


The great majority of books on artificial intelligence are 
written by AI experts who understandably focus on its 
achievements and potential transformative effects on soci-
ety. In contrast, AI vs Humans is written by two psycholo-
gists (Michael and Christine Eysenck) whose perspective 
on AI (including robotics) is based on their knowledge and 
understanding of human cognition.

This book evaluates the strengths and limitations of 
people and AI. The authors’ expertise equips them well 
to consider this by seeing how well (or badly) AI com-
pares to human intelligence. They accept that AI matches 
or exceeds human ability in many spheres such as mathe-
matical calculations, complex games (e.g., chess, Go, and 
poker), diagnosis from medical images, and robotic surgery.

However, the human tendency to anthropomorphise has 
led many people to claim mistakenly that AI systems can 
think, infer, reason, and understand while engaging in infor-
mation processing. In fact, such systems lack all those cogni-
tive skills and are also deficient in the quintessentially human 
abilities of flexibility of thinking and general intelligence.

At a time when human commitment to AI appears 
unstoppable, this up-to-date book advocates a symbiotic 
and co-operative relationship between humans and AI. It 
will be essential reading for anyone interested in AI and 
human cognition.

AI vs Humans



Michael W. Eysenck is Professor Emeritus in Psychol-
ogy and Honorary Fellow at Royal Holloway University of 
London. He is also Professor Emeritus at the University of 
Roehampton. He is the best-selling author of several text-
books including Cognitive Psychology: A Student’s Handbook 
(8th  edition 2020), Fundamentals of Cognition (with Marc 
Brysbaert, 3rd  edition 2018), Memory (with Alan Baddeley 
and Michael C. Anderson, 3rd  edition 2020), and Simply 
Psychology (5th edition 2021). As a cognitive psychologist, he 
finds it fascinating to compare human cognition with the 
achievements (and failures) of AI.

Christine Eysenck, a retired teacher of Psychology, has an 
enduring curiosity about human behaviour. Twenty-first- 
century living has raised in us questions about the effective-
ness of technology and how developments in AI may con-
tribute to the needs of subsequent generations. As a layman 
in this area, her uncluttered appraisal of aspects of the liter-
ature goes some way in addressing the unresolved issue of 
how good electronic devices really are in replicating human 
behaviour.
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The authors, both psychologists, have long been fascinated 
by the strengths and limitations of the human mind. The 
fascination is there largely because the mind’s complexities 
mean that no-one has been able to understand it fully.

This book is quintessentially a lockdown book. In the 
successive lockdowns that characterised most of 2020 and 
early 2021, we found ourselves (in common with millions 
of other people) with unexpected free time. Some of this 
time was devoted to discussions (and some disagreements!) 
as to whether human intelligence is superior or inferior 
to artificial intelligence. Fortunately, we acquired a kitten 
(Lola) in 2020, and she was the arbiter in these discussions 
(although she is more interested in whether cats or dogs 
are the superior species). In sum, lockdown for us provided 
a unique opportunity to think creatively and divergently 
about important issues.

In this book, we focus to some extent on precisely why 
and how the human species has been far more successful 
than any other species. One of the most sobering discover-
ies of the recent past is that a virus that is 1/10,000th. The 
size of the full stop at the end of this sentence can wreak 
such devastation on the whole of mankind.

We would both like to thank Ceri McLardy for her sup-
port, patience and encouragement during the gestation of 

Preface
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this book. Without her assistance, this book would perhaps 
never have seen the light of day.

Michael W. Eysenck and Christine Eysenck

It seems probable that once the machine thinking 
method had started, it would not take long to outstrip 
our feeble powers… They would be able to converse 
with each other to sharpen their wits. At some stage, 
therefore, we should have to expect the machines to 
take control.

Alan Turing (English pioneering  
computer scientist and mathematician)

Machines are still very, very stupid. The smartest AI sys-
tems today have less common sense than a house cat.

Yann LeCun (French computer scientist)
(Lola, our cat “likes” this [])

By 2050 one thousand dollars of computing will exceed 
the processing power of all human brains on Earth”

Ray Kurzweil (American futurist and inventor)

Forget artificial intelligence – in the brave new world 
of big data, it’s artificial idiocy we should be looking 
out for.

Tom Chatfield (English tech philosopher)

•	 Which of the above contrasting quotations is closest 
to the truth?

•	 Have (or can) machines be designed that outperform 
humans?

•	 Should machines be given rights?
•	 Is the AI revolution good news or bad news for the 

human race?
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Artificial intelligence is important: worldwide spending 
on AI is over $40 billion. Unsurprisingly, there are more 
books on artificial intelligence than you can shake a stick 
at. Our book is different because we are psychologists and 
so well placed to compare AI’s achievements against our 
knowledge of human cognition and intelligence.

Human dominance

How important are humans in the grand scheme of things? 
At one time, it seemed obvious we were very special. We 
dominated every other species, the Earth was the centre of 
the universe, and we were far superior to all other species 
because we possessed souls and minds.

Billions of religious people (for totally understandable 
reasons) continue to believe in the specialness of the human 
species. However, several scientific discoveries have cast 
doubt on it. First, we can no longer pretend the Earth is of 
central importance in the universe. The entire universe is 
approximately 93 billion light-years in diameter (and will 
be even larger before we finish writing this sentence).

It is a sobering thought that there are at least 100 billion 
galaxies in the universe (possibly twice as many – but 
what’s 100 billion between friends?), and the Earth forms  

Chapter 1

Brief history of AI 
and robotics
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2  Brief history of AI and robotics

a minute fraction of one galaxy. If you hold a grain of sand 
up in the air, the tiny area of the sky it covers contains 
approximately 10,000 galaxies. Even within our own gal-
axy (the Milky Way), the Earth is minute: approximately 
17 billion Earths could fit into it!

As the American theoretical physicist Richard Feynman 
pointed out, “It doesn’t seem to me that this fantastically 
marvellous universe, this tremendous range of time and 
space and different kinds of animals, and all the different 
planets, and all these atoms with all their motions, and so 
on, all this complicated thing can merely be a stage so that 
God can watch human beings struggle for good and evil – 
which is the view that religion has. The stage is too big for 
the drama” (cited in Gleick, 1992).

Second, the biologist Charles Darwin argued persua-
sively that the human species is less special and unique than 
believed prior to his theory of evolution published in The 
Origin of Species (1859). Subsequently, research has identified 
surprisingly great similarities between the human and other 
species and even plants. For example, you may well have 
heard that we share 50% of our DNA with bananas. That 
is actually totally wrong. In fact, we share only 1% of our 
DNA with bananas (that’s a relief!). However, the bad news 
is that we share 50% of our genes with bananas. Even worse, 
we share 70% of our genes with sea sponges. That puts us in 
our place but sea sponges may regard it as promising news.

What is the difference between DNA and genes? Our 
genome consists of all the DNA in our cells: we have 
approximately 3 billion base pairs of DNA. Genes are those 
sections of the genome fulfilling some function (e.g., deter-
mining eye colour). Humans have approximately 23,000 
genes, but these genes form less than 2% of the 3 billion 
base pairs of DNA we have. Bizarrely, most of our DNA 
has no obvious use and is often described as “junk DNA.” 
In fairness, it should be pointed out that geneticists are 
increasingly discovering that some so-called “junk DNA” 
is more useful than implied by that derogatory term.
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Humans also have numerous pseudogenes – sections of 
DNA that resemble functional genes but are themselves 
non-functional. Here is an example. Humans deprived of 
vitamin C (e.g., sailors experiencing a very limited diet 
while at sea) often develop a nasty disease caused scurvy. 
This causes them to bleed profusely and their bones to 
become brittle, often followed by a painful death.

In contrast, the great majority of animal species do not 
suffer from scurvy or scurvy-like conditions. These spe-
cies have genes ensuring they produce plenty of vitamin C 
in their livers meaning they are not dependent on eating 
food containing that vitamin. Frustratingly, humans have 
all the genes required to produce vitamin C but one of 
them (the GULO gene) is broken and so of no use. What 
has happened during the course of evolution is analogous 
to remove the spark plug from a car (Lents, 2018): nearly 
everything that should be there is present but the missing 
bit is crucial.

How should we respond to the various challenges to 
human specialness discussed above? We could focus on 
our superior powers of thinking and reasoning. Indeed, 
those powers (rather than our superior size or strength) 
have made us the dominant species on Earth. In recent 
years, however, the comforting belief that humans are 
the most intelligent entities on Earth has been increas-
ingly questioned. The two chess matches between Garry 
Kasparov (the Russian grandmaster then the highest rated 
chess player of all time) and Deep Blue, an IBM computer, 
formed a major turning point (see Figure 1.1).

In the first match (held in 1996), Kasparov triumphed 
by three games to one. As a result, he was confident ahead 
of the second match a year later. He had a discussion 
with Chung-Jen Tan, the scientist managing IBM’s team. 
When Tan said IBM was strongly focused on winning the 
match, Kasparov replied, “I don’t think it’s an appropri-
ate thing to discuss the situation if I lose. I never lost in 
my life.”
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The second match was epoch-making. With one game 
to go, Kasparov and Deep Blue were level. Thus, the final 
game on 11 May 1997 was absolutely crucial. Kasparov 
was beaten by the computer in 19 moves – the first time 
in his entire chess-playing career he had ever lost a game 
in under 20 moves. Never before had a computer beaten 
the human world champion at a complex intellectual pur-
suit. As the Guardian newspaper wrote, Kasparov had been, 
“humbled by a 1.4-ton heap of silicone … It is a depressing 
day for humankind.”

What does the future hold? Ray Kurzweil (2005), an 
American expert in AI, predicted that by 2045 computers 
will be a billion times more powerful than all the 8 billion 

Figure 1.1  �One of the two racks of IBM’s Deep Blue, which beat 
Garry Kasparov, the world champion in 1997.



Brief history of AI and robotics  5

human brains put together! Blimey, is Ray for real? Can he 
possibly be right? Admittedly, some of his predictions have 
been spot on. He accurately predicted in 1990 that a com-
puter would defeat the World Chess Champion by 1998. 
He also accurately predicted a gigantic increase in use of 
the Internet (Google is now used by a billion people every 
day) well before it became popular.

Kurzweill been strongly endorsed by Bill Gates, who 
describes him as, “the best person I know at predicting the 
future of artificial intelligence.” However, other experts 
are less positive. According to the American cognitive sci-
entist Doug Hofstadter, Kurzweil has proposed, “a very 
bizarre mixture of ideas that are solid and good with ideas 
that are crazy. It’s as if you took a lot of very good food and 
some dog excrement and blended it all up so that you can’t 
possibly figure out what’s good or bad.”

Artificial intelligence

This book concerns the relationship between human pow-
ers and abilities and those of machines powered by AI. 
What exactly is “AI”? According to Andrew Colman’s 
(2015) Oxford Dictionary of Psychology, it is, “the design of 
hypothetical or actual computer programs or machines to 
do things normally done by minds, such as playing chess, 
thinking logically, writing poetry, composing music, or 
analysing chemical substances.”

There are two radically different ways machines powered 
by AI might produce outputs resembling those of humans. 
First, machines could be programmed to model or mimic 
human cognitive functioning. For example, AI programs 
can solve many problems using strategies closely resembling 
those used by humans. A major goal of this approach is to 
increase our understanding of the human mind.

Historically, the first program showing the value of this 
approach was the General Problem Solver devised by 
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Allen Newell, John Shaw, and Herb Simon (1958). Their 
computer program was designed to solve several problems, 
one of which was the Tower of Hanoi. In this problem, 
there are three vertical pegs in a row. Initially, there are 
several pegs on the first peg, with the largest disc at the 
bottom and the smallest one at the top. The task is to finish 
up with the discs all arranged with the largest at the bot-
tom and the smallest at the top on the last peg. Only one 
disc can be moved at a time and a larger disc must never be 
placed on top of a small one.

Humans have limited short-term memory capacity, and 
so they typically engage in relatively little forward plan-
ning on problems such as the Tower of Hanoi. Newell 
et al. (1958) managed to produce a program using process-
ing strategies resembling those of humans.

Second, machines could simply be programmed to per-
form complex tasks (and easy ones, too) totally ignoring 
the cognitive processes humans would use. The chess com-
puter Deep Blue that beat Garry Kasparov exemplifies this 
approach. It had fantastic computing power, evaluating 
up to 200 million chess positions per second. Thus, Deep 
Blue’s huge advantage was fantastic processing speed rather 
than the cognitive complexity of its operations.

AI systems could also in principle be programmed to 
mimic major aspects of the human brain’s physical func-
tioning. The ultimate goal here is to devise AI systems 
possessing “biological plausibility” (van Gerven & Bohte, 
2017). Some progress has been made in this direction. For 
example, deep neural networks (discussed in detail shortly) 
are used extensively in AI. They are called neural networks 
because there is some similarity between their structure and 
the relationships among biological neurons in the human 
brain. However, the differences are much greater than the 
similarities. Biological neurons are far more complex than 
the neurons in deep neural networks and our brains con-
tain a staggeringly large number of neurons (approaching 
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100 billion). More generally, those who devise deep neural 
networks, “usually do not attempt to explicitly model the 
variety of different kinds of brain neurons, nor the effects 
of neurotransmitters and hormones. Furthermore, it is far 
from clear that the brain contains the kind of reverse con-
nections that would be needed if the brain were to learn 
by a process like backpropagation [using information about 
errors to enhance performance]” (Garson, 2019).

History of artificial intelligence

The term “artificial intelligence” was coined by McCarthy 
et al. (1955). They defined it as a machine that behaves, “in 
ways that would be called intelligent if a human were so 
behaving.” However, Herb Simon (who won the Nobel 
Prize for Economics) argued the term “complex informa-
tion processing” was preferable.

Much of this book is relevant to the issue of whether gen-
uine intelligence is involved in the area generally known 
as “artificial intelligence.” What is “intelligence?” It is the 
ability to behave adaptively and to solve novel problems. 
Of crucial importance, intelligence is a general ability that 
is displayed with respect to numerous very dissimilar new 
problems rather than being limited to problems of a single 
type (e.g., problems in mathematics) (see Chapter 3).

The true origins of AI occurred much earlier than 
1955. Ada Lovelace (1815–1852), Byron’s daughter, was 
the world’s first computer programmer. She produced the 
world’s first machine algorithm (a set of rules used to solve 
a given problem) for a computing machine that existed on 
paper although not actually built during her lifetime.

Approximately 100 years later, in 1937, Alan Turing 
(1912–1954; see Figure 1.2) published an incredibly far-
sighted article. He speculated that it should be possible to 
build machines that could solve any problem humans could 
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using only 0s and 1s. Most famously, he subsequently devel-
oped a code-breaking machine (the Bombe) that weighed a 
ton. It was the world’s first electro-mechanical computer, 
and it deciphered the Enigma code used by the German 
Army during the Second World War to encode impor-
tant messages. The information obtained from the Bombe 
reduced considerably the numbers of Allied ships sunk by 
German submarines (U-boats).

Computer programs make extensive use of algorithms. 
What is an algorithm? In essence, it is a set of instructions 
providing a step-by-step procedure for solving numerous 
logical and mathematical problems. Here is a simple exam-
ple of an algorithm designed to add two two-digit numbers 
(e.g., 46 + 79). The first step is to add the tens (40 + 70 = 110); 
the second step is to add the ones (6 + 9 = 15); the third 

Figure 1.2  �Photograph of the brilliant English mathematician and 
computer scientist at the age of 16.
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and final step is to add the outcomes of the first two steps 
(110 + 15 = 125). Thus, the answer is 125.

AI developed considerably between 1945 and 1975. 
However, there were relatively few major breakthroughs, 
much over-hyping of AI’s future prospects, and the cost of 
research into AI was increasing rapidly. Towards the end 
of that era, experts had doubts as to how rapidly AI would 
develop. Michie (1973) asked dozens of AI experts to esti-
mate the number of years before the arrival of “comput-
ing exhibiting intelligence at adult human level.” Only 1% 
estimated ten years and 19% estimated 50 years. As a con-
sequence of the disappointingly slow progress made by AI, 
the American and British governments reduced funding 
for AI leading to the “AI winter” between 1975 and 1995.

After the AI winter, computer scientists’ goals became 
less ambitious. Their emphasis shifted to relatively small-
scale projects of a practical and commercial nature. This 
emphasis, coupled with a substantial increase in comput-
ing power, meant that AI became increasingly successful. 
Another reason for its increasing success was the develop-
ment of deep learning, which has allowed AI systems to 
attain very high levels of performance on numerous tasks 
(see below). Indeed, deep learning’s achievements are pri-
marily responsible for what has been termed the “artificial 
intelligence renaissance” (Tan & Lim, 2018, p. 1).

Deep learning

What is deep learning? There is no single (or simple) 
answer. However, it is relatively straightforward to com-
municate the essence of what is involved. In many AI sys-
tems, the knowledge required to perform various tasks is 
explicitly programmed at the outset; such systems (e.g., 
calculators) do not exhibit learning. In contrast, other AI 
systems initially perform very poorly on most tasks but 
their performance improves progressively over time due 
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to learning. Deep learning belongs to the latter category. 
You are probably familiar with several uses of deep learn-
ing including Google Search and virtual assistants such as 
Alexa and Siri. Each deep neural network consists of three 
types of units. First, there are input units that represent 
input data (e.g., words or pixels). Images (e.g., photographs) 
consist of a huge number of tiny invisible dots called pixels 
(picture elements); each pixel is approximately 0.26 mm 
in size.

Second, there are multiple hidden layers consisting of 
hidden units (alternatively described as nodes or neurons). 
The greater the number of these layers, the deeper the net-
work. The nodes are connected to each other. Third, there 
is an output layer. This layer uses the information provided 
from the preceding input and hidden layers to produce the 
answer or end result.

The neurons at successive layers within the network are 
connected, with the connections varying in the weight or 
influence of one neuron on another. Initially, the weights 
of these connections are all random and so performance is 
at chance level. How does learning occur within a deep 
neural network? The network gradually learns the rela-
tionships between inputs and outputs: these are known 
as input-output mappings. Here is a concrete example. 
Suppose we give a deep neural network an image classifi-
cation task using images of 50 different animal species. In 
that case, the to-be-learned mappings require the network 
to produce the appropriate output (e.g., cat, dog, and elephant) 
when an exemplar of that species is presented.

How are the correct mappings learned? What happens is 
that the actual outputs of the network are compared against 
the correct outputs. The network is “reinforced” or rewarded 
as the accuracy of its outputs increases. Of key importance 
is backpropagation (mentioned earlier): information about 
error rates is used to fine-tune the weights of the connec-
tions between neurons to enhance performance.
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With massive training, deep neural networks can often 
match human performance. They can even exceed it (as we 
saw earlier in the case of chess). However, deep neural net-
works often encounter local minima (low points): their per-
formance gets stuck at a sub-optimal level because no way of 
improving their performance is readily available. However, 
increasingly sophisticated ways of overcoming local minima 
have been developed in recent years (Marcus, 2018).

