test for structural change,” or as a “Chow test.” Incidentally,
the long-regression sum of squared residuals can be calculated by
adding together the sums of squared residuals obtained in separate LS
regressions of y, on X, and y, on X,.

22.3. One-Sided Alternatives

To test the single-parameter null hypothesis B; = B} against the alter-
native that §; # B, we have learned to use the ¢-statistic given by u =
(b; = B;)/64, rejecting the null iff |u2| > ¢, where G(c) = 0.975 with G(-)
being the cdf of the t(n — k) distribution. :

Now suppose, as occurs in some economic contexts, that the known
alternative to B; = B is one-sided, say B, > By- A one-tailed version of the
t—te:st can be used: reject the null B; = B; iff u} > ¢*, where G(c*) = 0.95.
Th¥s variant is sensible. Heuristically, it would be foolish to reject B, =
B in favor of B; > B; when the sample has b; < B;. More formally, the
one-tailed test has more power than the two-tailed test, for all B, > B;
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—which is the only region where power is wanted in the present situa-
tion: see Exercise 22.4.

We have learned, as an equivalent to the t-test, the F-test that uses
the statistic v} = (b; — Bj‘-’)z/c‘rf}., rejecting the null if v} > d where G,(d) =
0.95, with G,(-) being the cdf of the F(1, n — k) distribution. The two
appreaches are equivalent because v} = (4)* and d = ¢*. But the F-
statistic v = (uj?)2 disregards the sign of b, — 8, so it is not attractive
for use when the alternative is one-sided.

For a joint hypothesis with one-sided alternatives, no ¢-test is available,
The F-statistic

v° = (t — 0°)'D(t — 0°)/(p&?),

treats positive and negative misses symmetrically, so it is not attractive
for tests against one-sided alternatives. For a discussion of appropriate
procedures, see Gouriéroux et al. (1982) and Wolak (1987).

22.4. Choice of Significance Level

Suppose that you are asked to test the null hypothesis B; = 0 against
the alternative B; # 0, in a sample with n — k = 120. You obtain the
test statistic «; = 1.82. Critical values from the N(0, 1) table are ¢ = 1.96
at the 5% level and ¢ = 1.64 at the 10% level. With 1.64 < 1.82 < 1.96,
the null would be accepted at the 5% level, but rejected at the 10%
level. The same piece of evidence that will accept B; = 0 at the 5% level
will reject it at the 10% level. The interval between 1.64 and 1.96 is a
“zone of opportunity.” Indeed, whatever numerical value the sample
delivers, a diligent researcher can force acceptance by setting the sig-
nificance level low enough (e.g., 1% or 0.5%) or can force rejection by
setting the significance level high enough (e.g., 10% or 20%).

How should a researcher choose the significance level? Econometrics
texts offer little, if any, guidance. In statistics texts, the discussion focuses
on the power of the test—the probability of rejecting the null hypothesis
as a function of the true parameter value.

Generally power declines as the significance level declines: see Exer-
cise 22.4. Moving from the 5% to the 1% significance level not only
reduces the probability of rejecting a true null, but also reduces the
probability of rejecting a false null. The first reduction is desirable, the
second is undesirable.
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There is a trade-off. To resolve the trade-off, statistics texts recom-
mend a cost-benefit calculation: if the net cost of accepting a false null
is less than the net cost of rejecting a true null, then choose a low
significance level. Although this cost-benefit approach should be con-
genial to economists, the 5% level is almost always used in the empirical
economics literature. It is hardly plausible that distinct cost-benefit cal-
culations underlie that ubiquitous level. Occasionally, the 10% and 1%
levels are used. Reading closely, you may well be able to spot the occa-
sions on which those levels replace 5%. If an author really wants to
accept the null, she may switch to the 1% level; if an author really wants
to reject the null, he may switch to the 10% level. When such switches
do not suffice, you may see such language as “barely significant at the
1% level” (a hint that the author really wants to accept) or “almost
significant at the 10% level” (a hint that the author reaily wants to
reject).

This state of affairs may seem very unsatisfactory, but the textbook
recommendation of a cost-benefit calculation is not appealing either.
For academic research reports, neither the costs nor the benefits of the
test decision are clear. It is rare for an economic agent to undertake
real-world action upon reading a test outcome reported in a journal
article. At most what may happen is that readers’ beliefs shift in the
light of the evidence. So, in almost all applied economic contexts, the
significance level is necessarily a matter of convention rather than of
calculation.

It follows that readers should not take an author’s announcement of
significance or nonsignificance as authoritative. Regardless of the
author’s choice of significance level and announcement of a decision,
sensible readers will have to decide for themselves whether the evidence
is weighty or fragile. Regardless of how the author phrases the test
decision, the burden remains on readers to assess whether the sample
evidence against the null (the magnitude of the test statistic) is strong

“enough to induce a change in their beliefs.

A couple of lessons for writers emerge:

* It is usually bad practice to say “significant [or nonsignificant] at the
5% level,” without reporting the magnitude of the test statistic. (It is
even worse practice to announce “significance” or “nonsignificance”
without specifying a null hypothesis. In particular, the zero null may
not be the interesting null.)

* A useful alternative to the test statistic is a report of its “P-value,”
or “marginal significance level,” which is the level at which the observed

|

VOO0 0QO00O000O00OOLOOOOLOOOLLLLLLLLOY

N\
J

CO0Q0

CCcoCeco




T T T T T YU U000 00000000000000000D0D

240 22 Issues in Hypothesis Testing

test statistic would be just significant. For example, suppose that a x*(p)
test is conducted, the cdf being G,(). If »° is the observed test statistic,
then its P-value is a° = 1 — G,(«°). The null would be rejected at all
significance levels higher than «°, and accepted at all significance levels
lower than o°. So the P-value gives readers more information than is
contained in the binary report “accept” or “reject.”

22.5. Statistical versus Economic Significance

A strong case can be made that hypothesis testing is widely abused in
empirical economics: see McCloskey (1985). In many research reports,
the author’s conclusions emphasize the statistical significance, rather
than the economic significance, of the coefficient estimates. Yet, a coef-
ficient estimate may be “very significantly different from unity” (by the
t-test), while that difference is economically trivial. Or the difference
may be “not significantly different from unity” but have an economically
substantial magnitude.

It is certainly desirable to know how reliable a coefficient estimate is,
that is, to know its standard error. But that desirability does not suffice
to justify a hypothesis test, which involves measuring the estimate rela-
tive to its standard error. Rather, the confidence interval for B;, con-
structed from the point estimate 4; and its standard error &, will be the
proper target in most research.

When a null, say, B; = 1, is specified, the likely intent is that ; is close
to 1, so close that for practical purposes it may be treated as if it were 1.
But whether 1.1 is “practically the same as” 1.0 is a matter of economics,
not of statistics. One cannot resolve the matter by relying on a hypothesis
test, because the test statistic (b; — 1)/6,, measures the estimated coeffi-
cient in standard error units, which are not the meaningful units in
which to measure the economic parameter §; — 1. It may be a good
idea to reserve the term “significance” for the statistical concept,
adopting “substantial” for the economic concept.

There is a further objection to the common practice of indiscrimi-
nately reporting all the “s-statistics” for a regression: it encourages rank-
ordering of the explanatory variables with respect to their “importance.”
What does it mean to say that in a multiple regression one explanatory
variable is “more important” than another? '
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A simple example may help to address this question. Suppose that
this estimated regression is reported: '

§ =50+ 2%, — L.

A naive reader might conclude that x, is “more important” than x,
because its coefficient is larger in magnitude. A more sophisticated
reader would recognize that the magnitude of the coefficients can be
changed arbitrarily by changing the units in which the variables are
measured. So he might ask for the standard errors. Being told that the
standard errors for b, and b; are both 0.5, so their “f-statistics” are 4
and —2, he might conclude that x, is “more important” than x; because
its “¢-statistic” is larger in magnitude. But that conclusion is not sensible
if in fact the variables are y = weight (in pounds), x, = height (in inches),
x3 = exercise (in hours per week), and the regression is to be used by a
physician to advise an overweight patient. Would either the physician
or the patient be edified to learn that height is “more important” than
exercise in explaining variation in weight?

The moral of this example is that statistical measures of “importance”
are a diversion from the proper target of the research—estimation of
relevant parameters—to the task of “explaining variation” in the depen-
dent variable.

- 22.6. Using Asymptotics

In the CNR model, provided that n — k is large, there is no need to
refer to the ¢- and F-tables when o® is unknown. Recall the two asymp-
totic results shown in Section 18.3:

(1) If u ~ t(n), then u > N(0, 1).
(2) If v ~ F(m, n), then mv 2 x*(m).

Applied to the CNR model, (1) implies that there is no objection, when
n—kis large, to treating

as if it were

7= (b — By)low,

7
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In the same manner, (2) implies that there is no objection, when n — £
is large, to treating

& = pv = (t — 0)'D(t — 8)/6”
as if it were
w = (t — 0)'D(t — 0)/c”.

For example, with n — k = 200 and p = 2, the exact 5% critical value
d, = 3.04 from the F-table gives pd, = 6.08 as the critical value for & =
pv, while the approximation will use ¢, = 5.99 from the chi-square table.

This simplification applies to hypothesis tests as well as to confidence
region construction.

22.7. Inference without Normality Assumption

From Chapter 19 on, the theory has relied on normality of y. In practice,
researchers routinely use the t- and F-procedures without making an
explicit normality assumption. A better practice might be to use the
normal and chi-square approximations of Section 22.6, for an asymp-
totic theory appropriate to the CR model implies that b is asymptotically
normal, that % is asymptotically N(0, 1), and that @ is asymptotically
X2(p). Without normality, there is no presumption that the ¢- and F-
tables offer better approximations to the exact distributions of those
statistics even when the sample size is small.

To develop an asymptotic distribution theory that is appropriate to
the CR model without normality, additional specification is needed. How
does the X matrix develop as n increases? That is, how are the additional
rows of X generated? In random sampling from a multivariate popu-
lation, further specification is unnecessary, because random sampling
extends itself automatically. But with our stratified sampling scheme,
some additional assumptions are required. The most natural assump-
tion is

lim(Q/n) = @,

where ® is positive definite. (Here lim is shorthand for limit as n — ©.)
To see the implications of this assumption, first rewrite V(b) as

V(b) = 6*Q ™" = (@®n)(Qm) ",
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lI‘f lirn(Q_/rIL) = fIl), "vith <I) positive definite (hence invertible), then
1.m(Q/n) = @7, Since lim(c*/n) = 0, that would imply lim V(b) = O.
Slfnce E(b) = B for every n, it would follow (by the multivariate version
of convergence in mean square) that b > dbw i
Sy B, and b would be a consistent
d.Su.ppose furth'er t}?at the €; = y; — x;p are independent and identically
1str1butfad—wh1ch is stronger than the uncorrelated and identical
expectation and variance assumptions of the original CR model. Then

it can be shown (by a multivari i
arnate extension of the Centr imi
Theorem) that 2l Limit

b 2 N[B, (cZn)®™1].

Similarly it ¢ 5° 5 o°
y an be shown that 6° % ¢°. The net result is that the

asymp.totic approximations of Section 22.6 will apply even without

assuming normality for y. See Amemiya (1985, pp. 95-101) Judge et

al. (1988, pp. 264—270), or Greene (1990, pp. 312-318). , i
Henceforth when we report asymptotic properties in models with

nonstoch.astlc X, we shall be presuming that additional assumptions of
the type introduced here are met. A

Exercises

22.1 Suppose that the CNR model applies to E(y) = x,B; + x,B, +
x3Bs + x4B4. Letz = x5 + x,. Fora sample of 124 observations, regrzs;in
y on (x.,, X, X3, X4) gives 60 as the sum of squared residuals, whil§
regressing y on (xi, X, z) gives 64 as the sum of squared residuals. Test

at the 3% significance level the null hypothesi i
. sis B = -
sided alternative B3 # B,. P Fa = Puagainstthe o

22.2 Suppose that the CNR model applies to E(y) = x,B, + xoB, +
x3Bs + x4B4, where y = log output, x; = 1, x, = log capital, x 2=210
land, and x, = log labor. Letw =y — x,, z) = x), 20 = %, — %, ’z 3= x ig
x4. For a sample of 104 firms, regressing y on (x,, Xo, X3, X4) éi\?es 78 as
the sum of squared residuals, while regressing w on (z;, zo, z3) gives 80
as the sum of squared residuals. v

(a) Test at the. 5% significance level the null hypothesis B, + B; +
+-= 1 against the two-sided alternative B, + B, + By # 1.
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- i ressed
— Xo, 3 = Xg — Xg. If Vs TEZ

(b) Letv =y — Xg, {y = %1, 82 = %3 d residuals will be obtained?

on (t;, by, t3), what sum of square

del applies to E(y) = %P1 T xoPBs + x3Bs + x4f34 +

22.3 The CNR mo and also regresses w

x5B5. A researcher regresses y on (1, X9, X35 x4,+x5),
n = = X9 T X3.
on (21, zp), where w =y = X4, 21 = X1: %2 9 3 | f
i i arison o
State the joint null hypothesis that is testable by a comp

® e iduals from those two regressions.

the sum of squared resi g -
(b) What is the “numerator degrees of freedom” parameter f

test?
92.4 The regression slope b in a CNR modfel is dlstnb.ut.ed c;N iBl;/é).
The .null hypothesis 8 = 0 will be tested by using the statistic z b
sided alternative) situation, consider run-

and 5% levels. Write and run a program
f the two tests at these nine values of

(a) Fora conventional (two-
ning the test at the 10%
that tabulates the power o
the true parameter {:

-9 —-15 -1 —-05 0 05 1 1.5 2.

(b) What does your table say about the effect of significance level on

power?

() Now consider a or
being B > 0. Specify an appro
uses 2° and operates at tl;se Ef% N
test at the nine values of § given a . . .

(d) Comparing your results in (c) vtnth those m'l (:),a::attw(:f)ta?led
conclude about the relative merits of one-taile

- 5
tests at the same significance level:

ne-sided-alternative situation, the alternative
priate one-tailed procedure that
level. Tabulate the power of the

in Exercise 21.6, consider

i ction estimated :
225 For the carmings M different from zero? Is it

bs, the coefficient on race. Is it siglinﬁcantl};
large, that is, substantial in economic terms:

23 Multicollinearity

23.1. Introduction

Multicollinearity, or simply collinearity, refers to correlation among the
explanatory variables in multiple regression. As in Section 19.4, let us
focus on the slope coefficients B;(j=2,...,k in a CR model that

includes a constant as %,. The estimated slopes are the bj, whose vari-
ances are

oy, = o’lgs = o¥/x¥'x¥ = o® / [(1 ~R)Z (x; — :?,)2] ,

where R;" is the coefficient of determination in the auxiliary regression
of x; on all the other x’s. The condition that X have full column rank
rules out exact collinearity: because rank(X) = £, no x; can be an exact
linear function of the other X’s, SO no Rf will equal 1. But the rank
condition does not rule out high collinearity—one or more R?’s that are
close to 1. Indeed, many economic data sets do show high auxiliary
R?s, and virtually none show zero Rf’s. From the variance formula, we
see that ceteris paribus, a high auxiliary R} makes for a large o}. As
Judge et al. (1988, p. 882) write:

Multicollinearity is defined as the existence of one or more near-
exact linear relations among the columns of the regressor matrix
X. The consequences of multicollinearity are that the sampling
distributions of the coefficient estimators may have such large var-
iances that the coefficient estimates are unstable from sample to
sample. Thus they may be too unreliable to be useful.

When its variance is large, the estimator will be imprecise, the sample
value may well be far away from the true value, the confidence interval
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for Bj will be wide, very diverse hypotheses about Bj.will all be ?cc?gtabge,
hypothesis tests on §; will have little power, and b \‘Nlu not be signi canby
different from “anything.” In short, our best estimate of B, will not be
very good, and the sample will have told us little about the true value
Offﬂ these unpleasant things are fully reﬁected‘in the Stal’.ldz‘lrd error
of bj, just as they would be if Rf were zero wh‘xl.e the varfatlon of }aij,
namely Z(x; — ij)g, were small and/or the (conditional) Yanance 9f t ‘ﬁ
dependent variable, namely o2, were large. The LS estimate b; 1s- sti

the MVLUE, its standard error'is still correct, and the conventional
confidence interval and hypothesis tests are still valid.

Nevertheless, in empirical research papers one comes across Cf)m,-’
plaints such as “the standard errors are inflated becaus? of collme.arlty,
or “this variable is really significant but multicollinearity makes it look
insignificant.” - o o

To evaluate such complaints, consider a sxmpler. situation: estimating
a univariate population mean when the sample size is srr;all. Suppose
that a random variable y has expectation p. and variance ¢”. In _random
sampling, sample size n, the MVLUE of p is the.: samPle meax_x y‘, whose
variance is V() = ¢°/n. If n is small, then.ceterls.parlbus, Y(y) is large.
If V(3) is large, then our estimator of p is imprecise, the estimate y 1rlnla;y
well be far away from the true p, the confidence interval for p. wi e
wide, very diverse hypotheses about p will all be ac.ce[.)table, hy[?othe51s
tests on p will have little power, and j will not be mgmﬁcantly dxfferer(;t
from “anything.” In short, our best estimate of p will not be very good,
and the sample will have told us little about the true Yalue of p. o

So the problem of multicollinearity when'esu'mau?g a _concimor;?
expectation function in a multivariate populat}on is quite paral!e to ; e
problem of small sample size when estimaur'xg the expectation o da
univariate population. But researchers faced with the latter proble;n 3

not usually dramatize the situation, as some appear to do when face
with multicollinearity.

23.2. Textbook Discussions

It may be that econometrics textbooks contribute to the c.lramanzatlon
of multicollinearity by giving elaborate attention to the subject. Johnston
(1984) writes:
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The prevalent case in so much econometric work, especially with
time series data, is one of high but not exact multicollinearity. This
raises three questions: 1. What effects to expect from multicolli-

nearity. 2. How to detect the degree of multicollinearity. 3. What
remedial action to take. (p. 245)

Among the effects to expect:

A common result is to find regressions possibly with a very high
overall R?, but with some (or many) individual coefficients appar-
ently insignificant. The high R? arises when the y vector is close io
the hyperplane generated by the x; vectors and the apparently
insignificant coefficients arise because the X; vectors are nearly lin-
early dependent. (pp. 248-249)

However:

It is also possible to find a high R? and highly significant ¢ values
on individual coefficients, even though multicollinearity is serious.
This can arise if individual coefficients happen to be numerically
well in excess of the true value, so that the effect still shows up in
spite of the inflated standard error and/or because the true value
itself is so large that even an estimate on the downside still shows
up as significant. (p. 249)

Among the detection devices is |X'X|. This determinant

declines in value with increasing collinearity, tending to zero as
collinearity becomes exact. While a useful warning signal, we have
no calibration scale for assessing what is serious and what is very
serious. (p. 249)

As for remedies:

More data is no help in multicollinearity if it is simply “more of the
same.” What matters is the structure of the X'X matrix, and this
will only be improved by adding data which are less collinear than
before. However, there is often no easy way for an econometrician
to get better data. The data are produced by the functioning of the

economic system, and the collinearities reflect the nature of that
system. (p. 250)
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al. (1988, chap. 21)

Turning to another text, we find that Judge et
They point out that

devote over twenty-five pages to multicollinearity.
coefficients may appear to be nonsignificantly different from zero, and
hence variables may be dropped from the regression, not because the
variables have no effect, but rather because the sample is inadequate to
estimate the effects precisely. This can happen even though the muliiple
R? is high enough to indicate that the full regression has significant
explanatory power.
They argue that methods are required to detect the presence, severity,
and form or nature of multicollinearity. They review some methods
used to decide that the multicollinearity is severe: the simple correlation
between a pair of explanatory variables exceeds 0.8 or 0.9, or the simple
correlation exceeds the R? of the main regression. Such cutoff points
are, they warn, arbitrary, and “pairwise correlations can give no insight
into more complex interrelationships” when more than two explanatory
variables are involved (p. 869).
Other methods are discussed: the determinant of X'X, variance infla-
tion factors, auxiliary regressions, Theil’s multicollinearity effect, and
matrix decompositions. In the decomposition approach, relatively small
characteristic roots of X'X indicate near-linear dependencies among the
explanatory variables, and the associated characteristic vectors identify
the dependencies themselves. They remark (p. 870) that “analysis of
the characteristic roots and vectors of the X'X matrix can reveal much
about the presence and nature of multicollinearity.” They view the
decomposition approach as the best of the available devices, but caution
that it does not provide a complete solution: fixing a cutoff point for
relative smallness is just a rule of thumb, and the method may fail to
isolate multiple linear dependencies from one another.
Judge et al. go on to discuss several strategies for mitigating the effects
of severe multicollinearity, while emphasizing that none of those strat-

egies is completely safe.

23.3. Micronumerosity

Econometrics texts devote many pages to the problem of multicolli-
nearity in multiple regression, but they say little about the closely anal-
ogous problem of small sample size in estirhating a univariate mean.
Perhaps that imbalance is attributable to the lack of an exotic polysyllabic
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name for “ ize.”
‘ or small sample size.” If so, we can remove that impediment b
introducing the term micronumerosity. ’
Su -
) }l)po§e an econometrician set out to write a chapter about small
ple size 1n sampling from a univariate population. Judging from

what is now written abou icolli :
t multic . .
this: ollinearity, the chapter might look like

Micronumerosity

Th.e extreme case, “exact micronumerosity,” arises when n = 0, i
whlch‘case the sample estimate of w is not unique (Technica’llln
tbere is a violation of the rank condition n > 0: tl;e matrix 0 i
snr‘lgular.) The extreme case is easy enough to recognize fN .
micronumerosity” is more subtle, and yet very serious I‘t ari:;::r
when -the. rank condition n > 0 is barely satisfied. Near.micro i
merosity 1s very prevalent in empirical economics. ™

Consequences of micronumerosity
;I"?e consequences of micronumerosity are serious. Precision of
e:[;:atlon ;s reduced. There are two aspects of this reduction:
ates of p may have large erro )
il b e, ge errors, and not only that, but V()
. linvestlgaiors _will §omeﬁmes be led to accept the hypothesis p. =
no{e;:}all:tse U =0 yt/)oi 1s small, even though the true situation may be
w = ut simply t
G to pich . ply that the sample data have not enabled
adgb? estimate of p will be very sensitive to sample data, and the
dition of a few more observations can sometimes produce drasti
shifts in the sample mean. ! e
. t’(l;l; true p. may be sufficiently large for the null hypothesis p =
numemro?_]ected, even though V(3) = ¢*/n is large because of micro-
pamer 51.ty. But if the true w is small (although nonzero) the
ypothesis u = 0 may mistakenly be accepted.

Testing for micronumerosity
Tests fi i
o | or t_he plt*iesence of micronumerosity require the judicious
various fingers. Some res
. earchers prefer a singl
! : . ngle finger,
t}:rs use their toes, still others let their thumbs rule s -
ene . . . :
. bge " Oza(l)lg reha}.ble guide may be obtained by counting the
servations. Most of the time i i
' € In econometric analysi
" . N analys
hen 7 is close to Zero, it is also far from infinity o
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Several test procedures develop critical values n*, such that
micronumerosity is a problem only if 7 is smaller than n*. But those

procedures are questionable.

Remedies for micronumerosity
If inicronumerosity proves serious in the sense that the estimate of
p has an unsatisfactorily low degree of precision, we are in the
statistical position of not being able to make bricks without straw.
The remedy lies essentially in the acquisition, if possible, of larger
samples from the same population.

But more data are no remedy for micronumerosity if the addi-
tional data are simply “more of the same.” So obtaining lots of small
samples from the same population will not help.

If we return from this fantasy to reality, several lessons may be drawn.

* Multicollinearity is no more (or less) serious than micronumerosity.
Exact multicollinearity (RJ2 = 1) is a close analogue of exact micronu-
merosity (n = 0). When a research article complains about multicolli-
nearity, readers ought to see whether the complaints would be con-
vincing if “micronumerosity” were substituted for “multicollinearity.”

* For example, if a test for exact multicollinearity is reported, the null
hypothesis being RJ2 = 1, readers ought to consider whether they would
test the null hypothesis n = 0. Or if a test for orthogonality is reported,
the null hypothesis being Rf = 0, readers ought to consider whether
they would test the null hypothesis that = is large. It is quite sensible to
measure n, but would one want to undertake a statistical test on the
true value of n?

* For another example, if a rule is proposed to decide whether the
collinearity is severe (how large R]? has to be before one says that there
is a multicollinearity problem), readers ought to consider whether it is
plausible to develop a rule that decides how small n has to be before
one says that there is a small-sample-size problem.

23.4. When Multicollinearity Is Desirable

Multicollinearity may make the estimates of individual B;'s imprecise,
while facilitating the precise estimation of particular combinations of
the elements of B. Suppose that we have estimated
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E(y) = Bi + x5B5 + x4s,
by

J = b1 + 29y + x5bg.

Let 6 = B, + Bs, which is estimated by i = by + b,

the estimates are The variances of

2 _ 2 29
O =0 0'2= 2 33 2 _ 2,99 3
q, b = 0°q, o, =0°(q +43+2q23),

Where tlle q, / are Clements Of Q . I k \%Y g =

>

- 1 r
Q22 - <T 1> ’ Q22 - (Q>2k2)_1 =( - r2)—1 ( 1 “T) .

-7 1
Here r is the sample correlation between xg and x3. We have

2 _
Oy = 1/(1 - 72) = 0-53, 0'12 = 2/(1 + 7).

If r = 0, there is no collinearity, and
2 3
o}, = o-,i =1, o, = 2.
Butif r = 0.9, there is strong collinearity, and

2 _ 2 _
Op = 04 = 1/0.19 =53, o2=9/1.9 = 1.05.

In this i i i '

o exa;nple, COlllI.l?arlty hinders precise inference about B2 and
Bs : garaste Y, but facilitates precise inference about their sum2 8 =
2 s- So if we happen to be interested in that particular 8, then the

high positive colli ity i : "
(1971) nearity is desirable. For further discussion, see Conlisk

23.5. Remarks

* In the CR mod

el, all the conse icolli i
refiecied in V(1) s oo > consequences of multicollinearity are
R ¢ Q" or in its unbiased estimator V(b) = ¢’Q"!
o vcarct er'i s’ ?Il*l}id not be concerned with whether or not “there reall);

arity.” They may well be ¢ i

oncerned with whether th i

of the coefficient esti er reason. 1o oro.
estimates are too large—f
: . or whatever reason—

° n—to pro-
ide useful estimates of the regression coefficients. o
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* Multicollinearity is just one of the possible sources of high 0',2,1.. For
estimation of B;, what is desirable per se is not low collinearity (small
RJ?) but rather low coefficient variance (small 0'%}.).

¢ A sensible researcher may well want to calculate the auxiliary R?’s,
but it is unlikely that she will want to test hypotheses about their true
magnitudes.

* To say that “standard errors are inflated by multicollinearity” is to
suggest that they are artificially, or spuriously, large. But in fact they
are appropriately large: the coefficient estimates actually would vary a
lot from sample to sample. This may be regrettable but it is not spurious.

* To say that “the coefficient is really significant but multicollinearity
makes it look insignificant” is to confuse statistical significance with

economic significance: see Section 22.5.

Exercises

23.1 These results were found for LS regression of y = executive
salaries on x, = sales and x, = profits, across a sample of 102 firms:

) , , 10 8
§ =050, +0.40x,, e'e=250, X'X= ( 8 10) '

(0.83) (0.83)
(All variables had been expressed as deviations about means for con-
venience.) Assume that the CNR model applies to the salary function
E(y) = Bix; + Baxo. Evidently, the high collinearity between sales and
profits has prevented precise estimation of the parameters of the salary
function. To eliminate this problem, it has been proposed that we
proceed as follows. First, regress profits on sales, and obtain the resid-
uals x¥. Second, regress y on x; and x§ to estimate the parameters of
the salary function. Denote the results of the second step by §* =
€% + cox¥.
(a) Calculate ¢, and ¢o, and calculate their standard errors.
(b) Evaluate the proposal as a device for eliminating collinearity.
(c) Evaluate the proposal as a device for obtaining more precise
parameter estimates.
23.2 The CR meodel applies and the X matrix shows high collinearity.
The sample size is doubled by getting two observations on y, rather than
- one, at each of the rows of the original X.
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(2) What happens to the degree of collinearity?
(b) What happens to the variance of the LS coefficients?
(c) Comment on the claim that more data is no remedy for the

multicollinearit bl i i “
ultic y problem if the data are simply “more of the

23.3 Suppose that p = =
is unknoWI:f R = E(y) = XB, where p and X are known and B

(a) Under what condition on the i
rank of X is § uniquely d i
(b) Comment on the relevance of this result ¢ e ol

problem. o the multicollinearity
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24.1. Introduction

In empirical research, it is common practice to run several versions of
a regression. We will explore some reasons for this practice and consider
how the resulting estimates may be interpreted.

24.2. Shortening a Regression

Suppose that as a result of high collinearity (or for some other reason),
the LS coefficient estimates are not precisc enough to be useful. What
should be done? The appropriate response will depend upon the objec-
tive of the research. If the objective were to “explain the variation in
y,” that is, to get a good fit, that is, to get a high R?, then there would
be no good reason to be concerned with the individual b;’s. And so there
would be no good reason to be bothered by large standard errors and
“nonsignificance” of the individual coefficients.

But suppose that the primary research objective is to learn about B,

in the model

E(y) = X8, + XoBs.

For example, consider the household demand for butter, where y =
expenditures on butter; the %, variables in X, include the constant,
income, butter price, and margarine price, whose coefficients are' of
interest; and the k, X 1 variables in X, include family size, occupation,
and location, which are included as “control” variables.

We run the long regression § = X;b; + Xob,, intending to use b, as
the estimator of B,. If the CR model holds, then

24.2  Shortening a Regression 255

E(d,) =B, V) =0'Q" =’ Q)" = FFXMX,;)" L.

The estimated variance matrix of b, is V(b,) = 6°Q"". Suppose that the
diagonal elements of V(b,) are so large that b, is not adequately infor-
mative about the parameter vector §,.

A natural response is to shorten the regression, that is, to run y on
X, alone, reporting bf instead of b, as the estimate of B,. To motivate
that response, recall from Egs. (17.7)—(17.8) that

E(bY) = B, + FB,,
V(b) = o*(X}X,)7},

with F = A, X,. As in Eq. (17.9), the variance comparison is clear-cut:
V(b,) = V(b}) + FV(by,)F’,

where FV(by)F’ is nonnegative definite. So V(b,) = V(b}), regardless of
the value of By. The bias of bf as an estimator of B,, namely F,,
vanishes if B, = 0, that is, if the omitted explanatory variables are
irrelevant.

From this perspective, one can identify at least three distinct rationales
for reporting b} rather than b,, that is, for using the short, rather than
the long, regression:

(1) We believe that B, = 0. Excluding X,, as the short regression
does, introduces no bias, and does reduce the variance of the estimator
of B,. Indeed if B, = 0, then b¥ is the MVLUE of B,, because the CR
model will apply to E(y) = X,B;.

(2) We do not believe that B, = 0, but we have lowered our aspiration
level. Rather than insisting on estimating 8, and B, separately, we will
be content with an estimate of B¥ = B, + FB,. Indeed b¥ is the MVLUE
of that parameter combination.

(8) We do not believe that B, = 0, nor will we be content with
estimating ¥, but we have lowered our aspiration level in a different
way. Rather than insisting on an unbiased estimator of B,, we will be
content with a biased estimator, provided that its bias is sufficiently
offset by reduced variance.
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256 24  Regression Strategies

24.3. Mean Squared Error

We focus on rationale (3) from the list above. The idea is that it is
plausible to prefer a biased estimator to an unbiased one provided that
the former’s variance is sufficiently small.

To assess the available trade-off between bias and variance, we gen-
eralize the mean squared error criterion introduced in Section 11.3. If
a random vector t has expectation vector E(t) and variance matrix V(t),
then, as an estimator of the parameter vector 0, its mean squared error
matrix is

S(t; @) = E[(t — 0)(t — 0)'] = V(1) + [E(t — O)][E(t — 0)]'".

The minimum mean squared error (MSE) criterion for choosing an

estimator of 0 says that we should prefer t, to t; if S(t;; 0) = S(ty; 0) in

the matrix sense, that is, if S(t;; 8) — S(t; 0) is nonnegative definite.
For the short- and long-regression estimators of B,, we have

S = S(b;; By) = V(by),
S* = S(b}; B)) = V(b]) + FBoBoF".
Subtracting gives
D =S — S* = FV(by)F' — FBoB:F" = F[V(by) — Bof:]F'.

By the MSE criterion, b} is preferable to b, if the matrix D is non-
negative definite, a sufficient condition for which is that the matrix
[V(by) — B2B4] is nonnegative definite. Heuristically, this condition says
that the magnitude of B, is small relative to the variance matrix of its
estimator b,.

Take the special case where k£, = 1. Now b, and B, are scalars, and
Viby) — BoBs = o',,2 B2, so D is nonnegative definite if Ty o=
(B2/0'b2) =< 1. For this scalar case we have a clean conclusion: on the
MSE criterion, prefer bf to b, iff T3 = (By/o,,)® = 1. This gives a
particular precise meaning to the notion that the bias is small enough
to be offset by reduced variance. Specialize further to the case where
k, = ky = 1. Here b, is also a scalar, and

S = 0',,1 = 0'2/q’1“1
S§* = 0'51* + F?p3 = 0'2/‘111 + (412‘!?11)233-

As functions of By, S is constant while S* is linear in 83. At B, = 0, $* =
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S because gf; = ¢;,. As By departs from zero in either direction, $*
increases, equaling § at B, = *o,, (i.e., at 7, = *1), and thereafter
exceeding S. The short-regression estimator is preferable provided that
B. 1s sufficiently close to zero.