Another problem can arise when an object (e.g., cat) is 
presented in different locations in different images (e.g., 
the top left vs the bottom right) causing failures of object 
recognition. However, this problem has largely been over-
come by means of a technique known as convolution which 
constrains the neural connections within a network.

The history of deep learning (and the use of deep neural 
networks) has been somewhat strange. AI systems involv-
ing deep learning have existed in various forms since the 
1960s (Schmidhuber, 2015). However, deep learning’s 
impact was relatively negligible until the publication of 
an epoch-making article by Krizhevsky et al. (2012). That 
article helped to produce an increase in private investment 
in AI from $589 million in 2012 to more than $5 billion 
only four years later.

Many previous AI systems had been developed without 
any great success to categorise visual images. Krizhevsky 
et al. (2012) reported that their deep neural network 
reduced the error rate on this task by almost 50% com-
pared to other AI systems. By the end of 2020, that article 
had been cited an incredible 75,000 times, and it has been 
massively influential.

It is worth discussing Krizhevsky et al.’s (2012) research 
further because it vividly illustrates other features of deep 
neural networks. Their network (called SuperVision) 
had nine layers, 650,000 nodes, and 60 million parame-
ters (values free to change). SuperVision was trained on 
approximately 1 million images belonging to roughly 
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1,000 categories. These are very large numbers. However, 
they are dwarfed by many other deep neural networks. 
Consider a language model called the Generative Pre-
Trained Transformer (GPT-3; Brown et al., 2020) (see 
Chapter 4). It was trained on 300 billion tokens (semantic 
units) and had no fewer than 175 billion parameters (values 
free to change)!

Deep learning systems often require extensive training 
in order to exhibit high levels of performance. For exam-
ple, Leela Chess Zero, a very successful chess-playing deep 
neural network model, has played over 200 million games 
against itself (see Chapter 2). It would take a human being 
approximately 120 years to play that number of one-hour 
chess games if they played non-stop 24/7!

We will discuss numerous deep neural networks in the 
rest of this book. For now, note that one of the greatest 
strengths of deep neural networks is that they are intrin-
sically self-correcting: they are designed to produce pro-
gressively higher levels of performance. The achievements 
of such networks are prodigious in view of the complexi-
ties involved in programming them to produce very high 
levels of performance on numerous tasks including image 
classification and chess playing.

In spite of the numerous successes of deep neural net-
works, they possess various limitations (Marcus, 2018). 
Those limitations are discussed throughout this book 
(especially in Chapter 7).

Summary

The history of AI exhibits a major shift from trying to 
understand human intelligence to trying to solve complex 
problems effectively (e.g., diagnosis from medical images). 
Why did this shift occur? A crucial reason is that the enor-
mous complexity of human intelligence (and the human 
brain) meant that the former approach was incredibly hard 
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to implement successfully. In contrast, the latter approach 
has proved somewhat more tractable (see Chapter 2). In 
spite of this shift, many AI experts continue to focus on 
the ultimate goal of achieving artificial general intelli-
gence. Some of the fruits of their endeavours are discussed 
in Chapter 4.

Robots

Robots are machines that carry out a sequence of actions 
more or less “automatically.” Some robots (but not the 
great majority) have human-like form and characteristics. 
The word “robot” comes from the Czech word “robota”, 
meaning “forced labour.” It was first used in 1920 to refer 
to an imaginary human-like machine in a play by the 
Czech writer Karel Čapek.

Humans have always been fascinated by robots having 
human-like form and behaviour. In Greek mythology, 
the Greek God Hephaestus constructed a giant bronze 
man, Talos, who was 8 feet tall. His role was to defend 
Crete by throwing stones at ships that threatened to attack 
the island. In ancient Egypt, statues of divine entities were 
constructed from various materials (e.g., stone and metal). 
The Egyptians believed that these statues had souls and 
often consulted them for advice (which was provided by 
head movements).

Actual robots possessing human-like characteristics were 
originally produced longer ago than you might imagine. 
In 1206, the Arabic engineer Ismail Al-Jazari (1136–1206) 
described numerous robots in detail (e.g., a robotic girl 
who poured drinks and a boat with four robot musicians 
that floated on a lake to entertain people). He also devised 
a peacock fountain used for hand washing. When someone 
pulled the peacock’s tail, this released water from its beak. 
When the water in the basin reached a certain height, this 
activated a system making a humanoid automaton appear 
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from under the peacock to offer soap. When more water 
had been poured into the basin, a second humanoid autom-
aton appeared to offer a towel.

In the late fifteenth century, Leonardo da Vinci designed 
a robot Germanic knight operated by cables and pulleys 
that could stand, sit, and use its arms to lift its visor. A 
robot built to Leonard’s specifications a few years ago 
worked extremely well.

Mary Shelley created the most famous robot in her 1818 
novel, “Frankenstein”. Dr. Victor Frankenstein creates a 
hideously ugly 8-foot-tall human-like robot using body 
parts taken from slaughterhouses and dissecting rooms. 
Frankenstein’s monster was imaginary, but there was 
increasing interest in creating actual human-like robots in 
the early twentieth century.

In 1939, Westinghouse exhibited a humanoid man 
weighing 19 stone called Elektro at the New York World’s 
Fair (see Figure 1.3). Elektro responded to voice commands 
to walk and stop walking, could produce 700 words, move 
his head and arms separately, smoke cigarettes, and blow up 
balloons. His favourite line was, “My brain is bigger than 
yours.” This was true – his brain weighed nearly 4 stone.

Many of Elektro’s achievements were less amazing than 
they seemed. For example, although walking was one of 
Elektro’s trumpeted tricks, the robot didn’t really walk. 
What actually happened was that it had wheels which 
moved along a track when it bent its left knee.

Electro did not understand the voice commands order-
ing it to start or stop. It would start moving forward when 
receiving a command with three syllables, then one sylla-
ble, and finally two syllables with pauses in between. This 
was the case regardless of whether the command was, “Will 
you come (pause) down (pause) front please?” or “Count 
your age (pause) with (pause) fingers” (Marsh, 2018).

Let us fast-forward to today’s amazingly human-like 
robots. For example, Geminoid-DK was built in Japan but 
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was designed to look remarkably like the Danish Professor 
Henrik Schärfe (see Figure 1.4). Geminoid-DK mimics 
the facial expressions and head movements of humans with 
whom it interacts. Henrik Schärfe’s wife prefers the human 
version but suggests the robotic version should be sent to 
conferences!

Another robot that looks very human is Erica (see Figure 
1.5). She was built in Japan by Hiroshi Ishiguro and col-
leagues and her name is an acronym: Erato (name of the 
research project) Intelligent Conversational Android (Glas 
et al., 2016). She has reasonable language skills (includ-
ing speech recognition) and possesses knowledge on many 

Figure 1.3  �Elektro, a 7-foot-tall robot, with his dog Sparko.
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topics. As a result, she has appeared on Japanese television 
as a news anchor!

Erica has conversational skills, such as nodding, moving her 
eyes, or saying “uh-huh” to indicate she is listening atten-
tively to what the other person is saying. Among her most 
memorable utterances is the following: “When people talk to 
me, they address me as a person. I think it is different to the 
way someone would address their dog or their toaster.”

When she was asked whether she is the greatest robot 
of all time, she replied: “Yes.” After putting on a worried 
expression, she continued, “Well … actually, we’ll see. 
That depends on how well my researchers program me.”

Finally, Erica tells jokes that are not side-splittingly  
funny: “Why did the robot go back to robot school?” she 
asked. “Because her skills were getting rusty. Ha ha. Perhaps 
that’s enough jokes for now.” You’re not wrong, Erica!

Figure 1.4  �Professor Henrik Schärfe and the robot Geminoid-DK 
(Geminoid-DK is on the left).
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The vast majority of robots are used in industry. 
Everyone knows there has been a huge increase in the 
number of such robots (especially in China, Japan, and the 
United States). However, you may be surprised to discover 
there are over 3 million robots in the world and that total 
is increasing by more than 1,000 EVERY DAY.

More than 99% of the world’s robots work separated 
from human contact as a safety measure (especially in car 
manufacture). However, there has been a steady increase 
in cobots (collaborative robots) designed to work interac-
tively with humans in a shared space or close proximity. 

Figure 1.5  Erica, a human-like robot from Japan.
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Cobots are carefully designed to prevent them causing 
injury or death to nearby humans. Overall, robots and 
cobots are responsible for very few deaths given how many 
of them work in industrial settings (see Chapter 6). Indeed, 
the number of industrial deaths has gone down over time.

Many people believe that the ever-increasing impact 
of robots on our society raises important moral issues and 
may have very negative consequences (e.g., mass unem-
ployment). Intriguingly, however, the great ancient Greek 
philosopher Aristotle argued that the presence of numerous 
robots might actually be positive rather than negative. The 
reason he gave was that it would increase human equality 
by abolishing slavery. The present state of play with respect 
to the impact of robots on human society is discussed in 
Chapter 6.



DOI:  10.4324/9781003162698-2

AI can perform numerous tasks and solve complex prob-
lems much faster and more accurately than humans. For 
example, the invention of cheap hand-held calculators 
allowed people to solve complicated mathematical prob-
lems far faster than humans had been able to do. A more 
impressive triumph of machines over humans involves the 
Rubik’s Cube, which has 43 quintillion possible combi-
nations (43,252,003,274,856,000). Yusheng Du sent an 
apparently impressive new world human record in Wuhu 
in November 2018: 3.47 seconds.

What do you think the world record for Rubik’s Cube 
is for an AI-driven robot? The answer is a barely credi-
ble 0.38 seconds. The robot had six motors, one moving 
each face of the cube. It also used webcams to identify the 
patterns of colours on each face of the cube. Finally, the 
robot was driven by software indicating the precise moves 
required to solve the puzzle. Thus, the robot performed 
calculations with extreme speed and its solving strategy 
was very different from that of human experts.

AI’s most impressive achievement in solving Rubik’s 
Cube was with an enormous cube having 37,768 tiles on 
each side producing an almost incredible 66.9 quinquasep-
tuagintacentilliard (us neither!) of combinations. It was 
arguably disappointingly slow in producing its solution, 
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requiring over 2,700 hours to solve this gigantic Rubik’s 
Cube. However, the world’s greatest human expert with 
Rubik’s Cube could not begin to solve this fantastically 
difficult version of Rubik’s Cube even with limitless time.

The computing power of machine-learning systems 
(based on their information-processing speed) doubled 
approximately every 3.43 months for several years although 
the rate has slowed down somewhat recently. That equates 
to a massive 11-fold increase each year. There has been a 
race involving the United States, Japan, and China to have 
the world’s most powerful supercomputer. In June 2018, 
IBM’s Summit took over that title from China’s Sunway 
TaihuLight supercomputer.

We can assess Summit’s peak performance using FLOPS 
(floating point operations per second: a floating point cor-
responds to the decimal expansion of a number). Summit’s 
peak performance is approximately 200 petaFLOPS (a not-
too-shabby 200,000 trillion calculations per second). This 
is more than twice the speed of TaihuLight.

In 2020, Summit was deposed as the world’s most pow-
erful computer by a Japanese supercomputer called Fugaku 
(an alternative name for Mount Fugi). It consists of 396 
large racks (supporting frameworks that hold computing 
equipment such as servers and hard disc drives). Its peak 
performance is 415 petaFLOPs (more than twice that of 
Summit) and it consumes 28 megawatts of power (2.8 times 
the power consumption of Summit) (see Figure 2.1).

Unsurprisingly, this huge increase in the power of super-
computers (and other AI systems) has enabled them to per-
form numerous cognitively demanding tasks with amazing 
speed and efficiency. The central focus of this chapter is 
on AI’s greatest achievements. There are several possible 
definitions of “great achievement.” However, our yardstick 
is that an AI system’s performance on a task matches or 
surpasses that of expert humans. That is arguably too nar-
row an approach because it strongly implies that human 
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achievements are the “gold standard” against which AI’s 
successes should be evaluated. As discussed in Chapter 7, 
the danger is that AI’s achievements not human-like in 
nature may be de-emphasised or ignored.

Complex games

Some of the most impressive achievements of AI in direct 
competition with humans have been in the domain of com-
plex games such as chess, Go, and poker. As we will see, what 
is especially impressive is that AI systems have convincingly 
beaten the finest human exponents of these games.

Chess

In 1796, a fake chess-playing machine called the 
“Automaton” was created: it had an expert human chess 
player hiding inside it playing the moves. The first true 
landmark came in 1951, when Alan Turing devised a 
chess-playing computer program. After that, program-
mers worked on making their chess machines better, and 
improvements in hardware allowed for stronger play.

In Chapter 1, we briefly discussed Garry Kasparov’s 
calamitous defeat in 1997 to an IBM computer called 

Figure 2.1  �The supercomputer Fugaku in Kobe, Japan.
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Deep Blue. In fact, however, Deep Blue’s achievement was 
less stunning than it appeared to be. Humans programming 
Deep Blue had access to all of Kasparov’s previous chess 
matches. In contrast, Kasparov had very limited informa-
tion about Deep Blue’s strategies. There are also suspicions 
Deep Blue’s success depended in part on the input of sev-
eral chess grandmasters before (and during) the match.

It eventually emerged that Deep Blue had been pro-
grammed to engage in psychological games. For exam-
ple, it would sometimes rapidly decide its next move but 
would fool Kasparov by waiting several minutes before 
actually making the move. Deep Blue also sometimes 
gave the impression it had fallen into a trap by making 
a very rapid move after one of Kasparov’s best moves. 
According to Manuel Illescas, a grandmaster who assisted 
in Deep Blue’s preparation, “This [strategy] has a psy-
chological impact as the machine becomes unpredictable, 
which was our main goal.”

From today’s perspective, Deep Blue was very primitive 
because it relied heavily on the brute force of calculating 
speed and power (evaluating 200 million chess positions 
per second). It used what is disparagingly called GOFAI 
(Good Old-Fashioned Artificial Intelligence). This can be 
contrasted with deep learning (discussed in Chapter 1), 
which has attained a position of massive dominance over 
GOFAI in the past decade or so.

How does GOFAI differ from deep learning? With 
GOFAI, the algorithm (set of rules used in problem solu-
tion) is explicitly programmed at the outset by a program-
mer (Zador, 2019). A key limitation is that the success (or 
otherwise) of GOFAI depends crucially on the program-
mer’s insights. In contrast, deep learning involves complex 
neural networks that learn very effectively without requir-
ing the intervention of human programmers to indicate 
how they should process data. As a consequence, deep neu-
ral networks can achieve very high levels of performance 
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provided they have prolonged and extensive training on 
the task in question.

The introduction of deep learning into chess-playing 
machines has had a dramatic impact. Numerous inexpen-
sive machines using deep learning are now better at play-
ing chess than the current World Champion! When Garry 
Kasparov was interviewed in a podcast with neuroscientist 
Sam Harris in 2016, he admitted he would definitely be 
beaten by today’s chess-playing computers: “The problems 
that humans are facing are that we are not consistent, we 
cannot play under great pressure. Our games are marked 
by good and bad moves – not blunders, just inaccuracies.”

Here we will briefly consider Stockfish, a very power-
ful recent chess-playing machine that can easily beat any 
human player. It analyses hundreds of thousands of positions 
in seconds, deciding how “good” various possible moves by 
evaluating their likely long-term impact. It uses “pruning” 
processes to eliminate “bad moves” that could lead to dis-
advantageous positions. It also uses various heuristics (rules 
of thumb). Here are some examples: (i) it is good to develop 
minor pieces (knights and bishops); (ii) moving the Queen 
out early is bad; (iii) rapidly controlling the middle of the 
board is good; and (iv) castling rapidly is good.

We will briefly discuss another chess-playing machine 
(Leela Chess Zero) with comparable chess skills to those of 
Stockfish. It was programmed with the basic rules of chess 
but no other chess-specific knowledge (e.g., useful heuristics). 
Leela Chess Zero developed its chess-playing ability through 
extensive practice using deep neural networks. It has played 
over 200 million games against itself, and often plays half-a-
million games a day (presumably without experiencing the 
boredom humans would!). It gradually learned to play in ways 
leading to reward or reinforcement (e.g., winning the game) 
while avoiding moves that might lead to defeat.

In sum, AI is now much superior to humans at chess. 
Indeed, it is so far ahead that humans are unwilling to 
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endure the humiliation of being comprehensively beaten 
every time by a “mere machine.”

Go

The game of Go is a board game for two players invented 
in China over 2,500 years ago. It is a very popular game 
(especially in East Asia) with almost 50 million players. 
In the long distant past, Go was regarded as an important 
cultivated art for Chinese gentlemen along with painting, 
calligraphy, and playing the guyin (a seven-stringed zither- 
like instrument).

Why are we discussing Go? It is phenomenally complicated 
and so poses a huge challenge for AI-powered machines. It 
was regarded as so difficult that, between 1985 and 2000, the 
Taiwanese Ing Foundation offered a prize of $1,400,000 to 
any AI program that could beat a human champion.

Go’s rules are deceptively simple. The board is a 19 × 19 
grid, and stones are placed on intersections in this grid one 
by one alternately by the two players (see Figure 2.2). One 
player uses black stones and the other uses white stones. 
Once a stone has been placed, it cannot be moved. The 
goal is to completely surround (engulf ) a collection of the 
opponent’s stones, which are immediately removed from 
the board. The winner is the player whose area (points they 
have occupied or surrounded) is greater.

Superficially, Go sounds simpler than chess. For exam-
ple, in chess there are six types of pieces each moving dif-
ferently, whereas in Go there is only a single type of piece 
(i.e., the stones) and the pieces do not move. Why, then, is 
Go much harder? It is often said that chess is a battle but Go 
is a war. In Go, there are often several battles going on in 
different parts of the 19 × 19 grid. As a result, players often 
agonise over where to direct their attention. Unlike chess, 
expert Go players often find it frustratingly hard even to 
decide whether they are ahead or behind during a game.
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Consider the number of possible board positions after 
four moves (two by each player). In chess, it is approximately 
1,500,635, which sounds very daunting. In Go, however, 
the comparable figure is approximately 1,600,000,000 
(1,000 times as many). After six moves, the difference is 
even more marked – 1.8 billion possible board positions in 
chess versus 64 trillion for Go!

The complexities of Go mean that many knowledge-
able individuals were profoundly sceptical that a com-
puter could beat expert humans at Go. In 2016, Google 
DeepMind’s AlphaGo was the most advanced AI system 
for playing Go. It was initially programmed with the rules 
of Go. After that, AlphaGo analysed 30 million Go moves  

Figure 2.2  �A game of Go in progress.



26  AI dominance

from games played by human players. Finally, it became an 
outstanding player of Go by playing against itself millions 
of times using deep learning and reinforcement (reward) 
learning.