Example. Take ¢® = 1, and 411 = 22 = 1,50 7 = q), lies between
—land 1. Then ¢}, = (1 - r*), whence

S=11-7), S*=1+L

Figure 24.1 takes r = 0.5 and plots S and S$* against B5. The curve
marked $** will be explained later.

These special cases illustrate a tension that is almost inevitable in
those empirical research situations in which the primary objective is to
learn about a subset of the regression coefficients. The tension is
between shortening and lengthening the regression, between “under-

o7

MSE

Figure 24.1 Pretest estimation mean squared errors: S, S*, $** = MSE’s
for b, b%, b¥*.
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specifying” and “overspecifying” a regression function, between bias
and variance. There is an incentive to exclude control variables to
reduce variance, but doing so may introduce bias. There is an incentive
to include control variables to avoid bias, but doing so may increase
variance. The MSE criterion offers a particular evaluation of the avail-

able trade-off.

94.4. Pretest Estimation

Continue with the k, = 1 case. If 72 were known, the choice between
b* and b, would, on the MSE criterion, be clear-cut. But with T2
unknown in practice, how shall we implement the MSE criterion? It is
natural to use the sample to learn about the value of 73, and the natural

estimator of

5 = (Ba/ 0'62)2
is

12 = (by/6,)°

But this is precisely v°, the F-statistic (squared t-statistic) that we would
use to test the null hypothesis B, = 0 against the alternative B, # 0.

If we were testing the null B, = 0, large values of v° would lead to its
rejection, small values to its acceptance. In the present context, we do
not wish to test B, = 0 (which is equivalent to 73 = 0), but we will use
the same statistic v°, to serve as an indicator of whether 73 < 1. Evidently,
small values of the statistic will favor small values of 2.

We have arrived at a particular regression strategy for estimation of f,,
namely pretest estimation. Generalizing to the case where k;, > 1, we may
spell out the procedure as follows.

(i) Choose some cutoff value d.

(i) Run the long regression of y on (X,, X,), obtaining b,, b,
and 62

(i) Calculate v° = byQ,by/(%:67).

(iv) If v° > d, then report b, as the estimate of B,.

(v) If v° = d, then run the short regression of y on X, and report
its b¥ as the estimate of B,.
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The cutoff value d may be the critical value associated with some sig-
nificance level in the F-distribution, although we are not testing the null
B.=0.

In any sample, either b, or b¥ is selected as the estimate. Formally, the
pretest estimator, say b{*, may be written as a weighted average of the
short- and long-regression estimators. Let z = 1 if v° = d, and z = 0 if
v° > d. Then the pretest estimator is

bf* = (1 — 2)b, + zb*.

As a guide to thinking about the distribution of b¥*, consider two
examples, drawn from outside the regression context, that illustrate
how selection affects the distribution of sample statistics.

Example. Suppose that X and Y are independent Bernoulli var-
iables, each having parameter p. Let Z = max(X, Y). Then

PriZ=1) =PriX=1LY=1)+PrX=1Y=0)+Pr(X=0,Y = 1)
= 4 topl-p o+ (-pp
= prpd-p)

So Z is a Bernoulli variable with parameter p* = p + p(1 — p). Then

E(Z) = p* > p = E(X) = E(Y). For example, if p = 0.03, then E(Z) =
0.0975. .

Example. Suppose that X and Y are independent standard
normal variables. Let Z = max(X, V). Let f(-) and F(.) denote the stan-
dard normal pdf and cdf. Then the cdf of Z is

G =PrZ=2=PrX=zNY sz =Pr(X = Pr(Y =2) = F(z).

Clearlz, the probability that Z exceeds some value ¢, namely 1 — G(c) =
1 = F¥(c), is greater than the probability 1 — F(c) that X (or ¥) exceeds
that value. The pdf of Z, namely

g(z) = aG(2)/0z = 2F(2)f(z),
is plotted in Figure 24.2. Observe how the selection shifts the distribu-

tion (and hence the expectation) to the right.

Returning to the regression context, we recognize that, because of
the selection, the distribution theory for the pretest estimator is more
complicated than that for either b, or b¥. For an introduction to the

I
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Figure 24.2 Pdf of maximum of two independent N(0, 1) variables.

theory, see Wallace and Ashar (1972) and Judge et al. (1988, pp. 832-
835).

Example. Resume the example of Section 24.3, with c'r2 =1,
g = g22 = 1, 12 = 7 = 0.5. Suppose that the CNR model applies, 'fm.d
for convenience suppose that ¢” is known, so that the chi-square statistic
w® = (52/0',,2)2 may be used instead of the F-statistic 7°. Then S**, the
MSE for this ideal version of the pretest estimator b¥*, can be calculated
fairly readily from the properties of the bivariate normal distribution:
see Exercise 24.1. In Figure 24.1, the curve S** is drawn for d = 3.84,
which corresponds to a nominal 5% significance level test of B, = 0. As
this example indicates, there is no range of B2 over which the pretest
estimator dominates the other two estimators. So we get no clear-cut
guidance about the attractiveness of pretest estimation.

Explicitly or implicitly, the pretest strategy is followed by many empir-
ical researchers. In journal articles, you will often find that the author
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has “experimented” with some alternative specifications before arriving
at a final, preferred, regression. The experimentation is often of the
type considered here, that is, shortening a regression when some coef-
ficients in the long regression are “not significantly different from zero.”
Other restrictions on a regression are sometimes employed, for
example, constant returns to scale. The motivation is the same:
restricted estimates may be biased, but have smaller variance. Indeed,
as shown in Section 22.2, any set of linear restrictions can be translated
into a zero subvector form, so the analysis applies directly.

The usual computer output (conventional standard errors calculated
for the selected regression) will not do justice to the pretest strategy. In
any sample, the strategy will select either b; or b}, and the conventional
standard errors (from the long or short regression respectively) simply
do not take account of the stochastic nature of that selection. Readers
should at least be aware of the exploratory process that led the author
to the final, selected, regression.

As a writer, it is a good idea to put yourself in the position of a
prospective reader: provide the information that you would want to
have if you were the reader. For some suggestions, see Leamer (1983).

24.5. Regression Fishing

There is a popular style of regression analysis that, though reminiscent
of pretest estimation, is quite distinct in character. Here again the data
consist of y, X, X,, but now the researcher has no particular interest
in either B, or B,. Instead he wants to “explain the variation in the

dependent variable” using only a few explanatory variables. In starkest
form, the procedure is:

() Runy on X;, obtain b¥, V(b¥), and R%(1).
(i) Runy on X,, obtain b¥, V(b¥), and R%(2).
(i) If R*(1) > R%(2), then report the first short regression.
If R}(1) < R%(2), then report the second short regression.

(For convenience, we have allowed the summer vector to appear in both
X, and X,.) Alternatively described: run the long regression, test B, =

0, also test B, = 0, then report the “more significant” of the two short
regressions.
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Naturally, the coefficients in the reported regression will tend to be
statistically significant when assessed by conventional standards. But
those standards are clearly inappropriate. To report and interpret a
selected model as if it were an unselected model is incorrect, as the
examples in Section 24.4 illustrate. More convincing, perhaps, is an
example drawn from Lovell (1983). Suppose that you have a set of &
null hypotheses, each of which is tested at the significance level a.
Suppose that all the null hypotheses are true. What is the probability
of getting at least one rejection? That is, what are the chances of getting
at least one nominally significant result? If the test statistics are inde-
pendent, then

Pr(at least one rejection) = 1 — Pr(all accepted) = 1 — (1 — o).

For example, with £ = 10 and a = 0.10, the probability is 1 — (0.90)10 =
0.65, which means that the actual significance level is 65% rather than
the nominal 10%. Unless you want to test at the 65% level, you should
not consider such an outcome to be statistically significant. It is hardly
surprising, and perhaps not even interesting, to obtain a nominally
significant outcome by fishing.

Exercises

24.1 Some of the flavor of the distribution theory for the pretest
estimator can be captured in a simpler context. Suppose that the random
variable y ~ N(j1, 1), and that we suspect that p is near zero. A single
observation will be drawn. These three estimators of p:

S -
play the roles of b, b}, and b}* respectively.
(a) Show that the expectation of m** is E(m**) = Wy + m,, where
me = F(—90,) + F(—6,), = f(8,) — f(8,),
0, =1+ p, 0, =1—p,

and f(-) and F(-) denote the N(0, 1) pdf and cdf. Hints: (i) If
y ~ N(m, 1), then ¢t = y — p ~ N, 1); (ii) for the N(0, 1)

Exercises 263
pdf, flt) = 2m)™"* exp(—#*2), the first derivative is o =
of(tylor = —if(2).

(b) Show that the variance of m** is
V(m**) = mo(1 — mo)p® + (my — ) + 2pm (1~ ),
where
Mo = o ~ pary + f(8,) + f(8y).
Hint: For the N(0, 1) pdf, the second derivative is ' =
f'@lot = =[4f'(t) + O] = (& — D).

(c) Tabulate the MSE’s of m, m*, and m** as functions of Ty
(d) Comment on the results.
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25  Regression with X Random

25.1. Introduction

We now drop the assumption that the explanatory Yariables are nonsto-
chastic, and provide models that may be relevant in random sar.nphng
from a multivariate population. For least squares linear regression we
report exact results when the population conditional expectatlon fu.nc-
tion is linear, and then asymptotic results when the linearity assumption
is absent. The analysis is a direct generalization of the analysis in S.ectl?ns
13.1 and 13.2, which referred to random sampling from a bivariate

population.

25.2. Neoclassical Regression Model

Once again the data consist of an n X 1 vector y and an n X k matrix
X = (X, . . . , X). The neoclassical regression, or NeoCR, model consists

of these assumptions:
@5.1) E(y|X) = X8,
@25.2) ‘V(y|X) = o’L,
(25.3) X stochastic,
(25.4) rank(X) = k.

Here “|X” means conditional on the matrix X. The most direct inter-
pretation of these assumptions is that 2 CR model holds conditional on

every value of X.
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To provide a framework for the NeoCR model, return to the popu-
lation specification of Section 16.1. Suppose that there is a multivariate
probability distribution for the random vector (y, xo, . . . , x,)’, with pdf
or pmf f(y, x5, . . ., x,). Expectations, variances, and covariances are
defined in the usual manner:

E(}’) = “‘y’ V()’) = 0.y2’ C(xh» x:}) = Ghjy C(xj) }’) = 0jy3

and so forth. Suppose further that the conditional expectation function
of y given the x’s is linear:

E(ylxg, ... 2) = By + Boxg + - -+ + Byxy,

and that the conditional variance function of y given the x’s is constant:
V(ylxss . . ., %) = o

We write these compactly as
E(ylx) =x'B, V(|x) = o2,

where x = (x;, ..., x) withx; = l,andB=(B,, ..., By’

Now we sample randomly from the multivariate population. That is,
n independent drawings, (y;, x}), . . ., (3,, X.), are made, giving the
observed sample data (y, X). The rows of the observed data matrix,
namely the (y;, x/), are independent and identically distributed. (Cau-
tion: x; denotes the ith row of X, not the transpose of the ith column
of X.) In contrast to the CR model, in the NeoCR model the X matrix
is random.

Because the y/s are identically distributed, we have E(y,) = K, and
V(y) = o? for all i. So for the n X 1 random vector ¥y, we have E(y) =
si.,, where s is the n X 1 summer vector. This too contrasts with the
CR model, where E(y) = XB and the expectations of the y;’s differ from

one another. The conditional pdf g(y|x) is the same at all observations,
$O

E(yilxi) = xz{B’ V(yilxi) = 02 (i = 1) e ey n)

Those are consequences of the fact that the (9> x{) are identically
distributed. Now consider the consequences of the fact that they are
independent. For specificity, consider the pdf of the first observation
on y conditional on the first two observations on the k X 1 vector x:

. g*(yllxb Xg) = f*(y1, X4, Xo)/h*(x,, Xp).
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Because (y;, x}) is independent of x,, we have

f*()’h Xy, X9) = f(y1, x;)(x5),

and because x; and X, are independent and identically distributed, we

have

(25.5)  B*(x, Xo) = h(X,)A(Xs).

So

25.6)  g*(ni|x1, X2) = flyy, XVA(xy) = g0 ]%1),

which says that the distribution of y, conditional on (x,, x,) is 1c%ent1cal
to the distribution of y, conditional on only x,. By the same logic,

(25.7) g*(y2|x1, Xg) = flye, X)/h(x0) = g(yalxg)-
Proceed to the joint pdf of y,, y, conditional on x, and x,:
g0 }’2"‘1: Xo) = f**(y1, X1, Yo» Xo)h*(X,y, Xg).

Because (y,, x}) and (y., x}) are independent and identically distributed,
we have

FE*00s X1, 925 X2) = fy, X)f(92, Xo),
and we also have Eq. (25.5). Consequently,

(25.8)  g**(31, Y2l %1, X2) = g(y1|X1)g(y2fx2)
= g*(y;1x1, X2)g*(y2l X1, X2),

using Egs. (25.6)—(25.7). This says that, conditior'lal on x, and x2,, the
joint pdf of y, and y, equals the product of their marglr}al.l pdf’s. In
other words, the variables y, and y, are independent conditional on x,;
and x,, as well as unconditionally. ' .

When two distributions are the same, their expectations and variances
are the same, so from Eq. (25.6) we conclude that

E()’llxx’ Xo) = E(J’llxl) = xB,
V()’llxl, Xo) = V(yllxl) = g%

When two variables are independent, they are uncorrelated, so from
Eq. (25.8) we conclude that

C(yl’ y2lxl’ x2) = 0.
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The same conclusions follow when we condition on Xz, . .
with x,, x,. And conditioning on all n rows x, . .
conditioning on the matrix X. So

., X, along
-, X, is equivalent to

E()’IIX) = E(}’llxl, X, ..., X,) = E()‘lfx[) = xiB,
V(J’llx) = V(J’1|x1» Xg, - .

C(yl’ y2lx) = 0.

cXy) = V(ylixl) = g%,

There is nothing special about the first two observations in this regard,
not even their adjacency. So fori =1, . .., n:

E(}’ilx) = E(}’i|xb Xy ..., X,) = E(}’slxi) = x;B,

V(yz'X) = V(yilxl’ X9y o ooy xn) = V(yi’xi) = 02:

C(yi» 3m1X) = 0, 15 h.

Assembling these results for y,, . .

- » . Into results for the vector y, we
have

Ey|X)=XB, Vy|X) =,
which are precisely the assumptions in Egs. (25.1) and (25.2) of the
NeoCR model. As for the rank condition, Eq. (25.4), there is a technical
qualification. In random sampling there is always the possibility of
drawing an X matrix that does not have full column rank: for example,
all » of the x’s might turn out to be identical. Even if the population
variance matrix of the x’s is nonsingular, obtaining a short-ranked X
has positive probability when the #’s are all discrete. To dispose of that
complication, adopt the convention that any sample with rank(X) < k&
is discarded. Then Eq. (25.4) applies.

With that understanding, random sampling from the multivariate
population specified here supports the NeoCR model.
~ Itis not the only scheme that would do so. Inspection of the argument
above will show that to arrive at Egs. (25.1)—~(25.2), there is no need for
the successive observations on the explanatory variables to be indepen-
dently or even identically distributed: see Section 13.5 for discussion in
the bivariate case. What is ruled out in the NeoCR model is the presence
of the lagged dependent variable among the explanatory variables. For
in that case, y; will be an element of x,, so E(y,|x1, x9) = 3, # E(y,|x,),
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268 25 Regression with X Random

whence E(y|X) # XP: see Section 96.5. It is best to think of E(y;|x;) =
x!B as a necessary, but not sufficient, condition for the NeoCR model

to hold.

25.3. Properties of Least Squares Estimation

It is easy to assess the properties of the LS statistics b= Ay, e = I_\iy,
6% = e'e/(n — k), and V(b) = 6°Q~", in the NeoCR model. The matrices
Q, A and M, being functions of X, are now random, but conditional
on X, they are constant. We calculate:

E®|X) = E(Ay|X) = AE(y|X) = AXB = B,

Vb|X) = V(Ay|X) = AV(y|X)A' = o’AA’ = c’Q 7},

E(e|X) = EMy|X) = ME(y|X) = MXp =0,

V(e|X) = V(My|X) = MV(y|X)M’' = MM’ = oM.
From these it follows that

E(e'e|X) = o® (M) = o°(n — k),

E@6%|X) = o7,

EV®)|X] = E@?Q7'|X) = E@*|X)Q ™" = 0°Q™".

So, conditional on any value of the matrix X, the LS statistics b, 62, and
V(b) remain unbiased. This is a direct consequence of the fact th'a't the
NeoCR model effectively assumes that a CR model holds conditional

on every value of X.
Proceeding to unconditional moments, use the Law of Iterated Expec-

~ tations (T8, Section 5.2) to calculate:

E() = Ex[E(b|X)] = Ex(B) = B,

V(b) = Ex[V(b|X)] + Vx[E(b|X)] = Ex(c®Q"") + O
= ’EQ™,

E(6%) = Ex[E(6%|X)] = Ex(c®) = ¢,

E[V(b)] = Ex{E[V(®)|X]} = Ex(c°Q™") = a’E(Q").
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We see that the LS statistics b, 6%, and V(b) are unbiased unconditionally
as well. So the LS coefficients and their accompanying standard errors

are still appropriate. As for optimality, a version of the Gauss-Markov
Theorem applies in the NeoCR model: in the class of estimators that,

conditional on every X, are linear and unbiased, the LS estimator has
minimuin variance.

We see that LS estimation retains its attractiveness in the NeoCR

model. Some results do differ. For example, in an analysis of the short
regression, the matrices F = A,X, and Q%, = X#'X# are now random,
so that

E(b}) = B, + E(F)Bs,  E(e*'e*) = a’(n — k) + BLE(Q¥)B..

Nevertheless, the main conclusion of the analysis is that the key prop-
erties of LS estimators carry over when X is allowed to be random.
Nothing in the randomness of the explanatory variables per se creates
an objection to LS estimation.

25.4. Neoclassical Normal Regression Model

If we strengthen the NeoCR model by assuming that, conditional on X,
the random vector y is multivariate normal, we obtain the neoclassical
normal regression, or NeoCNR, model:

yIX ~ N(XB, 6°I), X stochastic, rank(X) = k.

The framework for this is random sampling from a multivariate pop-
ulation in which the conditional distribution of y given the x’s is ylx ~
Nx'B, o).

All the distribution results in the CNR model now hold, conditional
on X. For example, let b, be an element of b. Then

b|X ~ N(B;, a®gh).

Observe that the conditional distribution of b; does depend on X via ¢7:
the conditional distributions are all normal with the same expectation
but with different variances.

The marginal distribution of b;, being a mixture of those different
conditional normals, will not be normal. Nevertheless, the confidence
interval and region constructions, and the hypothesis test procedures,

developed in Chapters 19-22, remain valid. To see why, let z =




it
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(b — Bj)/(UVﬁ). Then zj|X ~ N(0, 1) for all X, so the marginal distri-
bution of z is also N(0, 1). Because it is the z variable that is used to
develop the confidence interval and hypothesis tests, those procedures
remain valid. For example, let z; = (b; — B}’)/(O'\/ﬁ). Then, if the null
hypothesis f; = B; is true,

Pr{(z; > ¢)|X] = Pr[(z; > ¢)|X] = 1 = F(c),

where F(.) is the standard normal cdf. This probability does not vary
with X, so if the null is true, then Pr(z} > ¢) = 1 — F(c). The same logic
applies to the statistic »; = (b; — Bj)/((r\/eﬁ). For, ujIX ~ t(n — k) for all
X, which implies that u; ~ #(n — k) unconditionally. And the same logic
applies to the chi-square and F statistics. Confidence levels and signifi-
cance levels are exactly as they were in the CNR model.

In summary, we have not been misled by concentrating attention
{ heretofore on the stratified-on-x sampling scheme. Rather, we have
{ merely avoided writing “|X” throughout.

i
A
\

25.5. Asymptotic Properties of Least Squares Estimation

In Chapter 13, for random sampling from a bivariate population, we
reviewed asymptotic results for the sample linear projection slope that
did not rely on normality, or on linearity of the CEF, or on homoske-
dasticity. Those results generalize to cover LS estimation in random
sampling from a multivariate population.

It is convenient to revise our notation, isolating the constant from the
other explanatory variables. In the population, the £ X 1 random vector
z = (x', y)’ has expectation vector and variance matrix:

_ o (m) _ [E®
E@=pn= <uy> B (E(y)) ’

e (= o;,) _ (V(x) Clx, y))
Ve =% <a;y o,/ \Co.x Vi

Consider the best linear predictor of y given x in the population,
E*(y|x) = a + x'B. The equations determining .its slope vector (see
Section 14.1) can be assembled into C(x, u) = 0, where u =y — (o +
x'B). That is,

g
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Cx, y) = C(x, x'B) = C(x, x)B = V(x)B,

or% B = O, Providéd that X, = V(x) is nonsingular, th lati
BLP slope vector is gular, the population

B=20""o,.

Now turn to the sample. Let X, be the n X (k¢ — 1) matrix of obser-
vations on the nonconstant explanatory variables, x, be the n X 1
summer vector, and y be the n X 1 vector of observations on the
dependent variable. From the discussion of deviations from means in

residual regression theory (Section 17.4), the sample LS slope vector
can be written as

b = (X§'X#)'X5'y*,

where X§ = M;X,, y* = My, M, = I — (1/n) x,x}, or for that matter
as

b = (X¥'X#/n) " (X§'y*/n).

Now‘ recognize that X§'X#/n = S_, the (k — 1) X (& — 1) sample variance
matrix of the x’s, while X3$'y*n = S the (B — 1) X 1 sample covariance
vector of the x’s with y. Thus the sample LS slope vector is

b= (S.)7's,,
which is the obvious analog estimator of the population BLP slope vector
B=E) "o,

In randox'n sampling, sample moments converge in probability to the
corresponding population moments. So S, 5 X, and s, % o,. By a
multivariate version of S2 (Section 9.5) it follows that N

b > B,

so the LS slope vector b is a consistent estimator of the population slope

vector B. Similarly, the LS intercept a = y — X'b is a consistent estimator

of the population BLP intercept o = E(y) — [E(x)]'B = By, — BB

Procceding, by using multivariate versions of the CLT and the Delta
method it can be shown that

b A N(B, @)

with .
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272 25 Regression with X Random
P = (Eﬁ)_lE(X*X*'uz)(En)_ly
x*=x - W, u=1y— (a+x'B).

This generalizes the result (Section 13.1) for the bivariate case, namely
b A N(B, $2m) with ¢ = E(x**u)/V3(x).

This asymptotic theory for the sample LS coefficients holds with no
assumption on the form of the CEF. If the population CEF is linear,
then the LS estimators are unbiased as well as consistent. If also the
population conditional variance function is constant, then E(u2lx) =

V(y|x) = ¢%, and
E(x*x*'u%) = EX[E(x*x*’u2|i)} = E_[x*x*'E(u*|x)]
= E(x*x*'0%) = c?E(x*x*') = 0°V(x) = "2
Then ® will reduce to ¢>(%,.)"", and the asymptotic distribution will

simplify to

b £ N[B, (0*/n)(Z ).

The asymptotic results serve to justify, as approximations when random
sampling from any multivariate population, the conventional normal-

theory confidence regions, confidence intervals, and hypothesis tests.

In practice, the elements of & will have to be estimated. We know
how to do this for the linear-homoskedastic case. For the general case,
S,. provides a consistent estimator of 3. Further, let x¥*' denote the
ith row of X%, and ¢; denote the ith element of the LS residual vector e.

Then

(Iin) 3 (xF*xi'e])
i=1 :

provides a consistent estimator of E(x*x*'4%). The square roots of the
diagonal elements of the resulting estimated ® matrix serve as standard
errors of the LS coefficients when estimating a population BLP, in the
absence of assumptions of linearity of CEF and homoskedasticity. They
may be referred to as “general-heteroskedasticity-corrected” standard

€rrors.

Exercises 273
Exercises

25.1 Suppose that x and y are bivariate-normally distributed with
E(ylx) = a + Bx, V(y|x) = ¢°, and V(x) = o> In random sampling,
sample size n from this population, let b be the sample slope and let s2
be the sample variance of x. Let )

2= Vb~ Blols), w=n¥02 u= V- - B)(olo,).

(a) §how that z ~ N(0, 1), that w ~ x*(n — 1), and that z and w are
independent.

(b) Show that u ~ t(n — 1).

(c) E.xplhain 'how the result in (b) completely specifies the marginal
distribution of the sample slope in terms of parameters and
sample size.




26  Tuime Series

26.1. Departﬁres from Random Sampling

We digress from regression analysis in order to introduce some basic
ideas on time series. We deal with a single variable y, on which we have
a set of n observations y, fort = 1, .. ., n. Here ¢ indexes time, measured
discretely.

Figures 26.1, 26.2, and 26.3 display three sets of 100 observations on
a variable y, with ¢ measured on the horizontal axis, and y, on the vertical
axis.

Figure 26.1 was produced as follows. For ¢ = 0, 1, . . ., 100, obser-
vations u, were independently drawn from the N(0, 1) distribution.
Then, fort = 1, ..., 100, we set y, = u,. So the y, series is a size-100
random sample from the N(0, 1) distribution. The joint distribution of
any adjacent pair of y's is SBVN(0), so E(y|y.-1) = E(y,) = 0 regardless
of the value of y,_,: the conditional expectation of y, given y,_, does not
vary with y,_,. This lack of predictability is manifest in the jagged and
irregular time path of Figure 26.1.

Now, the typical economic time series does not look at all like that
figure, but may well (perhaps after removing a linear time trend) display
a relatively smooth and wavelike course such as that in Figures 26.2 and
926.3. If so, it must be inappropriate to view such a series as a random
sample from a univariate population. (The N(0, 1) population is being
used only for convenience.) If we plan to work with economic time
series data, we need an observational scheme that departs from random
sampling. There are two distinct types of departure from random sam-
pling: the observations may not be independent, or they may not be
identically distributed.

26.1 Departures from Random Sampling
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Figure 26.2 was produced as follows. For t = 0, 1, d ":)?I?i,ozbsal;
vations u, were independently drawn from a N (O, 1? 1sm2 o fhe
fact, the same numerical u, values were. u‘sed a’s for Flgurle 1. n
we set o = uo and generated the remaining ;s YeCUrsively as

9 = Py T OU, ¢=1,...,100),
with p = 0.9 and o = V(1 — p%). ' - dependent 50, 1

Because y; = pyo + Ouy is linear {n the two in eperTN o Ti.l
variables y, and u,, with p2+a=1,it fo.llows that y, ~ 0(1, - b;zn
because y, = py; + Ouy is linear in the two md.epeflden.t N(, 1) varlz s:s
y, and uy, we see that y ~ N(0, 1). Proceedfng in this rr.lan.xtl)ert wcvl : e;
that each y, is distributed N'(0, 1), so they are 1dent1Fally distributed. ud
they are not independent. For example, the covariance between y, an

2 is

C(y1, y2) = C(y1, P11 + Ouz) = pV(y) + oC(y1, ug) = 0,
and the covariance between y, and y; is

_ .2
C(y1, ys) = C(y1, py2 + ous) = pC(y, y2) + oC(y;, us) = p°.

What we have is a set of random variables that are identically, but not
independently, distributed. o

Fo[():using on an adjacent pair (y;, y,—1), we find that their joint distri
bution is SBVN(p), because

Y1) _ (1 0) (y,-l) ,
t - P O U,
where y,_, and u, are independent N(0, 1) variables. Sq, by bivar‘iate
normal ttheory, E(y:|y.-1) = pyi-1: the conditional expectation of y, given
y.—1 does vary with y,_,. This predictability of an ob.servatlon from its
p?édecessor manifest as a relatively smooth wave in Figure 26.2, suffices
. . g . . 16.

to distinguish the series from a random samp ‘

0Turniflg to Figure 26.3, it may come as a surprise to learn that the
observations plotted there were independently drawn. Thg ﬁgu;e XS;

= 00, the u, were independe

roduced as follows. For t = 0, . . ., 100, A

grawn from a N(0, 1) distribution. (In fact, the same u, values were used
as for Figures 26.1 and 26.2.) Then we set
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=ptou (@=1,...,100),

where o = 1/3 and p, = (4/3) sin(7.2f), with the angle measured in
degrees. The u,’s are nonstochastic, so 3, ~ N(p,, 6°). The 9,s are inde-
pendent because the /s are independent. But their expectations p,
differ, so they are not identically distributed. What we have is a set of
random variables that are independently, but not identically, distributed.

Focusing on an adjacent pair (y,, y,-1), we see that their joint distri-
bution is BVN(p,, p,-,, 02, o2, 0) with o® = 1/9. So, by bivariate normal
theory, E(y,|y,_;) = w,: the conditional expectation of y, does not vary
with y,_;. In that sense an observation is not predictable from its pre-
decessor. The regularity in Figure 26.3 is attributable to the sine wave
pattern in the deterministic p, series, not to any dependence among the
random variables y,.

A useful message emerges from the rough similarity of Figures 26.2
and 26.3: for a real-world economic time series, it may not be self-
evident which type of departure from random sampling is relevant.
Perhaps the observations are dependent, being autocorrelated. Perhaps
they are independent, with a changing expectation p,. In the latter case,

T

Figure 26.3 Time series 3.
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if the expectation is expressible as a linear function of observable explan-
atory variables, then a CR model might apply. Of course, both depar-
tures may occur simultaneously.

26.2. Stationary Population Model

Lety = (Ji,---5% -.-,9%,) be an observed vector that displays the
characteristic regularity of economic time series. One setup that pro-
duces such y’s is a CR model, with p = E(y) = X8, X = V(y) = a’l,
and the rows of X showing a regular development over time.

Let us focus on the other departure from random sampling. We will
suppose that the y,’s have identical expectations and variances, but some
nonzero covariances. Then the elements of p = E(y) are all the same,
and the diagonal elements of % = V(y) are all the same, but at least
some off-diagonal. elements of % are nonzero. In Section 28.3 we will
combine the two departures, allowing p = XB as well as a nondiagonal
3 matrix.

Here we confine attention to an important special case. Assume that
E(y) = p = x,p, where x, is the n X 1 summer vector and is a scalar,
and that V(y) = 3, with

Yo Y1 Yo N

Y1 Yo Yi S

Y2 Y1 Yo e
3 =

Yn-1 Yn-2 Yn-3 - - -« Yo

We have introduced the notation
Y; = C(Yo =) (j=0,=1,*2,..., *(n — 1)).

Here v; is the jth autocovariance, with o = C(y,, y) = V(y.) being the
variance. Further,

P = CO 3 ) TVV()VV(3i-] = VilYo
is the jth autocorrelation, with p, = 1. Observe that y_; = +; because
C(yt’ yt+j) = C(ys—j) ys) = C(y:: ys—j)9 With § = t + j' By the same tOken,
P = P

26.3 Conditional Expectation Functions 279

A distinctive feature of the X matrix above is that the covariance
between any two elements of y depends only on the absolute difference
between their subscripts, that is on the time distance between them. We
refer to this specification for p and % as the stationary population, or SP,
model. The term “stationary,” as used here, refers to constancy across ¢.
We have the expectations E(y,), the variances V(y,), and the autocovar-
iances C(y,, y.-;) being stationary, that is, constant over ¢. So the auto-
correlations are also stationary. Of course, the autocovariances and auto-
correlations need not be constant across j.

A stricter form of stationarity holds if the entire joint probability
distribution of any subset of the variables depends only upon the dif-
ferences in their time subscripts. Then, for example, the joint distri-
bution of (y,, ys, y;) is the same as that of (929, y26, y25), and of course
the marginal distribution of each variable is the same. The terminology
varies in the literature: “stationary” may be reserved for the stricter
form, with our weaker form being referred to as weakly, or covariance,
or second-order, or wide-sense, stationary.

26.3. Conditional Expectation Functions

At this point, we are prepared to interpret an n X 1 vector y, the
observed time series, as a single drawing from an n-variate population
with E(y) = m and V(y) = X as above. It is natural to inquire about
CEF’s in the population, in particular, about the conditional expectation
of y at time ¢ given one or more past values of y. For the sake of
convenience, we will suppose that y is multinormally distributed so that
all GEF’s are linear. Normality is not crucial to the analysis; the gist of
the results will apply to BLP’s if the CEF’s are not linear.

As usual, the coefficients of a linear CEF are expressible in terms of
population expectations, variances, and covariances. The general for-
mulas of Section 14.1 and Section 25.5 specialize here because of sta-
tionarity.

For example, consider the CEF of y, given y,_,, namely E(y,|y,-,) =
a + By,_;. Here B = y,/v, = p, and a = (1 — p,)p. For a richer example,
consider the CEF of y, given y,_; and y,_,:

EYlye-1> 3=2) = Bo + Bi1 + Boyis-

Because of stationarity, we get B, = (1 — B, — Bo)W, and
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('Yo 'YI) <Bl) - ('Yl) )
Yi Yo/ \Be Yo
Dividing through by <y, gives

(1 pl) (&) _ (m) -
pr 1 B2 P2
the solution to which is

B, =pi(l — p2)/(1 — P?),

Observe that the autocorrelations suffice to determine the slopes and,
along with the expectation, to determine the intercept. Obse?ve also
that the CEF’s are themselves stationary: they do not change W.lth .