AlphaGo’s opponent was an exceptional human Go player 
called Lee Sedol (see Figure 2.3). Before the five-game 
match in March 2016, he said, “I am confident that I can 
win, at least this time.” With the benefit of hindsight, the 
last four words suggest he was not totally confident of 
victory. The first three games were all closely contested. 
However, AlphaGo became increasingly dominant as each 
game progressed, winning all three and thus the match. 
An expert Go player, Ko Ju-yeon, described AlphaGo’s 
approach as follows: “All but the very best Go players 
craft their style by imitating top players. AlphaGo seems 

Figure 2.3  �Photograph of the outstanding player, Lee Sedol, taken 
in 2016.
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to have totally original moves it creates itself.” After the 
third game, Lee Sedol said in a quavering voice, “I have to 
express my apologies.”

In 2019, Lee Sedol retired as a professional player. This 
decision was motivated by the superiority of AI: “With 
the debut of AI in Go games, I’ve realised that I’m not at 
the top even if I become the number one through frantic 
efforts … Even if I become the number one, there is an 
entity [AI] that cannot be defeated.”

AlphaGo’s success is not the end of the story. Silver et al. 
(2017) developed AlphaGo Zero, which was programmed 
only with the rules of Go and received no human supervi-
sion. Initially, its behaviour when playing Go was random. 
However, AlphaGo Zero’s performance progressively 
improved as it was trained on 4.9 million games of self-
play. After this training, Silver et al. arranged a 100-game 
match between AlphaGo Zero and an advanced version of 
AlphaGo. AlphaGo Zero triumphed, winning the match 
by a resounding 89 games to 11.

Shogi and Atari

AI programs, such as Stockfish and AlphaGo Zero are 
incredible achievements. However, their prowess is limited 
to a single game and does not generalise to other games. It 
would be even more impressive if we had a program per-
forming at superhuman level on several different games. 
Silver et al. (2018) set themselves the goal of producing a 
program that would excel at three different games: chess; 
Go; and shogi (a Japanese game closely resembling chess; see 
Figure 2.4). However, it is more complicated (e.g., having 
more different pieces and captured pieces are re-used). It was 
only in 2017 that Elmo (an AI program) defeated human 
champions at shogi (Computer Shogi Association, 2017).

Silver et al. (2018) devised AlphaZero, which was pro-
vided with knowledge of the rules of each game. It started 
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by producing random moves. However, its performance 
rapidly improved through reinforcement learning from 
self-play. AlphaZero played 1,000 chess games against the 
AI program Stockfish, winning 155 games and losing 
only six. It played Go against AlphaGo Zero, winning 61% 
of its games. Finally, it won 91% of its shogi games against 
Elmo, the 2017 world computer champion. Strikingly, 
AlphaZero required only a few hours of training on each 
game to produce these very impressive achievements.

AlphaZero is provided with the rules of all the games it 
plays. This contrasts with the real world, where the relevant 
environmental dynamics are typically complex and hard to 
calculate. Schrittwieser et al. (2020) addressed this issue by 
developing the MuZero algorithm. It resembles AlphaZero 
but is not provided with the rules of the games it plays.

MuZero was trained to play chess, Go, shogi and 57 
Atari games from the Arcade Learning Environment. It 
matched Alphazero’s superhuman performance at chess 
and shogi, and performed slightly better than AlphaZero 
on Go. In addition, it outperformed state-of-the-art AI 
programs on 42 of the 57 Atari games.

Schrittwieser et al.’s (2020) findings are the most impres-
sive ones in research on AI and the playing of complex 
games for various reasons. First, its algorithm generalises 

Figure 2.4  The early stages of a game of shogi.
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across 60 games. This is a marked improvement over most 
previous AI programs that performed well only on a sin-
gle game. Second, its ability to work out the rules under-
lying many different games without being provided with 
the relevant information means its potential applicability 
to real-world environments is greater than for previous AI 
programs.

Poker

Chess, Go, and shogi are indisputably complex games. 
However, they are artificial because they pose problems 
radically different from those encountered in our every-
day lives. Chess, Go, and shogi are perfect-information (or 
closed-system) games – each player (or a machine powered 
by AI) has access to complete information about the precise 
state of the game from start to finish. Real life is typically 
very different. For example, suppose you are negotiating a 
deal. An important negotiating strategy is to hide impor-
tant aspects of your thinking from the other person. More 
generally, nearly all our decision making and problem 
solving is based on only partial information.

Garry Kasparov accepted the superiority of AI with 
respect to closed systems. However, he was sceptical this 
superiority would apply outside closed systems: “Anything 
that is quantifiable [as in closed systems], machines will do 
better than humans, and we should not make an assump-
tion that you could automatically transfer the knowledge 
from the closed system to an open-ended system.”

The fact that Chess, Go, and shogi are perfect-informa-
tion (or closed-system) games downgrades the achievements 
of AI in beating leading human experts in these games. 
Could AI defeat top-class human opposition at imperfect- 
information games where highly relevant information is 
hidden? Poker is a very complex imperfect-information 
game. All good players bluff sometimes (e.g., betting with 
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very poor cards). Winning poker involves using complex 
strategies so your opponent (human or AI) cannot decide 
whether you have a good hand or are bluffing.

What is an excellent strategy at time t1 can become a 
terrible strategy at time t2 if your opponents work out 
your strategy. Thus, there is no fixed strategy to win at 
poker – success depends on responding appropriately to 
complex interactions between the players.

A much-publicised poker competition between human 
brains and AI took place in January 2017 (Brown & 
Sandholm, 2018). The human race was represented by four 
top poker professionals: (1) Jason Les; (2) Jimmy Chou; (3) 
Daniel McAulay; and (4) Dong Kim. AI was represented 
by Libratus (meaning balanced and forceful), which played 
against the poker players one at a time. Initially, Libratus 
was given the rules of poker. After that, it played literally 
trillions of games and progressively improved its playing 
standard via reinforcement (reward) learning.

In the match itself, Libratus learned much about the strat-
egies used by the four human players. Of great importance, 
at the end of each day’s play, betting patterns in Libratus’s 
playing style that had been detected by the human play-
ers were identified. Libratus was then re-programmed to 
eliminate those patterns to make it incredibly hard for the 
human players to decide when it was bluffing.

All four human players lost to Libratus, which won 
resoundingly by $1,766,250. Dong Kim said, “I didn’t 
realise how good it [Libratus] was until today. I felt like 
I was playing against someone who was cheating, like it 
could see my cards.” When asked what had gone well for 
the poker professionals, he said, “I think what went well 
was … s**t … We took such a beating.”

Libratus’s triumph was achieved in games against only 
one other player at a time. It would be more impressive 
if an AI system could beat several top human players at 
once. Accordingly, an improved version of Libratus called 
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Pluribus was produced. Pluribus evaluates its options by 
searching a few moves ahead whereas Libratus only con-
siders its options at the end of the game. Pluribus also has 
faster algorithms (well-defined computational procedures) 
and is generally more efficient (e.g., requiring surprisingly 
little processing power and memory).

Pluribus played 10,000 hands. Each day, it played 
against five professional players, all of whom had won over 
$1,000,000 playing poker. Pluribus triumphed (Brown & 
Sandholm, 2019). If we assume each poker chip is worth $1, 
Pluribus would have won approximately $1,000 per hour! 
After that, five copies of Pluribus played against each other 
plus one top professional player (Darren Elias or Chris 
“Jesus” Ferguson). Darren Elias (born 1986) has won over 
$7 million playing poker. Chris Ferguson (born 1963) has  
over $8 million in poker earnings (see Figure 2.5). His nick-
name is “Jesus” because of his long brown hair and beard. 
He looks the part when playing poker, typically wearing a 
wide-brimmed hat and sunglasses and remaining motion-
less. His party trick is throwing playing cards so fast they 
cut through bananas and even melons. Pluribus beat both 
the professionals. On the assumption each poker chip is 
worth $1, Pluribus won approximately $670 per hour.

Why couldn’t the world’s best poker players beat AI? 
According to Jason Les, “It [Libratus] is … a much more 
efficient bluffer than most humans … You’re always in a 
situation with a ton of pressure that the AI is putting on 
you and you know it’s very likely it could be bluffing.” 
According to Chris Ferguson, “As humans, … we tend to 
oversimplify the game for ourselves, making strategies eas-
ier to adopt and remember. The bot [i.e., Libratus] doesn’t 
take any of these short-cuts and has an immensely compli-
cated [underlying strategy].”

Darren Elias argued that Pluribus’s greatest strength is,  
“its ability to use mixed strategies … in a perfectly random 
way and to do so consistently. Most people just can’t.” 
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As a result, AI’s decisions often differ considerably from 
those of most human poker players. For example, AI some-
times disconcertingly makes huge overbets (e.g., betting up 
to 20 times the amount of money in the pot). This can 
be very effective if you have a really powerful hand or an 
incredibly weak hand. Libratus and Pluribus also produced 
many surprising underbets (e.g., betting 10% or less of the 
money in the pot).

Finally, poker players’ performance is sometimes 
impaired by emotion. The great majority of poker players 

Figure 2.5  Photograph of top poker player Chris “Jesus” Ferguson.



AI dominance  33

admit they are sometimes affected by tilting, meaning that 
negative emotions experienced during play cause them to 
lose control and make unusually poor decisions (Palomäki 
et al., 2020). Eil and Lien (2014) studied millions of hands 
played online by experienced or very experienced poker 
players. In spite of their expertise, they typically played 
more aggressively (i.e., betting and raising more often) 
when losing due to their high sensitivity to losses. This is 
a sub-optimal strategy that often leads to increased losses.

In sum, Libratus and Pluribus have taught professional 
poker players several lessons. First, you must keep chang-
ing your betting strategy so other players cannot work out 
whether you are bluffing. Second, Libratus and Pluribus 
are totally unconcerned about money and emotion does 
not influence their decision making. In contrast, humans 
find it hard to remain unemotional and to disregard the 
financial implications of their decisions. Third, and most 
pessimistically, the fact AI systems can store and process 
far more information than human poker players probably 
means there is ultimately no way humans can consistently 
beat them at poker.

Jeopardy!

Jeopardy! is a very popular American game show. Its dis-
tinctive feature is that players are presented with clues in 
the form of answers and must indicate which question 
would produce that answer. For example, the clue might 
be, “Assembled from dead bodies, the monster in this 
Mary Shelley book turns against his creator.” The correct 
answer is, “Who was Frankenstein?” Much of the time, 
the contestant pressing their buzzer first after the clue has 
been read out is the one who has the chance to provide the 
correct answer. Only if they provide an incorrect answer 
does another contestant have the opportunity to supply 
the answer.
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In 2011, an IBM AI system named Watson (after the 
company’s founder Thomas Watson) competed against two 
of the most successful human contestants ever. One was 
Brad Rutter (33 years old), who had the all-time record 
74 successive winning appearances on the show. The other 
human contestant was Ken Jennings (37 years old), who 
had won more money from Jeopardy! ($3.5 million) than 
anyone else.

The match took place on three successive evenings 
(14–16 February 2011). On the first evening, Watson and 
Brad Rutter had both won $5,000 and were ahead of Ken 
Jennings who was languishing on $2,000. There was high 
drama on the second evening as Watson totally outper-
formed his human rivals – the computer ended the evening 
with $35,734 whereas his human rivals had only $10,400 
(Rutter) and $4,800 ( Jennings). Watson extended its com-
manding lead on the third evening finishing with $77,147 
to Jennings’ $24,000 and Rutter’s $21,600.

Why did Watson triumph over Jennings and Rutter? 
There are several reasons. First, Watson can allegedly pro-
cess 500 gigabytes of information per second (equivalent to  
1 million books), which reckons to be useful in a general- 
knowledge game. Second, it had access to 200 million 
pages of information including the whole of Wikipedia. 
Third, it had practised by playing 100 games against past 
winners. Fourth, Ken Jennings argued that a crucial factor 
was Watson’s “buzzer mojo” – the computer often hit the 
buzzer to indicate it would answer a question with extreme 
speed.

Watson’s achievements are less impressive than they 
appear. Watson was sometimes very insensitive to ques-
tion subtleties and so produced answers well wide of the 
mark. Here is an example. The category was “Computer 
Keys” and the clue was, “A loose-fitting dress hanging 
from the shoulders to below the waist.” Watson incorrectly 
responded, “What is a chemise?” However, the correct 
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answer is, “What is a shift?” This major mistake (and 
there were many more) shows Watson had very limited (or 
non-existent) language understanding (discussed further in 
Chapter 7).

As mentioned earlier, much of Watson’s success was 
attributable to its speed in hitting the buzzer rather than 
its superior knowledge. Watson was programmed to hit 
the buzzer in as little as 10 milliseconds (much faster than 
any human). For example, the sprinter Usain Bolt takes 
approximately 170 milliseconds to respond to the gun at 
the start of a race. Watson’s incredible speed was especially 
advantageous when all the contestants knew the answer to 
a particular clue. The questions were sufficiently straight-
forward that this was generally the case.

Language ability

Human intelligence is intimately bound up with our com-
mand of language (see Chapters 1, 4, and 7). Most of our 
thinking (and the communication of our thoughts to oth-
ers) relies heavily on language. Language is used for many 
purposes: to understand spoken language (speech recog-
nition or perception); to understand written language 
(reading); to speak to other people; to translate text from 
one language to another; and to write texts (e.g., emails 
and essays). In view of its importance, it would be a major 
achievement for AI to match any of the above human lan-
guage abilities. Here, we focus on research apparently pro-
viding evidence for such an achievement.

Speech recognition

Speech recognition appears relatively simple. For exam-
ple, when chatting with a friend, you typically immedi-
ately understand what they are saying. In fact, however, 
speech recognition is an impressive achievement. Speakers  
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typically produce about ten phonemes (basic speech sounds) 
per second and much acoustic information is lost within 
50 ms (Remez et al., 2010). Accordingly, listeners must 
process the incoming speech signal very rapidly.

Another complication faced by listeners is segmentation – 
separating out or distinguishing phonemes and words from 
the pattern of speech sounds. Most speech has few peri-
ods of silence, as you have probably noticed when listening 
to someone speaking in a foreign language. This makes it 
hard to decide when one word ends and the next begins. 
Listeners also have to cope with co-articulation: the way 
speakers pronounce a given phoneme is influenced by their 
production of the previous sound and preparation for the 
next sounds. Thus, for example, the/b/phoneme is pro-
nounced slightly differently in words, such as bill, ball, and 
able (Harley, 2010).

Finally, listeners must contend with considerable differ-
ences among speakers. There are characteristic differences 
between male and female speakers, and speakers also differ 
with respect to dialect and speaking rate.

Most automatic speech recognition systems (e.g., 
Amazon’s Alexa; Apple’s Siri; and Google’s voice search) 
use deep learning (discussed in Chapter 1) (Cui et al., 
2020). They typically require huge amounts of training 
speech data (tens of thousands of hours or more). Indeed, 
training speech data occasionally reaches 1 million hours 
(Parthasarathi et al., 2019). That is equivalent to someone 
listening to non-stop speech 24/7 for 114 years! The golden 
rule seems to be that, “there is no data like more data.”

Most speech-recognition models include the following 
components (Abdullah et al., 2020). First, there is pre-pro-
cessing of the acoustic signal to remove unnecessary noise. 
After that, a feature-extraction system processes the most 
important features of the speech signal. Next, an inferential 
process ascribes probabilities to different interpretations of 
the speech input. Its output cannot be read by humans, 
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and so a final decoding process provides a human-readable 
transcription of that output.

Landmark research by Microsoft using a deep learning 
automated speech-recognition system was reported by 
Xiong et al. (2017b). They presented this AI system with 
two kinds of recorded telephone calls: (1) strangers dis-
cussing an assigned topic (Switchboard task) and (2) friends 
and family having informal conversations (CallHome 
task). The AI system had an error rate of 5.8% on the  
Switchboard task and 11% on the CallHome task. These 
error rates were marginally lower than those achieved by 
professional transcribers of spoken language (5.9% and 
11.3%, respectively). The AI system and humans made 
very similar errors: human participants found it hard to 
distinguish between error-containing transcriptions pro-
duced by humans and by the AI system.

Xiong et al. (2018) subsequently developed their Microsoft 
automatic speech recognition system (e.g., increasing the AI 
system’s vocabulary from 30,500 to 165,000 words). As a 
result, its error rate on the Switchboard task was only 5.1% 
compared to the 5.8% obtained with the previous version.

Saon et al. (2017) assessed the performance of their IBM 
automatic speech recognition system on the same tran-
scription tasks used by Xiong et al. (2017b, 2018). This AI 
system achieved error rates of 5.5% on the Switchboard 
task and 10.3% on the CallHome tasks. These findings 
appear impressive, especially those on the CallHome task. 
However, consider the performance of three human tran-
scription experts who, “were asked to do a high-quality 
job” (p. 135). Their average error rates were 5.7% on the 
Switchboard task and 7.9% on the CallHome task.

In sum, the performance of automatic speech recogni-
tion systems is excellent given the unconstrained nature of 
human speech. However, the research discussed here has 
involved relatively straightforward tasks with only a single 
speaker at any given moment and avoiding complexities 
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(e.g., unusual dialects). What happens with more complex 
speech-recognition tasks is discussed in Chapters 4 and 7.

Conversation

Holding a conversation requires good speech recognition 
plus the ability to produce coherent and appropriate spoken 
language. Many chatbots (AI systems simulating conversa-
tion with one or more humans) have been developed. Alan 
Turing (1950) argued we could assess chatbots’ conversa-
tional abilities by using his famous Turing test. In essence, 
he argued that, ‘‘The idea of the test is that a machine has 
to try and pretend to be a man, by answering questions 
put to it, and it will only pass if the pretence is reasonably 
convincing. A considerable portion of a jury, who should 
not be expert about machines, must be taken in by the 
pretence” (Copeland 2004).

It has been claimed on several occasions that chat-
bots have passed the Turing test. For example, there was 
an event at the Royal Society on 6 and 7 June 2014. A 
chatbot called Eugene Goostman (allegedly a 13-year-old 
Ukrainian) persuaded ten out of 30 human judges (33%) it  
was human (Warwick & Shah, 2016). However, the fact 
that 67% of the judges did not believe Eugene Goostman 
was human indicates its conversational skills were strictly 
limited. Other reasons for scepticism about the abilities of 
chatbots are discussed in Chapter 4.

Text comprehension: reading

Writing text (as you have probably found to your cost!) is 
much slower and more demanding than simply speaking. 
As a result, readers often find it harder to comprehend text 
than listeners do to understand speech. Thus, developing a 
system having a good understanding of complex texts is a 
Holy Grail in AI research.
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Wang et al. (2018) introduced a battery of nine reading- 
comprehension tasks for computers called GLUE (General 
Language Understanding Evaluation) to assess AI models’ 
language comprehension abilities. Four tasks assessed the 
ability to draw inferences. Here is a sample item: Does the 
information that, “President Trump landed in Iraq for the 
start of a seven-day visit” imply that, “President Trump is 
on an overseas visit”? Other tasks assessed language abilities 
(e.g., paraphrasing and judgements of semantic similarity).

Wang et al. (2018) found the best-performing AI model  
on the GLUE tasks averaged 69% and the worst model  
averaged 58.9%. In contrast, average human performance is 
87.1% (Nangia & Bowman, 2019). Everything changed for 
the better when Google developed BERT (Bi-directional 
Encoder Representation from Transformers) (Devlin 
et al., 2019). BERT averaged 80.5% (still below human 
performance) on the GLUE tasks. Things changed rap-
idly thereafter. By July 2019, a new version of BERT sur-
passed human performance with 88.4% on the GLUE tasks 
(Yang et al., 2019). After that, offspring of BERT such as 
RoBERTA AND ALBERT (A Lite BERT) proliferated 
and several of these BERT-like models have also surpassed 
human performance.

What is the secret of BERT’s success? It engages in more 
complex (and human-like) processing of written language 
than previous models. These earlier models processed the 
words in a sentence one-by-one sequentially from left to 
right using crude dictionary-like information to access 
word meanings. These models’ emphasis on the meanings 
of individual words meant that several aspects of human 
language processing were omitted or de-emphasised.

Previous models largely ignored context and syntax. 
Consider homonyms (two words with the same spelling 
but different meanings): an example is “bank” (side of a 
river) and “bank” (a place where money is kept). These 
models found it hard to distinguish between homonyms’ 
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two meanings. They also had great difficulty in distin-
guishing between the meanings of sentences containing 
very similar words (e.g., “The dog bit the man” vs “The man 
bit the dog.”)

In contrast to previous models, BERT reads left to right 
and right to left at the same time. As a consequence, its pro-
cessing is more thorough than that of other models. BERT 
also differs from other models because it uses an attention- 
weighting process to form multiple connections among the 
most important words in a sentence while largely ignoring 
the less important ones. As a consequence, BERT is more 
sensitive to context (preceding and following a given word) 
than previous models. BERT also triumphs over other lan-
guage-processing models because it has greater capacity, com-
puting power, and is pre-trained on more language data.

In spite of its many successes, BERT has various lim-
itations. Its language-comprehension performance is less 
impressive than it seems because it often relies on heuristics 
or short-cuts rather that remove the need for full compre-
hension of text. In addition, BERT possesses a considerable 
amount of knowledge but it is often unclear which knowl-
edge it is using to perform any given comprehension task 
(Rogers et al., 2020).

Translation

An area of language processing where AI has proved 
increasingly successful is in translating texts (e.g., doc-
uments) from one language into another. For example, 
Google Translate (based on deep neural networks) provides 
reasonably accurate translations between English and over 
100 other languages. It is far faster than human translators: 
it can translate an entire page of text in under three seconds.

Until fairly recently, the quality and accuracy of machine 
translation were much lower than human translation. 
However, the development of neural machine translation 
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based on the use of deep neural networks has led to dramat-
ically improved machine translation. This new approach 
differs from previous ones in that it involves end-to-end 
learning: all the processes required for sentence reading 
and the production of accurate translation are learned at 
the same time by a single system. Neural machine transla-
tion is also far more flexible than some previous approaches 
to machine translation systems involving the application of 
numerous fixed rules.

Several impressive findings have been reported recently. 
Fischer and Läubli (2020) compared neural machine trans-
lation and human translation of documents in the insur-
ance sector (e.g., a text on specialist training in sales) with 
respect to three types of error: (1) omissions; (2) terminol-
ogy; and (3) typography. Overall errors by machine and by 
humans were comparable.

Popel et al. (2020) compared news translation from 
English to Czech by professional translators and by a 
deep-learning system, CUBBITT. CUBBITT outper-
formed the professional translators at preserving text 
meaning. However, the fluency of its translation was rated 
somewhat lower than that of the human translators. Popel 
et al. used a Turing-type test where they asked 15 human 
judges to decide whether the news translations were pro-
duced by CUBBITT or by a professional translator. Nine 
judges (including three professional translators and three 
machine translation researchers) failed to distinguish 
between machine and human translations.

In sum, machine translation is often almost compara-
ble in quality to the performance of professional human 
translators. However, one area where machine translation 
continues to perform well below human levels is in taking 
full account of relevant context. This is difficult because 
the relevant context for processing a given sentence may be 
several sentences back in the text. This often happens with 
pronouns (e.g., he and she), where the referent may have 
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occurred much earlier. Huo et al. (2020) found with the 
translation of various documents that pronoun resolution 
was significantly better when a neural machine translation 
system was context-aware than when it was not.

Text generation

Producing coherent text (e.g., essays or other documents) 
is probably the most demanding human language skill. 
Accordingly, it would be impressive if an AI language model 
could generate text that was hard to distinguish from that of 
a human writer. Relevant evidence was reported by Köbis 
and Mossink (2020). Human judges presented with poems 
written by novice poets and by an AI algorithm performed 
at chance level when deciding which poems were human- 
written and which were machine-written. Arguably, this 
was an unfair test given that the AI algorithm had received 
extensive training on poetry written by professional poets.

In a second experiment, human judges could not distin-
guish between a poem written by a professional poet and a 
machine-written poem pre-selected as the best. However, 
they could distinguish between a poet’s poem and a ran-
domly selected machine-written poem. In sum, humans 
had a limited ability to distinguish between poems pro-
duced by AI and by humans.

An impressive attempt to develop a model producing 
human-like text was reported by Brown et al. (2020). 
Their model is called Generative Pre-Trained Transformer 
3 (GPT-3) (see Chapters 4 and 7). Here, we will mention 
two of its distinctive features. First, GPT-3 is enormously 
powerful: it has 175 billion parameters (values free to 
change) whereas the previous record-holding model had 
“only” 17 billion parameters.

Second, nearly all previous AI language models were 
programmed to perform well on a narrow range of lan-
guage tasks on which they receive huge amounts of 
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relevant training. In contrast, GPT-3 is designed to per-
form numerous language tasks without receiving intensive 
training on any specific task.

Brown et al. (2020) gave various versions of GPT-3 
the task of producing news articles 200 or 500 words in 
length following presentation of examples of news articles. 
Human judges read news articles produced by humans and 
by GPT-3 and decided whether each one was written by 
GPT-3 or a human writer. With the 200-word articles, 
only 52% correct decisions were made with articles pro-
duced by the full, 175-billion parameter, version of GPT-3.

An example of GPT-3’s articles is shown below – only 
12% of human judges correctly identified it as having been 
produced by an AI model.

Title: United Methodists Agree to Historic Split

Subtitle: Those who oppose gay marriage will form 
their own denomination

Article: After two days of intense debate, the United 
Methodist Church has agreed to a historic split –  
one that will be “theologically and socially conserva-
tive”, according to The Washington Post. The major-
ity of delegates attending the church’s annual General 
Conference in May voted to strengthen a ban on the 
ordination of LGBTQ clergy and to write new rules 
that will “discipline” clergy who officiate at same-sex 
weddings. But those who opposed these measures have 
a new plan: they say they will form a separate denom-
ination by 2020, calling their church the Christian 
Methodist denomination.

The Post notes that the denomination, which claims 
12.5 members, was in the early 20th. Century the 
“largest Protestant denomination in the U.S.”, but 
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that it has been shrinking in recent decades. The new 
split will be the second in the church’s history. The 
first occurred in 1968, when roughly 10 per cent of 
the denomination left to form the Evangelical United 
Brethren Church. The Post notes that the proposed 
split “comes at a critical time for the church, has been 
losing members for years …”

Several limitations of GPT-3 are discussed in Chapter 4. 
The central criticism is that it is basically using information 
contained in the title and sub-title to identify and then 
regurgitate slabs of knowledge contained in its database 
during text generation. These processes occur without any 
understanding of the information contained in the articles 
it generates.

Conclusions

AI has made substantial progress in producing human-like lev-
els of performance on several language tasks. The most notable 
examples are speech recognition or perception, comprehension 
of text, language translation, and text generation. However, 
there is much controversy as to whether these achievements 
are all they appear to be. We consider this issue in Chapter 4, 
where these achievements are evaluated in depth.

Are our careers at stake?

Many people fear robots and other AI systems will progres-
sively take over the jobs of tens (or hundreds) of millions of 
workers. As long ago as 1965, Herb Simon, a pioneer of IT, 
predicted that, “machines will be capable, within 20 years, 
of doing any work a man can do” (p. 38). That prediction 
obviously turned out to be wrong. However, AI experts 
predicted a few years ago that there was a 50% chance AI 
machines would be able to perform ALL jobs better than 
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humans by 2060 (discussed further in Chapter 7). Here we 
consider several examples showing how AI is already chal-
lenging human workers even in high-level jobs.

Legal profession

We start with the law. One of the main areas where AI has 
been used is electronic discovery (Caffrey, 2020). This is the 
process of identifying relevant documentary evidence (e.g., 
due diligence before entering into an agreement and prepa-
ration of a legal case). This can be very time-consuming 
and expensive. Several years ago there was a patent dispute 
between Samsung and Apple where 11,108,653 documents 
were examined at a total cost of $13 million over a period 
of 20 months (Dale, 2018). Such enormous costs could be 
reduced through the extensive use of AI.

In 2018, several American universities organised a com-
petition between 20 expert lawyers and the LawGeex AI 
system trained on tens of thousands of law contracts. The 
task was to detect loopholes in five non-disclosure agree-
ments. LawGeex was more accurate than the lawyers  
overall (94% vs 85% accuracy, respectively), and it out-
performed the lawyers on all five agreements. Remarkably,  
LawGeex achieved this superior performance even though 
it devoted less than 1/200th the amount of time spent 
by the lawyers on average in scrutinising the documents  
(26 seconds vs 92 minutes, respectively) (LawGeex, 2018).

Unsurprisingly, many lawyers refused to accept these 
findings. They pointed out that non-disclosure agreements 
have a fairly standard format, thus facilitating LawGeex’s 
task. In addition, it is often easier to detect errors in a legal 
document than to suggest watertight alternative ways of 
expressing issues or correcting errors. In sum, the finding 
that an AI system can outperform human experts on rela-
tively simple legal tasks does not necessarily mean it would 
outperform them on more complex legal issues.



46  AI dominance

In principle, there are numerous ways AI might enhance 
legal decisions. Tegmark (2018, p. 105) contemplates a future 
where most legal decisions are provided by robojudges (robot 
judges): “AI systems that tirelessly apply the same high legal 
standards to every judgement without succumbing to human 
errors such as bias, fatigue or lack of the latest knowledge.”

The above vision for the future is less hypothetical 
than you might imagine. In 2019, the Estonian Ministry 
of Justice asked Ott Velsberg (Estonia’s chief information 
officer) to design a robojudge to adjudicate on small claims 
under about £6,000 to clear a backlog of cases. The jury 
is out on whether the robojudge will ever replace human 
judges (Niiler, 2019). Note, however, that the robojudge’s 
decisions relate only to relatively straightforward legal 
issues. In addition, individuals dissatisfied with the robo-
judge’s decisions can appeal to human judges.

AI is already assisting the legal process in other ways. In 
China, the courts deal with approximately 19 million cases 
every year, leading to various attempts to introduce AI into 
the legal system. In Beijing, for example, a 1.5-metre high 
robot called Xiaofa provides answers to over 40,000 liti-
gation questions and 30,000 legal issues (see Figure 2.7). 
At present, however, AI is not directly involved in judicial 
decision making and has not replaced judges’ expertise.

The legal system in most countries is open to bias. Tegmark 
(2018) discussed the case of the white American supremacist, 
Byron De La Beckwith. He assassinated the civil rights leader 
Medgar Evers on 12 June 1963 but was only convicted for 
this crime in 1994. Two different all-white juries had failed 
to convict him in 1964 even though the evidence available at 
that time was basically the same as it was in 1994.

Racial and other biases can be implicit meaning that 
individuals may not be consciously aware of their biases. 
Implicit bias can be assessed using the Implicit Association 
Test. Cunningham et al. (2001) asked white participants 
to complete the Implicit Association Test to assess racial 
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stereotypes. In one condition, participants pressed one key 
if a black face or a positive word (e.g., love) was presented 
and a different key if a white face or bad word (e.g., terrible) 
was presented. Reaction times were slower in this con-
dition than when a black face was paired with a negative 
word and a white face with a positive word.

The above findings suggest participants had implicit or 
unconscious pro-white and anti-black biases. Alternatively, 
the white participants may simply have been more famil-
iar with some face-word combinations. Kurdi et al. (2019) 
carried out a meta-analysis using data from the Implicit 
Association Test. There was a small association between 
implicit racial bias and discriminatory behaviour.

The Implicit Association Test can be modified to make 
it more directly applicable to the legal system. When this 
was done, Levinson et al. (2010) found there was implicit 
racial bias: performance was faster when black faces were 
paired with Guilty and white faces with Not Guilty rather 
than the opposite pairings. Worryingly, Levinson et al. 
(2014) found implicit racial bias was greater among those 
favouring the death penalty.

We need to insert a caveat at this point. It has often been 
assumed that a bias that is implicit (in the sense of being 
assessed by indirect means) is necessarily also a bias that 
is unconscious. However, there is vanishingly little evi-
dence that indirect biases are identical to unconscious ones 
(Corneille & Hütter, 2020). Nevertheless, the existence of 
various biases suggests there could be an important role for 
AI within the justice system. In principle, AI systems could 
reduce or eliminate the various biases possessed by many 
members of the police and by jurors.

COMPAS

COMPAS (Correctional Offender Management Profiling 
for Alternative Sanctions) is a famous example of AI  
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being used within the legal system. In the United States, 
COMPAS has assessed OVER 1 million offenders to  
predict recidivism (the risk they will re-offend) based on 
137 features and their past criminal record. It has been 
claimed COMPAS predicts better than human judges who 
is likely to return to crime and so should be denied parole.

Various problems with COMPAS have been iden-
tified. For example, its overall accuracy in predicting 
whether someone will re-offend is only 65%. Dressel and 
Farid (2018) found individuals knowing very little about 
the criminal justice system performed comparably to  
COMPAS. This was the case even though they were pro
vided with only seven features about each defendant 
compared to the 137 factors used by COMPAS. More dra-
matically, Dressel and Farid achieved a 67% success rate 
using only TWO pieces of information: the defendant’s age 
and number of previous convictions!

Dressel and Farid’s (2018) findings differ from those 
obtained previously. For example, Kleinberg et al. (2017) 
considered judges’ decisions as to whether 800,000 defend-
ants should await trial at home or in prison. Their perfor-
mance was compared against those made subsequently by 
an AI system. If the AI’s decisions had replaced the judges’ 
decisions, pre-trial crime would have been reduced by 25% 
without changing the imprisonment rate. Alternatively, 
the imprisonment rate could have been reduced by 40% 
with no commensurate increase in pre-trial crime rates.

Why are Dressel and Farid’s (2018) so discrepant? In 
their study, the conditions under which humans predicted 
whether individual criminals would re-offend made the 
task relatively easy (Lin et al., 2020). For example, their 
attention was directed to a small number of relevant pre-
dictive factors. They were also provided with immediate 
feedback concerning the accuracy of their predictions. In 
real-world judicial settings, in contrast, humans predicting 
subsequent recidivism are typically provided with much 
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more information (some irrelevant) and never have imme-
diate feedback.

When Lin et al. (2020) used task conditions resembling 
those used by Dressel and Fahid (2018), they obtained 
comparable findings. However, an AI system consistently 
made more accurate predictions than humans concerning 
recidivism when the task conditions were harder (trebling 
the information about each defendant). Thus, the AI was 
superior to humans at integrating complex information.

As indicated earlier, judges’ predictions about defend-
ants’ likelihood of re-offending in real-world judicial set-
tings are always made in the absence of feedback about 
the accuracy of those predictions. We will consider Lin 
et al.’s (2020) findings on the importance of feedback with 
respect to predicting who would re-offend by committing 
a violent crime. AI had an 89% success rate. In contrast, 
humans had a success rate of 83% when given feedback but 
this dropped to only 60% without feedback.

Dressel and Fahid (2018) also claimed COMPAS exhib-
its racial bias even though its predictions are not directly 
based on race. They considered false positives (i.e., pre-
dicting re-offending in defendants who did not re-offend). 
COMPAS produced 40% false positives for black defend-
ants compared to only 26% for white ones. They also con-
sidered false negatives (i.e., predicting no re-offending in 
defendants who did re-offend). COMPAS produced many 
more false negatives for white than black defendants (42% 
vs 30%, respectively). Thus, COMPAS seemed excessively 
pessimistic about the chances of black defendants re- 
offending and unduly optimistic about white defendants 
not re-offending.

The above findings appear to reflect racial bias. However, 
the notion of ‘fairness’ is far harder to define than generally 
supposed (Goel et al., 2021). Suppose we decide the system 
should be changed to ensure the percentage of false positives 
is equated for black and white defendants. We could achieve 
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this by predicting that re-offending will occur among black 
people scoring 6 or more on the COMPAS risk scale and 
among white people scoring 4 or more (Corbett-Davies and 
Goel 2018). However, setting different cut-off points for 
black and white people can also be regarded as racial bias.

Can the above problems be resolved by simply ignor-
ing race when predicting the likelihood of defendants re- 
offending? This solution is also flawed because it produces 
large racial differences in false positives and false negatives 
(Goel et al., 2021). Similar problems arise if we adopt the 
apparently reasonable strategy of ignoring gender when 
using COMPAS. Corbett-Davies and Goel (2018) showed 
that male defendants had a much higher recidivism rate for 
any given COMPAS score (see Figure 2.6). For example, the 
recidivism rate associated with a score of 6 is 62% for male 
defendants but only 48% with females ones. This apparently 
unfair outcome occurs because men re-offend at higher 
rates than women with very similar criminal histories.

Figure 2.6  �The recidivism rate for male and female defendants as a 
function of their COMPAS score.

Source: From Corbett-Davies & Goel (2018).
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What is crucially important for the future is to identify 
a consensual definition of “fairness” when predicting re- 
offending. If that can be achieved, AI systems could proba-
bly provide an optimal (or near optimal) solution.

Medicine: diagnosis

Approximately 20% of serious medical conditions are 
initially misdiagnosed by doctors (Graber, 2013), with 
one-third of these misdiagnoses leading to patient harm. 
Accordingly, it would of great value to devise AI algorithms 
producing more accurate diagnoses than those provided by 
doctors. Liang et al. (2019) trained a deep learning system 
to diagnose 567,498 child patients from electronic health 
records. There was a strong association between the pre-
dicted diagnoses of the deep learning system and doctors’ 
initial diagnoses across all major disease categories suggest-
ing AI can often match doctors’ diagnostic performance.

Liang et al.’s (2019) deep learning system adopted a 
correlational approach –diseases were identified based on 
how strongly they correlated with the patient’s symp-
toms. However, a causal approach would be preferable. For 
example, we could ask how many of the patient’s symp-
toms would disappear if the disease they were thought to 
have were cured. Using clinical vignettes, Richens et al. 
(2020) found doctors provided accurate diagnoses 71% of 
the time and an AI algorithm based on correlational evi-
dence was accurate 72% of the time. Most impressively, a 
causal AI algorithm was correct 77% of the time putting 
its performance in the top 25% of doctors (see Figure 2.7).