Special cases of the SP model arise when specific a.ssumptlons are
made about the pattern of the autocovariances across j. Such assump-
tions have implications for the pattern of slopes in the CEF's.

Bs = (p2 — PD/(1 — pY.

Example. Suppose that y, = 0,50 p; = 0. Then in E(3,|y.~1), the
slope is B = p;, while in E (91915 y:-2) the slopes are
By =p/(1— 0D,  Ba=—pi(l —p)) = P
Example. Suppose that vo/y; = Y1/¥o, SO P2 = p2. Then in
E(%|y.-1) the slope is B = p;, while in E(3ye—1> 9:-9), the slopes are

Bl = Pb B2 = 0.
In the second example, we see a coincidence of short and long regres-
sion slopes that does not appear in the first example. This suggests that
one may be able to discriminate between alternative special cases of %
by examination of several CEF’s. o .

In practice, the CEF’s will be unknown, and it will be of interest to
estimate them. Given a sample from the SP model, that is,-an obser\fed
y-vector, we may consider estimating the parameters of a population
CEF. The natural procedure is sample LS linear regression of y, on the
corresponding set of past values. - .

For the sake of concreteness, suppose that we wish to estimate
E®lyi-) = o + By.;. With n observations in hand, the usable data
consist of the (n — 1) X 1 vectors y = (¥g, - - - 5 Yu)'» X1 = (1,'. B § N

cand Xp = (Y15 .+ -« 5 Yum1)'s Let X = (x4, Xo) and B = _(a, B? . '.The. LS
coefficient vector is b = (X'X)™'X'y. To assess its sampling distribution,
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observe first that the X matrix contains elements of the random vector
y- So X cannot be constant, which means that a CR model is not appli-
cable. Will a NeoCR model be applicable? With x, = (1, x,5)" = (1, y,-,)’,
it is true that E(y,|x,) = a + By,_, = x/B. However, x,,; = (1, %,.,0) =
(1,)" contains the actual value of y,, so that

E(y|x,, X,41) = EQulye-1, 3) = 3 # E(]x) = x/B.

Consequently, E(y,|X) # XB, whence E(y|X) # XB.

Despite the linearity of the CEF, a strict requirement of the NeoCR
model is violated. Consequently, E(b|X) = AE(y|X) does not reduce to
AX = B, and hence there is no presumption that E(b) = Ex[E(b|X)] =
B. Indeed b is a biased estimator of B, and no unbiased estimator of
is available.

Nevertheless, under general conditions, b is a consistent estimator of
B, and in fact the asymptotic theory for LS estimation (Section 25.5)
applies. The conditions include a specification of how additional obser-
vations are produced, that is how the g vector and % matrix develop
as n increases.

26.4. Stationary Processes

We seek an underlying framework that will support the SP model for
an observed n X 1 vector y, and that will readily extend as n increases.
Consider, then, an infinite sequence of random variables ordered in
time: y, for¢t = ..., -2, -1,0, 1,2, . ... The index ¢ denotes time,
measured discretely. We refer to such an infinite sequence as a stochastic
process. Each of the variables in the sequence has an expectation and
variance, and each pair of them has a covariance. Now suppose that all
the variables have the same expectation and variance, and further that
the covariance between any pair of them depends only on the absolute
difference between their subscripts (that is, on the length of time
between them). We refer to such an infinite sequence as a stationary
stochastic process. (Here again, the stricter concept of stationarity may
arise, and the terminology varies.) Evidently, the SP model will apply to
any n successive variables in such a sequence.

How can such an infinite sequence of random variables be generated?
Here are two leading examples of mechanisms that produce stationary
stochastic processes.
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First-Order Moving-Average Process

Suppose that for ¢ = . . ., -9, -1,0,1,2, ..., the values of y, are
determined by

(26.1) 3, =do + bu, + u,

where the u/'s are independent drawings on a random varia?ole u.with
E(u) = 0 and V(u) = o2. Because the «’s are independent and 1derllt1cally
distributed, it follows that the y’s are identically distributed, and indeed
that the joint distribution of any pair of y's depenfis only upon the
difference in their time subscripts. Similarly for any triplet, and so forth.
This case is called the first-order moving-average, or MA(1), process. .

The first and second moments of an MA(1) process are readily
derived. From Eq. (26.1) and the assumptions on the u, it follows for
every ¢ that:

(26.22) p =do + GE(_) + E@) = bo
(26.2b) Yo = V(bu,_; + u) = $%6° + 0* = (1 + ¢$°)0”,
(26.2c) v, = C(du,_, + u, bu,_g + uy) = ¢U2,

while

Yo = C(u—, + U, bu,_s + u9) = 0,
and similarly y; = v4 = - -- = 0. So the autocorrelations of the MA(1)
process are p; = Yi/Yo = /(1 + ¢?), and p, = 0 forj = 2, 3,....For

any y containing n successive values of y, the SP mo(.iel applies: the X
matrix has all elements zero except along the main diagonal and along
the strips just above and below that main diagonal.

First-Order Autoregressive Process

Suppose that fort = ..., -9, -1,0, 1,2, ..., the values of y, are
determined by

(26.3) 5, =05+ Oy, +u,

where the us are independent drawings on a random varia.ble.u with
E(u) = 0 and V(u) = o2, and |8] < 1. By repeated back-substitution, we
find
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yl = 602 95 + 2 esut—s = e0/(1 - 9) + E esut~s'
s=0 s=0 s=0

Observe how the condition |8] < 1 was used to ensure convergence of
the infinite series. Because the «’s are independent and identically dis-
tributed, it follows that the y's are identically distributed, and indeed
that the joint distribution of any subset of y's will depend only on the
differences in their time subscripts. This case is called the first-order
autoregressive, or AR(1), process.

Taking that stationarity for granted, the first and second moments of
the AR(1) process are readily derived. Observe that u, is independent

of %1, Y2, - - . . From Eq. (26.3) and the assumptions on the u,, it
follows for every ¢ that:

(26.4a) w = 6, + OE(y,—,) + E(u,)
> w=0+0p > p=0/1~-0),
(26.4b) Yo = V(0 + u) = 0%y, + 067 D v, = o1 — 69,
(26.4c) vi = C(Oy—, + w, 1) = OV(y,_,) = OY,,
while
Yo = COy—y + s Yim9) = OC(Y,— 1, Yi—g) = Oy, = 0%y,

and similarly y; = 8%y, v, = 6%y,, and so forth. So the autocorrelations
of the AR(1) process are p; = 8, p, = 6%, ..., p;=¢,....Foranyy
containing n successive values of y, the SP model applies: the % matrix
has all elements nonzero, and declining in a particular way as we go
away from the main diagonal.

In both of these leading examples, the y’s are identically, but not inde- -

pendently, distributed. In the MA(1) process, the dependence is con-
fined to adjacent y’s, while in the AR(1) process it extends indefinitely,

although with [8] < 1, the correlations do taper off in magnitude as

the time distance between the variables increases.

More elaborate cases can be constructed, starting again with an infinite
sequence of independent and identically distributed «’s with E(u) = 0.
Thus, there is the second-order moving-average, or MA(2), process:

Y = o + b1y, + dau,_p + u,

and the second-order autoregressive, or AR(2), process:
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» = 6 + 91}’:—1 + 09y, T U,

with 8, + 0, < 1,8, — 6, < 1, and 6, > —1 to ensure stationarity.
Mixed cases may also be constructed. For example, the ARMA(L, 2)

process has
9 = 80 + By + b1y + ot + U,

with |8] < 1. These elaborations allow for more complex patterns of
autocorrelation, and hence more flexible patterns of CEF slopes, than

appeared in our leading examples.

A couple of remarks:
* In our examples, the u’s were taken to be independent and identi-

cally distributed, so the stricter form of stationarity prevailed. In fact,
uncorrelated w’s with constant expectation and variance would suffice

for most purposes.
* In many contexts, the assumption of an infinitely long past history

is unattractive. Stationarity for ¢ = 1, 9, ..., can still be ensured by

appropriate choice of initial conditions. Thus an MA(1) process can be
started up with uy, and an AR(1) process can be started up with y, =

8,/(1 — 8) + ug/V(1 — 69

26.5. Sampling and Estimation

A stationary stochastic process may be characterized in terms of the
prrocess parameters which consist of the ¢’s and/or s and o°. It may also
be characterized in terms of the population moments, which consist of p,
Yor Y1» Yz - - - (Or equivalently p, Yo, P1s P2 - - - ). The CEF coefficients,

for any set of conditioning variables, can be derived from those. Either
set of parameters may be viewed as interesting features of the popula-
tion. A representation in terms of the process parameters will be more
parsimonious, especially when a low-order AR, MA, or ARMA specifi-

cation applies.

Suppose that the parameters are unknown, but n consecutive obser-
, 9. generated by the process are available. We view y =
, 9,)" as a single drawing from a multivariate population with
E(y) = p and V(y) = % as in the SP model. The analogy principle
suggests that we estimate the population moments by the corresponding

vations y;, . . -
(y1s -« -
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sample moments, and then convert those into estimates of the process
parameters. Define the sample mean, sample variance, and first sample
autocovariance by

(26.52) m = 2 y,/n,
=1
(26.5b) Co = ,2'1 O, — m)2/n,

(2650 ;=3 (3, ~ M3y = ml(n = 1),

Similarly, the second sample autovariance is
€2 = Zg O = m)(ye-2 — m)l(n = 2),

and so forth. The sample autocorrelations are 1; = ¢;lco. These sample
moments can serve as estimators of the populatiorjl moments :
'yj, and pj. K> Yo,
How are they converted into estimators of the process parameters?
There is an extensive literature on inferring the type of process b.
mspection of the sample autocorrelations: see Judge et al (1~988y
pp. 684-705) for an introduction. But here we suppose that th‘e type i;
known, and to illustrate, confine attention to the first-order casesyp
For the MA(]) case, the natural estimators of the process arar;let T
are the solutions to the sample counterparts of Eqgs. (26.2a—-§): -

(26.6a) m = by,
(26.6b) ¢, = (1 + )62,
(26.6c) ¢, = b6
More explicitly,
bo=m,  §=1[1- VI -y

6 = c1/<3>.

(See Exercise 26.2 for an ex i
. . a planation of the choi :
quadratic equation r; = ¢/(1 + &)2).) oice of root in the
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For the AR(1) case, the natural estimators of the process parameters
are the solutions to the sample counterparts of Egs. (26.4a—):

26.72) m = /(1 — 8),

(26.7b) ¢o = 6%(1 — 67,

A

(26.7¢) ¢, = Ocp.
More explicitly,

b=r, Bo=(@-rm & =1~

In both cases, the resulting estimators of process parameters will be
consistent (by S2, Section 9.5), if the sample momen.ts m, cg and ¢,
converge in probability to the corresponding population moments ,
Yo, and <y;. This convergence will occur in general even thou‘gh .the
observations are not obtained by random sampling from the univariate
distribution of y.

To illustrate the convergence argument, we assess the sample mean
when the data are generated by the MA(1) process. We have y = 1

., %) as the sample observation vector, with E(y) = x,p and V(y) =
3, where x, is the n X 1 summer vector, and

Yo i 0 0 0
Y1 Yo Y1 0 0
0 Y1 Yo Y1 0
R :
0 0 0 0 L. Yo

The sample mean is m = j = (1/n) X1y, so
EG) = (n) E(y) = (Un) iz, = 1,
V(@3) = (1/3xiV(y)x, = (1/n?)x;2x,.

Now x/3x, is the sum of all the elements in the 3, matrix, which by
inspection of the display above is x;3x, = ny, + 2(n — 1)y,. So

V(3) = (vo/m)(1 + 2p, — 2p,/n).
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This differs from the random sampling result V() = <yo/n, but still
converges to zero as n goes to infinity. So j converges in mean square,
hence in probability, to . For further calculations in this style, see
Goldberger (1964, pp. 142-153).

Under general conditions, the convergence argument extends to
other sample moments, to the AR(1) process, and indeed to higher-
order processes. In that event, the analog estimators of the process
parameters will be consistent.

At this point, we can recognize why LS linear regression provides
consistent estimation of the CEF parameters. The normal equations that
determine the LS coefficients in terms of observed sums of squares and
sums of cross-products are essentially the sample counterparts of the
equations that determine the CEF parameters in terms of population
moments. For example, suppose that with n observations in hand, we

run the LS linear regression of y, on (1, y,_;). There are n — 1 usable
observations. Let

m* =2 y/in—1), m¥*=73y_ /(n-1).
=2 =2
As long as n is at least moderately large, these will differ only trivially
from each other, and from the m defined in Eq. (26.5a). The LS slope

will be b = s,g,/sf, where

=3 (yoy — mn — 1), .
=2

M=

Ky =

- (Y1 — m**)(y, — m¥)/(n — 1).

=2

As long as n is at least moderately large, these will differ only trivially
from the ¢, and ¢, defined in Egs. (26.5b—). Being practically the same
as ¢,/co, the LS slope will, under general conditions, converge in prob-

ability to v,/y, = B. The argument extends to CEF’s with several lagged
values of y as conditioning variables.

26.6. Remarks

* For stationary stochastic processes, convergence of sample moments

to the corresponding population moments is not inevitable. Consider
the equicorrelated process:
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288 26 Time Series

yt=90+u,+v,

where the u’s are independent drawings from a distribution with E(u) =
0 and V(u) = o?, while the random variable v is independent of the u’s
with E(v) = 0 and V(v) = 72, Then p = E(y,) = 6o, V(y) = o? + 1% for
all ¢, and further C(y,, y,-j) = 72 for all ¢ and for all j > 0. All the off-
diagonal elements of the ¥ matrix are equal to 7°. The population
autocorrelations are p; = 7°/(0® + 1°) for all j > 0. For the sample mean

m we calculate E(m) = (1/n)x{E(y) = @, and
Vim) = (Imd)x3x, = ¢®/n + (n — D)r’/n,

which does not vanish as z goes to infinity. While unbiased, the sample
mean is not consistent. Variants of this model are used in the analysis

of panel data: see Greene (1990, chap. 16).
* Nonstationary stochastic processes also arise in economic analysis.

The simplest example is the random walk:

Y = Yem1 T U

where the u’s are independent drawings from a distribution with E(u) =
0 and V(x) = . It is clear that E(y,|y,—1) = Y-1» although the variance
of the process must increase with ¢ In this case, differencing the series

will produce stationarity.

Exercises

26.1 Show that for any MA(1) process, |p;| = 1/2. Is that true also
for an AR(1) process?

26.2 Consider these two models for an MA(1) process:

¥ = ¢0 + ¢ut—l + u,

where the u’s are independent drawings on a variable u with E(u) = 0
and V(u) = ¢%, and -

¥ = bo + dFuE, + uf,
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where the u*s are independent drawings on a variable »* with E(u*) =
0 and V(u*) = ¢g*%,

(a) Suppose that d* = 1/¢ and o** = $®c>. Show that the two models
produce the same population moments W&, Yo, Y1, Yo» - « - -

(b) To rule out the ambiguity found in (a), it is convenient to require
that |¢| = 1. With that in mind, explain the choice of the esti-
mator proposed for ¢ in Section 26.5.

26.32Suppose that y, = a + By,—, + u,, where the u, are independent
N(0, 0°) variables. You know that @ = 10, B = 3/5, and o® = 2. You are
told that y, = 50. Find the best prediction of y,.

‘ 26.4 Suppose that y, = 1 + 0.8%,_, + 0.6u,_, + u,, where the u’s are
independent N(0, 1) variables. For this MA(2) process, find
E(y,|y=1, ye-2, ye-3).

E(}’tl)’t—l), E(ytlyt—la yt-—2),

. 26.5 Suppose that y, = 1 + 0.4y,_, + 0.3y,_, + u,, where the u’s are
independent N(0, 1) variables. For this AR(2) process, find
E(y]ye-1, ye-2, ye-3).

E(y]y:-1), E(y)ye-1, ye-2),

26.6 Suppqse thatw, (¢ =0, ..., 100) are independent drawings from
the N(0, 1) distribution. Consider these three models for an observed
time series y, (¢ = 1, ..., 100):

Model 1: y, = u,.
Model 2: y, = py,_, + su,, where y, = ug, p = 0.9, s = V(1 — p?).
Model 3: y, = (4/3) sin(7.2t) + (1/3)u, (angle measured in degrees).

(a) Write a program that generates 101 independent drawings from
the N(0, 1) distribution, and then produces for each model in
turn a y, series.

(b) Complete the program by regressing y, on (1, y,_;) for each of
your three y, series. For each regression, report X'X, X'y, b, and
the conventional standard errors for b.

(c) Is any of the three slopes surprising? Comment briefly. If you
suspect that it is just a coincidence, run your program again to
see if it recurs.
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26.7 Table A.5 contains a data set of annual observations for the
United States, 1956—1980, as taken from Mirer (1988, pp. 24-25). The

variables are:.

V1 = Identification number (1, ..., 25)

V2 = Year — 1900

V3 = GNP price index (100 in 1972)

V4 = Real GNP

V5 = Real gross private domestic investment
V6 = Real personal consumption

V7 = Real disposable personal income
V8 = Change in GNP price index

V9 = Change in consumer price index
V10 = Unemployment rate
V11 = Money stock (M1)
V12 = Treasury bill rate

V18 = Corporate bond rate (Moody’s Aaa).

Note: In this data set, V4, V5, V6, V7 are in billions of 1972 dollars;
V11 is in billions of current dollars; V8, V9, V12, V13 are in percent
per year; V10 is in percent. This data set is presumed to be available as
an ASCII file labeled TIM.

Run three linear regressions:

(a) Money autoregression: y,on 1, y,_;.

Exercises 291

(b) Money demand function: y, on 1, z,.
(c) Residual autoregression: ¢,on 1, ¢,_,.

Here y = log of real money stock = In[(V11/V3)100], z = log of real
GNP = In(V4), and ¢ = residual from (b). There will be 25 observations
for (b), and 24 observations for (a) and (c). For each regression, report
X'X, X'y, b, and the conventional standard errors for b.

26.8 In Exercise 26.7 the slope in the residual autoregression (c)
turned out to be substantially less than that in the money autoregression
(a). Comment on this result in the light of your results in Exercise 26.6.
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27  Generalized Classical Regression

27.1. Generalized Classical Regression Model

We now generalize the classical regression model to allow the n obser-
vations on y to have different variances and to be correlated. Again the
data consist of the n X 1 random vector y and the n X k nonstochastic
matrix X. The generalized classical regression, or GCR, model consists of
these four assumptions:

(27.1) E(y) = XB,

(27.2) V(y) = X, with X positive definite,
(27.3) X nonstochastic,

27.4) rank(X) = k.

The only change from the CR model is in the second assumption: the
elements of y now may have different variances and nonzero covari-
ances. (Positive definiteness simply rules out situations where one of the
y7s is an exact linear function of the others.) Special cases of the GCR
model arise when specific assumptions are made on those variances and
covariances.

27.2. Least Squares Estimation

We begin with LS estimation, which produces coefficients b = Ay and
residuals e = My, with A = Q7'X’, Q = X'X, and M = I — XA. By
linear function rules,

27.2 Least Squares Estimation 293
E(db) = AE(y) = AXp =B,
V(b) = AV(y)A’ = AZA' = Q"'RQ7,
where

R = X'3X.

* The LS coefficient vector b remains unbiased, but its variance matrix is

no longer a scalar multiple of Q.
Using linear function rules again, we have

E(e) = MXB =0, V() =MIM.
So the expected sum of squared residuals is
E(e'e) = t[V(e)] = tr(MIM’) = tr(M'M2X) = tr(M3),

whence the adjusted mean squared residual 6° = e’el(n — k) has expec-
tation

E(6%) = u(M2)/(n — k).

This expectation involves a mixture of the elements of 3, rather than
the single parameter o* as in the CR model. (Indeed, in the GCR model
there may not be a natural parameter called o”.) Observe that

M3 = (I -XA)X =3 - XQ 'X'Z,

r(XQ7'X'S) = tr(Q7'X'2X) = tr(Q'R).
So

tr(M2) = tr(Z) — r(Q™'R),

an expression which is convenient for computational purposes.

Proceeding to the usual estimator of V{b), namely V) = &2Q'1, we
have

E[V(b)] = [tr(MZ)/(n — B)]Q",

which clearly differs from V(b) = Q 'RQ™". The familiar estimator of
the variance matrix of b is biased, so the conventional standard errors
are not correct measures of imprecision, and consequently the confi-
dence region and hypothesis test procedures of Chapters 19-22 will not
be valid. For some examples of the bias see Exercises 28.1 and 28 4.
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There are several ways to proceed at this point. One might retain the
LS coefficient vector b as the estimator of B, and seek a correct estimator
for its variance matrix, in order to permit valid inferences. Or—and
this is the line taken here—one might seek a better estimator of §. The
possibility of a better estimator is open, because the Gauss-Markov
Theorem (Section 15.4), which established the MVLUE property of LS,
relied on the assumption that V(y) = ¢’L.

27.3. Generalized Least Squares Estimation
For estimation of B, the key result is

AITKEN’S THEOREM. In the GCR model, with % known, the
MVLUE of B is the generalized least squares (or GLS) estimator, b* = A*y,
where A* = (X'27'X)"'X'3 7L

Proof. Observe that the k X n matrix A* is nonstochastic, has rank &,
and satisfies
A*X =1, A*ZA¥ = (X'Z7'X)7"
It follows by linear function rules that
EG¥) =B, VO =XITX)T
so b* is a linear unbiased estimator of B. To show that b* has minimum
variance in the class of li_near unbiased estimators in the GCR model,
we first show that the GCR model is equivalent to a CR model in
transformed data, and then that b* is the LS estimator in that CR model.
Recall a construction used for another purpose in Section 18.4.
Because ¥ is positive definite, we can write % = CAC’, where C is
orthonormal and A is diagonal with all diagonal elements positive. Let
A* be the diagonal matrix with the reciprocal square roots of the diag-
onal elements of A on its diagonal, and let H = CA*C’, soH'H = 3!
and HYH' = I Let y* = Hy and X* = HX; these should be viewed as

observations on transformed variables. The n X n matrix H is nonsto-
chastic and nonsingular, so from Egs. (27.1)~(27.4) we deduce that:

(27.1% E(y* = HE(y) = HXB = X*B,
(27.2%) V(y*) = HV(y)H' = HEH' =1,

27.4 Remarks 295

(27.3%) X* = HX is nonstochastic,
(27.4*) rank(X*) = rank(X) = k.

Taken together, these say that a CR model (with ¢® = 1) applies to the
transformed data (y*, X*). Because H is nonsingular, the argument
reverses, so the GCR model for the original data (y, X) is equivalent to
a CR model for the transformed data (y*, X*).

The parameter vector B is unaffected by the transformation. By the
Gauss-Markov Theorem itself, among all linear functions of y* that are
unbiased for B, the one with minimum variance is the coefficient vector
in LS linear regression of y* on X*, namely

c* = (X*'X*)_IX*'y*.

But X*'X* = (X'H')(HX) = X'37'X, and X*'y* = X'H')Hy) =
X'y, so ¢* = b*. Finally, because H is nonsingular, the class of linear
functions of y* is the same as the class of linear functions of y. We
conclude that in the GCR model, b* is the MVLUE of B =

27.4. Remarks on GLS Estimation

The following remarks may aid the interpretation and implementation
of GLS estimation.

g Why is b* referred to as the “generalized least squares” estimator?
Being the LS coefficient vector for the transformed data, b* is the value
for ¢ that minimizes the criterion b*(c) = u*'u*, where

u* = y* — X*c = H(y — Xc) = Hu,

withu =y — Xc. But H'H = 37!, 50 ¢*(c) = u'S 'u. This criterion is
a positive definite quadratic form in u, which is indeed a generalization
of the sum of squares, u'u.

* The device of transforming the data, used to establish the optimality
of b*, also provides a computational routine. With 3, known, to do GLS
estimation, transform the data and run LS.

* The transformation is not unique. For example, instead of using
H = CA*C’, we can use H* = A*C’, because

H*H* = CA*A*C' = CA™IC’ = (CAC)H ' =371,
H*XH* = A*C'(CAC')CA* = A*AA* = I.
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296 27 Generalized Classical Regression

So a CR model (with ¢® = 1) will apply to the data y** = H¥y, X** =
H*X. Despite the nonuniqueness of the transformation, the estimator
b* will be unique, as is readily confirmed. For any GCR model, there
are in fact many nonsingular matrices that will transform it into a CR
model. All produce the same b*, so it is strictly a matter of convenience
as to which version of H should be used in practice.

* To obtain the GLS estimator, it suffices to know 2 up to a scalar
multiple. Suppose that = = o®(), where ) is known but the scalar a®
is unknown. Since  is positive definite, we can find an H° such that
HH° = Q' and H'QH* = I. Let y° = H° and X* = H°X. Then

E(y) =HE(y) =HXB =X,
V(y°) = HV(y)H” = H'SH” = H(@*QH” = ¢’I,

and X° is nonstochastic with full column rank. So a CR model (with ¢*
unknown) applies to (y°, X°). The LS estimator on the transformed data

is
bo — (Xorxo)— lxmyo.

But X”X° = X’'HH’X = X'Q7'X = X'(Z/6®)7'X = ¢*X'E7'X, and
similarly X*'y° = 6°X'2 "'y, so b° = b*. When such an H" is used, it will
remain to estimate o2 and V(b*), but for that task all of CR theory
applies. So knowledge of X up to proportionality suffices to calculate
the GLS estimator b* and to estimate its variance matrix unbiasedly.

* With respect to goodness of fit: let

d(c) = u'n, d*(c) = u¥'u* = u'Y 'y,
where u = y — Xc and u* = y* — X*c. Clearly ¢(b) = d(b*) (yith
equality iff b = b*) so LS gives a better fit than GLS to the original
data. By the same token, ¢p*(b*) = ¢*(b) (with equality iff b = b*), so
GLS gives a better fit to the transformed data.

* It makes no sense to compare ¢(b) with ¢*(b*), as is occasionally
done; the two criteria may not even be in the same units. A fortiori, it
makes no sense to compare an R** calculated from the LS regression
of y* on X*, with the R* from the LS regression of y on X; the depelrl-
dent variables y and y* are different, and furthermore the X* matrix
may not contain a summer vector even when X does.
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27.5. Feasible Generalized Least Squares Estimation

As we have seen, calculation of the GLS estimator b* requires knowledge
of V(y) = X at least up to proportionality:

b* = A%y,
where

A* = X'QO7'X)7'X'Q7! = (X'37IX) IR,
and (), a scalar multiple of % = V(y), is known. In practice Q will be
unknown, so that GLS estimation will not be feasible. A feasible gener-
alized least squares, or FGLS, estimator of B is defined by

b* = A*y, where A* = (X'ﬁ_xX)_’X'ﬁ_l,

with ¥ being an estimator of 3.

The properties of an FGLS coefficient estimator b* depend on the
properties of the variance-matrix estimator 3. The key result is that if
3 is a consistent estimator of X, then under general conditions the
FGLS estimator b* has the same asymptotic distribution as the GLS
estimator b*. For discussion of the conditions, see Greene (1990, pp.
388-390) or Judge et al. (1988, pp. 352——356).‘ That is to say, for large
n, the distinction between the distributions of b* and b* is negligible.

For some insight into this conclusion, recall two previous situations.

(1) In random sampling from a bivariate population, the sample LP
slope (which uses deviations from the sample means) and the ideal
sample LP slope (which uses deviations from the population means)
have the same asymptotic distribution: see Section 10.5.

(2) In the CNR model, the statistics

have the same asymptotic distribution, namely N(0, 1): see Section 22.6.
These examples are suggestive, because they show that replacing an
unknown parameter (., in the first case; o in the second) by a consistent
estimator may make the statistic feasible to calculate without affecting
the asymptotic distribution.

To obtain a consistent estimator of 3, for use in FGLS estimation, it
is natural to rely on the residual vector e from LS regression of y on
X. After all, 3 = V(y) = V(e) wheree =y — XB, and e = y — Xb. How
the residual vector should be used, and whether the quality of the
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resulting estimator of X is adequate to ensure that FGLS has the same
asymptotic distribution as GLS, depends on the context of special cases.
Those special cases are defined by the “structuring” of %, where “struc-
turing” means specifying that % = 2(8), where 8 is an unknown param-
eter vector with a relatively small number of elements. We will explore
two leading special cases in Chapter 28. For the present, observe that
unless such knowledge is available, no consistent estimator of 2, will be
obtainable. After all, there are n(n + 1)/2 distinct elements in %, and
one can hardly be optimistic about estimating so many distinct param-
eters (along with the % elements of B) when only n observations are in
hand.

27.6. Extensions of the GCR Model

The GCR model may be extended into a generalized neoclassical regression
model, by allowing X to be stochastic:

E(y|X) = XB,

V(y|X) = 2, with X positive definite,
X random,

rank(X) = k.

Again no new theory is required. Just transform into a NeoCR model
via an appropriate H matrix, and apply the theory of Chapter 25.

The GCR may be strengthened into a generalized classical normal regres-
sion. model, by adding a normality assumption:

y ~ N(XB, 2),

3, positive definite,
X nonstochastic,
rank(X) = k.

No new theory is required here. If % is known up to proportionality,
then transform the data into a CNR model via an appropriate H matrix
{(which will also preserve normality) and apply the statistical inference
theory of Chapters 19-22. Among other things, b* will be the ML
estimator. If S is unknown, but structured as %(8) in the sense defined

Exercises 299

above, then the likelihood function may be maximized with respect to
B and 0 jointly. This will produce a different estimator of B than that
obt‘ained by FGLS (which first estimates 0, and then uses the implied
estimate of X = 3(8) to estimate B). Under general conditions, this
ML estimator will have the same asymptotic distribution as the FGLS

and GLS estimators. For discussion, see Amemiya (1985 19
, , pp. 190-1
200-203). ! PP o

Exercises

27.1 Suppose that the GCR model applies to E(y) = XB, V(y) = 3.
Let b, e, and 9‘denote the coefficient, residual, and fitted-value vectors
for LS regression of y on X, and let b* denote the GLS coefficient

vector. For each of the following statements, determine whether it is
true or false:

(a) The covariance matrix of b and b* is equal to the variance matrix
of b*,

(b) If tis alinear unbiased estimator of B, then the covariance matrix
of t and b* is equal to the variance matrix of b*.

() The covariance of each element of § with the corresponding

.element of e may be nonzero, but the sum of those covariances
is zero.

27.2 Determine whether the following statement is true or false: Sup-
pose _that the CR 'rnodel applies to E(y) = XB, that T is a nonstochastic
nonsingular matrix, and that y* = Ty, X* = TX; then GLS regression

of g{ on X* gives the same coefficient estimates as LS regression of y
on X,

27.3 With data drawn from a GCR model, a researcher first ran LS

. . . . .
~ regression using her own LS program to obtain coefficients and stan-

dard errors. Then she was given the true 3, (up to a scalar multiple).
She tral?sformed the data appropriately, and ran LS on the transformed
data, using the same program to obtain coefficients and standard errors.
For several coefficients, standard errors in the second run were larger

than Fhose in the first run. Does this contradict Aitken’s Theorem?
Explain.
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28  Heteroskedasticity and Autocorrelation

28.1. Introduction

We sketch two leading special cases of the GCR mode‘lz pure hetero-
skedasticity, and a nonstationary first-order autoregressive process. For
more complete treatments see Greene (1990, chaps. 13, 14, 15), Judge
et al. (1988, chaps. 8, 9), or Amemiya (1985, chap. 6).

28.2. Pure Heteroskedasticity

In the pure heteroskedasticity case, the y;i's are uncorrf:lated, but have
different variances: the matrix & is diagonal, with diagonal elements
021, R -, 0'3. This case will arise when, in. the under.lying
multivariate population, the conditional variance function V(y|x) }_s not
constant across x. An n X n matrix H that makes H3H' = Iis the
diagonal matrix that has the 1/g/s on its diagonal. If the o/s are known,

then we can transform the data by dividing all variables at the ith

observation by o; to get
}.tx = i T;y x,r’; = xij/Cl',-.

The CR model will apply to the new data and LS regression of y* on
X* will produce the GLS estimator b*.

Scalars proportional to the o; may be used instea;i: Suppose we k.n'ow
that V(y|x;) = o’w?, where the w? are known but ¢° is unknown. Divide
all variables at the ith observation by «;, and run LS on the transformed
data, to obtain b*. An often-cited example of this arises when the
variances are proportional to the square of one of the explanatory
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variables, say x; (where x, is always positive). Then division by x,,, which
makes the transformed variables ratios of the original variables, is the
appropriate transformation.

If the o7 are not known up to proportionality, but some structuring
of them is known, then FGLS may be available.

Suppose we know that the o} have only two distinct values: ] for
observations 1, . . ., n; and w§ for observations'n; + 1, ..., n, but we
do not know the values of the two w®’s. Then this version of FGLS is
natural: Regress y on X to get the residual vector e. Partition the residual
vector e as (e}, e3)’. Let w? = eje,/n;, and w3 = eje,/n,. Transform the
data by dividing the first n, observations through by w,, and dividing
the remaining n, = n — n, observations through by w,. Run LS on the
transformed observations.