Most medical research using AI has focused on diag-
noses based on searching for abnormalities in medical 
images (e.g., X-rays and brain scans). Insights into what 
is required to achieve high levels of diagnostic accuracy 
can be obtained by studying medical experts. Medical 
experts typically detect abnormalities remarkably fast and 
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with great accuracy. In one study, expert radiologists cor-
rectly interpreted chest radiographs presented for only 200 
milliseconds. In another study, experts and non-experts 
viewed complex mammograms. The average time taken 
by experts to fixate a cancer was typically under one second. 
Performance accuracy was much higher in doctors fixating 
the cancer rapidly than those who did not.

Expert doctors use a detect-then-search strategy starting 
with rapid detection of diagnostically relevant information 
followed by a brief search to check there is no other rele-
vant information. Detection occurs rapidly because experts 
engage in pattern recognition where the presented medical 
image is compared against numerous stored patterns of med-
ical images encountered in the past. In contrast, non-experts 
use a search-then-detect strategy involving extensive visual 

Figure 2.7  �Accuracy of diagnosis by 44 doctors relative to a causal 
AI algorithm; points in blue correspond to doctors per-
forming worse than AI; red point is a doctor having the 
same accuracy as AI; green points are doctor perform-
ing better than AI.

Source: From Richens et al. (2020).



AI dominance  53

search (including much irrelevant information) followed by 
eventual detection of diagnostically relevant information. 
They use this strategy because they lack the wealth of rel-
evant information stored in long-term memory that would 
permit detection to precede search.

Are AI systems as effective as medical experts at detect-
ing diseases from medical images? Liu et al. (2019) recently 
carried out a meta-analysis of research where AI systems 
had used deep learning (discussed in Chapter 1) to enhance 
their diagnostic abilities. Good diagnostic accuracy has two 
aspects: (1) sensitivity: accurately detecting abnormalities 
in images and (2) specificity: accurately rejecting images 
not containing abnormalities. Accordingly, Liu et al. com-
pared AI systems with human experts with respect to sen-
sitivity and specificity.

What did Liu et al. (2019) find? The overall diagnostic 
accuracies of AI systems and humans were impressive and 
very similar: sensitivity averaged 87% for AI vs 86.4%  
for health-care professionals; specificity averaged 92.5% 
(AI) vs 90.5% (health-care professionals). In one study 
(Esteva et al., 2017), an AI system (using deep learning) 
was trained with 129,450 clinical images and dermatol-
ogists diagnosed melanoma from visual images. These 
images were presented on their own or with additional 
clinical information. The AI system’s diagnostic accu-
racy was superior to the human dermatologists in both 
conditions.

Some especially impressive findings were reported by 
McKinney and et al. (2020) in a study on breast-cancer 
diagnosis. They compared the performance of an AI sys-
tem based on deep learning against human medical experts 
in the USA and UK. The AI system produced 5.7% fewer 
false positives (i.e., deciding wrongly an individual had 
breast cancer) than American experts and 1.2% fewer than 
British experts. With respect to false negatives (i.e., decid-
ing wrongly an individual did not have breast cancer), the 
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AI system made 9.4% fewer such errors than American 
experts and 2.7% fewer than British ones.

AI systems have proved increasingly effective not only at 
medical diagnosis but also at medical prognosis (i.e., predict-
ing the likely course of a disease). If we can achieve more 
accurate prognosis, this increases the probability of pro-
viding customised treatment precisely tailored to patients’ 
needs. Huang et al. (2020) reviewed research where deep 
learning systems were used in cancer prognosis. The find-
ings were generally very positive, leading Huang et al. 
to conclude, “We expect that AI-based clinical cancer 
research will result in a paradigm shift in survival due to 
enhanced prediction rates” (p. 68).

AI research on diagnosis from medical images has 
focused on diseases other than cancer. For example, 
Devalla et al. (2020) reviewed research on the effective-
ness of AI in diagnosing glaucoma (a serious eye condi-
tion that can lead to irreversible blindness). AI systems 
sometimes achieve a success rate above 90% in diagnosing 
glaucoma from medical images, significantly higher than 
most experts’ success rate.

In the future, the emphasis will be on developing AI 
and human-AI collaborative systems to enhance medical 
decision-making. Cai et al. (2019) showed how this can 
work in a study of pathologists using microscopic samples 
of bodily fluid or tissue in the diagnosis of cancer. When 
pathologists are uncertain about the correct diagnosis, they 
typically seek additional information (e.g., similar images 
from textbooks and second opinions from experts).

Cai et al. (2019) developed an AI system known as 
SMILY (Similar Medical Images Like Yours) based on 
deep neural networks. When a pathologist studying a 
medical image wants to compare it against similar images 
from past cases (along with their diagnoses), SMILY rap-
idly accesses such images. The pathologist then indicates 
the images that appear useful, which triggers a search for 
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other, similar images. SMILY also includes a refine-by-
region tool allowing pathologists to focus on a region of 
interest within the target image.

The findings were very positive. Most pathologists found 
SMILY had diagnostic utility. For example, it allowed 
them to generate new ideas and to minimise errors. It did 
so while requiring less effort than traditional methods.

In sum, deep learning and other AI-based systems have 
proved very effective in medical diagnosis across numerous 
conditions. There is also promising evidence that AI sys-
tems can be of value in medical prognosis as well, helping 
to ensure all patients obtain optimal treatment.

There are various problematical issues relating to much 
research on the effectiveness of AI systems in medical diag-
nosis based on images. These issues are addressed fully in 
Chapter 7.

Medicine: surgical robots

Over the past 20 years, AI has increasingly had a major 
impact on medicine through the development of surgi-
cal robots. Sheetz et al. (2020) found across 73 Michigan 
hospitals that the percentage of common surgical proce-
dures involving robots increased from 1.8% in 2012 to 
15.1% in 2018. In the case of hernia repair, there was 
a 40-fold increase in the percentage of such operations 
using robots.

Approximately 2 million robotic operations (e.g., 
kidney surgery, gallbladder surgery, and hysterectomy) 
were carried out in the United States between 2000 and 
2015. Over that time period, approximately 150 deaths 
and 1,600 accidents were linked to robotic surgery in 
the United States. Why are humans killed or injured by 
robots in medical settings? Several factors are involved. 
Examples include the following: burnt or broken pieces 
of equipment sometimes fall into the patient, medical 
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instrument damage or breakage, uncontrolled robotic 
movements, and instruments not recognised by the robot 
(Alemzadeh et al., 2016). These figures sound worrying. 
Note, however, that, inadequate hospital care provided 
by human medical staff is a factor in over 100,000 deaths 
every year in the United States.

How effective is robotic surgery compared to con-
ventional surgery? The limited evidence that is available 
suggests the outcomes from robotic surgery are no better 
than conventional surgery for several conditions including 
various cancers, hernia repair, and kidney resection (see 
Sheetz et al., 2020, for a review). However, surgeons gen-
erally report that robotic surgery is associated with reduced 
workload and less discomfort because it involves less use of 
the shoulder, back and arms (Wee et al., 2020). However, 
robotic surgery involves greater discomfort in the neck and 
fingers than keyhole surgery.

Medicine: facilitating drug discovery

We turn now to an exciting development in medical uses 
of AI. It involves using a protein’s amino-acid sequence to 
predict accurately the 3-D shape it will fold into over the 
following few days. Such research is of great importance 
because the overwhelming majority of diseases are related 
to protein functioning. For example, a defective protein 
(p53) is found in about 50% of cancers and defective tau 
proteins play an important role in Alzheimer’s disease. If 
we had a complete understanding of protein structures, 
this would greatly facilitate the task of developing drugs 
producing beneficial changes in those structures.

The progress made by AI is assessed in a biennial 
competition known as Critical Assessment for Structure 
Prediction (CASP), the goal of which is to predict a pro-
tein’s 3-D shape. In CASP, each AI system’s predictions 
are compared against the actual structures of proteins 
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assessed by expensive and laborious techniques (e.g., X-ray 
crystallography and cryo-genic electron microscopy). 
Outstanding performance is represented by a score of 90, 
which corresponds to predicting the structures of proteins 
with a mean error of 0.16 namometers (one billionth of a 
metre).

The winning score in CASP competitions between 
2006 and 2016 was never higher than an unimpressive 40. 
However, there was a step-change in 2018. AlphaFold, a 
deep learning system developed by DeepMind, obtained 
a score of nearly 60. On 30 November 2020, it was 
announced that AlphaFold 2 had greatly surpassed this 
achievement with a remarkable score of nearly 90, which 
represents “a gargantuan leap” (Callaway, 2020).

Why is AlphaFold 2 so successful? It resembles many 
other AI systems in that it uses deep learning but it had 
the advantage of extensive training on 170,000 proteins 
ahead of the competition. AlphaFold 2 is also more ambi-
tious than previous AI systems because it is designed to 
predict the final structure of a target protein sequence 
rather than the simpler task of predicting relationships 
among amino acids.

Robots in car production

As mentioned in Chapter 1, there are already more than 
3 million robots in the world and the total is increasing 
rapidly. Robots are used in numerous different types of 
work with 50% being used in car production. Perhaps sur-
prisingly, robots were first used in car production in 1961, 
when General Motors started using them for spot weld-
ing (welding sheet metal products together). Nowadays, of 
course, nearly all car manufacturers make extensive use of 
robots to improve quality, to increase capacity, to reduce 
costs, and to protect car workers from difficult and/or dan-
gerous jobs.
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There are several clear advantages in using robots in 
car production. First, robots are very well suited to sev-
eral aspects of car production such as painting, welding, 
and assembling small parts (e.g., motors and pumps) at 
high speed. Second, productivity and throughput can be 
maximised because robots can work efficiently 24 hours 
a day. Third, robots can work in environments dangerous 
for humans, thereby reducing injuries to human car work-
ers. Fourth, there are reduced labour costs compared to 
employing human workers. Fifth, there is increasing use 
of cobots (collaborative robots), which can work alongside 
human workers to make optimal use of both robot and 
human skills.

There are also some potential disadvantages with the 
use of robots in car production. These disadvantages are 
discussed in Chapter 5, where the focus is on several key 
issues related to the use of robots in numerous situations 
(e.g., car driving and military operations).

Conclusions

In this chapter, we have discussed several areas where AI 
has proved superior to the greatest human experts. What is 
perhaps most striking is that AI’s superiority covers a wide 
range of disparate tasks and abilities such as the following:

1	 Perfect-information or closed-system games such as 
chess and Go;

2	 Imperfect-system or open-ended games such as poker;
3	 Knowledge-based games such as Jeopardy!;
4	 Some aspects of decision making in the judicial system;
5	 Diagnosing diseases from medical images;
6	 Speed and accuracy of some types of surgery;
7	 Predicting the shape of proteins to facilitate the dis-

covery of powerful drugs to treat diseases.
8	 Speed and accuracy of aspects of car production.
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If we are already inferior to AI systems in many ways, 
does that make AI dominance over humans inevitable in, 
say, 2030 or 2040? Many experts are convinced the answer 
is, “Yes.” We are much more sceptical, as will become clear 
when we discuss major limitations of AI in Chapter 4. In 
addition, in Chapter 7, we demonstrate that many of AI’s 
greatest successes are much less impressive than they appear 
at first glance.
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In Chapter 2, we saw the enormous strides made by AI. 
Here we consider the strengths of human intelligence 
starting with the brain’s evolution. Then we consider our 
current cognitive strengths including an assessment of our 
major cognitive advantages over other species.

Human brain: Influence of evolution

The human brain has tripled in size over the last 6 to  
8 million years. Three million years ago, members of the 
species (Australopithecus afarensis) had skulls with an inter-
nal volume of approximately 475 cubic centimetres (cc’s). 
Moving forward to Homo habilis a little under 2 million 
years ago, the skull volume had increased to 600 cc. Our 
ancestors from 500,000 years ago had brains exceeding 
1,000 cc. Current humans are members of Homo sapiens. 
Early members of our species had brains around 1,2000 cc 
in size (similar to those of current humans).

Although most brain areas have increased in size over 
time, the neocortex has increased most in humans and also 
in other primate species. This is important because it is 
the brain area most involved in higher cognitive processes 
(e.g., thinking and decision making).

Chapter 3

Human strengths
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It is perhaps natural to assume larger brains are associ-
ated with greater intelligence. On that measure, humans 
surpass chimpanzees and gorillas. However, our brains are 
only one-third the size of an elephant’s (see Figure 3.1) 
but we are obviously substantially more intelligent than 
elephants.

We obtain a different picture if we relate brain size to 
body size to produce a measure of brain size as a percentage 
of body mass (see Figure 3.2). On this measure, humans 
have a much higher percentage than four of the other five 
species (e.g., 2% for humans vs 0.1% for elephants).

Why are our brains three times larger than those of our 
remote ancestors? There are more answers than you can 
shake a stick at. However, there are three main hypotheses 
(Dunbar & Shultz, 2017):

1	 Our ancestors needed “ecological intelligence” to respond 
to major challenges from the non-social environ-
ment (e.g., ensuring adequate food supplies in difficult 
conditions).

2	 Our ancestors needed “social intelligence” to form groups 
to survive in adverse conditions and to compete suc-
cessfully against other species and groups. Competition 

Human 1,330

Chimpanzee 390

Gorilla 500

Rhesus monkey 93

Marmoset 8

4,148Elephant

Figure 3.1  �Brain size comparisons (in grams) for six species includ-
ing humans.
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between groups may have led to “evolutionary arms 
races in cognition” where enhanced social intelligence 
was required to prevent annihilation.

3	 Our ancestors needed to evolve their “cultural intelli-
gence” so they could learn from others and benefit from 
the cultural knowledge humans were accumulating.

Which hypothesis best explains the enlargement of the 
human brain? This question is hard to answer. We have 
limited information about living conditions hundreds of 
thousands of years ago. Even when we do have reasonable 
evidence, it is extremely hard to show that those aspects 
causally influenced brain development. Finally, the three 
hypotheses are not entirely separate. However, the sec-
ond hypothesis has often been identified as the single most 
important factor. Dunbar (1998) proposed the influential 
social brain hypothesis. According to this hypothesis, our 
ancestors solved complex ecological problems (e.g., scar-
city of food and danger of predation) by forming social 
groups, and brain enlargement permitted them to develop 
the required social skills.

Much evidence supports the social brain hypothesis. 
First, a key reason humans and other primates formed social 

Human 2

Chimpanzee 0.8

Gorilla 0.5

Rhesus monkey 1.2

Marmoset 2.7

0.1Elephant

Figure 3.2  �Brain size as a percentage of body mass for six species 
including humans.
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groups was as a protection against predation (i.e., being 
preyed on by other species or human groups) (Dunbar, 
1998). Across primate species, group size correlates mod-
erately well with predation risk. Second, social group size 
and brain volume (especially the neocortex) are highly 
correlated across most primate species. Third, individuals 
with a large social network have larger frontal and tempo-
ral lobes than those with a smaller social network. Fourth, 
social groups could co-operate in the development of tools 
to construct shelters and develop weapons.

Effective communication was obviously vital to the 
development of the social brain. Such communication 
depends mostly on our highly developed language abil
ities. The evolutionary origins of our current language 
skills lie in gestures rather than vocalisations. Primate ges-
tures resemble human language much more closely than 
primate vocalisations (Cartmill et al., 2012). Of note, 
similar brain areas are involved in monkeys’ gestures and 
human language processing (MacNeilage et al., 2009).

In sum, the social brain hypothesis provides a very gen-
eral explanation of human brain development. For exam-
ple, our ancestors’ general intelligence increased in line with 
increasing social group size and brain size: this allowed them 
to cope increasingly effectively with environmental threats 
(including non-social ones). Their increasing intelligence 
and group size provided the context within which they could 
develop cultural knowledge and pass it on to the next genera-
tion. The development of language undoubtedly contributed 
substantially to the transmission of cultural knowledge.

Culture and dual-inheritance theory

Several theorists including Henrich (2016) and 
Muthukrishna et al. (2018) have proposed the cultural 
brain hypothesis, which builds on the notion of cultural 
intelligence discussed earlier. According to this hypothesis, 
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more knowledge is available in larger groups or societies. 
As a consequence, individuals within larger groups need 
to acquire more cultural knowledge or information than 
those within smaller groups if they are to succeed. Thus, 
fast and efficient cultural learning are more important in 
larger groups than smaller ones.

Henrich (2016) discussed differences between larger 
societies and smaller ones predictable from the cultural 
brain hypothesis. For example, Kline and Boyd (2010) 
found with 10 societies in Oceania there was a strong ten-
dency for larger societies to have more tools (and more 
complex ones) than smaller societies.

Language is crucial for communicating cultural knowl-
edge. As predicted by the cultural brain hypothesis, larger 
societies have languages capable of communicating more 
complex information (e.g., greater numbers of words 
and more phonemes [speech sounds]) (Henrich, 2016). 
Languages in larger societies are also more informationally 
efficient than those in smaller societies. Theoretically, there 
should be negative effects if a group or society becomes 
smaller. This happened in Tasmania, which was cut off 
from the rest of Australia by rising seas. This produced a 
drastic reduction in the size of Tasmanian social groups, 
and over thousands of years led to a progressive reduction 
in knowledge and useful technologies (Henrich, 2016).

The cultural brain hypothesis resembles dual-inheritance 
theory (e.g., Henrich & Muthukrishna, 2021). This the-
ory’s central assumption is that genes and culture interact 
in complex ways: “By generating increasingly complex 
tools (e.g., spear throwers), food processing techniques 
(e.g., cooking), languages (e.g., larger vocabularies), and 
institutions (e.g., clans) over hundreds of thousands of 
years, cumulative cultural evolution has shaped the envi-
ronments faced by our genes and has thereby driven the 
genetic evolution of the uniquely human aspects of our 
bodies and minds” (Henrich & Muthukrishna, p. 226). 
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Thus, individuals having the ability to acquire increasingly 
complex cultural information were more likely to repro-
duce than those lacking that ability.

In sum, what happens in groups or societies that increase 
in size over time is a “ratchet effect” (a ratchet is a mechan-
ical device that can only move forwards) (Tennie et al., 
2009). Increases in the amount and complexity of cultural 
information lead to individuals having larger and more 
intelligent brains, which in turn serves to increase further 
the amount and complexity of cultural information.

Connectome

The Human Connectome Project was launched in 2009 by 
the National Institutes of Health in the United States. Its 
very ambitious goal was to produce a detailed map indicat-
ing all the anatomical and functional connections within 
the human brain (i.e., the connectome). Brain areas often 
activated together during performance of various tasks are 
functionally connected.

Data obtained from the above Project has greatly 
increased our understanding of human brain organisation. 
Bullmore and Sporns (2012) identified two major princi-
ples influencing human brain organisation:

1	 The principle of efficiency – the ability to integrate 
information across the brain. High efficiency can be 
achieved by having numerous connections within (and 
between) brain networks.

2	 The principle of cost control – costs (especially the use 
of energy and space) can be minimised if the brain is 
organised so there are limited, mostly short-distance, 
connections.

Ideally, human brains would have high efficiency com-
bined with low costs. Alas, the two principles are in direct 
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conflict: high efficiency is strongly associated with high 
costs and low costs with low efficiency. We might imagine 
our brains should be organised to maximise efficiency 
almost regardless of cost. However, this would be prohib-
itively costly. For example, if all 100 billion brain neu-
rons were interconnected, the brain would need to be 12½ 
miles wide!

Bullmore and Sporns (2012) discovered the human brain 
displays a near-optimal trade-off between cost and effi-
ciency (see Figure 3.3). Reassuringly, our brains combine 
reasonably high efficiency with manageable costs. They are 
efficient because they have a “small-world” structure: only 
a few nodes or links are required to connect most small 
brain regions to each other. However, the costs are fairly 
high – even though our brain accounts for only about 2% 
of our body weight, it consumes 20% of our body’s energy 
(Clark & Sokoloff, 1999).

Figure 3.3  �The left panel shows a brain network low in cost effi-
ciency; the right panel shows a brain network high in 
cost efficiency; the middle panel shows the actual human 
brain in which there is moderate efficiency at moderate 
cost. Nodes are shown as orange circles.

Source: From Bullmore and Sporns (2012). Reprinted with permission of 
Nature Reviews.
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Why is the brain’s energy consumption so high? 
According to the traditional view, the brain’s energy 
demands are high when we focus on a complex problem, 
but relatively low when we are resting (e.g., during sleep). 
Alternatively, our brains are constantly active even in the 
“resting” state. We can test these viewpoints by comparing 
brain activity when individuals are engaged in a cogni-
tively demanding task and when resting. Surprisingly, the 
increase in brain activity during task performance com-
pared to the resting state is typically under 5% (Raichle, 
2010). Thus, our brain uses so much energy because it is 
highly active nearly all the time (including during sleep).

Raichle (e.g., 2015) complicated the above picture by 
discovering our overall brain activity is sometimes greater 
when resting than when busy solving a problem! He iden-
tified the default mode network – a brain network involved 
in thinking about oneself, thinking about others, remem-
bering, and contemplating the future. Of crucial impor-
tance, activity within this default mode network decreases 
when we attend to a task or problem.

Let us return to brain efficiency and costs. Consider the 
world’s airports. Passengers would like to fly directly from 
any airport to any other airport no matter how far away. 
However, that would be prohibitively expensive because 
it would need a huge number of planes to service all the 
flights required, most of which would have very few pas-
sengers. For example, it seems improbable that an airline 
providing regular direct flights from Southend in England 
to Belo Horizonte in Brazil would make any profit.

In fact, there are relatively few hub airports (such 
as Heathrow, Paris Orly, Schiphol in Amsterdam, and 
Frankfurt in Europe) and a much larger number of smaller, 
“feeder” airports. This provides a very efficient system. The 
human brain works so efficiently because it is organised 
similarly to the world’s airports. There are several major 
hubs in the brain with strong connections among them. 



68  Human strengths

The term “rich club” refers to these hubs (based mainly in 
the frontal and parietal lobes) and their inter-connections 
(Collin et al., 2014).

In sum, the human brain is efficiently organised so that 
only a few connections are required to link any two brain 
areas. This is the case for two reasons: (1) most brain areas 
that are close to each other are well connected and (2) there 
are strong long-range connections between hubs linking 
brain areas far apart within the cortex.

Memory storage capacity

It is hard to estimate accurately the human brain’s capac-
ity for information storage. However, it contains approx-
imately 100 billion neurons (cells transmitting nerve 
impulses) (Herculano-Houzel, 2012). Each neuron can 
make about 1,000 connections with other neurons via syn-
apses heavily involved in information storage. If we multi-
ply 100 billion neurons by 1,000 connections, we finish up 
with 100 trillion data points (100 terabytes of information).

The above number represents an unrealistic upper 
bound on the brain’s potential data storage. Many experts 
put actual brain storage capacity at ten (rather than 100) 
terabytes. However, this lower estimate implies the human 
brain can store the equivalent of 470 million books – this 
should be sufficient for most everyday activities.

Brain flexibility

The human brain might be organised rigidly with each 
region specialised for one specific function. Functional 
specialisation was assumed by the phrenologists in the 
nineteenth century. They argued that individual differ-
ences in various mental abilities can be revealed by feelings 
bumps in the skull. There is some functional specialisation 
within the human brain (e.g., areas in the occipital cortex 
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mostly devoted to basic visual processing). However, one 
of the most impressive features of the human brain is its 
flexibility. Yin & Kaiser (2021) identified key flexible and 
specialised brain regions (see Figure 3.4).

We can see the human brain’s flexibility in the way it 
re-organises itself following damage. For example, strokes 
typically severely impair cognitive functioning, but there 
is very often subsequent recovery. Dramatic evidence of 
the brain’s flexibility or plasticity is available in research on 
patients following hemispherectomy. This is a drastic pro-
cedure involving removal of an entire cerebral hemisphere 

Figure 3.4  �Flexible brain regions. (A) shows a measure of global variable 
connectivity (GVC) indicating that fronto-parietal network 
regions exhibit high flexibility. (B) shows that flexibility is high 
in the lateral prefrontal cortex, lateral parietal cortex and 
lateral temporal lobe (red and yellow areas) but specialised 
in visua, auditory and default mode areas (green and blue). 

Source: From Yin et al. (2016).
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(half the brain) and is typically carried out on patients with 
exceptionally severe epilepsy. In one study, 51 patients hav-
ing hemispherectomy during childhood had their intelli-
gence assessed before and after the operation (Pulsifer et al., 
2004). IQ increased substantially for 15% of these patients, 
decreased substantially for 21%, and changed relatively lit-
tle for the others. Thus, hemispherectomy had surprisingly 
small effects.

Since language processing occurs mostly in the left hemi-
sphere, we would anticipate patients with hemispherectomy 
involving that hemisphere would be more likely to have 
severe language impairments. However, this is not always 
the case. BL, a man who had had a left hemispherectomy at 
the age of five, exhibited mostly average language skills and 
above-average intelligence (Vanlancker-Sidtis, 2004).

Healthy individuals who acquire expertise also exhibit 
brain plasticity. Consider London taxi drivers who spend sev-
eral years acquiring “The Knowledge” (detailed information 
about the locations of 25,000 streets in London). This exten-
sive practice increases the size of part of the hippocampus 
(centrally involved in memory) (Woollett & Maguire, 2011).

In sum, the human brain displays great neuroplasticity 
even when 50% of the brain is destroyed. We can contrast 
that with AI systems. If you destroyed 50% (or even 1% or 
less) of an AI system it would cease to work.

Humans vs other species

We have emphasised how the evolutionary development 
of the human brain (and a huge increase in cultural com-
plexity) paved the way for us to become progressively more 
intelligent. One way of assessing human intelligence is by 
comparing and contrasting our cognitive abilities with 
those of other species. That approach is followed here.

One possibility is that we possess cognitive abilities 
totally lacking in other species: human uniqueness or 
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exceptionalism. Alternatively, some other species may pos-
sess the same cognitive abilities as us but to a (much) lesser 
extent. The former viewpoint was dominant for a long 
time. It was often argued that humans are unique because 
we are conscious, possess language and think rationally, 
whereas other species are predominantly instinctual. 
However, expert opinion has swung decisively in favour of 
the latter viewpoint. For example, “Other animals possess 
specialist competences that can rival our own, but no other 
species consistently outperforms humans across multiple 
cognitive domains” (Laland & Seed, 2021, p. 705).

Consciousness

Philosophers and psychologists have devoted inordinate 
amounts of time to defining “consciousness.” The upshot of 
their deliberations is that we need to distinguish two forms 
of consciousness. There is a basic or phenomenal conscious-
ness which involves having an experience (e.g., visual or 
auditory perception). There is also a higher-level form of 
consciousness which involves knowing one is having that 
experience: this is meta-consciousness (Schooler, 2002). The 
cognitive neuroscientist Pinker (1997) provided an example: 
“I cannot only feel pain and see red, but think to myself, 
‘Hey, here I am, Steve Pinker, feeling pain and seeing red!’”

Support for the above two types of consciousness was 
reported by Schooler et al. (2005). Individuals read a text 
and signalled when their mind wandered from the text. 
Occasionally they received a signal and indicated whether 
their minds had wandered but they had not reported 
this spontaneously because they lacked the appropriate 
meta-consciousness. They often admitted they had con-
scious experience of daydreaming without being explicitly 
aware that had happened.

Human possession of two types of consciousness is sup-
ported by neuroimaging research. Demertzi et al. (2013) 
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distinguished between external awareness (awareness of the 
environment: basic consciousness) and internal awareness 
(self-relevant thinking: meta-consciousness). Somewhat 
different brain networks were associated with the two 
forms of conscious awareness.

Other kinds of evidence also indicate the existence of 
two forms of consciousness in humans (Pennartz et al., 
2019). Many brain-damaged patients and drug addicts 
lose higher-level consciousness while retaining basic 
consciousness. Similar findings have been reported for 
patients with schizophrenia, a serious condition involving 
hallucinations, delusions, and the loss of a sense of real-
ity. Schizophrenics possess basic consciousness (although 
they find it hard to distinguish between what is perceived 
and what is imagined). However, they have limited 
meta-consciousness because they lack any coherent sense 
of self (Nelson et al., 2012).

Meta-consciousness is important because it allows us to 
focus our conscious awareness on almost anything includ-
ing past events and knowledge and potential future sce-
narios (discussed further later). Why is basic consciousness 
important? There are several reasons. For example, our 
conscious experience is closely related to selective atten-
tion, which focuses processing on task-relevant informa-
tion and avoids processing distracting or task-irrelevant 
information. Thus, consciousness is valuable in ensuring 
we make optimal use of the information available to us in 
the environment.

Another reason was emphasised by Pennartz et al. (2019, 
p. 2): “Consciousness has a biological function: it presents 
the subject with a multi-modal, situational survey of its 
surrounding world (including its own body), which sub-
serves the kind of complex decision-making … associated 
with goal-directed, deliberate, planned behaviour.”

Darwin (1871) suggested that the extent to which any 
species has conscious experience correlates positively with 
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the complexity of its brain. It seems much more likely that 
other species have basic consciousness than meta-consciousness 
and so we will focus mostly on basic consciousness.

There is no single, infallible way of deciding whether any 
given species has conscious experience. However, we do not 
have to be defeatist. The optimal approach is to use various 
fallible indicators of consciousness. The greater the consist-
ency among such indicators, the more confident we can be 
that any species possesses consciousness. Here, we consider 
two key indicators: brain anatomy and physiology and goal- 
directed behaviour.

In essence, consciousness in humans and other pri-
mates depends mostly on integrated activity across large 
regions of the brain including prefrontal areas (Eysenck & 
Keane, 2020; see Chapter 7). Feinberg and Mallatt (2016) 
proposed various brain indicators of consciousness. These 
indicators include brains having numerous neurons, infor-
mation from different sense modalities converging within 
the brain, and a mechanism for selective attention.

When the above criteria were applied to numerous spe-
cies, Feinberg and Mallatt (2016) concluded that all ver-
tebrates (including mammals, birds, amphibians, reptiles, 
and fishes) are conscious. This conclusion is unsurprising 
given the many similarities between the brains of most 
vertebrate species and humans. The cephalopods (e.g., 
octopus, squid, and nautiloids) also appear to be conscious, 
as are some arthropods (especially insects and crustaceans).

Most (or all) vertebrates engage in goal-directed behav-
iour, which Pennartz et al. (2019) identified as a key function 
of consciousness (mentioned earlier). Most goal-directed 
behaviour involves what Skinner (1938) termed “operant 
conditioning”: animals attempt to attain positive reinforc-
ers or rewards while avoiding punishment. Numerous spe-
cies are capable of operant conditioning (Staddon, 2014).

In sum, most (or even all) of the 70,000 vertebrates 
species have basic conscious awareness of their visual and 
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auditory environment. Humans possess this basic conscious 
awareness. In addition, they also possess meta-consciousness 
(discussed later in the section on “theory of mind”). The 
differences between the brains of all other species and those 
of humans, the much lower complexity of their behaviour, 
and the lack of any positive evidence all suggest strongly 
meta-consciousness is unique to humans.

Working memory and attentional control

Many cognitive processes are what is known as domain- 
specific, meaning that they are used only in certain condi-
tions. For example, some of the basic processes involved in 
visual or auditory processing are domain-specific. In addi-
tion, however, there are domain-general processes used 
in numerous situations. Several of these domain-general 
processes (often described as “executive functions”) are of 
particular importance because they are required for the 
cognitive control of thinking and behaviour.

Baddeley and Hitch (1974) put forward one of the most 
influential theories combining domain-specific and exec-
utive processes. They proposed a working memory system 
used in the processing and brief maintenance of infor-
mation. Within this system, the most important compo-
nent was the central executive, which is attention-like 
and domain-general. Three executive functions associ-
ated with the central executive are as follows: (1) inhibi-
tion function (used for goal maintenance and avoidance 
of distraction), (2) shifting function (used to switch atten-
tion flexibly within and between tasks), and (3) updating 
function (used to rapidly add or delete information held in 
working memory) (Friedman & Miyake, 2017).

The above executive functions are of crucial importance 
with respect to attentional and cognitive control. The 
inhibition function focuses attention on the task in hand 
(i.e., concentration) and resists unintentional attentional 
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shifting to task-irrelevant stimuli. In contrast, the shifting 
function is used to intentionally shift attention to the most 
currently relevant stimuli. In essence, the three executive 
functions are jointly designed to promote optimal use of 
our limited processing resources. Unsurprisingly, indi-
vidual differences in intelligence depend heavily on such 
executive functions (discussed later).

There is a relatively small and inconclusive research lit-
erature on working memory in other species. However, 
there is reasonable evidence that several other species pos-
sess domain-general processes (Laland & Seed, 2021). It 
is probable that our executive functions are much more 
powerful than those of other species given our need for 
excellent attentional and cognitive control to manage the 
complexities of human cognition. However, definitive 
evidence is lacking.

Language ability

Our possession of excellent communication skills (largely 
dependent upon language) is an obvious human cognitive 
advantage. However, numerous other species communi-
cate with other members of their species (Laland & Seed, 
2021). The greatest language skills have been found in bon-
obo chimpanzees following extensive training by humans 
(see Figure 3.5). However, bonobos’ utterances are simple 
and rarely exceed two words (Eysenck, 2022). In contrast, 
even young children often produce complex utterances of 
six words or more.

Why are human language skills dramatically better 
than those of any other species? Chomsky (1965) proposed 
an extremely influential answer: only humans possess an 
innate universal grammar (a set of principles found in all 
languages). Chomsky supported his viewpoint by arguing 
the language heard by young children (the “poverty of the 
stimulus” [Chomsky, 1980, p. 34]) is very limited. Thus, 
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we can only explain children’s very rapid acquisition of 
language by assuming they have an innate universal gram-
mar. Two implications of Chomsky’s viewpoint were that 
all languages are similar and that our language ability is 
very separate from all other cognitive abilities.

Chomsky was totally wrong. There are very large 
differences among the world’s 6,000 to 8,000 languages. 

Figure 3.5  �Kanzi (a male bonobo chimpanzee) with the researcher 
Sue Savage-Rumbaugh. Kanzi learned to produce numer-
ous words and exhibited some comprehension ability.
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In addition, “There are vanishingly few universals of lan-
guage in the direct sense that all languages exhibit them” 
(Evans & Levinson, 2009, p. 4).

Children find it easy to acquire language because it 
was invented by humans to take account of human abil-
ities: “Language has adapted to our brains” (Christiansen 
& Chater, 2008, p. 490). In addition, young children are 
exposed to a much richer language input than implied by 
Chomsky. Of most importance, most of the language chil-
dren hear is child-directed speech tailored to their current 
language knowledge (Kidd & Donnelly, 2020). Finally, 
language in humans is not separate or independent of 
other cognitive abilities. Instead, it is strongly linked to 
several other cognitive processes (e.g., attention, abstract 
rule-learning, and thinking) even in infants (Chater & 
Christiansen, 2018).

Why are the language abilities of other species (includ-
ing bonobos) so markedly inferior to ours? We can reject 
Chomsky’s notion that their lack of an innate universal 
grammar is the cause. In essence, bonobos’ non-language 
cognitive processes and abilities are considerably inferior 
to ours. In addition, their limited language abilities are 
only weakly linked to other cognitive processes (Novack 
& Waxman, 2020).

Language flexibility

The fact that humans’ language abilities are far greater than 
those of any other species is unsurprising. What is less well 
known is how subtle, flexible and sophisticated our lan-
guage abilities actually are (in stark contrast to the lan-
guage abilities of any other species). Here, we will briefly 
consider several examples starting with our conversational 
skills. Speakers must construct their utterances to take 
account of the listener’s need: this is “audience design.” 
A simple form of audience design is based on the listener’s 
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general characteristics (e.g., adult or child) (Ferreira, 2019). 
There is also a more complex form based on the listener’s 
idiosyncratic characteristics. For example, a speaker is less 
likely to emphasise how expensive their recent holiday was 
if their listener is poor.

According to Ferreira’s (2019) forward modelling 
approach, speakers use their communicative intention (i.e., 
what they want to say) to generate possible utterances. They 
also often produce a forward model to predict the likely 
effect of those utterances on the listener. If the predictive 
communicative effect mismatches the speaker’s intent, they 
alter the message to reduce the mismatch.

The common ground (information or knowledge shared 
by speaker and listener) is of key importance. Listeners 
expect speakers to refer mostly to information and knowl-
edge in the common ground. However, it can be cogni-
tively demanding for speakers to take full account of the 
common ground. For example, memory limitations mean 
speakers sometimes assume less common ground than is 
actually the case (Horton & Gerrig, 2016). Suppose you 
have told nearly all your friends about an event and mistak-
enly assume the one with whom you are currently talking 
was among them.

Speakers are also sensitive to the listener’s reactions. They 
are much less likely to assume they have established com-
mon ground when their listener is inattentive (e.g., looking 
at their mobile phone) (Craycraft & Brown-Schmidt, 2018).

We turn now to listeners. They relate what they are 
hearing to their assessment of the speaker (Van den Brink 
et al., 2012). Listeners heard a woman with an upper-class 
or working-class accent say, “I have a large tattoo on my 
back.” Those hearing the word “tattoo” spoken in the for-
mer accent rapidly showed brain-wave activity indicating a 
mismatch, whereas those hearing the latter accent did not.

An important skill possessed by listeners is success-
ful speech recognition when the listening conditions are 
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difficult (e.g., there are several non-target voices). Part of 
that success is due to listeners’ ability to infer characteris-
tics of the speaker from what they are saying. This speaker 
model then influences how that person’s speech is per-
ceived (Cai et al., 2017).