Or, suppose we know that V(y|x) = g(x; 8) where the function g(x; -)
is known except for the r X 1 parameter vector 0, with r much less than
n. One possibility here is that V(y|x) = exp(a'x). Because log V(y|x) =
log E(€*|x) = a'x, the following application of FGLS seems natural:
Run the LS regression of y on the xs, obtaining residuals ¢;. Then run
the LS regression of the log ¢? on the x’s to estimate &, and calculate
&7 = exp(&'x,). Transform the observations by dividing through by &,
and run LS on the transformed data. (Note the informal flavor of this
approach; after all, V(log y) # log[V(y)].)

In each of these cases, the prior structuring of the 0? serves to reduce
the number of unknown parameters. Only then can estimators of % be
obtained that have sufficient reliablity to ensure that b* shares the
asymptotic distribution of b¥*.

However, under pure heteroskedasticity, if the objective is merely to
obtain valid estimates of the variances of the LS coefficients, then such
structuring is not needed. Let 67 = &2, where the ¢; are the residuals
from LS regression. Let 3 be the diagonal matrix with the 67 on the
diagonal, and let R = X'XX. Then V(b) = Q"'RQ™" will under general
conditions provide a valid estimator of V(b). A similar procedure was
introduced in discussing BLP estimation in Section 25.5.

28.3. First-Order Autoregressive Process

Suppose that 3 = ¢}, where
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with —1 < p < 1. This says that C(y,, %) = 0'2p"'_i|. With V(y,) =
0'2pl"‘il = ¢ for all i, the y;'s are homoskedastic. But with p # 0, they
are correlated. We refer to this as the first-order autoregressive, or AR(1),
case of the GCR model.

The successive drawings on the y; are not independent, and indeed
this AR(1) specification is intended to apply to time series data. In terms
of the development in Chapter 26, we have combined a regression
model for E(y) with a time series model for V(y). Referring to Section
96.4, we see that a mechanism that will produce the present specification

is given by:
@28.1) %=+ €,
(28.2) € =p&_; T u;,

where the p; = x/B are nonstochastic, and the u; are independent and
identically distributed with E(w) = 0, V(u) = a2 It follows that

E(y:) = p’iv
V(y) = V(&) = o3/(1 — p°) = o7,
C(yi yi-1) = PU'Q,

and so forth. In terms of the discussion in Section 26.2, here a stationary
population model applies to the disturbances €;: the y/s themselves have
different expectations and hence the process generating them is not
stationary. Still, the parameter p is the population first autocorrelation
coefficient of the disturbances €;, and also of the dependent variable y;.

If p is known, then % is known up to proportionality, so GLS may be
implemented. Define the n X n matrix

e e
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V(1-p% 0 0 0 0
-p 1 0 0 0
0 —-p 1 0 0
H-=
\ 0 00 ... —-p l

and observe that HXH' = o*(1 — p®1I, which is proportional to I. So
transformation of the data by this H will produce variables on which
LS can be run to obtain the GLS estimator b*.

To clarify the transformation, let y* = Hy, X* = HX. Then

¥ = V(A - py, x¥ = V(1 — p?x,,
YE =3~ P X¥=x,—px,; (=2 ...,n),
with

E(yry = x¥B, V(¥ = (1 - pAV(y,) = o2

Apa.rt from the special treatment of the first observation, this transfor-
mation can be rationalized directly by reference to the underlying
proc?ss in Egs. (28.1)+(28.2): Lag Eq. (28.1) to gety,_; = p_; t+ €
multiply that by p, and subtract from Eq. (28.1), to get ‘

(28.3) 3 — i1 =

i—1s

M — pRi—y T € — pE_,
xB-px.,B +u
=(x; —pxi-)'P +u.

This says th‘at ¥ = x¥PB + w,;, where the us have zero expectation,
constant variance, and are uncorrelated.

If, as in practice, p is unknown, then GLS cannot be implemented.
B‘ut the following application of FGLS is natural and is commonly used.
First run the LS regression of y on X to get the residuals ¢, Then

regress ¢; on ¢, (across i = 2, ..., n) to estimate p as

n n
p= 2 e/ 2 el .
i=2 i=2

No intercept is required when the sum of the residuals is zero. Trans-
form the data as above, using p in place of p, then run LS on the
transformed data. Under general conditions, this FGLS procedure will

D00

OOO0OQO000OOOOOOD0L

)@,

OOCQooOCOOQD

cCcocoectoon

C




R G A A A RS A A G ORI O S S 10 J0 RS 1D O RO K
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give estimators with the same asymptotic distribution as GLS. The
rationale for the estimate of p is straightforward. In this model,

p = C(y; ys-l)/V(yi) = C(e;, €;-1)/V(€),

where €; = y; — p,;, with p; = x;B. Bute; = 3, — {4 with {i; = x;b, so the
residuals ¢; are “predictors” of the corresponding disturbances €;. As a
consequence, the sample moments of the residuals will consistently esti-
mate the population moments of the disturbances.

An alternative approach may be more attractive when p is unknown.

Rewrite Eq. (28.3) as
(28.4) 3= x/v, + X ¥e + yirYs T w =Y+ w,
where

Y = B! Yo = _Bp’ Ys = P

z; = (X, X/-1,%-1)"» ¥ =Y Vs

Because E(y;|z;) = z/vy, with the %s homoskedastic and uncorrelated,
we may fit Eq. (28.4) by LS, using observations i = 2, . . ., n. Neither
the CR nor the NeoCR model is applicable, because the lagged value
of the dependent variable appears among the explanatory variables.
Indeed the LS estimates of Eq. (28.4) are not unbiased, but under
general conditions, they are consistent. The argument is similar to that
in Section 26.5.

In fitting Eq. (28.4), one may well want to impose the restriction that
Y2 = —¥:vs. If so, the required LS algorithm will be a nonlinear one.
More on this in Chapter 29. Under general conditions, the resulting
estimator will have the same asymptotic distribution as the GLS esti-
mator. Under normality, another alternative is available: the likelihood
function may be maximized jointly with respect to B, o, and p.

28.4. Remarks

* In empirical research, when the AR(1) specification is entertained
but p is unknown, it is customary first to test the null hypothesis p = 0.
If the null is accepted then LS estimates are used; if it is rejected then
FGLS estimates are used. This procedure is a variant of the pretest
estimation strategy introduced in Section 24.4.

;
%
H
i
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* The traditional statistic for testing p = 0 is the Durbin-Watson statistic
d, which is virtually equal to 2(1 — p). Tables of critical values are
provided in most econometrics textbooks, along with rather complicated
instructions. A considerably simpler test procedure, which has an
asymptotic justification, treats Vap as a N(0, 1) variable on the null
hypothesis p = 0: see Judge et al. (1988, pp. 394-401).

* A significant value of d or of p should not be read automatically as
evidence in favor of the AR(l) specification. After all, many other
stationary population models also generate first-order autocorrelation
in the residuals. Examination of higher-order residual autocorrelations
may suggest a more appropriate specification for %. Furthermore, as
seen in Section 26.1, changing expectations can produce a series that
appears to be autocorrelated. So omitting an explanatory variable that
is itself autocorrelated may well produce autocorrelation in the
residuals. '

* The situation changes drastically if the lagged value of the depen-
dent variable appears as one of the original explanatory variables, while
an AR(1) process is entertained for the disturbances. Then the FGLS
approach described above is inappropriate, as are the above tests for
p = 0. The easiest way to see this is to recognize that the original function
no longer has a CEF interpretation. For a simple example, suppose that

(28.5) yi=a+ By, te,
(28.6) € = pe_, + u,

where the u/s are independent and identically distributed with expec-
tation zero and variance ¢°, while || < 1 and |p] < 1. Then
E(y;]y:-1) # a + By, because C(y;_,, €) # 0. To proceed, lag Eq. (28.5)
to gety,., = a + By,_p + €,_;, multiply that by p, and subtract from Eq.
(28.5), to get

i~ -1 = ol = p) + By — pByi—2 + € — pe;y,
whence
28.7)  y=oal —p)+ B+ pPi-1 — PBYi—2 + u;.
Because v; is independent of past y’s, this says that

E(J’ib’i—x:}’i—2) =a(l —p)+ B+ p)lyi—y — PBYi—2s
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which is a special case of a stationary AR(2) specification for the observed
variable y. Regressing y; on (1, 31, yi-2) will give consistent estimates of
a(l — p), (B + p), and —pP. But a first-step regression of y; on (1, y;-;)
is a short regression that will not consistently estimate B (nor § + p, for
that matter): see Exercise 28.7. With the first step invalid, the remainder
of the FGLS procedure will also be invalid. The residuals from the first
step will no longer be valid predictors of the €’s, and hence the rationale
for using them to estimate p will vanish.

Exercises

28.1 Suppose that fori=1,2,..., 20, the random variables y; are
independent with E(y;) = o + Bx;, V(y:) = o’x?, where x; = i and o =
2. Set this up as a GCR model with n = 20, k = 2. Let b and b* denote
the LS and GLS estimators of the slope B. Also let &> denote the
conventional estimator of the variance of b.

(a) Calculate 0%, 0%, and E(62).
(b) Comment on the results.

98.2 A researcher believes that the disturbance variance at each obser-
vation is proportional to the square of the third explanatory variable,
so she divides each observation through by the third explanatory vari-
able before running an LS regression. However, in reality, there was no
heteroskedasticity; the CR model was appropriate for the original data.
Will her coefficient estimators be unbiased?

28.3 Suppose that y; = 0 + €, 5, = 20 + €, and yg = 30 + €3, where
the parameter 0 is unknown, while €, €, and €, are independent with
zero expectations and variances o> =4,05=6, o5 = 8. Find the MVLUE
of 0.

28.4 Suppose that for ¢ = l,. 92,...,20, the random variables y, have
the AR(1) disturbance pattern, with E(y,) = & + Bx,, V(y,) = g =2,
p = 0.8, and x, = ¢. Set this up as a GCR model with n = 20, k = 2. Let
b and b* denote the LS and GLS estimators of the slope . Also let 6;
denote the conventional estimator of the variance of b.

(a) Calculate o2, 0o, and E (63).
(b) Comment on the results.
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8. ' -
. 2+ iSl;priose thaty, =0 + €, 9, = 0 + €, Js = 0 + €3, where ¢, =
J‘;( ;e 21), 2 = z};, + Uy, €3 = uy + us, while ug, u,, uy, ug are independent
, variables. The parameters 6 and o are unknown. You are

ivi i
given one observatlo.n on each of the three y’s. Determine which of these
two estimators of 6 is preferable:

Y=+ +9)8, m=(y + )2

28.6 In the AR(1) case of the GCR model, the parameter p is int
pr(leltable as the ’population first autocorrelation coefficient of the y’s ?:;
rve. as of thc? €'s). So it is proposed to take the sample first autocorre-
ation COf?fﬁClen[ of the y’s, namely the sample correlation of y, and
as an estimate of p. Evaluate the proposal. g o

de28.7dConsid(-:.r the model of Egs. (28.5)—(28.6), which involves a lagged

kpen en,t variable and autocorrelated disturbances. For convenience

take the u’s to be normally distributed. Let E(yilyic1) = o* + By ’
) Ji— i-1-

. * .
(a) Find o* and B* in terms of the parameters a, B, p, o°

(b) What parameters would be i i
consistently est i
regreion of g on (1. 5.5 y esumated by a LS linear

s
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29  Nonlinear Regression

29.1. Nonlinear CEF’s

We have been concerned with linear CEF’s, that is, with populations in
which E(y|x) = x'B is linear in the parameter vector B. Some “non-
linear” CEF’s can be cast in that form, as noted in Section 13.3. But
inherently nonlinear CEF’s also arise, that is, populations in which
E(y|x) = k(x, 8), with A(-, -) being nonlinear in the unknown parameter
vector 0. In such situations, of course, we may run LS linear regression
to estimate the BLP E*(y|x) = x'B, but we now suppose that we are
interested in the CEF itself rather than in the BLP.

For random sampling from the multivariate population, we find that
nonlinear least squares estimators are consistent, and sketch their
asymptotic distribution. (Random sampling is adopted for convenience;
the nonstochastic X case would be treated similarly.) We also discuss
instrumental-variable estimation, and maximum-likelihood estimation
for a binary response model. All this is an extension to the multivariate
case of material developed for the bivariate case in Sections 13.3 and

134.
As background, here are some examples of nonlinear regression

models.
Cobb-Douglas Production Function. Let y = output, x; = labor input,

x; = capital input, and suppose that
E(y|x) = 0,x3'x52.
In this CEF, the parameters 6y, 8;, 8, enter nonlinearly.

Linear Regression with AR(1) Disturbances. In Section 28.3, we found
that a linear regression model with AR(1) disturbances implies
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E(yl|z) = zv,

where

Y= (Y;s ‘Yé9 73),;

z; = (X{, X/, ¥i-1)'s
Y1 = B’ Yo = _Bp:

In this (?EF, the linear regression parameters v, vs, s are subject to
fhe nonlinear constraint y, = — y,vs. Equivalently, the CEF is nonlinear
in tl.le underlying parameters B, p.

Binary Response. If y is a binary variable taking on only the values 0
anq 1, then it is implausible that the CEF be linear in the explanator
}'a'rlables. A linear function is unbounded, while E(y|x) = Pr(y = llx))]
is inherently bounded between 0 and 1. A plausible form for the CEF
is E:(ylx) = F(x'0), where F(.) is the cdf of some continuous distribution
This CEF is nonlinear in the parameter vector 0. .
. In 'the probit model, F(.) is taken to be the standard normal cdf. Here
is a simple scheme that supports the probit model. Suppose that y*, the

unc:ibslerved propensity to own a car, is determined by a normal linear
model:

Ys = P-

y*=x'0 — ¢,

with ‘e ~ N(0, 1) independently of x. (Writing —e rather than +e is
purely a matter of convenience.) Suppose further that y, the observed
binary variable that indicates actual ownership, is determined as

2{1 if y* = 0,
0 ify*<O.

Let A be the event thaty = 1. Now

A={y= 1} ={y*= 0} = {x'0 ~ € = 0} = {e = x'0}.
With € ~ N(0, 1) independently of x, it follows that

E(y|x) = Pr(A|x) = F(x'0),

where F(.) is the standard normal cdf.

In the probit model, as in many nonlinear regression models, the
parameter vector 8 does not directly give the “effects” of explanatory
\l;arlables on the conditional expectation of the dependent variable.

ecause E(y|x) = F(x'0), we have aE(y]x)/axj = f(x'G)ej, where f(.) is
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the standard normal pdf. These derivatives vary with x: al any value of
x, they are proportional to the coefficients 8;.

A popular alternative to the probit model arises if the € above has
the standard logistic, rather than the standard normal, distribution. The
standard logistic cdf is (see Section 2.3)

G(e) = exp(e)/[1 + exp(e)].

So in the logistic model for binary response, the CEF is E(y|x) = G(x'0),
which differs somewhat from that in the probit model, but is again
nonlinear in 0.

Censored Dependent Variable. As the previous example suggests, non-
linear CEF’s may arise when an underlying dependent variable has a
linear model, but is not fully observable. Let y = dollars spent on
purchase of a new car. So y = 0, and many families will have y = 0,
features that would be incompatible with a normal linear model for y.

A simple scheme that may be appropriate is the Tobit model. Suppose
that y*, the unobserved propensity to spend on a new car, is determined
by a normal linear model:

y* = x'0 — o,

where € ~ N(0, 1) independently of x. Suppose further that y, the
observed continuous variable that measures actual expenditure on a
new car, is determined as

- y* ify* =0,
Y=o ify*<o.

Then
E(y|x) = F(x'0/0)x'0 + of(x'0/c),

where f() and F(-) are the N(0, 1) pdf and cdf. This CEF is nonlinear
in the parameters 0, o. '

Proof. Let A be the event that y* = 0. Now
A={y*20}={x’0—0'620}={65x'0/cr}={e$1'},

say, where 7 = x'0/c. With € ~ N(0, 1) independently of x, it follows
that Pr(4|x) = F(1), and that
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E(elx, A) = E(ele = 1) = [T 1) dt/[T @) dt.
Now, for the standard normal density,
f) = @m™ exp(~£12) > f() = oflar = ~i1),

and of course [ f'(¢) dt = f(t). So E(e|x, A) = —f(7)/F(7). Further, if A
does occur, then y = x'0 — oe, so ,

E(y|x, 4)

]

x'0 — oE(e|x, A) = o7 — o[ —f(7)/F(7)]
oft + f(7)/F(7)].
By the Law of Iterated Expectations (T8, Section 5.2),

E(y|x) = Pr(A|x)E(y|x, A) + Pr(not A|x)E(y|x, not A)
= Pr(A[®)E(y|x, 4),
using the fact that y is identically zero if A does not occur. So
E(y|x) = F(r)o[t + f(1)/F(1)] = F(t)oT + of(T)
= F(x'0/0)x'0 + of(x'0/c). m

29.2. Estimation

With tl'lat as background, we turn to the general case of nonlinear
regression. Consider a multivariate population in which

E(y|x) = h(x, 0),

the func.tion h(-, -) being known apart from the & X 1 parameter vector
0. (Caution: The number of explanatory variables may differ from the
number (?f parameters, as in the AR(1) and Tobit examples above.)
For e§t1mating this nonlinear CEF, we draw on the analogy principle
as we.dld for the bivariate case in Chapter 13. In the population, the’
CEF s the best predictor of y given x. In particular, it is the best
Predlctor in the class A(x, c), where ¢ denotes a £ X 1 vector. Thus, 0
is the value for ¢ that minimizes E(x? in the population, where u’ =
Y — h(x, c). So, given a random sample of observations (y;, x{) (i = 1
., n), Iet.us choose, as our estimate of 0, the value of ¢ tha‘t has the;
corresponding property in the sample, namely minimizing the sample
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mean squared residual, or equivalently the sample sum of squared
residuals.
Proceeding, let ¢ = &(c) = Sr_,uf, where u; = y; — h(x;, €), and choose

c=(cy,..-»c) to minimize ¢. The derivatives are:

adlac; = 2 (auf/acj) = Z 2u(du;/dc;) = 2 2 u(—zj) = —2 z:a Zijl;,

where
z; = dh(x,, c)/oc;.
The first-order conditions (FOC’s) for a minimum are

ZZI‘]‘ui=0 (j‘=1’--'9k)s

or in matrix form,
Zu=0,

where Z = {z;} is the n X k matrix of derivatives of the regr.es§ion
function h with respect to the ¢’s, and u is the n X 1 vector of deviations
of y from h. This is a system of k nonlinear equations in ¢j, . . ., Gt ?he
¢s enter both the w’s and the z's nonlinearly. Let t denote the solution
value for c; that is, Z'a = 0, where Z and @ denote Z and u evaluated
at ¢ = t. Provided that this locates the global minimum, we refer to t as
the nonlinear least squares, or NLLS, estimator of 8.

The FOC’s of NLLS, namely Z'u = 0, have a striking resemblance to
the FOC’s of linear LS, namely X'u = 0. Indeed, if A(x, 0) were linear
in 0, that is, if A(x, 8) = x'0, then z; = x; and Z = X. In that event, Z
would not involve ¢, and u = y — Xc would be linear in c, so the FOC’s
would be linear in ¢, and would be solved analytically to get the familiar
c = (X'X)"'X'y. '

As in Section 13.3, the analogy principle also offers an alternative to
NLLS estimation, namely instrumental variable, or 1V, estimation. In the
population, the deviations from the CEF hav<? zero expected cross-
product with each conditioning variable. That is, let u = y — if(x, c?;
then @ is the value for ¢ that makes E(xu) = 0 for every j. This
suggests that we choose, as our estimate of 0, the val}1e 9f ¢ that has

the corresponding properties in the sample, namely satisfying the equa-

tions
2 xzu; = 0.
3

|
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Provided that the number of conditioning variables is the same as the
number of parameters, this is a system of k nonlinear equations in ¢,,
.-, ¢: the ¢’s enter the u’s nonlinearly. If the number of conditioning
variables is less than %, then we may use other functions of the x;, which
also have zero expected cross-product with u in the population, to
complete the set of instrumental variables. If the number of condi-
tioning variables exceeds &, then we may use a subset of them, or seek

to combine them optimally, as instrumental variables: for discussion and

references, see Manski (1988, chap. 6).

Observe that the FOC’s of NLLS can be interpreted as choosing ¢ to
make the sample summed cross-products of z = dh(x, c)/dc; with u equal
to zero. So NLLS has an 1V interpretation: z; is a function of x (not of
»), and we know that in the population, the expected cross-product of
every function of x with y — A(x, 0) is zero.

29.3. Computation of the Nonlinear Least Squares Estimator

The nonlinearity of the FOC’s has implications for computing the solu-

tion and also for the properties of the estimator. Because of the nonlin-

earities, the FOC's are solved numerically rather than analytically.
Here we sketch an NLLS algorithm for the case in which there is

a single parameter and a single explanatory variable—for example,
h(x, 8) = x°. Let

h = h(x, c), z = 8hldc = z(x, ¢), u=9y—h=uy,x,c).

We seek the value of ¢ that makes z'u = 0. Let ¢° be an initial guessed
value for ¢ and define

h° = h(x, ¢°), 2° = 3h/ac® = z(x, ¢°), u =y — h° = w(y, x, ).
The linear approximation to 4 at the point ¢° is
h =R + 2°(c — ¢,
50 to that order of approximation,
u=y—h=y=[°+22 -] =u - 2 — ).

Applied to all # observations, this says
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u=u — 2% — ).

So to the same order of approximation,
éc) =uw'u=u"v’ + (¢c - )’z — 2(c ~ ¢)z°'w’,
&'(c) = ad(c)ac = 2(c — ¢°)z°'z° — 22°'u°.

Set ¢’(c) = 0 and solve for

¢ — ¢ =z22u%2°'7°.
Take the resulting ¢ as the new ¢° and restart the calculation. Continue
until convergence, that is until ¢ — ¢® = 0, where “= 0" indicates
satisfaction of a convergence criterion such as being less than 0.0001 in
absolute value. At that point, z'u = 0, as desired.

A few remarks:

* The derivative z° = 8h/3c° may be approximated numerically as

[h(x, ¢ + p) — hix, ¢ = p)I(2p),

where p is a (small) step.

* The expression z°'u®z°'z° may be interpreted as the coefficient in
LS linear regression of u° on z°.

* The algorithm generalizes in a fairly obvious way to the mult-
parameter case: see Judge et al. (1988, pp. 501-510) or Greene (1990,
chap. 12), and see also Exercise 29.3.

29.4. Asymptotic Properties

Because the NLLS estimator t is a nonlinear function of y, its sampling
properties are not readily obtainable as they would be in the linear case.
Indeed exact results are not available, but asymptotic theory is available
for random sampling from a multivariate population. For convenience,
we sketch the one-parameter case, and proceed quite informally.

For the population, define the random variables

u =1y~ hx, 0), z = dh(x, 0)/06, s = zu.
Let ‘
w = —3s/00 = —[2(3u/06) + w(3z/30)] = 2* — w(82/86),

using 9u/00 = —oh(x, 6)/06 = —z. We have
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E(u) =0, E(zu) = 0, E[(0z/30)u] = 0,

_because u is the deviation from the CEF while z and 62/38 are functions
of x, not of y. So

E@s)=0, V(s)=E(") = EG™®),  E(w) = E@).
Correspondingly, for the sample, define the variables
@; = y; — h(x;, 0),

% = oh(x;, t)ot, 5 = id,

where ¢ denotes the solution value that makes 35, = 0. A linear approx-
imation at the point 8 gives

‘?i = S; + (as,/ae)(t - e) = S,- - w,(t - 6),

SO

25=0=25 - w(~0).

1

1

Neglecting the approximation error, we have
t-0=3s/Su=s

say, whence
Va(t — 8) = Vai/w).

Once again, as in Section 12.3, we see a complicated sample statistic
exhibited as a ratio of sample means. Here § = (1/n) Z;s; is the sample

mean in random sampling on the random variable s. Because E(s) = 0,
the CLT implies

Vs 2 N[O, V(s5)].

Further, w = (1/n)Zw; is the sample mean in random sampling on the

variable w, so @ > E(w) by the LLN. Then the Slutsky Theorem S4
(Section 9.5) implies

Va(t — 6) > N0, $3),
with
&® = V(s)/E¥(w) = E(2W)/EX(ZD).

(Caution: Do not confuse this ¢ with the & = d(c) of Section 29.2.)
Equivalently, we say that

D OO0
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t A N@O, $*/n).

We see that the NLLS estimator is consistent, although not unbiased.
In fact, no unbiased estimator of 8 exists in nonlinear regression models.
In practice, &2 will be unknown. The natural estimator is

20.1) § = (2 #atin) / (= i) .

We can construct confidence intervals and test hypotheses on 8 in the
usual manner, relying on asymptotic normality. Thus, ¢ = 1.966/V'n will
provide an approximate 95% confidence interval for 6.

For the multiparameter case, the results generalize directly. Let z =
{3h(x, 0)/66;} be the k£ X 1 vector of derivatives of the CEF with respect

to its parameters. Then
Va(t — 8) 2 N, ®),
with
® = [E(zz)] 'E(@@z'u)[E(@z)] .

Here the matrix =22./n will serve as the estimator for E(zz'), while the
matrix $22/42/n will serve as the estimator for E(zz'u?).

A few remarks to conclude this discussion of NLLS estimation:

« There is a formal resemblance between the expression for ® and
the variance matrix of the linear LS estimator in the GCR model (Section
27.2), namely V(b) = (X'X)_IX'EX(X’X)_’, and also the formula for
the asymptotic variance matrix of the LS estimator of a BLP (Section
25.5).

* Suppose that the population conditional variance function is con-
stant: V(y|x) = E@W?|x) = a?, say. Then E(zz’uz) = ¢°E(zz'), and @
simplifies to ® = o?[E(zz')]"". There is a formal resemblance between
this expression for @ and the variance matrix for the linear LS estimator
in the CR model, namely V(b) = aPX'X)"h

In the present homoskedastic case, the natural estimator for @ will
be

n -1
@ = o“’( : i,-i,f/n) ,

with 62 = 3,4%n. Standard computer programs for NLLS are likely to
incorporate this estimator rather than the more general form.
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* Suppose that in the population, y|x ~ N[h(x, 0); 02]. Then, provided
'that the distribution of x does not involve 0, the NLLS estimator of 0
is also the ML estimator of 8. The argument here is the same as that
for the linear CNR model (Section 19.2).

29.5. Probit Model

For a S}.)eciﬁ(‘l example of nonlinear CEF’s, return to the probit model.
Here y is a binary variable (equal to 1 or 0), and the CEF is

E(y|x) = Pr(y = 1]x) = F(x'0),

with F() denoting the N(0, 1) cdf. We can estimate @ consistently by
NLLS. But that is not optimal, because heteroskedasticity is present:
the variance of a binary variable depends on its expectation. A version
of ‘FGITS might be used, but instead we consider ZES-rule (or ML)
estimation, which is operational because the form of the conditional
pmf of the binary variable y has been automatically specified.

That conditional pmf of y|x is

[Fx'O)P[1 - F(x'0)]'7,
whose logarithm is
L = ylog F(x'0) + (1 — y) log[1 — F(x'0)].
The scores (derivatives of L with respect to the parameters) are
= fxly — BIF(1 - F)]
= zu,
say, where

5 = fx/IF(1 — P,

with f(-) denoting the N(0, 1) pdf.

'1?he general rule that score variables have expectation zero is easily
ver{ﬁed here: because u = y — E(y|x) and z; is a function of x (not of
), .1t follows that E(s) = E(zu) = 0 (j = 1, . . ., k). The ZES-rule
estimators are the values that make the sample counterparts of the

u=9y—F,

f=fix'0), F = F(x'0),
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expected scores equate to zero. For a sample of n observations (y;, x!)
i=1,...,n)let

S5 = ZjUy,
where

Z =fixij/[Fi(1 - F)}, u, =y — F,
with

f; = fixie),  F;= F(xc).
Choose ¢ to make Z;s; = 0, that is, to make

ZZ!]’II,:O (j=1,...,k).

In matrix form this is
Z'u=0,

where Z = {z;} is n X k. This is a system of k nonlinear equations in ¢;,
., ¢ the ¢'s enter both the u’s and the z's nonlinearly. Various
computer programs are available for numerical solution: see Judge et
al. (1988, pp. 786-795), and also see Exercise 29.3. Provided that a
global maximum of the log-likelihood is located, the ZES-rule estimator,
say t, is the ML estimator of 0.
For statistical inference, we may rely on the general theory for multi-

parameter maximum likelihood estimation, namely
Va(t — 0) > N(0, D).

Here ® = [V(s)]™' = [E(W)]"', with s = {5} = {dL/36;} being the
population score vector, and W = {w;} = —{95,/36,} = —{a2L/(aejae,,)}
being the population second derivative, or Hessian, matrix. The general
rule that ML estimators are BAN can be verified here by showing that
the @ for ML is less than that for NLLS. The required calculation
parallels that which shows that GLS is preferable to LS in a linear GCR
model.

In practice, the ® of ML may be estimated as the sample second
moment matrix of the estimated score vectors, 288,/n, where the hats
denote evaluation at ¢ = t. Some computer programs (including that in
Exercise 29.3) will instead evaluate the sample mean second derivatives
at t. For discussion, see Greene (1990, pp. 677-678).
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Maximum likelihood estimation is also straightforward for the logistic
_and Tobit models introduced in Section 29.1: see Maddala (1983, pp.
22-27, 151-158).

Exercises

29.1 Suppose that the logistic, rather than probit, model applies. So
E(y|x) = G(x'0), with G(a) = exp(a)/[1 + exp(a)]. Show that the ZES-
rule estimator c satisfies X'u = 0, where u = {u;} with », = y, — G(x!c).

29.2 The Tobit model specifies that y* ~ N(x'0, ¢°), while the probit

model specifies that y* ~ N(x'0, 1). Why is the variance set at 1 in the
probit model?

29.3 For the SCF data set, let

_ J 1 if earnings < 9 (thousand dollars),
0 otherwise,

and let the x variables be defined as in Exercise 17.4. Model A for this
quite artificial binary response example is

E(y|x) = F(x'0),

where x consists of x;, x,, X3, Xg, X7, Xg (that is, the constant, education,
experience, and the three regional dummies), and F(:) is the standard
normal cdf. Model B is a shortened version, with only x,, x,, x5 included
as explanatory variables. Estimate both models by maximum likelihood.

ASG2903 is
fimation of t

es”;?;
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Iteration # " iter

Criterion§ = 2
sqrt(dlag(Vc)), ClS'

..

29.4 For the setup of Exercise 29.3, estimate Models A and B by
nonlinear least squares.
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= D[. 8] == 2*xl x7 =
fn h(c) = cdfn( [1,.] + ¢[2,.] *x2

+ c[5,.] .*x7
letc0=-5 03 0.1 -0.1 %O;Gv
-- END OF MODEL-SPECIFIC.SE,
ic=c0; k = rows(c), df = n — k; dci= l,;at

Citer = 0; u = y — h(c); sse = uu,cn
do unti! abs(dc) < tol;
Z = zeros(n,k); gosub GRAD; Q =
QI = invpd(Q); dc = QI*zu; sc:
gosub PRIT; dc = ¢ ~ cn; ¢ = cny it
~“'gosub FINAL; end;
: ¥ eeeeenn SUBRO
‘GRAD:  /* Columns of partials of
j=1; dountl j > k; Z[.,j] = (h(delc-
j =]+ 1; endo; return;
EARCH: /* Compares sse at ¢ + s*d
dc = proposed change in
s is halved until —sse s
iscl = sc + sdc; sm = 1/2;srch
“do until srch > mxsrch;
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AT

99.5 The standard errors computed in the NLLS program ASG2904
rely on an assumption of homoskedasticity. In binary response models,
that assumption is automatically violated because

V(ylx) = E(y|x)[1 — E([x)].

Modify the program to produce correct standard errors.

30  Regression Systems

30.1. Introduction

Suppose that we have a two-equation linear regression model. The data
consist of

Y = (y1, ¥2),

Z=(x;,Xo,...,X),

where each of the vectors is n X 1. The matrix Z is nonstochastic with
rank(Z) = k. The columns of Y are random vectors with

E(y) = X,B8,, E(ys) = XoBs,

Viy)) = ol V(ys) = o9, C(y\, y2) = oyl

Here X,(n X k,) and Xy(n X k,) are submatrices (possibly overlapping)
of Z, and the 2 X 2 matrix

T = (0'11 0'12)
O21 Og2
is positive definite.

A CR model applies to (y,, X,), and a CR model applies to (y,, X,).
The new feature is the covariance, 0,, = 0y, between corresponding
elements of y; and y,.

This is the two-equation case of the regression-system, or set-of-regres-
sions, or multivariate regression, or SUR (“seemingly unrelated regres-
sions”) model that plays a central role in contemporary econometrics.
For economic settings, consider an input demand system where y; and
¥z are the cost shares for labor and capital, while the s include output
and input prices. Or consider the reduced form of a simultaneous
supply and demand system where y, = quantity, y, = price, and the x’s

CCCO000000000000C0000000000000000000O0OLLOL!
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include income, input prices, and prices of substitutes. Or consider
investment demand y; and y, by two firms in an industry, where the
observations run over time, while X, includes vzriables for the first firm,
and X, includes variables for the sccond firre. In all these cases one
might expect correlation between the two dependent variables at each
observation. In some cases, X, and X, will coircide (each containing all
k of the x’s, so X, = X, = Z); in other cases thev will differ.