We can see the advantages of constructing a speaker 
model by considering how we understand non-native 
speakers of English. They often make errors because of 
deficient knowledge of the language including numer-
ous mispronunciations (Levis & Barriuso, 2011). In such 
circumstances, listeners must infer the intended meaning 
from what is actually said. Gibson et al. (2017) found lis-
teners relied less on the actual words spoken by non-native 
speakers and more on the intended meaning. Native and 
non-native speakers produced many utterances, some of 
which were implausible (e.g., “The tax law benefited from the 
businessman”). Listeners were more likely to interpret such 
implausible utterances as plausible (e.g., “The businessman 
benefited from the tax law”) when spoken by a non-native 
speaker. This makes sense given that non-native speakers 
are more likely to put words in the wrong order.

Suppose a listener is exposed to the utterances of a 
non-native speaker whose errors consist mainly of dele-
tions (e.g., “We had nice time at the beach”) or insertions (e.g., 
“The earthquake shattered from the house”). Listeners might 
simply assume in both cases that the speaker makes many 
errors across the board. Alternatively, they might assume 
the speaker has a high probability of making specific speech 
errors (e.g., deletions or insertions). In fact, listeners are 
sensitive to the specific errors they have heard previously, 
thus demonstrating sensitivity to fine-grained information 
about the types of errors made by speakers (Ryskin et al., 
2018).

In sum, listeners who understand the full meaning the 
speaker intends to communicate have to be active partici-
pants rather than simply focusing on the literal meaning of 
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what has been said. Consider someone says the following 
to you: “Never ask two China trips to the same party” 
(Bender & Koller, 2020). The literal meaning is unhelpful. 
However, most listeners work out that the speaker means 
that having two people at a party who have both visited 
China is likely to lead to a long and boring account of 
those trips.

The flexibility we display in conversation is also found 
in reading. For example, we typically have no problem 
reading a text containing numerous misspellings. Here is 
the “Cambridge email” (Norris & Kinoshita, 2012):

Aoccrdnig to a rscheearch at Cmabrigde Uinervtisy it 
deosn’t mttaer in waht oredr the ltteers in a wrod are. 
The olny iprmoatnt tihng is that the frist and lsat ltteer 
be at the rghit pclae. The rset can be a toatl mses and 
you can still raed it wouthit porbelm. This is bcusease 
the huamn mnid deos not raed ervey lteter by istlef but 
the wrod as a wlohe.

Readers also have the ability to draw inferences to make 
sense of what they are reading. This ability relies heavily 
on our knowledge of the world and the wealth of expe-
rience which allow us to “read between the lines” and to 
draw appropriate inferences. Consider the following short 
text taken from Rumelhart and Ortony (1977):

Mary heard the ice-cream van coming. She remem-
bered the pocket money. She rushed into the house.

You probably inferred that Mary wanted to buy some 
ice-cream, that buying ice-cream costs money, that Mary 
had some pocket money in the house, and that Mary 
had only limited time to get hold of some money before 
the ice-cream van appeared. None of these inferences is 
explicitly stated.
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Here is another example (taken from Austin, 1975) of 
how we utilise our past experience and knowledge when 
reading. Imagine the word “BULL” is written on the side 
of a fence in a field. Humans do not simply understand 
the word; they also draw the social inference that there is 
a dangerous animal on the opposite side of the fence from 
the one on which the word is written.

Remembering the past and imagining  
the future

Laland and Seed (2021) emphasised the importance to 
humans of remembering the past and imagining the future. 
We can remember the past because of episodic memory 
(our long-term memory for personal experiences). More 
specifically, Nairne (2015) identified the three “Ws” of 
episodic memory: remembering a specific event (what?) at 
a given time (when?) in a particular place (where?).

Simons and Chabris (2011, p. 3) presented people with the 
following statement about episodic memory: “Human mem-
ory works like a video camera, accurately recording the events 
we see and hear so that we can review and inspect them later.” 
Over 60% of members of public agreed with this statement 
compared to 0% of memory experts. In fact, episodic memory 
is typically highly selective: the gist or essence of our experi-
ences is retained but not the trivial details (see Chapter 5).

For a long time it was believed that episodic memory 
is used only to remember the past. However, Schacter 
and Addis (2007) hypothesised that imagining future 
events involves very similar processes to those involved in 
remembering past episodic events. As predicted, remem-
bering the past and imagining the future activate substan-
tially overlapping brain areas (Benoit & Schacter, 2015; 
see Figure 3.6). Also as predicted, amnesic patients with 
severely impaired episodic memory have great difficulty in 
imagining future events (Schacter & Madore, 2016).
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Our goal when imagining the future is often to plan 
what we should do over the following weeks or months. 
This involves comparing and evaluating potential courses of 
action. That requires metacognition: “Cognition about cog-
nition; the capacity to monitor, evaluate and control one’s 
own cognitive processes” (Bulley & Schacter, 2020, p. 239).

In sum, when we plan for the future, we flexibly generate 
many possibilities using episodic processes. After that, we 
use our meta-cognitive abilities to identify the most appro-
priate course of action. These abilities equip us extremely 
well to cope with the uncertainties of everyday life

Do other species possess episodic memory processes 
and metacognition? Many animal species show elements 
of episodic memory: they remember what food they have 
hidden away, where that food is, and when they hid it 
(Clayton, 2017). However, it is unclear whether their recall 
of such information is accompanied by subjective experi-
ence resembling that of humans. In similar fashion, many 

Figure 3.6  �(a) Brain regions exhibiting comparable activity during 
episodic simulation of future events and episodic mem-
ory for past events. (b) Brain regions exhibiting greater 
activity during episodic simulation than episodic memory.

Source: From Benoit and Schacter (2015).
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animal species show limited evidence of future planning. 
However, we do not know whether they achieve this by 
mentally imagining possible future events.

The issue of whether other species possess metacognitive 
processes is a vexed one. Several animal species (e.g., mon-
keys) exhibit behaviour that superficially seems to require 
metacognition. However, it is nearly always possible to 
interpret such behaviour in simpler, non-metacognitive 
terms (Carruthers & Williams, 2019).

According to the Bischof-Köhler hypothesis, only 
humans can anticipate their own future mental states and 
take appropriate action now to cater for those mental states. 
For example, humans in the heat of summer may imagine 
feeling cold during the winter and so act immediately (e.g., 
collecting firewood) to ensure they will be warm several 
months later. Other species lack this metacognitive abil-
ity. For example, Paxton and Hampton (2009) found that 
monkeys failed to act in anticipation of motivational states 
that lay only 15 minutes in the future.

Theory of mind

One of the most important human abilities is theory of 
mind. Individuals possessing theory of mind understand 
other people’s beliefs, emotions, and mental states. Thus, 
they are fully aware another person’s perspective or beliefs 
often differ from their own. Theory of mind is of enor-
mous value in social interaction and communication as we 
can see by considering autism, which is a severe disorder 
involving very poor communication skills, and deficient 
social and language development. Autistic individuals have 
very deficient theory of mind, and as a consequence are 
typically socially isolated. The importance of theory of 
mind is also indicated by the consistent finding that indi-
vidual differences in theory or mind correlate strongly 
with general intelligence (e.g., Navarro et al., 2021).
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We can see what is involved in theory of mind by con-
sidering the Sally-Anne test (Baron-Cohen et al., 1985; see 
Figure 3.7). Sally hides a marble in her basket. She then 
goes for a walk. While she is out, Anne removes the marble 
from Sally’s basket and puts it in her own box. Theory of 
mind is tested by asking someone who has observed the 
above sequences of events the following question: “Where 
will Sally look for her marble?” Individuals possessing the-
ory of mind respond correctly that she will look in her 
basket. Most children can solve problems such as the Sally-
Anne test by the age of four or five (Apperley & Butterfill, 
2009).

Finally, theory of mind is useful when a speaker wants 
to persuade their listener to do something or to adopt their 
viewpoint on a given issue. Their knowledge of the lis-
tener’s beliefs and emotions makes it easier to tailor their 
message to make it maximally effective.

Researchers have often claimed they have demonstrated 
theory of mind in non-human primates. However, it has 
proved hard to replicate their findings and there is still no 
convincing evidence that other primates can represent 
others’ beliefs (Horschler et al., 2020).

Caveats and a broader perspective

Two major objections can be raised to much of the research 
discussed in this section. First, it is based on an anthro-
pocentric approach where other species’ cognitive skills 
are evaluated with respect to human cognitive abilities. 
This approach can over-value other species’ skills if they 
are human-like. More importantly, it under-values those 
skills if they are not human-like. It would be preferable to 
adopt a biocentric approach focusing on the adaptiveness 
of any given species’ cognitive skills given their evolution-
ary history (Bräuer et al., 2020). For example, cockroaches 
lack nearly all human cognitive skills. However, the fact 
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Figure 3.7  �The cartoon of the Sally-Anne test as used originally by 
Baron-Cohen et al. (1985).
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that cockroaches have been on Earth for 300 million years 
indicates they are very well adapted to their environment 
even though they lack any cognitive skills.

Second, researchers often assume there is “one cogni-
tion” (Bräuer et al., 2020), meaning that different cogni-
tive skills tend to be found together (as in humans). In fact, 
many non-human species possess one or two highly special-
ised skills because of evolutionary pressures. For example, 
New Caledonian crows have exceptional tool-manufac-
turing skills to facilitate accessing food but are otherwise 
“unintelligent.”

Mikhalevich et al. (2017) argued that much cross- 
species research is bedevilled by simplistic assumptions. 
One such assumption is that behavioural flexibility pro-
vides a reasonably direct measure of cognitive complexity. 
This is flawed because behavioural flexibility can be due to 
hard-wired predispositions or simple learning (e.g., learn-
ing to associate different environmental cues with different 
responses) rather than cognitive complexity.

Mikhalevich et al. (2017) proposed an “adaptive tri-
adic model,” according to which three criteria need to 
be satisfied before inferring a given species is cognitively 
complex. These are the criteria: (i) behavioural complex-
ity, (ii) environmental heterogeneity or complexity, and 
(iii) neuroanatomical structures associated with sophisti-
cated information processing. In other words, behavioural 
complexity in a given species implies cognitive complexity 
provided adaptation to the environment requires complex 
information processing and the members of that species 
have a brain capable of high-level cognitive processing.

It is perhaps natural to assume that species close to 
us in evolutionary history (e.g., apes) are most likely to 
possess cognitive complexity as defined by Mikhalevich 
et al. (2017). However, consider cephalods (e.g., octopus 
and squid), whose evolutionary history has been separate 
from that of humans for over 300 million years. They are 
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the most cognitively complex of all invertebrates (Schnell 
et al., 2021; see Figure 3.8). They engage in flexible for-
aging and anti-predatory strategies to cope with the envi-
ronmental complexities they encounter. Finally, their 
brains (although very different from ours) are complex. 

 

 

Figure 3.8  An octopus opening a container with a screw cap.
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For example, their vertical lobe system is the largest used 
for learning and memory among all the invertebrates. In 
sum, the cephalopods fulfil all three of Mikhalevich et al.’s 
(2017) criteria for cognitive complexity.

We conclude with a sobering example of humans outper-
formed by pigeons on the Monty Hall problem that played 
an important role on Monty Hall’s show on American tel-
evision (see Figure 3.9):

You are on a game show and have the choice of three 
doors. There is a car behind one door and goats behind 
the others. You pick a door (say, door 1). The host, 

Figure 3.9  �Figure 12.1 in E&K, 2020: Monty Hall, the game-show host.

Source: Monty Hall. ZUMA Press, Inc./Alamy.
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who knows what is behind each door, opens another 
door (say, door 3), behind which is a goat. He then asks 
whether you would like to switch your choice from 
door 1 to door 2. What do you decide to do?

Most people stick with their first choice. In fact, that is 
the wrong decision. When you initially picked a door at 
random, you clearly only had a one-third chance of win-
ning the car. Regardless of whether your initial choice 
was correct, the host can open a door not having the car 
behind it. Thus, the host’s action sheds no light at all on 
the correctness of your initial choice. Since there is only 
a one-third chance of being correct by sticking with your 
original choice, there is a two-thirds chance of being cor-
rect by switching.

Herbranson and Schroeder (2010) found humans cor-
rectly switched on 66% of trials after extensive practice. 
However, Silver King pigeons switched on 96% of trials! 
The humble pigeons performed well because they simply 
maximised the reward they received, whereas humans 
adopted more complex (and less valid) strategies. The take-
home message is that humans are sometimes inclined to 
over-complicate their approach to problems.

Inter-dependent abilities

It is easy to be somewhat disappointed by much of the 
research comparing humans against other species. Several 
other species possess many of our most important cognitive 
processes and structures (though to a lesser extent). Thus, 
we cannot explain the superiority of human cognition 
by “a single magic bullet” (Laland & Seed, 2021, p. 704). 
Laland and Seed concluded their review of cross-species 
comparisons as follows: “Humans are flexible cognitive all 
rounders” (p. 689). That almost sounds like they are damn-
ing with faint praise.
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We accept that human uniqueness does not lie with our 
possession of specific abilities denied all other species but 
rather with the inter-dependence of our abilities. In other 
words, the human mind is a prime example of the whole 
being greater than the sum of its parts. More specifically, 
our minds are far more flexible and adaptable than those 
of any other species because we possess several cognitive 
processes and structures that interact co-operatively with 
each other.

One example of inter-dependence in the human mind 
involves attentional control or selective attention and con-
scious awareness. There are several possible relationships 
between these two processes (Webb & Graziano, 2015). 
Most commonly, conscious awareness is determined by 
prior selective attention (i.e., we are consciously aware of 
what we have chosen to attend to). Thus, the flexibility of 
human consciousness is strongly influenced by the flexibil-
ity of selective attention.

Another example concerns the relationship between 
theory of mind and meta-cognition. Both depend heav-
ily on the ability to disengage one’s conscious aware-
ness from the current environment to focus on one’s 
own thinking and beliefs (meta-cognition) or someone 
else’s (theory of mind). This relationship may develop in 
various ways. One possibility is that self-directed mind- 
reading or theory of mind in young children is instru-
mental in the development of meta-cognition (Carruthers 
& Williams, 2019)

Our mastery of language interacts with other aspects of 
our cognitive system. It allows us (unlike other species) 
to communicate about the past and future as well as the 
here-and-now. Our ability to discuss the past increases the 
chances that we (and others) can learn from our past mis-
takes. Our ability to discuss the future can be very use-
ful for discussing the best places to find food or planning 
how to attack another group in the future. In addition, 



Human strengths  91

linguistic interactions enhance our ability to understand 
other people’s perspectives, which is fundamental to devel-
oping social cohesion.

The above discussion provides the basis for answering 
the question of why human cognition is so much more 
flexible (and powerful) than any other species. Several fac-
tors are involved:

1	 Our meta-consciousness and meta-cognition mean 
that our processing is not largely limited to the current 
environment (unlike other species that possess only 
basic consciousness).

2	 Our highly developed working memory and selective 
attention (e.g., inhibition and shifting functions) also 
enhance the flexibility of our processing allowing us 
to discriminate between information that is impor-
tant and information that is trivial. More generally, 
our domain-general processes provide the “glue” that 
facilitates optimal processing efficiency within the 
highly complex human cognitive system.

3	 Our excellent episodic memory means we can read-
ily process information relating to the past and the 
imagined future. The latter is especially important for 
flexible future planning. Our possession of theory of 
mind means we can focus on the beliefs and knowl-
edge of other people as well as on our own beliefs and 
knowledge.

4	 Language also plays a major role in producing human 
thinking flexibility. Of special importance, it provides 
an extremely effective way of accessing human cultural 
knowledge that has accumulated over the centuries. 
Language also provides a medium for thinking about 
the past and the future and for future planning. It is 
also the medium we typically use for complex abstract 
thinking (a form of thinking probably not present in 
any other species).
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Intelligence

Strong evidence that human cognition owes much of its 
excellence to inter-dependent abilities comes from research 
on human intelligence. Over a century ago, the British 
psychologist Charles Spearman (1904) made a crucial dis-
covery. He found scores on nearly all cognitive tests were 
positively correlated despite apparently large differences 
among them. In other words, individuals performing well 
on one test typically performed well on most other tests, 
whereas other individuals performed relatively poorly on 
most tests.

Spearman (1904, 1927) argued persuasively that these 
findings indicate the existence of a general (or g) factor. 
This g factor is of great importance: 40–50% of indi-
vidual differences in IQ depend on it (Kovacs & Conway, 
2019). However, there is a danger of using the term g to 
describe general intelligence rather than explain it. Note that 
the argument that some individuals perform better than 
others on intelligence tests, “because they have more g,” 
is a circular argument – we only know they have more g 
because they perform well on intelligence tests.

Progress was made by Cattell (1963), who identified two 
forms of intelligence strongly related to g. One was crys-
tallised intelligence (the ability to use one’s knowledge and 
experience effectively) and the other was fluid intelligence 
(the ability to reason about, and to understand, novel rela-
tionships (Cattell, 1963). Barbey (2018) argued (with sup-
porting evidence) that crystallised intelligence involves 
the ability to flexibly reach easy-to-access network states 
reflecting our stored knowledge and experience. In con-
trast, fluid intelligence requires the ability to flexibly reach  
hard-to-access states involving weakly connected connec-
tions and networks needed when we tackle novel problems.  
Brain areas associated with fluid intelligence overlap with 
those commonly associated with consciousness.
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Duncan et al. (2020) argued that fluid intelligence is 
closely linked to the “multiple demand” system distrib-
uted across several large brain areas, supporting his argu-
ment with a discussion of relevant research. They also 
proposed an explanatory account of fluid intelligence 
based on “attentional integration.” Complex problems 
consist of a series of processing stages; accordingly, their 
successful solution requires organising the correct cog-
nitive elements in the correct sequence (i.e., attentional 
integration). Individual differences in attentional inte-
gration depend on stored knowledge of previous similar 
problems and flexible thinking about novel aspects of the 
current problem.

Kovacs and Conway (2016, 2019) proposed a related 
explanatory account of fluid intelligence. Their starting 
point was the assumption that, “General intelligence [g] 
is a summary of different but correlated abilities rather 
than the reflection of a single, unitary ability” (Kovacs 
& Conway, 2019, p. 255). They emphasised the impor-
tance of several executive functions including sustained 
attention, planning, and mental flexibility (resembling 
the three executive functions identified by Friedman 
& Miyake, 2017 and discussed earlier). These executive 
functions are associated with overlapping brain areas and 
jointly account for individual differences in fluid intelli-
gence and g.

Conclusions

There are several reasons why human cognition is vastly 
superior to that of any other species. Of particular impor-
tance, however, are the various executive functions we 
possess, which typically combine very efficiently to inte-
grate and co-ordinate during tasks requiring complex cog-
nition. General intelligence or g reflects our usage of these 
executive functions.
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In sum, there are two crucial reasons why general intel-
ligence is so important. First, there are very close links 
between learning and intelligence – arguably, the main 
difference between individuals with high and low gen-
eral (or fluid) intelligence is their learning rate. Second, 
general (or fluid) intelligence allows us to cope reasonably 
successfully with an enormous range of novel situations 
and problems.
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We saw in Chapter 2 that AI has numerous achievements 
(e.g., beating leading chess, Go, and poker players; match-
ing human experts in several professional work activities). 
That chapter focused on specific skills possessed by AI 
systems. Here we compare AI systems and humans with 
respect to general skills and intelligence.