For an underlying framework. we suppose thzt there is a multivariate
population with joint pdf for the random vecors v = (y;,%2)" and z =
(%1, ..., %) With x; (k; X 1) and x, (k, X 1) being «possibly overlapping)
subvectors of z, suppose further that

'
E(y|z) = (X}BI) , Vivizy = (0-“ G:i) .
x;8; T9) T=z/

So both CEF’s are linear and the conditional variances and covariance
are constant. If we use the strauticd sampling scheme, choosing a set
of vectors z; (: = 1, . . ., n). and then drawinz independently (over )
from the bivariate conditional distributions of ¥ z'. then the SUR model
will result. There is also a neociassical varian: of the model, in which
sampling is random from the joint distributior. of (v, 2').

While our discussion will be contined to the two-equation case, the
model and analysis generalize d:v=\tiv 10 the czse where there are more
than two equations.

30.2. Stacking

The CR specification applies to =z~ regressior separately. So equation-
by-equation LS estimation will t¢ 1>ased, anc the associated variance

estimates will be unbiased as we Tase separzze LS coefficient vectors

are
b, = Ay, b, = Auv..
where
A=@K Q =XX,
Ay =(Q2) 'Xo.  Qu = XX,
Clearly,
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EM,) = B, E(by) = By,
V(b,) = Ull(Qll)_l’ V(by) = 0'22(Q22)_1-

The fact that C(y,, y) is nonzero suggests that better estimates may
be obtained by estimating the two regressions jointly. To do so, first
stack the two regressions into one. Let

= YI X=<Xl O)
y <y2>’ 0 X,)’

_f(oul ol _ (B
z (0'211 0221> ’ B (B?) '
Then E(y) = XB, V(y) = X positive definite, X nonstochastic, and X
has full column rank, so a GCR model applies. The SUR model is just
a special case of the GCR model, special in the structure of its % matrix,
and, at this stage, in the pattern of its X matrix.

For some purposes, a more compact display of % is convenient. If D
ism X m and E is n X n, then the Kronecker product of D and E, denoted
D ® E, is the mn X mn matrix obtained in blocks by multiplying each
element of D into the matrix E. On that definition, we can write the
SUR model variance matrix % as * ® I, where the Iis n X n.

In our two-equation case, there are 2n observations, k, + &, regression
coefficients, and 3 distinct elements in the variance matrix X. Consider
LS regression of the 2n X 1 vector y on the 2n X (k, + k) matrix X.
The estimated coefficient vector is [3 = Ay, where A = Q" 'X'. Now

(X, O (X O
X (o xg)’ X‘(O' X)

Q= XxX= (g“ 822) Q0 <(%l)_l (53)22)_1)7

P Qi) 7'X] o [ A O
a=Qx "< o (QQQ)“‘X;)"<OI AQ)‘

b-ar=(o 2) () -(m)- ()

We conclude that LS estimation of the stacked regression reduces to
equation-by-equation LS.

So

TN
Pes T,
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30.3. Generalized Least Squares

Because a GCR model applies, GLS estimation of the stacked regression
should be preferable to LS. Taking 2* and hence X to be known, the
normal equations for GLS estimation are

X'T7'X)b* = X'S 7y,

b*
* = [ 1
b (b%)'

For GCR models, a data-transformation device is ordinarily used to
convert a GLS problem into an LS problem (see Sections 27.3 and 27.4).
But that device is not particularly convenient in the SUR special case,
so we continue to work directly with the GLS normal equations.

It is easy to verify that

11 12 11 12
- I  § . o o -
2 1= (0' ¢ ) , with (0_21 022) = 2* l:

with

o'l o*1

illustrating a general rule for Kronecker products: if D and E are
nonsingular, then (D Q Ey'=D"'®E™.
Continuing, we have

Tixrs 1247/ llvyrs 12v7/
-1 _ (00X 07X s [O Xjy: + o 7°Xjys
X (GE’Xé 022Xé) - XEYy (02‘X5y1 + 0" Xsye/

1lwrs 12«7/
1§ —1 = g Xle g X1X2
X%7X (02'X§Xl o**X1X, ) *

The normal equations may now be solved for b*.
We do not give the explicit solution here. Instead, we observe that
the following expressions satisfy the GLS normal equations:

(80.1) b} =b; — o ;Ay(ys: — X,b¥),
(30.2) b} =Dby — aAs(y, — X;b¥),
where

(30.3) o = 019/09, oy = O35/0y;.

i AR MR
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These expressions show that bf depends on y, as well as on y,, and
similarly for bf. They also show how knowledge of 2* up to propor-
tionality suffices to compute the GLS estimator.

Three special cases are instructive.

Orthogonal Explanatory Variables. If XX, = O, then AyX, = O, so

Ay(y, — X;bf) = Aoy, = Ax(X)b; + €)) = Agey,

and similarly Ay, = A,e,, where e, and e, are the LS residual vectors.
So the system (80.1)—(30.2) reduces to

b =b; — a,A ey, bf = by — arAse,,
which we may write as

b>1l= = Alyc;a b>2k = AQy;’

where

]

Ju—— — o — —
Yi =Y «,€,, Y2 = Yo — Q€.

This provides a simple algorithm for GLS in the present case: construct
y: and regress it on X, to get b}; construct y3 and regress it on X, to
get b,

Identical Explanatory Variables. If X, = X,, then A, = Ay, so Ayy, =
Ay, = b; and AyX, = A X, =1, 50 Ay(y; — X;b}) = b, — b}. Similarly,
A(ys — X,bd) = by — b¥. So the system (30.1)—(30.2) reduces to

b — b, = —oy(by — b¥), bf — by = —ay(b, — bf).

Here the solution is obvious: b¥ = b;, b§ = b,. This is a striking result:
if the explanatory-variable matrices of the two regressions are identical,
then b* = b. That is, the GLS and LS estimators will coincide in every
sample.

Uncorrelated Disturbances. If o9 = 0, then a; = a, = 0, and the system
(30.1)—(30.2) reduces to bf = by, bf = b,. If the population covariance
between the two dependent variables is zero, then b* = b. That is, the
GLS and LS estimators will coincide in every sample.

30.4. Comparison of GLS and LS Estimators

The variance matrix of b* is given by V(b*) = XTIX)N Upon inver-
sion, we find that the variance matrix of the GLS estimator of 85, which
lies in the southeast block of V(b*), can be written as

DODDO

N
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-
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(30.4) V(b¥) = 05o(XsXo + $°X§'X¥) 7,

where

& = p*/(1 ~ p?), p = 019/V(011029), X§ = M X,.

Here p (which must lie between —1 and 1) is the population correlation
coefficient of y, and y,. The variance matrix of b§ contrasts with the
variance matrix of by, the LS estimator of By, which is

(30.5)  V(by) = 09o(X5X5) "

Because ¢* = 0 and the matrix X$'X¥ is nonnegative definite, we have
XiX, + $¥X3'XE = XiXo.

Inversion reverses the inequality, so V(by) = V(bf). The difference will
be large—that is, GLS will be much more precise than LS—when the
matrix $p°X3'X3 is large relative to the matrix X;X,. This occurs when
p® is large and/or X, is poorly fitted by LS linear regression on X,.

Extreme cases are again instructive. Suppose that X; and X, are
orthogonal, that is, X;X,; = O. Then X§ = X,, and

XiX, + O°XE'XE = (1 + $HXX, = XiXol(1 — p),
SO
V(bg) = (1 = p*)V(by),

and a sharp comparison is seen. For example, if p = 0.8, then 1 — p> =
0.36: the GLS coefficient estimates will have variances that are about
one-third as large as those of the LS coefficient estimates. Evidently,
GLS is particularly advantageous when X, and X, are orthogonal and
p? is large.

At the other extreme, if X, and X, are identical, then X§ = O and
V(b¥) = V(by), as it must because bf = b, in every sample. Or if ;5 =

0, then ¢* = 0 and again V(b§) = V(by), as it must because b = b, in

every sample.

In general, the explanatory variables are not identical and the covar-
iance is nonzero, so GLS will be different from, and hence preferable

to, LS in the SUR model.
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30.5. Feasible Generalized Least Squares

We proceed to the practical situation, where %*, and hence 2, is
unknown. The natural estimators of the elements of 2* come from the
residual vectors of equation-by-equation LS regression, e, and e,. Let

G.j=1,2),

6; = eje;/n

and

$x = (fm 612> $- (frul c‘rml)

621 6o/’ 60,1 Gopl/
Then, by the rule 3= (ﬁ* RID'= 3! ® I, we have
211 ~ 12 11 ~12

&— 61 671 . &om

37 = (6‘211 6’22I> , Wlth( 21 222) = 3%
The FGLS estimator

. b

b* = (!

(+1)

is the solution to the normal equations (X'i"‘X)i)* = X’ﬁ)_'y, that is,

(=31

b* = X 27x)7Ix' 3 Yy

Comparison with Egs. (30.1)—-(30.2) shows that the FGLS normal
equations are solved by:

b = b, — 6,4y, — Xob),
bf = by — GpAs(y; — X,bY),
where

&y = G19/Ggy, Gy = 619/64;.

So the algebraic analysis of Section 30.3 carries over: FGLS and LS
coincide if X; = X, or if &,;, = 0. Of course, the latter condition will
occur only by coincidence even if o,, = 0.

This FGLS estimator, introduced by Zellner (1962), is sometimes
known as ZEF (Zellner efficient). Under general conditions, it has the
same asymptotic distribution as the GLS estimator. That conclusion
stems from the quality of the estimator of £*, which we now explore.
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We know from CR theory that e; = M,y,, with E(e;) = 0 and V(el).=
o, M,. So E(eje,) = (n — k)0, whence E(6,,) = o1,(1 — ki/n). Thci bias
goes to zero as n increases. Equally relevant is the fact that the variance
goes to zero. This convergence is especially easy to see under normality.
For then w, = eje,/o;; ~ x2(n — k,): see D6 in Section 21.1. Now, 6, =
(o1,/m)w,. So

V(611) = (01/m)*V(w)) = (01/n)2n — ky) = 20T/n)(1 — ky/n),

which goes to zero with n. Thus 6,, converges in mean square to 0,
so it is a consistent estimator of o;,. Similarly for &,.

Proceeding to the covariance, we have e, = M,y,, and e, = Myys, so
by R6 (Section 15.1),

C(e,, €) = M,C(y;, yo)Ms = 0;oM M,
whence
E(eey) = tr[C(e,, €;)] = 0 1otr(M;My).
So
E(65) = ootr(MMy)/n.
Now
tr(M,M,) = tr(I — N, — Ny + N|Np) = n — k; — ks + tr(N;Ny).

If X;X, = O, then N,N, = O and tr(M,M,) = n — k; — ky. At the other
extreme, if X; = X,, then N; = N, and tr(M;Mp) = n — k; = n — k.
Indeed, it can be shown that n — &, — ky =< tr(M;My) < n — min(k;, IfQ):
see Theil (1971, pp. 317-322). So E(G,,) goes to 75 as n goes to inﬁmty.
Similarly it can be shown that V(6,,) goes to zero, so G} is consistent
for o,5.

The result is that * is consistent for %*. This quality of the variance-
matrix estimator suffices to make the asymptotic distribution of FGLS
the same as that of GLS. One might divide by the appropriate scalars
rather than by n to get an unbiased estimator of %*, but there is no
advantage in doing so because asymptotic properties are soug}'lt. ‘

Having obtained the FGLS estimate b*, one proceeds to estimate its
variance matrix as

Vb = (X'2X)7Y,
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and to use this just as one would use V(b) = 62Q—‘ in the CR (or CNR)
model. This practice has an asymptotic justification.

Despite the fact that it is a nonlinear function of y, the ZEF estimator
is unbiased under quite general conditions, as shown in an elegant
argument by Kakwani (1967).

30.6. Restrictions

In empirical applications of the SUR model, cross-equation restrictions
are often imposed. For concreteness, suppose that we start with

E(y)) = %811 + XoBoss

E(ys) = x,B12 + X3P,

Upon stacking, this becomes

B
x, X 0 0 B X, O B
Ery) = (X1 X ) 2,=(1 )(‘)=x,
® (0 0 x x4 Bis 0 X,/ \B; B
Bso
say. Consider the cross-equation restriction By, = Bsy (= By, say). It
implies that
B
_[*x x2 0 —
E(y) (0 Xs x1> Bo XoBo,

Biz
say.
Although this X, matrix does not have the characteristic block-

diagonal SUR pattern, GLS or FGLS estimation can proceed. Observe
that X, = XT, where

OO O
—_ QO O
O -0 o

So

X5 7'X, = T'X'E7'XT, X37'y=T'X'37y,

ol
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and the restricted GLS estimator of B is (T'X'E 7 'XT)”'T'X'% " y.

When such restrictions are imposed, GLS and LS can differ even
though the original explanatory variables are identical and the distur-
bances are uncorrelated. The previous conclusion that GLS and LS
coincide relied in part on the block-diagonal structure of the X matrix.
For a sharp example, suppose that X; = X, (= X°, say), that o5 = 0,
and that the restriction is B; = B2 (=Bo say). Set up the restricted model
as

° I O
E(y) = (io) B V(¥ = (08 0221> .

The LS estimator of B, is
by = (2X°'X°) 7 X"y, + Xyg) = (1/2)(b; + by),
while the GLS estimator is
bt = (071 X"X° + 0 X"X) (011 X"y, + 0 X”y3)
= (o1 + o) 'X"X) e X"y, + 02 Xy2)
6b, + (1 — O)by,

where
I | -1 -1y —
0 = 07, /(01 + Oz2) = 02pf/(011 + o).
We see that b, and b} are distinct weighted averages of b, and b,.

The rule that identical explanatory variables make GLS coincide with
LS is still valid on the understanding that once cross-equation restric-
tions are imposed, the explanatory variables in the two equations should
no longer be considered identical. After all, linear restrictions on coef-
ficients are like zero-null-subvector restrictions, as we saw in the single-
equation context of Section 22.2.

30.7. Alternative Estimators

There is a useful way to look at the algebra of the SUR model that may
clarify the relations among the various estimators. Let

llj = YJ - X]cj (] = 1, 2)’ u= (u;’ ué),, U= (uh u2)'
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Then the GLS procedure can be restated as: choose ¢ = (¢}, ¢})’ to
minimize the criterion

d(c) =u'Z7'u
11 12
, [0l 71\ [u
ul, u !
( 1 2) (0,211 0,221) (u2>
c“u, + 0‘121.12
o’'u; + 0%,

= (uy, ug) (

— 11 22

=o' luju, + o”uju, + ¢uju, + o'uu,

= u@*'U0).
Here U'U is the 2 X 2 matrix of sums of squares and cross-products of
deviations from the regressions. By the same token, FGLS chooses ¢ to
minimize the criterion tr(2*~'U’U), while LS chooses ¢ to minimize the
criterion tr(U'U) = u'u.

NO\:V suppose that we have the normal version of the SUR model.
That is, y ~ N(, X), where

= (N L5} o1 ol
) ) 2
Y2 ® o 2 0'211 0'221
with p; = X B, (j = 1, 2). The pdf of the 2n X 1 random vector y is
fy) = @m)7" 2|2 exp(—w/2),
with
w=(y - w2y - p) = wIu =G UN).

Furt'her,. because % = %* ® I,, we have |2| = |2*|". So the sample
log-likelihood function is, apart from an irrelevant constant,

log £ = (=1/2) [n log|Z*| + r(Z*'U'U)).

I.f 3* is known, then this log-likelihood is evidently maximized by
taking, as the estimator of B, the value of ¢ that minimizes tr(E*_lU’U).
But this is exactly the GLS criterion, so in the SUR model with 3*
known, the normal-ML and GLS estimates of B are identical. If 3* is
unknown, normal-ML will choose estimates of the o’s along with esti-
mates of the B’s. It is straightforward to show that for any choice of ¢,
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the sample log-likelihood function above is maximized with respect to
the o’s by taking %* = U'U/n: compare the single-equation case of
Section 19.2. Inserting that (conditional) solution into the log-likelihood,
we have the “concentrated log-likelihood function”

log $* = (—n/2)(log|U'U/n| + 2),

which remains to be maximized with respect to c. So in the SUR model
with % unknown, the normal-ML procedure reduces to minimizing
log |U'U/n| or, for that matter, minimizing |U'U|. Along with the LS,
GLS, and FGLS criteria above, the normal-ML criterion is just a scalar
measure of the matrix U'U.

Because the ML and FGLS criteria are different, we should anticipate
that the resulting estimates will be different in general. Nevertheless,
the estimators have the same asymptotic distribution. If the explanatory
variables are identical in the two equations, then normal-ML and FGLS
(and LS) estimates do coincide in every sample.

Having obtained the FGLS estimator b*, we might calculate fresh
residuals e* =y — Xb*, and use those residuals to re-estimate 3*. Using
that new estimate of 2* in place of the original one will generate a new
FGLS estimate, say b**. If this process is continued until convergence,
that is, until the successive estimates of B stabilize, then the result is
called the iterative FGLS estimator, sometimes known as IZEF (iterative
Zellner efficient). All the successive estimators, including the terminal
one, will share the asymptotic distribution of the GLS estimator b*. If
carried through to convergence, IZEF will solve the FOC’s for normal-
ML estimation: the iteration procedure turns out to be an algorithm
for solving the FOC’s for minimization of |U'U|.

Exercises

30.1 True or false? In the SUR model, if the explanatory variables in
the two equations are identical, then the LS residuals from the two
equations are uncorrelated with each other.

30.2 True or false? In the SUR model, if the explanatory variables in
the two equations are orthogonal to each other, then the LS coefficient
estimates for the two equations are uncorrelated with each other.

S
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30.3 Suppose that
E(y)) = x,By, E(ys) = %985,
V(y,) = 41, Viys) = 5I,  Cl(y;, y2) = 2L

" Herey,, y,, x,, and x, are n X 1, with xix, = 5, x9x, = 6, XX, = 3.

Let b, and 4% denote the LS and GLS estimators of B,. Calculate V(by)
and V(b¥).

30.4 Suppose that y, and y, are bivariate-normally distributed with
unknown expectations ., and p,, and known variances and covariance.
Consider random sampling, sample size 100, from that population.

(a) Can we improve on the sample means %, and ¥, as estimators of
Ky and p,? If so, how? If not, why not?

(b) Now suppose that it is known that p, = 2n,. How would your
answer in (a) change?

30.5 For the two-equation SUR model, suppose that g,, = 0. Show
that LS is preferable to FGLS, at least for samples of modest size.

30.6 For the two-equation SUR model, derive Eq. (30.4):
V(b%) = 099(X35X, + ¢2X§"X§)_l-
Hint: Adapt the Submatrix of Inverse Theorem in Section 17.5.

30.7 Table A.6 contains annual data on two firms, General Electric
(GE) and Westinghouse (WE), for 1935-1954, taken from Theil (1971,
p- 296). The variables are: V1 = Year number (1, . . ., 20), V2 = GE
investment, V3 = GE market value, V4 = GE lagged capital stock, V5 =
WE investment, V6 = WE market value, V7 = WE lagged capital stock.
Variables V2—V7 are measured in millions of 1947 dollars. This data
set is presumed to be available as an ASCII file labeled GEWE.

Suppose that the SUR model applies to

E(y)) = z,B) + 2585 + 2583,

E(yq) = 2)B4 + zB5 + 2z5Bs,

where y, = V2,2, = 1,2y = V3, 23 = V4,9, = V5, 2z, = V6, 25, = V7.
Using this data set, write and run a program to
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(a) Calculate the LS estimates of B, and B,, along with their standard

€errors.
(b) Using the residuals from those LS regressions, estimate 2*.

(c) Calculate the FGLS estimates of B, and B,, along with their
standard errors.

30.8 For the setup of Exercise 30.7, calculate the iterative FGLS esti-
mates. That is, get the residuals from FGLS, use them to re-estimate
3% and thus % and B. Continue this process until convergence, say
until the successive estimates of B coincide to three decimal places.

31  Structural Equation Models

31.1. Introduction

Economists find it natural to model economic phenomena as a set of
simultaneous equations in which several dependent variables are jointly
determined. It may appear that such models are not only natural, but
indeed essential: simultaneity, reciprocal causation, and feedback are
ubiquitous in the real world. Suppose that the validity of LS estimation
rested on unilateral causation running from the right-hand-side deter-
mining variables to a left-hand-side dependent variable in a regression
equation. Then LS estimation would be inappropriate for models of
Joint determination. (For an argument along these lines, see Judge et
al. 1988, pp. 599-601.)

But this rationale for special econometric treatment of simultaneous-
equation models may be questioned on several counts.

The causal requirement that in regression the x’s have to be the
variables that actually determine y does not appear in the specification
of the CR model: nothing in the CR model requires that the x’s cause
y- Indeed it is not obvious why the validity of a conditional expectation
function (and its estimability by least squares) should depend on the
assumption that x causes y. For example, suppose that x = father’s height
and y = daughter’s height are bivariate—normally distributed. Then
E(y|x) = o + Bx, so in random sampling, the LS regression of y on x
will unbiasedly estimate o and B. But also E(x|y) = y + 8y, so in random
sampling, the LS regression of x on y will unbiasedly estimate v and 8.
Neither of those regressions relies on an assumption of causal direction.

The fact that a model contains several dependent variables whose
values are determined jointly cannot be an adequate reason to abandon
LS. The SUR (regression systems) model of Chapter 30 had several
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dependent variables whose values might be viewed as jointly deter-
mined, and yet its parameters were estimable by LS.

It is sometimes said that the SUR model is not really simultaneous
because one does not have to solve any equations to get the explicit
equations for the y’s. (From that perspective, the algebraic system y; +
yo = 3x, 3, — y2 = x is simultaneous, while its solution set, y, = 2x, y, =
x, is not simultaneous.) If so, the notion that a simultaneous-equation
model is required to represent an economic system correctly is tenuous.
The solution to a system of equations is, after all, logically equivalent to
the system itself. So, when an economic system can be represented
correctly by a simultaneous-equation model, it can also be represented
correctly by the reduced form of that model. If a pair of supply and
demand equations (simultaneous) correctly represents a market, then
so does the corresponding pair of quantity and price equations (non-
simultaneous).

A sounder case for special treatment of simultaneous-equation models
can be made by arguing that those models represent situations in which
the parameters of interest are not the parameters of a CEF (or BLP)
among observable variables. For such situations, it should be clear that
LS, which is inherently designed to estimate CEF’s (or BLP’s), will not
be an appropriate estimation procedure.

31.2. Permanent Income Model

An instructive nonsimultaneous example at this point is Milton Fried-
man’s permanent income model of consumption:

y=a+pz+uv, =z+u,

where y = consumption, x = income, z = permanent income, v =
transitory consumption, » = transitory income. The observed variables
are y and x, while the unobserved variables z, u, v are assumed to have
expectations W, 0, 0, variances of, 0',3, 0'3, and zero covariances. The
parameters of interest are the slope B (which is called the “marginal
propensity to consume out of permanent income”) and the intercept o
(which is relevant to Friedman’s hypothesis that the relation goes
through the origin).

For conyenience, suppose that z, u, and v are trivariate—normally
distributed, so that

R B
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x 0 *
90649
is bivariate—normally distributed. Then
E(ylx) = o* + B*x,
with
B* = o, /a2, o = p — B*u,.
We calculate
0, =Ciz+u a+ Bz + v) = Bo?, crf=V(z+u)=0'f+0'§,
n, =a+ BE(@) + E(v) = a + B,
Let ® = o/(0? + o2). Then

B* = 6B,

My = E(z) + E(u) = p.

o* = o+ (1 -6)Bw,

so
E(y|lx) = [a + (1 = 8)Bu] + (6B)x.

Clearly the parameters of interest, namely a and B, are not the intercept
and slope of this CEF for the observable variables y and x.

If so, it is not surprising that the sample LS regression of y on x,
namely § = a + bx, is inappropriate for estimation of a and B. If we
randomly sample from the joint distribution of x and y, then a NeoCR
model applies, whence E(a) = a* and E(b) = B* = 0B: see Chapter 25.
(The same conclusion follows under a classical, stratified-on-x, sampling
scheme.) This result is often described by saying that LS gives biased
estimators of the structural parameters o and B. But a fairer description is
that LS gives unbiased estimators of the CEF parameters o* and B*, which
happen to be different from « and B. The latter description makes it
clear that the issue is not one of estimators, but rather of parameters to
be estimated.

Normality is not crucial to this argument. If the underlying variables
are not joint-normal, then E(y|x) may be nonlinear. But the best linear
predictor E*(y|x) will still be a* + B*x, with o* and B* as above. In
random sampling, LS linear regression of y on x would consistently
estimate a* and B*, and for that very reason be inconsistent for a

and B.
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31.3. Keynesian Model

Next consider a simultaneous example from the same perspective. Take
this stochastic version of the simplest Keynesian model:

8Ll y=a+Bx+u
31.2) x=3+z

where y = consumption, x = income = output, z = investment, and u =
“consumption shock.” Equation (31.1) represents the demand for con-
sumption, while (31.2) is the equilibrium condition, which says that
output is equated to the sum of consumption demand and investment
demand. Assume that z and u are random variables with

E®=p V@=0) Ew=0Vw=o0,

The zero-covariance assumption captures the idea that z is exogenous.

The understanding is that for given values of the pair (z, u), the
model determines the values of the endogenous variables x and y. (So,
paradoxically, it is the simultaneous-equation model that explicitly incor-
porates one-way causation.) The parameters of interest are a and B,
and our concern is with whether those are estimable by sample LS
regression of y on x.

The solution for the endogenous variables is made explicit in the
reduced form, which expresses each endogenous variable in terms of the
exogenous variable and the shock:

(31.3) y=(a+ Bz + w(l— B),
8l4) x=(a+ z+u/(l—B)

Clz, uw) = 0.

For convenience suppose that z and u are bivariate normal. Then x and
y are bivariate normal, so

E(y|x) = o* + B*x,
with

B* = g /oL,  a* =p, - BHu,.
From Egs. (31.3)—(31.4) we calculate

a, = (Bo? + al)/(1 — B)%,

By = (@ + Bl — B),
Let = 0%/(c? + 0%). Then

o2 = (02 + o)/(1 — BY,

K = (@ + /(1 = B).

N
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B* =68+ (1-0), a*=06a-(1~-0)p,

SO
E(ylx) = [0 = (1 — O)p] + [68 + (1 — O)]x.

Clearly the parameters of interest, namely « and B, are not the intercept
and slope of this CEF for the observable variables y and x.

If so, it is not surprising that the sample LS regression of y on x,
namely § = a + bx, is inappropriate for estimation of a and B. If we
randomly sample from the joint distribution of x and y, then a NeoCR
model applies, whence E(a) = o* and E()) = B* = 08 + (1 — 0). (The
same conclusion follows if we adopt a classical, stratified-on-x, sampling
scheme.) This result is traditionally described by saying that LS gives
biased estimators of the structural parameters a and . But a fairer
description is that LS gives unbiased estimators of the CEF parameters
a* and B*, which happen to be different from o and B. Again, the issue
is not one of estimation methods, but rather of the parameters that are
the targets of estimation.

Normality is not crucial to this argument. If the underlying variables
are not joint-normal, then E(y|x) may be nonlinear. But the best linear
predictor E*(y|x) will still be a* + B*x, with o* and B* as above. In
random sampling, LS regression of y on x will consistently estimate the
parameters a* and 8%, and for that very reason be inconsistent for a
and B.

Here is a direct way to view the situation without relying on normality.
If we evaluate E(y|x) from Eq. (31.1), we get

E(ylx) = o + Bx + E(ulx).
From Eq. (31.4),

Cx, u) = Cla + z + u, w/(1 — B) = /(1 — B).
Because x and u are correlated, we see that E(u]x) # E(u) = 0. So
E(y|x) # a + Bx. In the consumption demand equation y = a + Bx +

u, the systematic part, namely o + Bx, is not the CEF of y conditional on

x. In that sense, the structural equation (31.1) is not a regression equa-
tion.-
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31.4. Estimation of the Keynesian Model

To estimate the parameters of Eq. (81.1), we may look for a.CEF among
observable variables in which « and B appear uncontaminated by 6.
Our attention is directed to the reduced-form equation (31.4). We have

E(x|2) = [a + z + E@]2)(1 — B).

But E(u|z) = E(u) = 0 since z and u are independent under normality,
S0

E(x|z) =, + ez,
with

G615 m =all —B), w=1/(1—-B).

So the systematic part, namely m; + myz, of the reduc‘ed-form income
equation x = m; + mWez + v, where v = u/(1 — B), is the CEF of x
conditional on z. . .

Consequently, we should anticipate that LS regression of x on z will
estimate the 7's. If we randomly sample from the (bivariate-normal)
joint distribution of x and z, then 2 NeoCR model will .apply, so the
sample LS regression of x on z, namely £ = p, + poz, will unbiasedly
estimate 17, and Ty; those estimates will be consistent as well.

How can we convert these estimates of the reduced-form parameters
into estimates of the structural parameters? Evidently, if we knew the
reduced-form parameters 1, and 7y, we could solve Eq. (31.5) to deduce
the values of the structural parameters as

B = (my — L)/,

So it is natural to convert the reduced-form estimates into structural-
form estimates via

& = pilps B = (p2— Dips

This illustrates the indirect least squares, or ILS, method: use LS to estimate
the reduced-form parameters, and then convert into estimates <.)f the
structural-form parameters. The ILS estimates are consisten.t (via 82,
Section 9.5), although not unbiased (because of the nonlinearity).

An alternative approach to estimating a and B runs as follows. In Eq.
(31.1), take expectations conditional on z:

a = /T,

[
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E(y|z) = a + BE(x|2),

using E(ulz) = E(u) = 0. Let x* = E(x|z) = m, + w2 Because x* is a
one-to-one function of z, we can write

E(ylx*) = o + Bx*,

which is a CEF in which « and B are the intercept and slope. If x* were
observed in our sample, we could regress y on (1, x*) to get unbiased
estimates of a and B. But x* is unobservable because m, and 7, are
unknown. Still, x* is estimable as £ = p, + poz, so the suggestion is to
regress y on (1, £) to estimate o and B. This illustrates the two-stage least-
squares, or 2SLS, method: the first stage uses LS to estimate the reduced
form and obtain fitted values; the second stage uses LS on the structural
equation after the fitted values replace the observed values on the right-
hand side. We should anticipate that the 2SLS estimates are consistent,
though not unbiased.

The analogy principle also suggests a third approach. Consider again
the consumption demand equation

8L.1H) =a + Bx + u.

We know that in the population E(u) = 0 and C(z, u) = 0. That is, «
and [ are the values for ¢, and ¢, that make E(x) = 0 and E(zu) = 0,
where now u = y — (¢; + cox). So let us choose as our estimates the
values that make the analogous sample quantities zero. That is, take the
values of ¢; and ¢, that make Zu; = 0 and Z;z;u; = 0. This illustrates
the insirumental variable, or 1V, method. We should anticipate that the IV
estimates are consistent, though not unbiased.

No method for obtaining unbiased estimates of the structural param-
eters a and {3 exists, because there is no CEF among the observable
variables x, y, and z that has a and B as its coefficients.

31.5. Structure versus Regression

We have just examined two situations where the parameters of interest

are not the coefficients of a CEF among observable variables. Why then

are the parameters interesting? Following Marschak (1953), we develop

a rationale that takes prediction as the ultimate goal of the research.
For the permanent income model, recall that
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B* = 0B, o =o+ (1 - )k,

where
0= 02/(02 + a?).

Why is knowledge of o* and 8* in the CEF E(y|x) = a* + B*x not
adequate? If our objective is to predict y given x, and there has been no
change in the population, then knowledge of a* and B* would indeed
suffice. But suppose that the population has changed, and that the new
population is the same as the old one, except for achange in the varlance
of transitory income. That is, «, B, p, and a? are the same, but a2 is
different. Then 6, a*, and B* will all be different. Unless we have
estimated the constituent parts of a* and B*—those parts being the
structural parameters—we will be ignorant of the new CEF parameters.
For the Keynesian model, recall that

Br=0B8+ (1 —8), of=0a—(1—0p,
where
8 = o?/(c? + ad).

Why is knowledge of a* and B* in the CEF E(y|lx) = o* + B*x not
adequate? If our objective is to predict y given x, and there has been no
change in the population, then knowledge of a* and B* would suffice.
But suppose that the population has changed, and that the new popu-
lation is the same as the first, except for a change in the variance of
investment. That is, a, B, 1, and o> are the same, but a? is different.
Then 0, o*, and B* will be different. Unless we have estimated the
constituent parts of a* and B*—those parts being the structural param-
eters—we will be ignorant of the new CEF parameters.

To say that a set of parameters is structural is to claim that it is
plausible that one of them will change while the rest of them remain
invariant. It is a claim about the world rather than about the algebra or
econometrics.

From that perspective, a conditional expectation function may or may
not be structural. The relevance of this remark is not confined to multi-
equation models.

Consider a perennial question: Which is the correct regression in a
bivariate distribution? We have argued (Section 16.1) that both E(y|x)
and E(x|y) may be legitimate targets of interest. But one target may be

st AL D

31.5 Structure vs. Regression 345

more interesting than the other. Suppose, for example, that fi(x), the
marginal pdf of x, will change with no change in go(y|x), the conditional
pdf of y given x. Then E(y|x) will remain the same while E(x|y) will not.
If this is how the world works, then E(y|x) will be structural, while E(x|y)
will not. For example, suppose that y = daughter’s height, and x =
father’s height. Suppose that you are asked to adapt results for the
population at large to the subpopulation consisting of families in which
the father has played professional basketball. Which CEF do you antic-
ipate will be unchanged from the population to the subpopulation?
Consider another question: What is the objection to running a short
regression—won’t that estimate a CEF in its own right? Suppose that

E(y|x1, x3) = Bo + Byx; + Boxa.

It is often said that it is wrong to omit x, and run the short regression
of y on x, alone. But it is quite possible that

E(yixl) = B + Bfx,

is also correct. It is certainly correct, with B¥ = B, + ¢f,, if the CEF of
xg on x, in the population is linear, with slope ¢. Nevertheless, consid-
erations of structure may dictate a preference for the long CEF. Suppose
that the world changes because the joint pdf of x, and x, changes, with
no change in the conditional pdf of y given x; and x,. Then the condi-
tional pdf of y given x, will change. In particular, a change in ¢ will,
with B; and B, invariant, produce a change in Bf. Unless we have
estimated the constituent parts of B¥—the structural parameters—we
will be ignorant of the new CEF for y given x,. In a sense, the original
short regression is not wrong; it is just inadequate.

It should not be presumed that a long regression is inevitably more

structural than a short regression. Suppose that a SUR model applies
to

(31.6) E(}’llz) =z'B),

V(y1|z) = @)y,

E(y?lz) = Z,BQ:
V(y2lz) = (1)22, C(y],yQIZ) = 0)12.

If the distribution of the random vector y = (y,, y,)’ conditional on z is
bivariate normal, then

(B1.7)  E(yslz, y,) = z'B§ + 6y,

with
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B =B, — 0B,

If the conditional variance of y, given z changes with no change in the
conditional expectations of y; and y, given z, then the long regression
(Eq. 31.7) will change while the short regression in Eq. (31.6) remains
invariant.

To recapitulate: even if we are interested only in prediction (that is,
in CEF’s), if our interest includes predictions for populations other than
the one from which our data came, we may well need to isolate structural
parameters, those that may change individually. The argument may be
reinforced if we recall an introductory microeconomics course, and ask
why the determination of price and quantity is modeled in terms of
separate demand and supply functions, rather than directly in terms of
the exogenous variables (income, input prices, prices of substitutes).
The answer is that we want to study what happens when the demand
function shifts, while the supply function remains the same (or vice
versa).

Finally, we might concede some validity to the notion that causality
is a requirement for regression models. To the extent that causal-
ity is interpreted as “structural-ness,” we may well agree that causality
is needed to support interest in the parameters of a regression, while
maintaining that it is not needed to support estimation of the parameters
of a regression.

0 = w/o,,

Exercises

31.1 Consider the permanent income model of Section 31.2.

(a) Suppose it is known that consumption is proportional to perma-
nent income, in the sense that a = 0. Propose a simple estimator
of B that is consistent under random sampling.

(b) Alternatively, suppose that we observe not only y and x, but alsc
x' = z + u', where ' has zero expectation and is uncorrelated
with z, u, and v. Propose a simple estimator of B that is consistent
under random sampling. Hint: Find C(x’, x).

31.2 In the Keynesian model of Section 31.3, show that the ILS, 2SLS,
and IV estimates of B are identical. Hint: x = y + z at every observation.
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31.3 Suppose that the endogenous variables ¢ = quantity and p =
price are jointly determined by this simultaneous-equation model:
Demand. g = 30 — 2p + u,

*Supply. ¢=20+ p+o,

in which the disturbances u and v are independent normal variables
with zero expectations and variances 6> = 5, 62 = 10. Consider random
sampling from the joint probability distribution of quantity and price.
Let b denote the slope in the LS regression of quantity on price (with a
constant term included). Calculate E(b).

31.4 Consider the two-equation model:
N =ogx t oy, Yo = Qgyy + Uy,
where x, u,, u, are independent N(0, 1) variables.-

(a) Calculate E(yy|x) and V(y,|x).

(b) Calculate E(y,x, y,).

(¢) In random sampling, will LS regression of y, on y, give an
unbiased estimator of o? Explain.

31.5 Suppose that y, = x + u, y, = 2y, + u,, where x, u;, and u, are
trivariate normal with zero expectations, unit variances, and C(u,, uy) =
172, C(x, u,) = 0 = C(x, uy). Consider random sampling, sample size 50,
from the joint distribution of x, y;, .

(a) Let p be the slope in the LS regression of y, on x. Find E(p).
(b) Let b be the slope in the LS regression of y, on y,. Find E(b).

31.6 Suppose that
Yo = a1y + Qox + uy, Yo = Qg9 + uy,
where x, u,, u, have a trivariate normal distribution, with
E(x) = E(u;) = E(ug) = 0,
Vix) = 3, V(u)) = V{u,) = 2,
C(x, u;) = C(x, ug) = 0, Cluy, us) = 1,

- OLI = l, 0(2 = 2, (13 = _3.
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Consider random sampling, sample size 50, from the joint dist.ribution
of x, y;, 2. Let b be the slope in the sample LS linear regression of y,

on y,. Find E(b).
31.7 The structural form of a model is
Y1 = 0y T QX + Uy,

y2 = s ogxy Fasxs + U,

where x,, xo, x5 are independent N(0, 1) variables, u,, u; are independent
N(0, 8) variables, and a; = =2, ap = 2, a3 = 2, ay = 4, @5 = 5. The
exogenous variables (the x’s) are independent of the structural shocks

(the u’s).
(a) Find the pair of reduced-form equations. Include expressior}s for
the reduced-form disturbances in terms of the structural distur-

bances. '
(b) Find the variances and covariances for the x’s and the y’s. Display
your results as a matrix V(z), where z = (x;, X2, X3, y1, ¥2) -
(c) Let E(y,]y2, 1) = afyp + aix,. Find the o*'s. ’ ’
(d) Discuss the qualitative relation between the a*’s and the a’s.

s AR ARG

32 Sumultaneous-Equation Model

32.1. A Supply-Demand Model

In this chapter, we develop a specification that may be appropriate for
linear simultaneous-equation models. But first, to fix ideas and intro-
duce notation, we consider a two-equation system in which the endog-
enous variables y, = quantity and y, = price are determined by the
exogenous variables x, = income, x, = wage rate, and x5 = interest rate,
and the disturbances u, = demand shock, u, = supply shock. For
convenience we suppress intercepts in both equations. The structural
form of the model is

(32.1) Demand. y, = a0 + apx, + u,
(32.2) Supply.

Y2 = Qg + auxe + asxg + u,
Taking the terms in y, and y, over to the left-hand side and adopting a

matrix representation we have

1 -« a, 0
(31> ¥2) (—a 13> = (xnxg,x3) | 0 oy |+ (uy, u),
1
0 a4

or
yI'=x'B + v’

In the structural-form coefficient matrices I' and B, the columns refer
to equations, while the rows refer to variables.

Solve for each endogenous variable in terms of exogenous variables
and structural shocks to get the reduced form of the model:
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= T11X%; + T91X9 + 31 X3 + Ui,

(32.3) Quantity. y;
(32.4) Price. Yo = TigXy T TWogXe T WsoXs + Vs

In matrix form, we have

Ty Tz
(31, y2) = (X1, Xa, %3) | Wy o | + (vy, vo),
T3y Ts2

or
y =x'II + v
“To be more explicit: we solved by post-multiplying the structural form
through by I'"! to get
y = xBl!'+aT ' =xTI+v'.
Here IT = BI'"! is the reduced-form coefficient matrix, and v’ = u'I"™!
is the reduced-form disturbance vector. In II, the columns refer to

equations; the rows refer to variables.
For our supply-demand model we have

Qg

' = (1/4) ((11 1 ) , withA=1—- a0
1

So
T o Qs Qg
II=| 7y e |=A)]| oy oy ,
T3 T3 a0 Qg

v = (v, ve) = (U + oqu, asu; + up)/A.

To recapitulate: we began with a structural form that consisted of
two linear equations relating the two endogenous variables, three exog-
enous variables, and two structural disturbances. We derived the
reduced form, which consists of two linear equations, each of which
expresses one endogenous variable as a linear function of the exogenous
variables and a reduced-form disturbance (which in turn is a linear
function of the structural disturbances). All exogenous variables and
structural disturbances appeared in each reduced-form equation,
although they did not all appear in each structural-form equation.
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32.2. Specification of the Simultaneous-Equation Model

Our statistical specification for the linear simultaneous-equation model, or
SEM, starts with a multivariate population. Suppose that the joint dis-

" tribution of the m X 1 endogenous-variable vector y, the k X 1 exoge-

nous-variable vector x, and the m X 1 structural-disturbance vector u,
has these properties:

Al)  yT=xB+u,

(A2) I' nonsingular,

(A3)  E(u|x) =0,

(A4) V(u|x) = 3* positive definite.

Here I is m X m, B is k X m, %* is m X m. Assumption (Al) gives the
system of m structural equations in m endogenous variables. Assumption
(A2) says that the system is complete, in the sense that y is uniquely
determined by x and u. Assumption (A3) says that x is exogenous, in
the sense that the conditional expectation of the structural shock vector
is the same for all values of x. Assumption (A4) is a homoskedasticity
requirement; positive definiteness simply rules out situations where
there is an exact linear dependency among the structural disturbances.

In some variants of the SEM it is assumed that u|x is multinormal,
in others that u and x are stochastically independent. For some pur-
poses, a weaker exogeneity condition, namely C(x, u) = O, suffices.

The specification in (Al)~(A4), when supplemented by a sampling
scheme, will constitute our SEM. The following implications are imme-
diate:

(B1) y =xII + v,

- with

(B2) II = BIr!, v =uT™.

Here Eq. (B1) is the reduced form, in which each endogenous variable
is expressed as a linear function of the exogenous-variable vector x and
the reduced-form disturbance vector v, the latter being a linear function
of u. Linear function rules applied to Egs. (A3)—(A4) imply
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(B3)  E(v|x) =0,

(B4)  V(v|x) = OQ*,

with

®5  Q* = @ YEATT' positive definite.

So the reduced-form disturbance vector v is mean-independent of, and
homoskedastic with respect to, the exogenous variable vector x. Then

it follows from Eq. (B1) that
(B6)  E(y'|x) = x'II,
(B7)  V(ylx) = OQ*

Equation (B6) says that the systematic part of the reduced form consti-
tutes a set of conditional expectation functions, and (B7) says that the
conditional variance function is constant. If u|x is muitinormal, then

y]x will also be multinormal.
Mean-independence implies uncorrelatedness, so

(B8) C(x, u) = O,

(B9) C(x, v) = O.

In conjunction with Egs. (B1), (B4), and (B5), these imply that
(B10) C(y,v) = CdI'x + v, v) = V(v) = Q%

(B11) C(y,u) = C(y, I'v) = C(y, v)[ = Q*T = (I"')'Z*.

In Eq. (B11) all elements of (I'"')’2* may be nonzero, so each endog-
enous variable may be correlated with every structural disturbance. And
with C(y, u) # O, we have

(B12) E(uly) # E(u) = 0.

The contrast between Eq. (A3) and Eq. (B12) is critical: the structural
disturbances are mean-independent of the exogenous variables, but not
of the endogenous variables. (In weaker form, the contrast is between
Eq. B8 and Eq. B11: the structural disturbances are uncorrelated with
x, but not with y.)

To illustrate, suppose that the SEM applies to our supply-demand
model. The structural form is

P

32.2  Specification 353

(32.1) Demand. y;, = a,;y; + 0x; + uy,

+ Q4Xo + O5xg t Us.

(32.2) Supply. Yo = Oz,

Taking expectations conditional on y, and x, in Eq. (32.1), we get
E(y1]y2, x1) = o192 + aox; + E(u]ys, x),

in which the last term is not equal to E(u;) = 0. If it were, then
C(ys, u;) would be 0. But

C(y2, uy) = Clvg, uy) = (V/A)YC(asu, + ug, u)) = (@30, + T 5)/A

is (coincidence apart) nonzero. While u,; is uncorrelated with x,, it is
correlated with y,. Consequently the systematic part of the structural
demand equation, namely a,y, + oyx,, is not the CEF (or BLP) for y,
given y, and x;. If u|x and x were multinormal, then we would be
assured that all CEF’s were linear. In that case E(y,|ys, x,) = afy, +
a¥x,, say, where o} and af are deducible from the structural parameters
and variances and covariances. That assurance is not available in gen-
eral, but the negative conclusion remains: E(y, |y, x;) # o,y + Qox,.
Similarly in the supply equation (32.2), we have

E()’2|}’1, X9, X3) = Qg); + OXo T Qsxg + E(“2|)’1, Xg, X3)
# asyl + 0L4x2 + a5x3.

This analysis may be summarized by saying that in the SEM, the system-
atic parts of the structural equations are not regression functions. It
follows that they ought not to be estimated by least squares.

In contrast, consider the reduced form of our supply-demand model:

(32.3) Quantity. y, = 7, x; + Wy Xo + Wyyx5 + vy,

(32.4) Price. Yo = TigX; + Mook + MgoXz + Us.

Because E(v,|x,, x9, x5) = E(vg|x,, X9, x3) = 0, we have
E(yy] %y, %o, X3) = Wy 1%, + Warxe + Weag,
E(ys|xy, xg, x5) = TW19%; + Togky + Tagxs.

The systematic part of each reduced-form equation is the CEF of a y
given the x’s. So the reduced-form equations are regression equations,
and hence their parameters are presumably estimable by least squares.
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32.3. Sampling

Let us now turn from the population to the sample. Suppose that we
obtain a sample of n observations from the multivariate distribution of
x and y by stratified sampling: » values of x’, namely x; ¢ =1, .. .,
n), are selected, forming the rows of the n X k observed matrix X, with
rank(X) = k. For each observation, a random drawing is made from the
relevant joint-conditional distribution go(y|x), giving they; G =1, .. .,
n), which form the rows of the n X m observed matrix Y. Successive
drawings are independent. This completes the specification of our SEM.

For convenience we will confine our attention to the two-equation
case, where

Y = (y1, ¥o), II = (m,, 7y), Q* = (‘”11 ‘”12) ‘

Wy, g
We have

E(y;) = Xm,,  E(ys) = Xy,

V(y) = onl, V(ys) = wyol, C(y1, yo) = wpol.

Except for notation, this is just the two-equation SUR (regression sys-
tems) model of Chapter 30. The conclusion is that in the SEM, a SUR
model applies to the reduced form. If the data were obtained by random
sampling from the joint distribution of (x', y’), then we would have a
-neoclassical version of the SUR model.

32.4. Remarks

The SEM specification turns out to be a roundabout, rather exotic, way
of specifying a SUR model for the reduced form. We have already
discussed methods for estimating the parameters of a SUR model,
including LS, GLS, FGLS, and normal-ML. Why is a separate discussion
needed for this special case of a SUR model? Indeed, why not just
estimate the reduced form by LS? After all, the reduced form appears
to have identical explanatory variables, a SUR situation in which LS
coincides with GLS: see Section 30.3.
What does justify special econometric consideration of the SEM?

oA ARG,
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In simultaneous-equation models, the targets of research are the
structural parameters (the a’s in our supply-demand example, the ele-
ments of I and B in the general case), rather than the reduced-form
parameters (the 7’s, or II). So the SEM is a situation in which the
parameters of interest are not those of the CEF’s among observable
variables. As a consequence, rules are needed for converting estimates
of the ’s into estimates of the a’s, that is, for converting estimates of
IT into estimates of I" and B.

Why not just get LS estimates of the 7's and convert them into
estimates of a’s in the obvious way, as was done for the Keynesian model
in Section 31.4?

The answer here is two-fold. First, an SEM may imply restrictions on
the m’s, in which case the best estimates of the m’s are not obtained by
equation-by-equation LS on the reduced form. Second, there may be
no way to convert estimates of m’s into estimates of a's, because the
parameters a may not be uniquely deducible from the parameters .
These two items are interrelated: identification deals with the issue of
whether Il uniquely determines I' and B; restrictions deal with the issue
of whether the prior knowledge of certain elements of I" and B implies
restrictions on II.

CCCOoOCOCOOLOOOOCOOOOLLOLOOOOOOODOOOOLOLLODLLL!
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33 Identification and Restrictions

33.1. Introduction

We now investigate whether the structural parameters are uniquely
determined by the reduced-form parameters. If we know the elements
of the II matrix, can we uniquely deduce the values of the elements of
I" and B? At first glance, this task seems hopeless, because there are
only km elements in IT, while there are m® elements in I’ and km elements
in B. It appears that the number of unknowns, m(m + k), must exceed
the number of equations, mk. But a structural model typically will
include prior knowledge of certain elements of I' and B. Such knowl-
edge reduces the number of unknowns, and hence opens up the pos-
sibility of a unique solution for the remaining structural parameters.
The prior knowledge may even be rich enough to constrain the values
of the reduced-form coefficients. ~

The key to our investigation is the matrix equation that relates the
reduced-form coefficients to the structural-form coefficients, namely
IT = BI'"!, which we may rewrite as

IIT" = B.

We will treat IT as known along with particular elements of I' and B.
The question will be whether we can solve III' = B uniquely for the
remaining unknown elements of I and B. When a structural parameter
is uniquely determined in that manner, then we say that the parameter
is identified in terms of II, or more simply, that it is identified. Although
the focus is on identification, a few preliminary remarks about estima-
tion are also included.

PR
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33.2. Supply-Demand Models

We explore identification via three variants of a supply-demand system.
Each variant is a two-equation model in which the endogenous variables
y; = quantity and y, = price are determined by the exogenous variables
x; = income, X, = wage rate, and x; = interest rate, and the structural
disturbances u, = demand shock, and u, = supply shock.

Model A. First take the example of Section 32.1. The structural form
is:
(33.1A) Demand. y; = o,y + 0oX; + Uy,

(33.2A) Supply.  y, = a3y + aux, + asxg + us.

Observe that in this economic model, the values 1 and 0 have been pre-
assigned to certain elements of I" and B.
The reduced form is:
(33.3) Quantity Y1 = T + To1Xo + Mg Xsg + Uy,
(35.4) Price. Yo = Migx; T TeoXe + TaeXs + Vs

As previously shown, the reduced-form coefficients relate to the struc-
tural-form coefficients via:

T Ty Qg Qo
IM=]my me |=/A]| a0y ay , with A = 1 — a,0a,.
T3 Ts2 a5 Qg

Reading this as a system of six equations in five unknowns, we see that
if we were given the 7’s, then we could solve uniquely for the o’s:

Qg = We/Tyy, Q) = Tgy/Teg = W31/ Ty,

A=1- a0, o, = Amyy, oy = Ay, a5 = AT,
We conclude that all the structural coefficients are identified in terms
of the reduced-form coefficients. Furthermore, there is a restriction on
the reduced-form coefficients, namely

o/ Moo = T3y /Mss.

It is not surprising to find one restriction on the 7’s, because all six n’s
are functions of only five a’s.

Actually, it is more convenient to analyze identification via IIT' = B,
which.we write out here as:
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Ty Tag ( 1 _a> a, 0
3 =

To1 T —a 1 0 o
- 1
'ﬂ'31 (1 39 O (15

Reading off, we see these six equations in five unknowns:

(33.5A) my —oym = o Tig — 03 =0

Ty — @;Tge = 0 Toe — Q3T = Oy

T3y — QT3 = 0 Tge — OgTg; = Us.

On the left, which refers to the demand equation, we see three equations
in two unknowns; on the right, which refers to the supply equation, we
see three equations in three unknowns.

It is easy to solve the system on the left of (33.5A). First solve either
of the equations that has 0 on its right-hand side. Because of the restric-
tion on II, they give the same answer, namely

Q) = Tg)/Tyy = Tg)/Ms.
Insert that value for a, into the remaining equation to get
Qg = Ty T T

We conclude that the coefficients of the demand equation are identified
in terms of II.

It is also easy to solve the system on the right of (33.5A). First solve
the equation that has 0 on its right-hand side to get

Q3 = To/Tr) ;.
Insert that value of aj into the remaining equations to get

Ay = Too = 3Ty, Q5 = Tgo — QgTs;.

We conclude that the coefficients of the supply equation are also iden-
tified in terms of II.

With respect to estimation, because there is a restriction on I, equa-
tion-by-equation LS estimation of the reduced form will not be optimal:
see Section 30.6. But if we estimate the reduced form subject to that
restriction, then estimates of the 7’s can be converted into estimates of
the o’s using the sample counterpart of the system (33.5A).

Model B. Modify the structural model by allowing the wage rate x, to
enter the demand equation:

oo ARARBR A
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(33.1B) Demand. y;, = a;y, + aox; + agxe + uy,

(33.2B) Supply. 3. = agy;

The reduced-form equations are again (33.3)—(33.4) but now, in the
III' = B format, the relation between reduced-form and structural
coefficients is:

+ Xy + Qsxs + U

Ty Tie a; 0
1 —01.3 .
T Tag —a 1" Qg Oy
1 .
M3 Tag 0 o5

Reading off, we see these six equations in six unknowns:

(33.5B) my; — oymp = e — agmy; = 0

T — QMo = Qg Toe — QgTy = Oy

Ty — QT3 = 0 Tgg — QgTg; = Q.

On each side we see three equations in three unknowns. On the left of
(33.5B), solve the last equation for a; = ms,/3; insert that value into
the first and second equations to get o, and as. We conclude that the
coefficients of the demand equation are identified in terms of II. On
the right of (33.5B), solve the first equation for as = my/m,,; insert that
value into the other two equations to get a, and a;. We conclude that
the coefficients of the supply equation are also identified in terms of II.
There are no restrictions on the 7’s, which is not surprising because the
six 7’s are functions of six o’s.

With respect to estimation, because there are no restrictions on 11,
the reduced form is a SUR model with identical explanatory variables,
so equation-by-equation LS will coincide with GLS and hence be optimal.
The LS estimates of the 7’s can be converted into estimates of the o’s
by using the sample counterpart of the system (33.5B).

Model C. Modify the original structural model by allowing income x,
to enter the supply equation:
(33.1C) Demand. y, = o;y, + 0o + uy,
(33.2C) Supply.  y5 = agy; + agx; + agxy + agxs + us.

The reduced-form equations are again (33.3)-(33.4) but now, in the
IIT" = B format, the relation between reduced-form and structural
coefficients is:
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Ty T2 ( 1 - 0‘3) Qy  Qy
Tgy T2 =10 a
-, 1
T3y Ts2 0 as

Reading off, we see these six equations in six unknowns:

(33.5C) ), — a;me = @y M — OgT); = Qy

Mgy — QT = 0 Tog — OgTy; = Q4

Mgy — ;T3 = 0 TMge — ATy = U

It is clear how to solve the system on the left of (33.5C), that is, to
determine the parameters of the demand equation. First solve either of
the equations that has a 0 on its right-hand side for a; = ms,/m;3, =
9,/ Tag, and then get a, from the remaining equation. So the coefficients
of the demand equation are identified in terms of II. And there is a
restriction on the 7’s, namely T3,/7s9 = 9, /Mg, Which is not surprising
because on the left of (33.5C) there are three equations in two
unknowns.

However, the system on the right of (33.5C) consists of three equations
in four unknowns. We can assign any value to a3 and then solve for ay,
a5, a. A different arbitrary value for a; would generate different values
for ay, a5, a;. The solution is not unique. Evidently, there are an infinity
of alternative sets of values for the supply-equation coefficients that, in
conjunction with the appropriate set of values for the demand-equation
coefficients, produce the same set of values for the 7’s. Consequently,
IT does not contain enough information to uniquely deduce the I' and
B that produced it. We conclude that the coefficients of the supply
equation are not identified in terms of IL

With respect to estimation, because there is a restriction on II, LS
estimation of the reduced form will not be optimal. If the reduced form
is estimated subject to that restriction, then estimates of the demand
equation can be derived. But in Model C, there is no way to estimate
the supply equation: to seek estimates of its coefficients is not a mean-
ingful task.

To recapitulate: we have answered the question “Are the o’s uniquely
determined by the 7’s?” for three variants of the supply-demand model.
Because certain elements of I' and B were known a priori, the answer
was sometimes yes. Indeed sometimes the knowledge was sufficient
enough to restrict the set of admissible 7’s. We have seen that not only
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the number of pieces of prior information but also their location is
crucial to the answers. In our examples, the prior information consisted
only of exclusions (zero coefficients) and normalizations (a 1 in each column
of I'). In other simultaneous-equation models there may be additional
pieces of prior information—for example, two structural coefficients
may be known to be equal. Such information also serves to aid identi-
fication and may even constrain the reduced-form coefficient matrix II.

33.3. Uncorrelated Disturbances

We have focused on getting I' and B from IIT" = B, but there is another
relation between structural and reduced-form parameters that may
assist identification, namely * = (F"')'Z*I'"!, obtained as Eq. (B5) in
Chapter 32. We may rewrite this as

(33.6) X* =T"Q+.

Like the coefficient matrix II, the disturbance variance matrix { is
estimable from LS regression on the reduced form. Suppose that both
II and Q* are known. Can we exploit Eq. (33.6) to help deduce I'? In
general, the answer is no. With %* unknown, Eq. (33.6) merely suffices
to deduce %* once * and I' are known. However, there may be prior
information on 2* that reduces the number of unknowns in Eq. (33.6)
and thus frees it to help in identifying I'. For example, suppose that
the structural disturbances are known to be uncorrelated with one
another. Then 3* is diagonal, so there are only m unknown elements
of ¥, while Eq. (33.6) has m(m + 1)/2 distinct equations.
To illustrate: for our supply-demand Model C, Eq. (33.6) is

(‘711 0'12) =< 1 _0‘1> (‘011 ‘1’12> ( 1 _("3)
O21 Og2 Qg 1 Wg) g —ay 1/
The off-diagonal element is

G = —030;; + @) + 00309 — 0 Wg.

Suppose that the structural disturbances are known to be uncorrelated,
50 ;3 = 0. Then

(33.7) a3 = (012 — a;we)/(0;; — a;Wy),
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so ag is uniquely determined by the w’s and a;. Referring back to the
analysis of Model C in Section 33.2, we see that this will suffice to
complete identification of the supply equation. So in this case, all the
structural coefficients will be identified in terms of Il and 2*.

With respect to estimation, because the w’s are estimable from the
residuals of LS regression on the reduced form, the sample counterpart
of Eq. (33.7) will in this situation be usable along with the sample
counterpart of system (33.5C).

A leading special case, known as the fully recursive model, arises when
3* is diagonal and I is triangular. Here, all off-diagonal elements in %*
are zero, and in I' all elements below the diagonal are zero. Then not
only are all the structural parameters identified, but in fact they are
estimable by LS regression on the structural equations. If I is upper-
triangular, then I'"! will also be upper-triangular, so (I'"!)’ will be lower-
triangular. In conjunction with the diagonality of 2*, this will imply that

Cly,w) = ([’

is lower-triangular. Any endogenous variable on the right-hand side of
a structural equation will be uncorrelated with the disturbance in that
equation. If so, each structural equation is a CEF (or at least a BLP),
hence identified, and indeed estimable by LS.

33.4. Other Sources of Identification

We have seen that the reduced-form coefficient matrix II and distur-
bance variance matrix * may both be used to identify structural
parameters in the SEM. Can anything else be used? The answer is
effectively no. After all, the most one can hope to learn from stratified
sampling is go(y|x), the joint-conditional pdf (or pmf) of the endoge-
nous variables given the exogenous variables. If we learn that distribu-
tion, then we will know E(y’|x) = x'II and V(y|x) = Q*. If y|x is
multinormal, then there is nothing more to learn: knowledge of both
- II and Q* is equivalent to knowledge of g2(y|x). So if a structural
parameter is not identified in terms of IT and £*, then it is not identifed
in terms of g,(y|x); that is, it is not identified. To be sure, if gx(y|x)
were known to be nonnormal, then there might be more information
available, but that situation is rare indeed, and we ignore it here. In
random sampling, we can also learn fi(x), the joint-marginal pdf (or
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pmf) of the exogenous variables, but the structural parameters do not
enter that function.

In the next chapter, we will proceed on the presumption that the only
prior information consists of exclusions and normalizations on I' and
B. Then II is the sole source of information available for identifying
the unknown structural coefficients. The remaining task will be to obtain
estimates of I that are convertible into estimates of the unknown, but
identified, elements of I and B.

Exercises

33.1 Consider the simultaneous-equation model

Y1 = oy + oo + uy,

Yo = Qg

where the exogenous variables x, and x, are independent of the dis-
turbances u, and u,. The reduced form of the model is

N = WXyt mexs + vy,
Yo = MW3X; + WeXe + Vo

(@) You are told that m, = 1, my = 4, w3 = —2, m, = 2. Determine
the values of a;, oy, a3, ay.

(b) You are also told that x,, x,, u,;, us are independent N(0, 1)
variables. Predict the value of y, that will occur if y, = x; = 1.

33.2 A simple theoretical model for the labor market consists of the
supply function H = S(W, N) and the demand function W = D(H, X),
where the endogenous variables are H = hours worked and W = wage
rate, while the exogenous variables are N = family size and X = worker
characteristics. The economic presumptions are that 5/6W > 0 and
dD[3H < 0. A linear version is

O
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Y1 = QY + aox;+ 0gXg + ug,

Yo = 04y T Xy + Ogxs + 0yxy + Ogxs + U,

where y, = months worked, y, = wage rate, x; = 1, x, = family size,
x3 = education, x, = age, x; = race (= 1 if black, = 0 if white), u, =
supply shock, u, = demand shock. Suppose that the SEM model applies.
Write out the system IIT" = B, and analyze identification and restrictions.

o AR e

34  Estimation in the Simultaneous-Equation
Model

34.1. Introduction

We proceed to methods for estimating the structural parameters in the
SEM. We continue to confine attention to the two-equation case, with
some specialization to our supply-demand models. The only types of
prior information that we allow for are exclusions and normalizations.

For the population, the model has

Ey'|x)=xT, V(y|x) = Q%

where Il = (m,, my) is £ X 2, and @* = {w,} is 2 X 2 and positive
definite. Reading off, we have

E()’llx) = x'm, E(yle) = x'm,,

V()’lIX) = Wy, V(szX) = g9, C(ylyy2|x) = W)9.

We sample by the stratified scheme, so that the n X k matrix X is
nonstochastic and has rank %, while the n X 2 matrix Y = (y;, yo) is
random. We have

E(y;) = Xm;,  E(ys) = Xy,

Viy)) = o1, V(ys) = 091, C(y1, y2) = 0pol.

Except for notation, this is precisely the SUR (regression systems) model
of Chapter 30. To stack the two equations, let

=yl o=X0
() <=6 %)
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Q= oI ol m= (™
0 I g/’ Ly
Then E(y) = X°m, V(y) = & = OQ* @ I is positive definite, and X° is

nonstochastic with full column rank. (Caution: y now denotes the 2n X
1 vector of observations, rather than the original 2 X 1 random vector.)

34.2. Indirect Feasible Generalized Least Squares

Because the SUR model applies, GLS is the natural estimation proce-
dure. First, suppose that *, and hence £, is known. As the estimator
of m, we would choose the vector ¢ that minimizes the GLS criterion
d(c) = v'Q 7 'v, where v =y — X°.

If there are no restrictions on 11, then we have a SUR model with
identical explanatory variables, and the solution is obvious: GLS reduces
to equation-by-equation LS, as shown in Section 30.3. In the present
notation, this means that the GLS estimator of  is

(1) (2)
P2 Aye/’
with A = Q7'X’, Q = X'X. Reassembling, the GLS estimator of II is
P = (p1, p2) = (Ay,, Ays) = A(y1, y2) = AY.

The implied estimates of the structural parameters follow by solving
the sample counterpart of III" = B, namely

¢4.1) PI'=B,

for the unknown elements of I' and B. That is to say, do in the sample
what we did in the population for Model B in Section 33.2.

If there are restrictions on 7, then those should be imposed in the
minimization. The most convenient way to impose them is to solve them
out, which amounts to expressing the 7’s in terms of a’s and choosing
estimates of the (unrestricted) a’s. Consider, for example, Model A of
Chapter 33. Here

T T Qo QQlg
H=|my e |=0A) a0, a , with A = 1 — a,03.
T3y T2 Q;0; QO

A AR
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Write 7 = (T, Ty, Ts1, T1as Toos Wap) and & = (o, oy, O3, 0y, Qg)'.
Let 7 = g(a) be the mapping from the true structural coefficients to
the true reduced-form coefficients. Correspondingly, write ¢ = (cy, . . .,
¢s)' and a = (a, - . ., as)’. Then ¢ = g(a) is the mapping from the choice
vector (estimator) for the structural coefficients to the choice vector
(estimator) for the reduced-form coefficients. Referring to the display
above, this mapping is

o= ayf(l — a,as) ¢y = agas/(l — a,as)

¢ = aya/(l — a,a5) s = a1l — a,as)

¢s = ajas/(l — aas) e = as/(l — a,as).

We propose to estimate o by the vector a that minimizes the GLS
criterion

U(@) = dlg@)] = v'Qv,
with
v =y — X°%(a).

The associated estimate of & will be ¢ = g(a).

Computationally, it may be convenient to transform this into an LS
problem. To do so, let H* be the 2 X 2 matrix such that H¥*H* =
Q*7!, and let H = H* ® I,. Then, as is easily verified, HH = Q.
With such an H matrix in hand, we can rewrite the GLS criterion as

Y(a) = v¥'v¥,
with
v¥ = Hv = Hy — HX’g(a) = y* — X**g(a),

say. We take as our estimates of the o’s the values of the a’s that minimize
Y(a). In view of the form of g(a), this is a nonlinear least squares
problem, so the algorithm discussed in Sections 29.2 and 29.3 may be
used.

Next suppose that, as in practice, 2*, and hence £}, is unknown. The
natural procedure is feasible generalized least squares. The FGLS algo-
rithm will parallel the GLS algorithm, except that an estimator £ is

|
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R )

used in place of €. The estimator comes from the residuals of the LS
reduced-form regressions. More explicitly, let

b=y, - Xp=My; (=12,

j
where M = I — XA, and let

V=Y - XP=MY = (¥, ¥p).
Then
Q* = (Im)V'V

is the estimator for Q*, and O = O+ ® I is the estimator for £).

The rest of the computational algorithm can then track that for GLS.
If there are no restrictions on 1r, then taking ¢ = p (that is, IT = P) will
solve the minimization problem. (In a SUR model with identical explan-
atory variables, FGLS, like GLS, coincides with LS.) If there are restric-
tions on 71, an NLLS algorithm is usable. We refer to the resulting
estimates of the o’s as indirect feasible generalized least squares, or indirect-
FGLS, estimates, because we are in effect estimating the 7’s by FGLS and
converting them into estimates of the o’s. (If there are no restrictions
on m, then indirect-FGLS coincides with indirect least squares.) In the
literature, the indirect-FGLS procedure is sometimes referred to as a
minimum-distance procedure.

With respect to sampling properties: because the FGLS estimates of
II are consistent and BAN, the indirect-FGLS estimates of B and I are
also consistent and BAN. So indirect-FGLS is one preferred way to
estimate structural parameters in the SEM.

Several remarks about the indirect-FGLS procedure:

* In our algorithm, we use the relation between 7’s and a’s to solve
out the restrictions, reducing the problem to unconstrained, but non-
linear, minimization. It is easy to see that the resulting estimates satisfy
the sample counterpart of IIT" = B.

¢ If one or more of the structural equations is not identified in terms
of II, then the indirect-FGLS procedure will break down, as it should.

*If in the population, the conditional distribution of the m X 1
random vector y, given the & X 1 vector x, is muitinormal, then max-
imum-likelihood estimation is available. For historical reasons, this
method is known as full-information maximum likelihood, or FIML. From
the discussion in Section 30.7, we can verify several facts. If 3* is known,
then FIML coincides with GLS. If Q* is unknown, then FIML minimizes
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|V'V], which differs from the FGLS criterion tr(fl*_lV'V), but the
estimators have the same asymptotic distribution. Iterating indirect-
FGLS until convergence is an algorithm for solving the FOC’s of FIML
estimnation.

The indirect-FGLS and FIML procedures are computationally com-
plex when there are restrictions, because the restrictions are character-
istically nonlinear in the 7’s. As a consequence, structural estimation
procedures have been developed that use the unrestricted reduced-
form estimate, P = (p;, po), in a quite different way. Nowadays the
complexity is less of a concern, but the simpler methods are widely used,
and therefore we will sketch two of them.

34.3. Two-Stage Least Squares

The two-stage least squares, or 2SLS, method is the most popular procedure
for estimating a simultaneous-equation model. Its mechanics can be
described very simply. In the first stage, each endogenous variable is
regressed on all the exogenous variables, and fitted values are obtained.
In the second stage, each structural equation is taken in turn, right-
hand-side endogenous variables are replaced by their fitted values, and
LS is run. The 2SLS algorithm does not involve nonlinear optimization,
which accounts for its popularity.

We describe the procedure explicitly in terms of the supply-demand
models of Chapter 33. The data consist of the n X 2 matrix Y = (y,, yo)
and the n X k& matrix X = (x,, . . ., X;). The familiar regression matrices

are

Q=XX, A=Q'X, N=XA, M=I-N
We have

AY = (Ay,, Ay,) = (p,p2) = P, AX =1,

NY = (Ny;, Ny;) = 91, 52 =¥, NX=X

Focus on one of the structural equations, say the demand equation
in Model B. In population terms this is

)’1 = a1y2 + OloXy + QgXo + Uu;.

For the sample of size n it is
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Yi = Yoo t X0 + Xo0g + Uy

431
= (Y, X3, Xg) ap | +u
Qg

=Zo, + uy,

say, where Z; = (yq, X3, Xg) is n X 3, and @; = (&), @y, )’ is 3 X L.
Regressing y, on Z, would give the normal equations

Z\Za, = Zi)’l:

the solution to which is the LS coefficient vector a, = (Z;Zl)_IZiyl. As
we know, this is not a sensible estimator of a;.
Instead, replace Z; by

2, =NZ, = N(ys., x;, X9) = (Nya, Nx;, Nxy) = (¥2, X), Xo),
and regress y, on Z,. This gives the normal equations
2;Z2,ar = Zjy,,
the solution to which is the 2SLS estimator
at = (ZiZ,)"'2iy..
The (asymptotic) variance matrix of a¥ is estimated as
Vip) = 6uZiZ) 7,
where
6y, = ef'ef/(n — k*),

with k* being the number of right-hand-side variables (columns of Z,),
and

ef =y — Zaf.

Observe that the original values Z, are used in calculating residuals,
even though the fitted values Z, were used in calculating coefficients.
(In calculating 6,, division by n rather than n — k* is also acceptable
in view of the fact that asymptotic theory is being relied on.)

There are at least two heuristic rationales for the 2SLS procedure,
which we exposit in the context of the demand equation of Model B.
First, observe that

34.3 Two-Stage Least Squares 371

E(y1IX) OllE(}’2|x) + agx; + agxp

]

a8+ opx; + agxy,
where
¥5 = x'my, = E(ysx).

So a sample LS regression of y, on Z} = (y%, x,, X,) would give unbiased
estimates of a;. That regression cannot be run because y§ is unobserved.
Still, p, unbiasedly and consistently estimates ,, whence the fitted-
value vector §, unbiasedly and consistently estimates the conditional
expectation vector y§. Making the natural replacement, ¥, for y#, suf-
fices to produce consistent estimates of the «,. The second rationale is
simpler. The 2SLS normal equations are equivalent to a set of orthog-
onality conditions:
Zu, =0,
where u, = y, — Z,a¥. To show equivalence, use the algebraic fact:
2.2, =Z)N'Z, = Z)N'NZ, = Z)Z,.

So 2SLS has an instrumental-variable interpretation. The variables in
Z, are legitimate instruments because they are, at least asymptotically,
uncorrelated with the disturbance.

The 2SLS procedure may be applied to each of the structural equa-
tions in turn. The fact that it relies on the unrestricted estimator P as
the estimator of IT suggests that when there are restrictions on II, the
2SLS estimates will not be optimal.

Here are several remarks about the mechanical aspects of 2SLS esti-
mation:

* If a structural equation is not identified in terms of II, then the
2SLS procedure will break down, as it should, for that equation. For
example, consider the supply equation in Model C. The second stage
of 2SLS calls for regressing y, on (¥, X,, Xo, X3), but there is exact
multicollinearity among those four explanatory variables:

¥1=Xp, = xp11 + Xopey t Xsps.
So the solution to the second-stage normal equations is not unique, and
the 2SLS estimates are not defined.

¢ Standard errors for 2SLS cannot be smaller than the conventional
standard errors for LS obtained from

) |
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si(ZiZy) ™, with sy, = (y; — Z,2,))'(y1 — Za)/(n — k*).

First, &,, > s,; because LS minimizes the sum of squared residuals of
y: from a linear combination of the columns of Z,. Second, ZiZ, =
2,2, because Z, = NZ,.

* One should not report R? for equations estimated by 2SLS. If one
uses the conventional sum of squared residuals, then one is measuring
the proportion of variation in the dependent variable that is accounted
for by the fitted explanatory variables. Alternatively, if one uses the sum
of squared residuals that enters the 2SLS estimate of o,,, then there is
no guarantee that the resulting R” will lie between 0 and 1.

34.4. Relation between 2SLS and Indirect-FGLS

Relying on P, the unrestricted estimator of I, how does 2SLS succeed
in producing estimates of I' and B even when there are restrictions on
II? To explore that issue, we study the algebraic relation between the
2SLS and indirect-FGLS estimators. Consider first the demand equation
of Model B. We have

Zly, = ZiNy, = Z;(XA)y, = ZXAy, = ZiXp,,
2,2, = ZiNZ, = Z}(XA)Z, = Z;XAZ, = Z{X(p;, D),

where D consists of the first two columns of AX = I;

1 0
D=AX;,x)=|0 1]=(d,dy),
00

say. So the normal equations of 2SLS, namely
ZiYI = 2'1213’1",
can be read as |

af
ZXp, = Z;X(p2, D) | af | = Z1X(poat + djaf + doad),
ag

which may be rearranged into
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a¥
Z:X(p; — peaf) = Zi1X(dyaf + dpaf) = Z)X | af
0

Here ZiX is square and (coincidence apart) nonsingular, so the 2SLS
normal equations are equivalent to

a¥
(34.2) pi — peatf =| a&
0

Similarly, for the supply equation of Model B, the 2SLS normal equa-
tions are equivalent to

0
(34.3) py — pia¥ =1| af
af
Assembled together, Egs. (34.2) and (34.3) say
Pl =B,
which is Eq. (34.1), the indirect-FGLS (and ILS) estimating equations
when there are no restrictions to be imposed. We conclude that for
Model B, which has no restriction on II, 2SLS coincides with indirect-
FGLS.
When restrictions are present, this coincidence will not prevail. For
example, consider the demand equation in Model A. Suppose that we

tried to use the p’s instead of the #’s in the ILS estimating equations,
writing

P1 — P&y =

SO R

that is,

P: = (P2 dy) (2;) .

This system of three equations in two unknowns is overdetermined: it
has no solution. We might combine the equations by premultiplying
through by any 2 X 3 matrix. One such matrix is Z{X. Premultiplying
threugh by it gives
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' ' &
Z;Xp, = Z;X(p,, d,) <A,l> s
G
which is a system of two equations in two unknowns. Now
ZiXp = Ziyr,  ZiX(pe, d) = 2iZ,

so we have arrived at the normal equations for 2SLS. From this per-
spective, when restrictions are present, there is a surplus of estimating
equations. The 2SLS estimates can be viewed as the solution to a col-
lapsed set of those equations. It turns out that collapsing via le is
optimal: see Amemiya (1985, pp. 239-240).

34.5. Three-Stage Least Squares
In 2SLS, we estimate each structural equation separately, acting as if
classical regression models applied to

Y1 = Zal + u,, Y2 = 22112 + u,.

There would seem to be an advantage to estimating the pair of structural
equations jointly. If we stack into

-G oz=(62) @) =)

y()’z’ o z,/’ ay/’ uy/’

then y = Z°a + u has the appearance of a SUR model. If 3* (hence 3)

were known, we might calculate an estimator by the GLS rule, namely
& = (223727237 y.

Lacking that knowledge, we may adopt an FGLS rule. Estimate %* from

the proper residuals of 2SLS:

S = (Umy (ST T el'ed
ef'ef ef'ef)’
and construct X from %*. Then calculate

a*t* = (Zoli_ 120)— IZOli— ly.

This defines the three-stage least squares, or 3SLS, estimator of the struc-
tural parameters. The LS rule is used three times—first on the reduced
form (to get the Z’s), next on individual structural equations (to get the
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e*s), and finally on the structural equations jointly (to get the a**).
Clearly, 3SLS will break down (as it should) if the system contains a
nonidentified structural equation.

It can be shown that the 3SLS estimator is consistent and BAN, like
indirect-FGLS. The computations for 3SLS, like those for 2SLS, do not
involve nonlinear optimization, even when restrictions are present. The
inverse matrix in the formula above for a** serves as the estimate of
the (asymptotic) variance matrix of a**.

34.6. Remarks

We conclude with some remarks on estimation in the SEM.

* If all the structural equations are identified, and there are no restric-
tions on II, then indirect least squares, indirect-FGLS, 2SLS, 3SLS, and
FIML all produce the same estimates.

* If a parameter is not identified, then there is no method to estimate
it consistently. ’

* In the SEM, there is in general no unbiased estimator of the struc-
tural parameters.

* Throughout this chapter, we have confined attention to an SEM in
which the only prior information consists of normalizations and exclu-
sions. If other information is available (for example, 2* is diagonal, or
a coefficient in one structural equation is equal to a coefficient in
another), then some modifications are needed in the description of the
estimators and their statistical properties.

* We have relied on stratified (nonstochastic X) sampling in this
chapter. The statements about asymptotic properties rely on an addi-
tional assumption about how additional observations are generated,
namely that the matrix X'X/n has a positive definite limit: see Section
22.7. If instead sampling is random from the joint distribution of (x', y’),
no substantial change in the results would be required: see Chapter 25.

Exercises
34.1 You are given the following sums of squares and cross-products

on the variables y, = quantity, y, = price, x = income, obtained in a
sample of 60 observations:

1
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X B3 Y2
x 360 120 120
b2 120 110 5
Yo 120 5 80

You are told that the sample was produced by this simultaneous-equa-
tion model:

Demand. 3y, = a,y; + ax + u,,

Y2 = Qgy; + Uy,

Supply.

in which the exogenous variable x was independent of the disturbances
u,; and u,, while those two disturbances had zero expectations and were
correlated with each other.

(@) From the sample data, calculate the LS “estimate” of a3, and the
2SLS estimate of as.

(b) Would you use 2SLS, or some other method, to estimate a; and
a,? Justify your answer.

() From the information in hand, you are asked to predict the value
of y, that will prevail when y, = 55. Would your prediction be
2.5, or 55, or some other number? Justify your answer.

34.2 The usual simultaneous-equation model applies to
Y1 = Ye + QloXy + Uy,
+ oyxe + ug.

Yo = @3y

Here y, = quantity, y, = price, x; = input price, and x, = income. These
two LS regressions were obtained in a sample of 100 observations:

5’\1 = _6x1 + 2x2,

e 3x, + x5
Calculate estimates of the a’s.

34.3 In Exercise 33.2, you considered this supply-demand model for
labor:

Y1 = 0 Y2 + Goxy + OgXy + u,,

Yo = Qay; T s + Qgxg + oyxg + Ogxs + Uo,
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where y, = months worked, y, = wage rate, x; = 1, x, = family size,
xs = education, x, = age, x; = race (= 1 if black, = 0 if white), u; =
supply shock, us = demand shock. Now suppose, rather artificially, that
this SEM applies to the SCF data set of Exercise 17.4. Take y, = wage
rate = earnings/months worked.

Write and run a program to:

(a) Calculate the LS “estimates” of the structural coefficients, along
with their conventional standard errors.

(b) Calculate the 2SLS estimates of the structural coefficients, along
with their standard errors.

(c) Discuss your results from an economic perspective.

34.4 For the setup of Exercise 34.3, write and run programs to:

(a) Calculate the 3SLS estimates of the structural coefficients.

(b) Calculate the indirect-FGLS estimates of the structural coeffi-
cients.

(c) Assuming normality, calculate the FIML estimates of the struc-
tural coefficients, by iterating the indirect-FGLS algorithm until
convergence.

(d) Also comment on the relation among your alternative estimates.

34.5 For the setup of Exercise 34.3:

(@) Use your 2SLS estimates to derive an estimate of the reduced-
form coefficient matrix IL

(b) Does this estimate of II satisfy the restrictions that you found in
Exercise 33.2? Explain.

(c) Compare your estimated Il with the unrestricted estimate P.
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Appendix A
Statistical and Data Tables

Table A.1 Standard normal cumulative distribution function.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.00
0.10
0.20
0.30
0.40

0.50
0.60
0.70
0.80
0.90

1.00
1.10
1.20
1.30
1.40

1.50
1.60
1.70
1.80
1.90

2.00
2.10
2.2¢
2.30
2.40

2.50
2.60
2.70
2.80
2.90

3.00

0.500
0.540
0.579
0.618
0.655

0.691
0.726
0.758
0.788
0.816

0.841
0.864
0.885
0.903
0.919

0.933
0.945
0.955
0.964
0.971

0.977
0.982
0.986
0.989
0.992

0.994
0.995
0.997
0.997
0.998

0.999

0.504
0.544
0.583
0.622
0.659

0.695
0.729
0.761
0.791
0.819

0.844
0.867
0.887
0.905
0.921

0.934
0.946
0.956
0.965
0.972

0.978
0.983
0.986
0.990
0.992

0.994
0.995
0.997
0.998
0.998

0.999

0.508
0.548
0.587
0.626
0.663

0.698
0.732
0.764
0.794
0.821

0.846
0.869
0.889
0.907
0.922

0.936
0.947
0.957
0.966
0.973

0.978
0.983
0.987
0.990
0.992

0.994
0.996
0.997

0.998

0.998
0.999

0.512
0.552
0.591
0.629
0.666

0.702
0.736
0.767
0.797
0.824

0.848
0.871
0.891
0.908
0.924

0.937
0.948
0.958
0.966
0.973

0.979
0.983
0.987
0.990
0.992

0.994
0.996
0.997
0.998
0.998

0.999

0.516
0.556
0.595
0.633
0.670

0.705
0.739
0.770
0.800
0.826

0.851
0.873
0.893
0.910
0.925

0.938
0.949
0.959
0.967
0.974

0.979
0.984
0.987
0.990
0.993

0.994
0.996
0.997
0.998
0.998

0.999

0.520
0.560
0.599
0.637
0.674

0.709
0.742
0.773
0.802
0.829

0.853
0.875
0.894
0.911
0.926

0.939
0.951
0.960
0.968
0.974

0.980
0.984
0.988
0.991
0.993

0.995
0.996
0.997
0.998
0.998

0.999

0.524
0.564
0.603
0.641
0.677

0.712
0.745
0.776
0.805
0.831

0.855
0.877
0.896
0.913
0.928

0.941
0.952
0.961
0.969
0.975

0.980

0.985
0.988
0.991
0.993

0.995
0.996
0.997
0.998
0.998

0.999

0.528
0.567
0.606
0.644
0.681

0.716
0.749
0.779
0.808
0.834

0.858
0.879
0.898
0.915
0.929

0.942
0.953
0.962
0.969
0.976

0.981
0.985
0.988
0.991
0.993

0.995
0.996
0.997
0.998
0.999

0.999

0.532
0.571
0.610
0.648
0.684

0.719
0.752
0.782
0.811
0.836

0.860
0.881
0.900
0.916
0.931

0.943
0.954
0.962
0.970
0.976

0.981
0.985
0.989
0.991
0.993

0.995
0.996
0.997
0.998
0.999

0.999

0.536
0.575
0.614,
0.652
0.688

0.722
0.755
0.785
0.813
0.839

0.862
0.883
0.901
0.918
0.932

0.944
0.954
0.963
0.971
0.977

0.982
0.986
0.989
0.992
0.994

0.995
0.996
0.997
0.998
0.999

0.999

Example: 1f Z ~ N(0, 1), then Pr(Z = 1.15) = F(1.15) = 0.875.
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Table A.2 Chi-square cumulative distribution function.

Gi()

k005 010 015 020 025 030 035 040 045 0.50 0.55

1 000 002 004 006 010 015 021 027 036 045 0.57
2 010 o021 033 045 058 0.71 0.86 1.02 1.20 1.39 1.60
3 035 058 0.80 1.01 1.21 1.42 1.64 1.87 211 2.37 2.64
4 071 1.06 1.37 1.65 192 219 247 275 3.05 3.36 3.69
5 1.15 1.61 1.99 234 267 300 333 3.66 400 435 4.73
6 1.64 220 266 307 345 3.83 420 457 495 535 5.77
7 217 283 336 382 425 467 508 549 591 6.35 6.80
8 273 349 408 459 507 553 598 642 6.88 7.34 7.83
9 333 417 482 538 590 639 6.88 736 784 834 8.86
10 394 487 557 618 6.74 727 7718 830 8.8l 9.34 9.89
11 457 558 634 699 758 815 870 924 9.78 10.34 10.92
12 523 - 630 7.11 7.81 844 9.03 961 10.18 10.76 11.34 11.95
13 589 704 790 863 930 993 1053 11.13 11.73 1234 12.97
14 657 779 870 947 10.17 10.82 11.45 1208 1270 13.34 14.00
15 726 855 950 1031 11.04 1172 1238 13.03 1368 14.34 15.02
16 796 931 1031 11.15 11.91 1262 13.31 1398 1466 1534 16.04
17 8.67 10.09 1112 12,00 12.79 1353 1424 1494 1563 1634 17.06
18 939 1086 11.95 1286 13.68 1444 15.17 1589 1661 17.34 18.09
19 10.12 11.65 1277 1372 1456 1535 16.11 16.85 17.59 18.34 19.11
20 1085 1244 13.60 14.58 1545 1627 17.05 17.81 1857 19.34 20.13
25 14.61 1647 17.82 1894 19.94 20.87 21.75 2262 2347 24.34 25.22
30 1849 20060 22.11 23.36 2448 2551 2649 27.44 28.39 29.34 30.31
35 2247 2480 2646 2784 29.05 30.18 31.25 32.28 3331 34.34 35.39
40 26,51 29.05 30.86 3234 3366 34.87 36.02 37.13 3823 39.34 40.46
45 30.61 3335 3529 36.88 3829 39.58 40.81 42.00 43.16 44.34 45.53
50 34.76 37.69 39.75 4145 4294 44.31 4561 46.86 48.10 49.33 50.59
55 38.96 42.06 4424 46.04 47.61 49.06 5042 51.74 53.04 54.33 55.65
60 43.19 4646 48.76 50.64 5229 53.81 55.24 56.62 57.98 59.33 60.71
65 47.45 5088 5329 5526 56.99 5857 60.07 61.51 6292 64.33 65.77
70 51.74 5533 57.84 5990 61.70 63.35 6490 6640 67.87 69.33 70.82
75 56.056 59.79 62.41 64.55 66.42 68.13 69.74 71.29 7281 74.33 75.88
80 6039 6428 6699 69.21 71.14 7292 7458 76.19 77.716 79.33 80.93
85 64.75 68.78 7159 73.88 7588 77.71 79.43 81.09 8271 84.33 85.98
90 69.13 7329 7620 7856 80.62 8251 84.29 8599 87.67 89.33 91.02
95 73.52 77.82 80.81 8325 8538 8732 89.14 90.90 92.62 94.33 96.07
100 7793 8236 8544 87.95 90.13 92.13 9400 95.81 97.57 99.33 101.11

Example: If W ~ x%(6), then Pr(W = 4.20) = G¢(4.20) = 0.35.
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Table A.2 (continued)
Gy()

k 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.975 0.990 0.995

1 0.71 0.87 1.07 1.32 1.64 2.07 2.71 3.84 5.02 6.63 7.88
2 1.83 2.10 2.41 2.77 3.22 3.79 4.61 5.99 7.38 9.21 10.60
3 2.95 3.28 3.66 4.11 4.64 5.32 6.25 7.81 9.35 11.34 12.84
4 4.04 4.44 4.88 5.39 5.99 6.74 7.78 9.49 11.14 13.28 14.86
5 5.13 5.57 6.06 6.63 7.29 8.12 9.24 11.07 12.83 15.09 16.75
6 6.21 6.69 7.2% 7.84 8.56 9.45 10.64 1259 1445 16.81 18.55
7 7.28 7.81 8.38 9.04 9.80 10.75 12.02 14.07 16.01 1848 20.28
8 8.35 8.91 952 1022 11.03 12.03 13.36 15.51 1753 20.09 21.95
9 941 10.01 10.66 11.39 1224 13.29 14.68 16.92 19.02 21.67 23.59
10 1047 11.10 11.78 1255 1344 1453 1599 1831 2048 23.21 25.19
11 11.53 12.18 12,90 13.70 14.63 15.77 17.28 19.68 2192 24.72 26.76
12 1258 13.27 14.01 14.85 15.81 16.99 1855 21.03 23.34 26.22 28.30
13 13.64 1435 15.12 1598 1698 18.20 19.81 2236 24.74 27.69 29.82
14 1469 1542 16.22 17.12 18.15 1941 21.06 2368 26.12 29.14 31.32
15 1573 1649 17.32 1825 19.31 2060 2231 25.00 2749 3058 3280
iG 16.78 17.56 18.42 19.37 20.47 21.79 23.54 2630 28.85 32.00 34.27
17 17.82 1863 1951 2049 21.61 2298 24.77 2759 30.19 3341 3572
18 18.87 1970 2060 21.60 2276 24.16 2599 28.87 3153 3481 37.16
19 1991 20.76 21.69 2272 2390 2533 27.20 30.14 3285 36.19 38.58
20 2095 21.83 22.77 2383 25.04 26,50 28.41 3141 34.17 37,57 40.00
25 26.14 27.12 28.17 29.34 30.68 3228 3438 3765 40.65 4431 4693
30 31.32 3238 3353 3480 3625 3799 4026 43.77 4698 50.89 53.67
35 3647 3762 38.86 40.22 41.78 43.64 46.06 49.80 53.20 57.34 60.27
40 41.62 42.85 44.16 45.62 47.27 4924 51.81 5576 59.34 63.69 66.77
45 46.76 48.06 49.45 50.98 5273 54.81 57.51 61.66 6541 69.96 73.17
50 51.89 53.26 54.72 56.33 58.16 60.35 63.17 6750 7142 76.15 79.49
55 57.02 5845 59.98 61.66 63.58 65.86 68.80 73.31 77.38 8229 8575
60 62.13 63.63 65.23 6698 6897 7134 7440 79.08 83.30 8838 91.95
65 67.25 68.80 70.46 72.28 7435 76.81 79.97 84.82 89.18 9442 98.11
70 7236 7397 75.69 77.58 79.71 8226 85.53 90.53 95.02 100.43 104.21
75 7746 79.13 80.91 82.86 85.07 87.69 91.06 96.22 100.84 106.39 110.29
80 8257 84.28 86.12 88.13 9041 93.11 96.58 101.88 106.63 112.33 116.32
85 87.67 89.43 91.32 93.39 9573 98.51 102.08 107.52 112.39 118.24 122.32
90 92.76 94.58 96.52 98.65 101.05 103.90 107.57 113.15 118.14 124.12 128.30
95 97.85 99.72 101.72 103.90 106.36 109.29 113.04 118.75 123.86 129.97 134.25
100 102.95 104.86 106.91 109.14 111.67 114.66 118.50 124.34 129.56 135.81 140.17
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Table A.3 SCF data set.

V1 = ID number
V2 = Family size

V5 = Experience

Appendix A

V6 = Months worked

V9 = Earnings
V10 = Income

V3 = Education V7 = Race V11 = Wealth

V4 = Age V8 = Region V12 = Savings

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 \'28! V12
1 4 2 40 33 12 2 3 1.920 1.920 0.470 0.030
2 4 9 33 19 12 1 1 12.403 12.403 3.035 0.874
3 2 17 31 9 12 1 4 5.926 6.396 2.200 0.370
4 3 9 50 36 12 1 2 7.000 7.005 11.600 1.200
5 4 12 28 11 12 1 3 6.990 6.990 0.300 0.275
6 4 13 33 15 12 1 1 6.500 6.500 2.200 1.400
7 5 17 36 14 12 1 3 26.000 26.007 11.991 31.599
8 5 16 44 23 12 1 1 15.000 15.363 17.341 1.766
9 5 9 48 34 12 2 3 5.699 14.999 9.852 3.984
10 5 16 31 10 12 1 3 8.820 9.185 8.722 1.017
11 10 9 41 27 12 1 4 7.000 10.600 0.616 1.004
12 4 10 41 26 12 1 1 6.176 12.089 23.418 0.687
13 7 11 36 20 12 1 2 6.200 6.254 7.600 ~0.034
14 5 14 31 12 12 1 3 5.800 9.010 0.358 -1.389
15 5 7 27 15 12 1 2 6.217 6.217 0.108 1.000
16 5 8 42 29 12 1 2 5.500 5912 5.560 1.831
17 4 12 28 11 11 1 1 4.800 4.800 0.970 0.613
18 2 6 46 35 12 2 3 1.820 2.340 2.600 0.050
19 3 12 47 30 12 1 4 4.558 7.832 31.867 0.013
20 7 8 35 22 12 1 2 7.468 9.563 1.704 1.389
21 3 9 41 27 9 1 1 6.600 7.600 4.820 0.602
22 4 17 30 8 12 1 1 12.850 13.858 32.807 2.221
23 6 12 38 21 12 1 1 5.800 5.802 10.305 1.588
24 3 11 48 32 12 1 3 7.479 19.362 12.652 5.082
25 3 10 36 21 12 1 1 5.700 8.000 7.631 1.846
26 3 12 45 28 12 1 1 12.000 17.200 14.392 0.914
27 6 8 44 31 6 1 1 3.578 4.091 6.649 2.483
28 4 10 44 29 12 1 3 9.600 9.600 6.995 0.837
29 3 3 46 38 12 1 3 3.686 10.425 9.138 1.274
30 4 12 26 9 12 1 3 6.480 6.512 2.933 -0.275
31 5 12 50 33 12 1 4 6.383 7.675 38.260 1.092
32 4 8 46 33 11 1 1 5.610 12.418 12.661 1.157
33 5 8 33 20 12 1 1 6.000 6.079 0.820 0.340
34 4 12 41 24 12 1 2 6.300 6.979 21.286 0.373
35 5 17 33 11 12 1 1 10.513 10.517 9.723 3.307
36 4 12 41 24 12 1 2 30.000 30.996 95.187 10.668
37 3 12 29 12 11 2 1 3.427 5.283 0.171 1.105
38 9 11 27 11 12 1 2 8.500 8.511 3.105 3.500
39 5 12 42 25 12 1 1 11300 12.700 7.385 0.541
40 5 16 39 18 12 1 3  16.960 16.770 16.049 3.020
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Note: V3, V4, V5 are in years; for V7, 1 = white, 2 = black; for V8, 1 = northeast, 2 =
northcentral, 3 = south, 4 = west; V9, V10, V11, V12 are in thousands of current dollars.

Vi V2 V3 V4 V5 V6 v7 V8 V9 V10 V1l V12
41 6 12 36 19 12 1 1 8.300 8.300 0.050 0.650
42 4 8 34 21 12 1 2 5.375 5.375 4.464 0.989
43 4 12 40 23 12 1 4 4.770 6.265 7.203 2.532
44 4 12 37 20 12 1 2 4.320 8.520 9.145 6.120
45 5 17 44 22 12 1 4 10.720 24.226 54.524 ~2.749
46 2 4 49 40 12 1 3 0.750 0.750 4.000 0.000
47 5 12 33 16 12 1 4 7.310 7.356 6.800 —1.036
48 6 14 36 17 12 1 3 9.000 9.000 6.890 1.351
49 4 15 51 31 12 1 1 14.000 14.660 13.500 —1.150
50 5 12 37 20 12 1 2 3.900 5.593 9.837 -0.248
51 4 19 33 9 12 1 2 10.000 11.841 10.384 0.388
52 4 14 39 20 12 1 3 7.200 7.700 6.842 1.157
53 3 12 44 27 12 1 3 6.500 10.550 4.929 1.656
54 4 7 50 38 12 1 2 8.000 13.700 34.124 3.959
55 4 12 39 22 12 1 2 9.500 12.242 11.731 5.369
56 6 7 46 34 12 1 2 6.000 7.803 5.695 1.405
57 4 12 43 26 12 1 3 6.400 9.879 25.029 0.220
58 6 11 40 24 12 2 3 5.190 9.154 0.600 —0.298
59 2 9 40 26 12 1 3 4,548 7.067 45.105 -0.276
60 8 7 39 27 12 1 2 4.860 4.496 - 8.511 —-0.578
61 6 10 34 19 6 2 4 2.736 4.636 20.205 —1.360
62 4 10 32 17 12 2 . 4 6.000 9.003 4.727 5.277
63 3 16 42 21 12 1 1 7.800 13.820 2.270 0.980
64 2 8 52 39 12 1 4 6.163 8.891 18.916 2.637
65 6 12 29 12 12 1 1 8.600 8.632 14.194 0.984
66 2 12 27 10 12 1 3 7.899 8.385 13.662 —0.076
67 5 10 37 22 12 1 4 5.048 5.403 0.159 0.902
68 2 12 52 35 12 1 2 4.133 8.573 21.700 10.733
69 3 12 32 15 12 1 3 6.500 6.516 1.180 0.716
70 4 12 35 18 12 1 2 6.000 6.000 5.900 0.200
71 3 13 31 13 12 1 4 10.116 16.778 2.531 0.006
72 5 9 36 22 10 1 1 6.000 9.504 44.461 1.464
73 6 16 34 13 12 1 4 8.950 8.953 4.863 0.948
74 3 12 54 37 12 1 4 4.952 8.703 8.534 0.835
75 4 12 52 35 10 1 1 8.681 12.667 26.085 —2.883
76 6 9 28 14 12 1 2 6.500 6.504 3.775 0.298
77 6 12 44 27 12 1 4 7.668 8.180 3.032 0.481
78 4 17 29 7 12 1 2 11.600 11.600 2.167 5.033
79 4 9 50 36 7 1 3 3.100 5.602 5.072 -0.111
80 4 8 50 37 12 1 3 4.586 10.390 4.100 0.000
(continued)
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Table A.3 (continued)

Vi V2 A% V4 V5 vé v7 V8 V9 V10 Vil V19
81 4 16 44 23 12 1 2 27.000 30.610 51.892 4.115
82 4 9 34 20 9 1 1 1.500 3.941 1.260 2.575
83 7 10 39 24 12 1 3 1.789 2.936 17.128 —-0.112
84 5 12 39 22 12 1 4 11.068 11.068 11.542 =5.577
85 4 14 29 10 12 1 4 8.338 8.338 2.272 2.750
86 3 8 38 25 12 1 3 2.943 6.683 6.100 0.095
87 5 10 30 15 12 1 1 7.212 7.212 0.857 1.348
88 3 10 50 35 12 1 1 7.500 10.411 3.678 0.178
89 2 8 33 20 12 1 3 5.250 8.850 1.650 —0.695
90 4 9 35 21 12 1 1 5.066 8.334 2.143 0.787
91 3 16 36 15 12 1 2 12.848 13.923 18.182 4.642
92 4 12 33 16 12 1 2 6.214 6.214 0.275 1.260
93 6 20 38 13 12 1 1 12.202 12.323 28.953 2.687
94 4 12 46 29 12 1 2 8.190 14.963 11.230 0.720
95 4 16 50 29 12 1 2 7.200 10.060 25.462 5.109
96 2 16 54 33 12 1 1 30.000 32.080 98.033 1.800
97 5 12 31 14 12 1 2 9.190 9.260 5.539 1.684
98 2 18 27 4 12 1 2 7.500 10.450 2.860 1.475
99 5 12 40 23 12 1 3 7.852 9.138 11.197 0.566

100 6 18 34 11 12 1 1 12.000 12.350 30.906 - 25.405

Source: T. W. Mirer, Economic Statistics and Econometrics, 2d ed. (New York: Macmillan, 1988),

pp. 18-23.

R

Statistical and Data Tables

Table A4 Noncentral chi-square: complement
of cumulative distribution function.

A2 k=1 k=2 k=3
0.000 0.050 0.050 0.050
0.500 0.109 0.090 0.081
1.000 0.170 0.133 0.116
1.500 0.232 0.178 0.153
2.000 0.293 0.226 0.192
2.500 0.353 0.274 0.233
3.000 0.410 0.322 0.275
3.500 0.465 0.369 0.317
4.000 0.516 0.415 0.359
4.500 0.564 0.460 0.400
5.000 0.609 0.504 0.440

Note: The entries are the values of 1 — G¥(g; AY),
where G#(-; \?) is the cdf of the noncentral chi-square
distribution with degrees of freedom parameter % and
noncentrality parameter A%, and ¢, satisfies G¥(¢;; 0) =
0.95. Thus ¢, = 3.841, ¢; = 5.991, ¢ = 7.815. The
table was constructed by using the GAUSS command
“cdfchinc(c,k,m)", which gives G¥(c; n?).
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Table A.5 TIM data set.
V1 = ID number

388

V2 = Year — 1900
V3 = GNP price index

V4 = Real GNP

V5 = Real gross private domestic

investment

V6 = Real personal consumption

Appendix A

V7 = Real disposable personal income
V8 = Change in GNP price index
V9 = Change in consumer price index
V10 = Unemployment rate
V1l = Money stock (M1)
V12 = Treasury bill rate
V13 = Corporate bond rate
(Moody’s Aaa)

Note: V3 is equal to 100 in 1972; V4, V5, V6, V7 are in billions of 1972 dollars; V11 is in
billions of current dollars; V8, V9, V12, V13 are in percent per year; V10 is in percent.

vVl v2 V3 V4 V5 V6 vi7 A% Vg Vi0 V1l V12 Vi3
1 56 6279 6716 1026 4054 4462 3205 1496 4.1 1350 2658 3.36
2 57 6493 683.8 97.0 413.8 4555 3.408 3563 4.3 133.8 3267 389
3 58 66.04 6809 875 418.0 460.7 1.710 2.728 6.8 1389 1.839 379
4 59 67.60 721.7 108.0 4404 479.7 2362 0.808 5.5 141.2 3.405 4.38
5 60 68.70 737.2 104.7 452.0 489.7 1627 1604 55 1422 2928 44]
6 61 6933 756.6 1039 4614 5038 0917 1.015 6.7 146.7 2378 435
7 62 7061 8003 117.6 482.0 5249 1846 1.116 55 1494 2778 4.33
8 63 71.67 8325 1251 5005 5423 1501 1214 57 1549 3.157 496
9 64 7277 8764 133.0 528.0 580.8 1.535 1309 5.2 1620 3549 4.40

10 65 7436 929.3 151.9 557.5 6163 2.185 1.722 4.5 1696 3.954 4.49

11 66 76.76 984.8 163.0 585.7 646.8 3.228 2857 38 173.8 4881 5.13

12 67 79.06 10114 1549 6027 6735 2996 2881 3.8 1852 4.321 5.51

13 68 8254 1058.1 161.6 6344 701.3 4402 4200 3.6 1995 5.339 6.18

14 69 86.79 1087.6 171.4 657.9 7225 5.149 5374 3.5 2059 6.677 7.03

15 70 9145 1085.6 1585 672.1 751.6 5.369 5.920 4.9 2168 6.458 8.04

16 71 96.01 11224 173.9 696.8 779.2 4986 4299 59 2310 4348 7.39

17 72 100.00 11859 195.0 737.1 8103 4.156 3.298 56 2524 4.071 721

18 73 10569 1255.0 217.5 7685 8653 5690 6225 49 2664 7.041 744

19 74 11492 1248.0 1955 763.6 8584 8733 10969 56 2780 7.886 8.57

20 75 125.56 1233.9 154.8 780.2 875.8 9.259 9.140 85 291.8 5.838 8.83

21 76 132,11 13004 184.5 823.7 907.4 5217 5.769 7.7 311.1 4989 843

22 77 139.83 1371.7 213.5 863.9 939.8 5844 6.452 7.1 3364 5265 8.02

23 78 150.05 1436.9 229.7 904.8 9815 7.309 7.658 6.1 3642 7.221 8.7%

24 79 162.77 1483.0 232.6 9309 10115 8.477 11.259 5.8 3905 10.041 9.63

25 80 177.36 1480.7 203.6 935.1 1018.4 8964 13523 7.1 4156 11.506 11.94

Source: T. W. Mirer, Economic Statistics and Econometrics, 2d ed. (New York: Macmillan, 1988),

pp. 24-25.
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Statistical and Data Tables

Table A.6 GEWE data set (V2-V7 in millions of 1947 dollars). ’

V1 = ID number

V2 = GE investment

V3 = GE market value

V4 = GE lagged capital stock

V5 = WE investment
V6 = WE market value

389

V7 = WE lagged capital stock

Vi V2 V3 V4 V5 V6 V7
1 33.1 1170.6 97.8 12.9 191.5 1.8
2 45.0 2015.8 104.4 25.9 516.0 0.8
3 772 2803.3 118.0 35.1 729.0 7.4
4 44.6 2039.7 156.2 22.9 560.4 18.1
5 48.1 2256.2 172.6 18.8 519.9 23.5
6 74.4 2132.2 186.6 28.6 628.5 26.5
7 113.0 1834.1 220.9 48.5 537.1 36.2
8 91.9 1588.0 287.8 43.3 561.2 60.8
9 61.3 1749.4 319.9 37.0 617.2 84.4
10 56.8 1687.2 321.3 37.8 626.7 91.2
11 93.6 2007.7 319.6 39.3 737.2 92.4
12 159.9 2208.3 346.0 53.5 760.5 86.0
13 147.2 1656.7 456.4 55.6 581.4 111.1
14 146.3 1604.4 543.4 49.6 662.3 130.6
15 98.3 1431.8 618.3 32.0 583.8 141.8
16 93.5 1610.5 647.4 32.2 635.2 136.7
17 135.2 18194 671.3 54.4 723.8 129.7
18 157.3 2079.7 726.1 71.8 864.1 145.5
19 179.5 2371.6 800.3 90.1 1193.5 174.8
20 189.6 2759.9 888.9 68.6 1188.9 213.5

Source: H. Theil, Principles of Econometrics (New York: John Wiley & Sons, 1971),

p. 296.




Appendix B
Getting Started in GAUSS

These notes, adapted from material provided by Aptech Systems Inc.,
provide some important information about getting started using
GAUSS. They refer to Version 1.49B. They do not in any way provide
complete documentation, even for the topics covered.

Notation

Denotes the DOS prompt.

() Denotes a key on the keyboard. For example, (F2) denotes
Function Key 2, while ( — ) denotes two keys pressed
simultaneously, for example, (Ctri-F1).

> Denotes the GAUSS prompt.

< Denotes the GAUSS program terminator.

Editing und Running Programs

1. To get into GAUSS from the operating system: > gauss (Enter)
There may be a special command provided in your system.

2. To get out of GAUSS into the operating system: (Esc)

3. GAUSS has two modes of operation: COMMAND MODE and
EDIT MODE. When you first get into GAUSS you are in COM-
MAND MODE, as indicated by FILE=COMMAND at the bottom
of the screen.

4. In COMMAND MODE you can write and run interactive pro-
grams. After the GAUSS prompt >>, start writing GAUSS state-
ments. End them with semicolons. After the last statement in the
program, press (F4), and then (F2). For example:

> x1=rndu(100,3); x2=rndu(100,1); x=x1"x2; x; (F4) (F2)
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creates two random matrices and then concatenates them hori-
zontally. The result, x, is a 100 X 4 matrix.

. GAUSS does not care about blank spaces (with only a few excep-

tions), or about blank lines in programs. It does not distinguish
uppercase and lowercase letters.

. To get into EDIT MODE, use the command “edit” followed by

the name of the file you want to edit. For example:

> edit myprog; (F4) (F2)

To get out of EDIT MODE and back into COMMAND MODE,
use a function key:

(F1) SAVE: saves the file you are editing, without running it.

(F2) RUN: saves the file you are editing, and will try to run it.

(F4) QUIT: drops you back to COMMAND MODE without
saving file but clearing screen.

. After a program file has been run from EDIT MODE, and you

are back in COMMAND MODE, you can return to EDIT MODE
to re-edit that file by pressing (CTRL-F1).

Programs written in EDIT MODE are just like those in COM-
MAND MODE, except that they do not contain the GAUSS
prompt > and program terminator <. To run a program from
EDIT MODE, press (F2). Programs in EDIT MODE are auto-
matically saved in a file when they are run.

To print output on the screen, write the name of the matrix. To
print matrix x, for example, write: > x;

The format of the output can be changed by using format w,p;
here w is the width of the field for each number, and p is the
number of decimal places. For example: > format 8,2;

To send output to a file, use a command such as:

> output file = myoutput.out reset;
After this command is executed, anything printed to the screen
will also be sent to the file myoutput.out (which is first cleared).

Enclose comments with a combination of slashes and asterisks:
* */, For example:

/*This is a comment; it will not be executed in a program.*/
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13. To use a DOS command, precede it with the word “dos”. For
example:

> dos dir; > dos del myfile; > dos copy a:myfile c:;
14. Mathematical operators:

+ — ¥/ Perform in the standard way on scalars (add, subtract,
multiply, divide). On matrices, +, —, and * have the
standard definitions.

* o Perform element-by-element multiplication and division,
respectively, of matrices.

A Performs element-by-element exponentiation (raising to

a power) of the elements of a matrix.
15. Matrix operators:

- Concatenates matrices horizontally.
| Concatenates matrices vertically.
' Transposes a matrix (interchanges rows and columns).

16. Mathematical functions:

cols(x) Gives the number of columns in matrix x.
exp(x) Raises e to powers given by elements of x.
In(x) Natural logs (base e) of elements of x.
log(x) Common logs (base 10) of elements of x.
meanc(x) Means of the columns of x.

rows(x) The number of rows in matrix x.

sqrt(x) Square roots of elements in x.

sumc(x) Sums of the columns of x.

17. Defining matrices:

eye(k) k X k identity matrix.

let Allows matrices to be defined explicitly:
let x[2,2] = 1 8 —12 15; [a 2 X 2 matrix]
letx=1579; [a4 X 1 vector]

let x = dog cat; [matrix with character elements]
ones(n,k) n X k matrix of I’s.
rndn(n,k) n X k matrix of standard normal random variables.

zeros(n,k) n X k matrix of 0’s.

. 18. Indexing elements of a matrix:
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x[i,j] The i,j element of x.
x[.,j] jth column of x.
x[i,.] ith row of x.
x[m:n,j] Rows m through n of column j of x.
x[rv,cv] Rows of x specified in the vector rv, columns of x speci-

fied in the vector cv.
19. Loading and saving matrices:

Save matrix x as file named x.fmt.
Load matrix x from file named x.fmt.

save X;
load x;

20. Flow control:

dountil...;...;endo; Do loop. For example:
i=1; do until i > 10; i=i+1; endo;
if...;...;endif; If statement. For example:

if age[i,1] < 10; dage[i,1]=1;

elseif age[i,1] > 10 and age [i,1] <= 20;
dage[i,11=2;

else; dage[i,1]=3; endif;

Simple Exercises
To do these exercises, first get into GAUSS. After GAUSS is loaded
into memory, the GAUSS prompt will appear on the screen, preceded
by the letter of the default disk drive. Type the exercises below, exactly
as they are written. The exercises are all indented and begin with the
GAUSS prompt >>. They all end with (F4) (F2), the keystrokes that tell
GAUSS that you are done with the program, and that you want it run.
When you press (F4) (F2), the GAUSS program terminator symbol <
appears on the screen.

‘The exercises are sequential, in that each uses results in memory that
have been created by the preceding ones.

1. Generate a matrix of random numbers, x, and print it out:
> x=rndn(2,2); x; (F4) (F2)
2. Generate another matrix, y, multiply x and y, and print the result:

> y=rndu(2,2); y; z=x*y; z; (F4) (F2)

R S

10.

11.

12.
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Define a 2 X 2 matrix using a specified set of numbers:
> let w[2,2]1=1 2 3 4; w; (F4) (F2)

Sum the elements of each column of w, and find the means of
each column:

> sumc(w); meanc(w); (F4) (F2)

. Recover the screen as it was before the last exercise by pressing

(F1). Edit the code by placing a transpose operator symbol before
each semicolon:

> sumc(w)’; meanc(w)’; (F4) (F2)

Sum the elements of each column of w, assign the result to sw,
and print:

> sw=sumc(w); sw; (F4) (F2)

Define a 4 X 1 vector using a specified set of numbers. The new
vector will be given the name w, so that the old w vanishes:

> let w=1 2 3 4; w; (F4) (F2)
Generate two matrices with specified elements, and sum them:

> let x[2,2]=10 9 8 7; let y[2,2]=—1 -2 -3 —4; x; y;
w=x+y;w; (F4) (F2)

Multiply each element in x by each element in y; divide each
element in y by each element in x:

> x *yy ./ x; (F4) (F2)

Pull out the first row of x, and assign it to w; then pull out the
first column of x, and assign it to z; then print both w and z:

> w=x[1,.]; z=x[,,1]; w; z; (F4) (F2)
Concatenate x and y. First do it horizontally, then vertically:
> z1 = x7y; 22 = x|y; z1; 22; (F4) (F2)

Generate and print a2 2 X 2 identity matrix, a 2 X 2 matrix of
I's, and a 2 X 2 matrix of 0’s:

> k=2; i=eye(k); u=ones(k,k); z=zeros(k,k); i; u; z;(F4) {F2)
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13.

14.

15.

16.

17.

Save a matrix to a file:
> save u; (F4) (F2)

Look for the file u.fmt on the default drive:
> dos dir u.fmt; (F4) (F2)

Set the matrix u equal to scalar 0, print it, then load u from
memory and print it again:

> u=0; u; load u; u; (F4) (F2)
Find out how many rows and columns a matrix has, and print:

> format 1,0; "The matrix x has " rows(x) ” rows, and ”
cols(x) " columns.”; (F4) (F2)

Using a loop, generate a sequence of numbers, and print the
numbers divided by 10:

> 1=0; format 2,1;
do until i>33; print ¥/10;; i=i+1; endo; (F4) (F2)

I —

References

Amenmiya, T. 1985. Advanced Econometrics. Cambridge, Mass.: Harvard Uni-

versity Press.
Conlisk, J. 1971. “When collinearity is desirable.” Western Economic Journal

9:393~407.
DeGroot, M. H. 1975. Probability and Statistics. Reading, Mass.: Addison-

Wesley.

Frisch, R., and F. V. Waugh. 1933. “Partial time regressions as compared
with individual trends.” Econometrica 1:387-401.

Goldberger, A. S. 1964. Econometric Theory. New York: John Wiley & Sons.

Gouriéroux, C., A. Holly, and A. Monfort. 1982. “Likelihood ratio test,
Wald test, and Kuhn-Tucker test in linear models with inequality con-
straints on the regression parameters.” Econometrica 50:63-80.

Greene, W. H. 1990. Econometric Analysis. New York: Macmillan.

Intriligator, M. D. 1978. Econometric Models, Techniques, and Applications.
Englewood Cliffs, N.J.: Prentice-Hall.

Johnston, J. J. 1984. Econometric Methods. 3d ed. New York: McGraw-Hill.

Judge, G. G, R. C. Hill, W. E. Griffiths, H. Liitkepohl, and T.-C. Lee. 1988.
Introduction to the Theory and Practice of Econometrics. 2d ed. New York:
John Wiley & Sons.

Kakwani, N. C. 1967. “The unbiasedness of Zellner’s seemingly unrelated
regression equations estimators.” Journal of the American Statistical Asso-
ciation 62:141-142.

Kosobud, R., and J. N. Morgan, eds. 1964. Consumer Behavior of Individual
Families over Two and Three Years. Ann Arbor: Institute for Social
Research, The University of Michigan.

Leamer, E. E. 1983. “Let’s take the con out of econometrics.” American
Economic Review 73:31—-43.

Lovell, M. 1983. “Data mining.” Review of Economics and Statistics 65:1-12.




398 References

McCloskey, D. N. 1985. “The loss function has been mislaid: the rhetoric
of significance tests.” American Economic Review 75:201-205.

Maddala, G. S. 1983. Limited-Dependent and Qualitative Variables in Economet-
rics. London: Cambridge University Press.

Manski, C. F. 1988. Analog Estimation Methods in Econometrics. New York:
Chapman and Hall.

Marschak, J. 1953. “Economic measurements for policy and prediction,”
pp- 1-26 in W. C. Hood and T. C. Koopmans, eds., Studies in Econometric
Method. New York: John Wiley & Sons.

Mirer, T. W. 1988. Economic Statistics and Econometrics. 2d ed. New York:
Macmillan.

Rao, C. R. 1973. Linear Statistical Inference and Its Applications. 2d ed. New
York: John Wiley & Sons.

Theil, H. 1971. Principles of Econometrics. New York: John Wiley & Sons.

Wallace, T. D., and V. G. Ashar. 1972. “Sequential methods in model
construction.” Review of Economics and Statistics 54:172—178.

Wolak, F. A. 1987. “An exact test for multiple inequality and equality
constraints in the linear regression model.” Journal of the American Sta-
tistical Association 82:782-793.

Zeliner, A. 1962. “An efficient method of estimating seemingly unrelated
regressions and tests for aggregation bias.” Journal of the American Sta-
tstical Association 57:348-368.

Index

adjusted
coefficient of determination, 178
mean squared residual, 167
sample variance, 120
Aitken’s Theorem, 294
alternative hypothesis, 214
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analog estimator, 117
analogy principle, 117
analysis
of sums of squares, 176
of variance, 48
of variation, 176
approximate
confidence interval, 123
standard error, 123
approximation to CEF, 53, 151
AR (autoregressive processes), 282-284
ARMA (autoregressive-moving average
process), 284
Ashar, V. G., 260
asymptotic
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distribution, 99
efficiency, 122
expectation, 100
properties, 94
standard error, 123
variance, 100
asymptotics with nonstochastic X, 242~
243
autocorrelated variable, 277
autocorrelation and autocovariance,

278

autoregressive case of GCR model, 302

autoregressive-moving average process
(ARMA), 284

autoregressive processes (AR), 282-284

auxiliary regression, 184

BAN (best asymptotically normal), 122
Bernoulli distribution, 12
best asymptotically normal (BAN), 122
best linear predictor (BLP), 52, 151
best proportional predictor (BPP), 57
bias, 118
binary response, 144, 309
binomial distribution, 13
bivariate
Central Limit Theorem, 109
Delta Method, 110
Law of Large Numbers, 109
normal distribution, 74
probability distribution, 34
BLP (best linear predictor), 52, 151
BPP (best proportional predictor), 57
BVN (bivariate normal), 74

C1, C2 (convergence theorems), 98

Cauchy-Schwarz Inequality, 66

causality, 173, 340, 346

cdf (cumulative distribution function),
15, 36

CEF (conditional expectation function),
49, 150

censored dependent variable, 310

Central Limit Theorem (CLT), 99, 109

central moment, 27, 44
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changing expectation, 277
characteristic roots and vectors, 200
Chebyshev Inequalities, 31
chi-square distribution, 83, 87, 382-383
Chow test, 237
classical normal regression model
(CNR), 204
classical regression model (CR), 163
CLT (Central Limit Theorem), 99, 109
cmf (conditional mean function), 6
CNR (classical normal regression), 204
Cobb-Douglas production function, 233
coefficient of determination, 66, 177
coefficient vector, 154
collinearity, 208, 245
concave and convex functions, 32
concentrated log-likelihood function,
334
conditional
expectation, 46—47
expectation function (CEF), 49, 150
frequency distribution, 3
mean, 5
mean function (cmf), 6
median function, 56
probability distribution, 38—40
variance function (CVF), 49
confidence interval, 123
confidence region, 208
Conlisk, J., 251
consistent estimator, 121
consumption function, 234
continuous
probability distribution, 14, 35
uniform distribution, 16
convergence, 97-98
correlation coefficient, 45
correlation ratio, 66
covariance, 45
covariance of linear functions, 46
covariance matrix, 161
CR (classical regression), 163
Crameér-Rao Inequality (CRI), 129
critical value, 214
cumulative distribution function (cdf),
15, 36
curved-roof distribution, 41
CVF (conditional variance function), 49

DI1-D5, D6-D10 (distribution results),
206-207, 223-225
degenerate distribution, 69, 77, 98, 198
degrees of freedom, 87
DeGroot, M. H., 99
Delta Method, 102, 110
demand function, 233
deterministic relation, 1
deviations from means, 188
discrete
probability distribution, 11, 34
uniform distribution, 13
distributions:
Bernoulli, 12
binomial, 13
bivariate normal (BVN), 74
chi-square, 83, 87, 382-383
continuous uniform, 16
curved-roof, 41
discrete uniform, 13
exponential, 16
F, 199
multinormal (multivariate normal),
195-196
non-BVN, 77
noncentral chi-square, 219, 387
normal, 23, 68-69, 195-196
Poisson, 13-14
power, 18
rectangular, 16
roof, 36
Snedecor F, 199
standard bivariate normal (SBVN}),
70
standard logistic, 18
standard normal, 16, 381
Student’s ¢, 88
three-point, 63
trinomial, 35
univariate normal, 68—69
distribution of function, 20-23
disturbance vector, 170
double residual regression, 186
Durbin-Watson statistic, 305

economic significance, 240
eigenvalues and eigenvectors, 200
empirical relation, 2
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endogenous variable, 340

equicorrelated process, 287-288

estimate and estimator, 116

exact collinearity, 245

exclusions, 361

exogenous variable, 340

expectation, 26, 160

expectation of function, 26, 28, 44, 45,
161

expected value, 26

explicit selection, 145

exponential distribution, 16

F distribution, 199
F1-F4 (features of normal sampling),
91
F1*-F4* (features of standard normal
sampling), 90
FGLS (feasible generalized least
squares), 297
FIML (full-information maximum like-
lihood), 368
first-order autoregressive case of GCR
model, 302
first-order processes (AR(1), MA(1)),
282283
fitted-value vector, 154
fixed explanatory variables, 147
FOC (first-order condition), 135
frequency distribution, 3
Friedman’s hypothesis, 338
Frisch, R., 186
full-information maximum likelihood
(FIML), 368
full-rank case, 154
fully recursive model, 362
function, 1

GAUSS, 180
Gauss-Markov Theorem, 165
GCR (generalized classical regression),
292
general linear hypothesis, 233
generalized
classical normal regression model,
298

classical regression model (GCR), 292

least squares (GLS), 294

neoclassical regression mode}, 298
GEWE data set, 335, 389
GLS (generalized least squares), 294
Goldberger, A. S., 287
goodness of fit, 176
Gouriéroux, C., 238
Greene, W. H., 243, 288, 297, 300, 314,

318

heteroskedasticity, 300

heteroskedasticity-corrected standard
errors, 272

homoskedasticity, 141

hypothesis test, 214

I1-13 (independence theorems), 59-60
ideal
sample covariance, 107
sample slope, 111
sample variance, 85
idempotent matrix, 155
identical explanatory variables, 327
identically distributed variables, 60, 81,
106
identification, 355, 356, 362
ILS (indirect least squares), 342
importance, 240241
indefinite matrix, 158
independence, 58-59, 60, 81, 106
indirect feasible generalized least
squares (indirect-FGLS), 366-368
indirect least squares (ILS), 342
information rule and variable, 131
instrumental-variable analogy, 139
instrumental-variable estimator (IV),
143
Intriligator, M. D., 230
invariance property, 136
iterative FGLS (iterative feasible gener-
alized least squares), 334
IV (instrumental variable), 143
1ZEF (iterative Zellner efficient esti-
mator), 334

Jensen’s Inequality, 32
Johnston, J. J., 171, 172, 246-247
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Jjoint
confidence region, 209
cumulative distribution function, 36
frequency distribution, 3
moments, 44
null hypothesis, 216
probability distribution, 34-35
joint-conditional distribution, 362
joint-marginal distribution, 150
Judge, G. G., 170, 171, 172, 206, 243,
245, 248, 260, 285, 297, 300, 305,
314, 318, 337

Kakwani, N. C., 331
Keynesian model, 340
Kosobud, R., 2
Kronecker product, 325

Law of Iterated Expectations, 47
Law of Large Numbers (LLN}), 99, 109
Leamer, E. E., 261
least-squares (LS)
analogy, 139
estimator, 165
linear regression, 152
property, 114
likelihood function, 134
limiting distribution, 98
linear
approximation to CEF, 53, 151
CEF, 54, 171
function of normal variables, 69, 76—
77, 198
function rules, 28, 45, 46
projection (LP), 52, 151
regression, 152
relation, 54, 65
LLN (Law of Large Numbers), 99, 109
logistic model, 310
log-likelihood variable, 128
long regression, 184
Lovell, M., 262
LP (linear projection), 52
LS (least squares), 152

M1-M4 (mean-independence theo-
rems), 62—64

MA (moving average processes), 282,
283
McCloskey, D. N., 240
Maddala, G. S., 319
Manski, C. F., 117, 313
marginal
expectation, 48
frequency distribution, 3
mean, 5
probability distribution, 37-38
significance level, 239
Markov Inequality, 31
Marschak, J., 343

" mass points, 11, 34

maximum likelihood (ML), 134
mean, 5
mean-independence, 61
mean squared error (MSE), 29, 118
mean squared error matrix, 256
median, 30
method of moments, 117
micronumerosity, 249
minimum-distance procedure, 368
minimum variance linear unbiased esti-
mator (MVLUE), 120, 165166
minimum variance unbiased estimator
(MVUE), 119
Mirer, T. W., 192, 290, 386, 388
miss vector, 218
mixed probability distribution, 19, 40
ML (maximum likelihood), 134
models:
A, B, C, 357-360
classical normal regression (CNR),
204
classical regression (CR), 163
fully recursive, 362
generalized classical normal regres-
sion; 298
generalized classical regression
(GCR), 292
generalized neoclassical regression,
298
Keynesian, 340
logistic, 310
multivariate regression, 323
neoclassical normal regression
(NeoCNR), 269
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neoclassical regression (NeoCR), 264
permanent income, 338
probit, 144, 309, 317
regression-system, 323
seemingly unrelated regressions
(SUR), 323
simultaneous-equation (SEM), 351
stationary population (SP), 278-279
supply-demand, 349, 357-360
Tobit, 310
moments, 27, 44
Morgan, J. N, 2
moving average processes (MA), 282, 283
MSE (mean squared error), 118
multicollinearity, 245
multinormal (multivariate normal) dis-
tribution, 196
multiple regression, 150
multivariate population, 150
multivariate regression model, 323
MVLUE (minimum variance linear
unbiased estimator), 120, 165-166
MVUE (minimum variance unbiased
estimator), 119

NeoCNR (neoclassical normal regres-
sion), 269

NeoCR (neoclassical regression), 264

NLLS (nonlinear least squares), 143

non-BVN distribution, 77

noncentral chi-square distribution, 219,
387

noncentrality parameter, 219

nonlinear CEF, 142, 308

nonlinear least squares (NLLS), 143

nonnegative definite matrix, 158

nonstationary process, 288

nonstochastic explanatory variables,
147, 164

normal distribution, 23, 68—69, 195—
196

normal equations, 154

normalizations, 361

null hypothesis, 214, 216

omitted variables, 190
one-sided alternative and one-tailed
test, 237

orthogonal explanatory variables, 185,
190, 327

orthogonality analogy, 139

orthonormal matrix, 200

P1-P5 (properties of normal distribu-
tions), 7677, 197-198

pdf (probability density function), 14,
35

permanent income model, 338
plim (probability limit), 98
pmf (probability mass function), 12, 34
Poisson distribution, 13-14
population, 6
population moments, 284
population regression function, 49, 150
positive definite matrix, 158
power distribution, 18
power of test, 218
prediction, 30, 51-52, 151, 175
pretest estimation, 258
probability
axioms, 11
density function (pdf), 14, 35
limit (plim), 97-98
mass function (pmf), 12, 34
probit model, 144, 309, 317
process parameters, 284
pure heteroskedasticity case of GCR
model, 300
P-value, 239

Q1-Q4 (quadratic form theorems),
200-202, 219
quadratic form, 163

R1-R6 (rules on matrix expectations),
161-163
random
sample, 60, 80, 106, 171
variable, 11
vector, 34
walk, 288
Rao, C. R., 102
ratio of sample means, 110
raw moment, 27, 44
rectangular distribution, 16
reduced form, 340, 349
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reduced-form disturbance, 352
regression fishing, 261
regression F-statistic, 230
regression strategy, 258
regression-system model, 323
residual regression, 185
residual vector, 155
restrictions, 236, 331, 355
reverse CEF, 146

roof distribution, 36

R? (coefficient of determination), 177

$1-85 (Slutsky theorems), 102
sample, 6
autocorrelation and autocovariance,
285
covariance, 106—107
covariance vector, 271
linear projection, 111
maximum, 82
mean, 82
_moments about population mean, 85
moments about sample mean, 82
proportion, 82
raw moments, 82
slope, 111
space, 11
statistic, 82
t-ratio, 101
variance, 82
variance matrix, 271
Sample Mean Theorem, 84
sampling distribution, 82
savings rate-income data set, 2
SBVN (standard bivariate normal), 70
SCF data set, 192-193, 384386
score variable, 128
seasonal adjustment, 187
second-order processes (AR(2), MA(2)),
283-284
seemingly unrelated regressions model
(SUR), 323
selection bias, 147
selective sampling, 145
SEM (simultaneous-equation model),
351
short-rank case, 154
short regression, 184

significance level, 214
significant difference, 215
simultaneity, 337-338
simultaneous-equation model (SEM),
351
Slutsky theorems, 101-102
Snedecor F distribution, 199
SP (stationary population), 278-279
stacking, 324-325
standard
bivariate normal distribution (SBVN),
70
deviation, 45
error, 123
error of forecast, 176
logistic distribution, 18
‘normal distribution, 16, 381
normal vector, 199
standardized sample mean, 94
stationarity, 279
stationary population model (SP), 278—
279
stochastic independence, 58-59
stochastic process, 281
stratified sampling, 147, 172
structural
change, 237
disturbance, 351
equations, 351
form, 349
parameters, 339
structure vs. regression, 343
Student’s ¢ distribution, 88
Submatrix of Inverse Theorem, 191-
192
summer vector, 178
supply-demand models, 349, 357-360
SUR (seemingly unrelated regressions),
323
systematic part, 341

T1-T4 (theorems on expectations), 28—
29

T5-T12 (theorems on expectations in
bivariate distribution), 45-49

T13-T14 (theorems on conditional
expectation function), 53—54

t-distribution, 88
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t-ratio, 101

t-statistic, 124

test statistic, 214

Theil, H., 330, 335, 389
three-point distribution, 63

3SLS (three-stage least squares), 374
TIM data set, 290, 388

time series, 274

Tobit model, 310

trend removal, 186

trinomial distribution, 35

2SLS (two-stage least squares), 343, 369

unbiased estimator, 118

unbiased predictor, 30

uncorrelated disturbances, 327, 361
uncorrelatedness, 63

univariate normal distribution, 68—69

variance, 27

variance of linear function, 28, 45, 161
variance matrix, 160
variance-independence, 141

variation, 176

varying marginals, 147

Wallace, T. D., 260
Waugh, F. V., 186
Wolak, F. A., 238

ZEF (Zellner efficient), 329 -
Zellper, A., 329

zero null subvector hypothesis, 228
ZES rule (zero expected score), 128
ZES-rule estimator, 132
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