Moravec’s paradox

It seems natural to assume that AI would perform well on 
‘easy’ tasks (e.g., visual perception) but poorly on ‘hard’ 
tasks (e.g., logical reasoning). However, Moravec (1988) 
proposed the opposite in his famous paradox: “It is compar-
atively easy to make computers exhibit adult level perfor-
mance on intelligence tests or playing checkers [draughts], 
and difficult or impossible to give them the skills of a one-
year old when it comes to perception and mobility” (p. 15).

Moravec’s paradox is partially correct. We will start by 
considering a common problem in visual perception. You 
have probably had the experience when trying to access 
information on a website of being confronted by distorted 
characters (often a combination of letters and digits) con-
nected horizontally. You have to identify these characters 
correctly before being allowed access to the website.

Chapter 4

How (un)intelligent is AI?

https://doi.org/10.4324/9781003162698-4
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Why are you asked to do this? The technical term for a 
pattern of distorted characters is CAPTCHA (Completely 
Automated Turing test to tell Computers and Humans Apart) 
which answers the question (see Figure 4.1). The intention is to 
ensure a website user is human by providing a test humans can 
solve but automated computer-based systems cannot. Nachar 
et al. (2015) devised a sophisticated AI program focusing on 
edge corners (intersections of two straight edges); this makes 
sense because edge corners are relatively unaffected by the 
distortions present in CAPTCHAs. This program accurately 
solved only 57% of CAPTCHAs. Such findings suggest our 
pattern-recognition abilities are often superior to those of AI.

Why do we underestimate the complexities of human 
visual perception? Minsky (1986, p. 29) provided a convinc-
ing explanation: “We’re least aware of what our minds do 
best … we’re more aware of simple processes that don’t work 
well than of complex ones that work flawlessly.” Visual per-
ception is undoubtedly complex: one example is our ability 
to recognise any given object almost instantly despite huge 
variations in its size, orientation, illumination, and position. 
Such complexities explain why 50% of the human cortex is 
devoted to visual processing. Most complex visual processes 
are largely unconscious because they have developed gradu-
ally over the incredibly lengthy course of human evolution.

Moravec’s paradox is also applicable to human motor 
skills and abilities. As the Australian roboticist Brooks (1986) 

Figure 4.1  The CAPTCHA used by Yahoo!.

Source: From Gao et al. (2012).
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pointed out, “The things that children of four or five years 
could do effortlessly, such as … walking around on two legs, 
or finding their way from their bedroom to the living room 
were not thought of as activities requiring intelligence.”

As a result, motor skills were de-emphasised for many 
years within what has sometimes disparagingly been called 
Good Old-Fashioned AI (GOFAI). The focus of GOFAI 
was on disembodied intelligence in the form of symbolic 
reasoning with a consequent ignoring of the processing 
required to interact successfully with the real world.

Why were the processes involved in producing skilled 
motor behaviour not regarded as complex? As with visual 
perception, these processes are mostly unconscious because 
they evolved over hundreds of millions of years and so 
their complexity is easy to miss.

We can see the power of Moravec’s paradox most clearly 
when we consider the achievements of numerous mamma-
lian species. As Zador (2019, p. 2) pointed out, “We can-
not build a machine capable of building a nest, or stalking 
prey … In many ways, AI is far from achieving the intelli-
gence of a dog or a mouse, or even of a spider, and it does 
not appear that merely scaling up current approaches will 
achieve these goals.”

A key reason for this is numerous species are born with 
highly structured brain connectivity that greatly facili-
tates rapid learning of complex forms of behaviour. More 
specifically, the complex behaviour exhibited by most 
non-human species depends heavily on innate mechanisms 
encoded in the genome (Zador, 2019). An extreme exam-
ple can be found in honeybees. They signal accurately the 
direction and distance of food to other bees by performing 
a figure-8 waggle dance (von Frisch, 1967). They achieve 
this feat in spite of a having a brain smaller than a pin 
head (1mm3 vs 1.5mm3). Such behaviour is complex but is 
not intelligent in the sense of being dependent on exten-
sive learning (the concept of “intelligence” is discussed 
shortly).
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Researchers in AI have made attempts to address 
Moravec’s paradox. Over 30 years ago, Rodney Brooks 
embarked on “nouvelle AI” based on the assumption that 
intelligence depends heavily on the ability to function 
effectively in real-world environments (Brooks, 1991).

Brooks constructed numerous robots. One was called 
Herbert in honour of the psychologist Herbert Simon. 
Herbert used a laser system to collect 3D information up 
to 12 feet in front of it, and it had a hand equipped with 
sensors. Herbert’s real-world environment consisted of 
the busy offices and work-spaces of the AI lab. The robot 
searched on desks and tables in the lab for empty soda cans, 
which it picked up and carried away. Herbert’s seemingly 
co-ordinated and goal-directed behaviour emerged from 
the interactions of about 15 simple behaviours.

In spite of such attempts, robots remain very limited in many 
ways. For example, consider a contest in Pomona, California, 
in 2015 involving 23 robots. Only one of the several robots 
that fell over managed to stand up again and most of the robots 
struggled to turn a door handle (Guizzo & Ackerman, 2015).

Another aspect of Moravec’s paradox is that it is relatively 
easy for AI to perform comparably to humans on what are 
regarded as intellectually demanding tasks (e.g., abstract 
reasoning and mathematics). The reason is that humans 
have developed such intellectual skills only comparatively 
recently in evolution and so we still find them effort-
ful and very demanding. As we will see later, Moravec 
greatly exaggerated how easy it would be for AI to match 
human performance levels on intellectually or cognitively 
demanding tasks (e.g., intelligence tests).

Intelligence: general and narrow

It has proved notoriously difficult to define “intelligence” 
satisfactorily. Many years ago, psychologists’ favourite cop-
out was to argue, “Intelligence is what intelligence tests 
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measure.” However, most experts agree that “intelligence” 
refers to a very general ability to solve an enormous number 
of very heterogeneous problems. Voss (2016) identified the 
main criteria for a human to possess high intelligence:

1	 The acquisition of a wide range of new knowledge 
and skills.

2	 The mastery of language including the ability to 
engage in meaningful conversations.

3	 The possession of good short-term memory and the 
understanding of the purpose of actions (including 
other individuals’ actions).

4	 Using pre-existing knowledge and skills to facilitate 
learning on novel tasks.

5	 The acquisition of abstract knowledge by generalising 
from more concrete forms of knowledge.

6	 The management of several conflicting goals and pri-
orities with an ability to direct attention to the task of 
most immediate relevance and importance.

7	 The possession of emotional intelligence – recognising 
and responding appropriately to emotional states in 
oneself and in others (e.g., understanding why some-
one else is angry or upset).

8	 The ability to demonstrate all the above abilities 
even when relevant knowledge and time are both 
limited.

In essence, Voss (2016) identified the criteria for gen-
eral intelligence. It is important to distinguish between 
general and specific or narrow intelligence (a distinc-
tion applicable to humans and AI). In humans, individ-
uals having an IQ below 70 are in the bottom 2–3%  
for general intelligence and are often described as having 
intellectual disability. However, some have savant syn-
drome, meaning they exhibit outstanding abilities in a 
very specific or narrow domain. For example, calendrical 
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savants can tell you very rapidly the day of the week on 
which any given date fell. Other individuals with savant 
syndrome have great musical ability.

In the field of AI, a distinction has been drawn between 
artificial narrow intelligence and artificial general intel-
ligence. Artificial narrow intelligence is displayed by AI 
systems performing exceptionally well on one task or a 
small number of very similar tasks. In contrast, AI systems 
exhibiting artificial general intelligence would perform 
numerous very different tasks at human level with their 
performance dependent on rapid and effective learning of 
many different kinds.

An implication of Moravec’s paradox is that we may 
need to re-think our conceptualisation of “intelligence.” 
The paradox encourages us to broaden our definition of 
“intelligence” to include perceptual and motor abilities.

Human intelligence

Intelligence tests (or IQ tests) measure general intelligence 
because they assess a wide range of abilities including math-
ematical ability, verbal ability, and reasoning. However, 
these tests do not actually assess all the abilities relevant 
to intelligence. What is missing is a systematic attempt to 
assess the practical and social skills required for success in 
life. For example, Voss (2016) identified emotional intel-
ligence as an important criterion for general intelligence. 
However, the ability to interact successfully with other 
people is ignored by most intelligence tests. Emotional 
intelligence in humans and AI is discussed at length in 
Chapter 7.

As discussed in Chapter 3, individual differences in 
general intelligence in humans can be assessed by assess-
ing their intelligence quotient or IQ based on intelligence 
tests. The average IQ in the population is 100, but highly 
intelligent individuals have IQs of 120 or more.
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AI and intelligence

The great majority of AI systems provide evidence of 
artificial narrow intelligence rather than artificial general 
intelligence. Think back to Chapter 2. There we discussed 
examples of AI systems that triumphed at chess and Go 
when competing against the finest human players (Garry 
Kasparov and Lee Se-dol, respectively). These systems 
(Deep Blue and AlphaGo, respectively) would not perform 
well on other cognitively demanding tasks, and so clearly 
exemplify artificial narrow intelligence. However, algo-
rithms producing outstanding performance on several dif-
ferent games have been developed (e.g., Silver et al.’s, 2018, 
AlphaZero; Schrittwieser et al.’s, 2020, MuZero). Below 
we consider other attempts to demonstrate that AI systems 
can possess artificial general intelligence.

One of the most striking differences between us and all 
other animal species is the range and complexity of our 
language. As discussed in Chapter 3, the increased size of 
the human brain is mostly associated with the development 
of social and cultural intelligence. Both forms of intelli-
gence depend hugely on communication skills involving 
language. More generally, most of our thinking involves 
language. Thus, good language skills require a high level 
of general intelligence.

Intelligence tests

One way of assessing AI intelligence is based on the huge 
amount of research involving intelligence tests on humans. 
Precisely that was done by Liu et al. (2019). They argued 
any intelligent system should possess four characteristics: 
(1) the ability to acquire knowledge, (2) the ability to mas-
ter knowledge, (3) the ability to create knowledge, and (4) 
the ability to output knowledge to the outside world.

By definition, the average human adult has an IQ (intel-
ligence quotient) of 100. Liu et al. (2019) estimated the 
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average human six-year-old has an IQ of 55 (when com-
pared against adult performance). The most successful AI 
systems all performed somewhat worse than a six-year-old. 
Google’s AI was top with an estimated IQ of 47, followed 
by Baidu with an IQ of 33, and Siri with an IQ of 24.

General intelligence can be sub-divided into fluid 
and crystallised intelligence (see Chapter 3). The former 
involves the ability to solve novel problems, whereas the 
latter involves the effective use of accumulated knowledge. 
Raven’s Progressive Matrices (Raven, 1936) (often short-
ened to Raven’s Matrices) is the most influential test of 
fluid intelligence. It requires analogical reasoning which 
is often regarded as the “core of cognition” (Hofstadter, 
2001, p. 499).

Each item on Raven’s Matrices consists of a matrix of 
abstract geometric elements arranged in a pattern (e.g.,  
2 × 2 and 3 × 3) with the element in the bottom right cor-
ner missing (see Figure 4.2). The task requires choosing the 
element completing the visual pattern from between six 
and eight possibilities. This test may sound easy. However, 

Figure 4.2  �A problem resembling those used in Raven’s progressive 
matrices. The image from the bottom eight images that 
best completes the top 3 × 3 matrix must be selected.

Source: From Lovett and Forbus (2017).
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the elements can vary in several ways (e.g., number, col-
our, type, and size) making it possible to create fiendishly 
difficult problems.

Zhang et al. (2019) gave eight AI models extensive train-
ing on a dataset consisting of 70,000 problems resembling 
Raven’s Progressive Matrices. They then compared the 
models’ performance against humans not provided with 
training. The human participants were correct on 84% of 
trials. In contrast, the best AI model achieved a success rate  
of 60%. All four of the worst-performing models succeeded 
on under 16% of trials – this is very poor given that chance 
performance was 12.5%.

Spratley et al. (2020) devised two deep neural models 
(Rel-Base and Rel-AIR (Attend-Infer-Repeat) that were 
simpler and more general-purpose than previous models. 
Average accuracy on Raven’s Matrices’ problems was 92% 
for Rel-Base and 94% for Rel-AIR (against average human 
performance of 84%). However, Rel-AIR’s advantage over 
Rel-Base was much greater when generalisation to new 
problems was tested.

Most AI models on Raven’s Progressive Matrices exhibit 
poor generalisation ability: they perform very poorly when 
there are even minimal differences between training and 
testing items. Another issue is that incorrect choices on 
some versions of Raven’s Progressive Matrices are gener-
ated by changing single attributes from the correct answers. 
This allows some AI models to produce correct answers 
without directly considering the question. However, 
Benny et al. (2020) eliminated this problem and devised an 
AI model that outperformed previous models and showed 
good generalisation.

In sum, AI models have recently matched or even 
exceeded human performance on versions of Raven’s 
Progressive Matrices. That is a major achievement given 
the convincing evidence that fluid intelligence in humans 
is assessed validly by this test. However, AI typically 
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exhibit relatively poor generalisation from trained exam-
ples to new ones and are not applicable to different kinds 
of intelligence test. As a consequence, these models cannot 
be claimed to demonstrate artificial general intelligence.

Language skills

Language ability is of central importance to general intel-
ligence. As the Austrian philosopher Ludwig Wittgenstein 
(1889–1951) argued, “The limits of my language are the 
limits of my thinking.” Another quotation by Wittgenstein 
further emphasises language’s importance: “Whereof one 
cannot speak, thereof one must be silent.”

There are close links among intelligence, thinking, and 
language ability. Humans with excellent language skills 
have greater general intelligence and thinking powers 
than those with inferior language skills. AI has proved 
increasingly successful at various language skills including 
speech recognition, answering general knowledge ques-
tions, translating, and holding conversations (see Chapter 
2). Superficially, these achievements are impressive and 
suggest AI possesses some aspects of general intelligence. 
However, research showing human-like language perfor-
mance is limited in various ways (see also Chapter 7).

There are four main language skills: speech recognition 
or perception, reading, speech production, and written 
language (Eysenck & Keane, 2020). We will discuss all 
four language skills in turn. After that, we consider the 
extent to which AI systems exhibit human-like conversa-
tional skills and translation abilities.

Speech recognition

In Chapter 2, we discussed the speech-recognition perfor-
mance of various AI systems. There is some controversy 
as to whether these systems have comparable error rates to 
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human experts. However, automatic speech-recognition 
systems have improved dramatically in recent years and 
now produce performance approaching human level.

Most research comparing the performance of auto-
matic speech-recognition systems with human listen-
ers has involved presenting only an auditory input. Such 
research minimises human superiority because we often 
use non-acoustic sources of information during speech 
recognition. Everyone knows the deaf rely heavily on the 
speaker’s lip movements to understand what is being said, 
but humans with intact hearing do the same. Consider 
the McGurk effect (McGurk & MacDonald, 1976): a mis-
match between spoken and visual (lip-based) information 
leads listeners to perceive a blend of the auditory and visual 
information.

Another advantage of human listeners over automatic 
speech-recognition systems is that we generally predict the 
speech input using speech-production processes and thus 
enhance speech perception. Several brain areas involved in 
speech production are also activated during speech percep-
tion (Skipper et al., 2017).

Some research has focused on establishing whether auto-
matic speech recognition can be disrupted by adding small 
irrelevant acoustic clips (e.g., commands) to the speech 
output. These irrelevant clips (known as “adversarial 
attacks”) cause mistranscriptions by AI systems (Abdullah 
et al., 2020).

Our focus in this book is on comparing AI systems and 
humans. Accordingly, we need to compare the impact 
of adversarial attacks on speech recognition in AI and 
humans. Schömherr et al. (2018) presented human listen-
ers with speech (including or excluding adversarial attacks 
in the form of hidden voice commands). Human listeners 
were not consciously aware of the voice commands nor did 
the commands influence the accuracy with which speech 
was transcribed. In contrast, Kaldi (a speech-recognition 
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system) was highly susceptible to adversarial attacks. Thus, 
human speech recognition is more robust and less easily 
disrupted than speech recognition by AI systems.

Most research has involved white-box adversar-
ial attacks. These are attacks where the researchers have 
full knowledge of the workings of the automatic speech- 
recognition system (e.g., Schönherr et al., 2018). However, 
manufacturers of most commercially available speech- 
recognition systems (e.g., Siri, Alexa, and Cortana) do not 
provide information about their detailed functioning. As a 
result, researchers investigating such systems are limited to 
black-box attacks.

There are two reasons why it is important to study black-
box attacks. First, they have greater real-world applicabil-
ity than white-box attacks. Second, it is harder to mount 
successful black-box attacks than white-box ones, and so 
research on the latter may well not generalise to the former.

Chen et al. (2020) studied approximations to black-
box attacks on several automatic speech-recognition sys-
tems (e.g., Amazon Echo, Microsoft Cortana, and Google 
Assistant). The attacks consisted of frequently used com-
mands, such as “Okay, Google, turn off the light” and 
“Echo, call my wife,” presented concurrently with songs. 
These attacks were often successful even though human 
listeners were unaware there was any speech (17% of the 
time) or perceived the commands as meaningless noise 
(66% of the time).

So far we have focused mostly on relatively straightfor-
ward situations where there is only a single speaker. In the 
real world, listeners often confront the more challenging 
task of attending to one voice when two or more people are 
speaking at the same time: the “cocktail party problem.”

Human listeners utilise various strategies to cope with 
this problem. For example, they use attentional and control 
processes to process the target voice and reject compet-
ing voices (Evans et al., 2016). If listeners can identify at 
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least one distinctive feature of the target voice, this facili-
tates directing attention to the target voice (Shamma et al., 
2011). Finally, listeners often make use of visual informa-
tion. Listeners presented with two voices at the same time 
exhibited better speech recognition for the target voice 
when they saw a video of the speaker at the same time 
(Golumbic et al., 2013).

Early AI automatic speech recognition systems were con-
siderably inferior to human listeners at speech recognition 
for one speaker in the presence of a second speaker (Spille 
& Meyer, 2014). However, significant progress has been 
made, in part because AI systems increasingly use several 
different kinds of information in speech recognition. For 
example, Gu et al. (2020) developed an AI system com-
bining information about the target voice’s spatial loca-
tion, lip movements, and voice characteristics. This system 
exhibited reasonably good speech recognition regardless of 
whether there were one, two, or three voices. However, its 
performance was still well short of that of human listeners.

In sum, AI systems provide rapid speech recognition. 
Their performance in relatively easy conditions (e.g., 
simple messages and only one speech input) is often 
fairly close to that of humans. However, the speech- 
recognition abilities of automatic speech-recognition sys-
tems are much more limited and inflexible. They find 
it much harder to process one voice among many or to 
prevent irrelevant input (adversarial attacks) from causing 
mistranscriptions.

Text comprehension: reading

Nearly everyone finds writing or word-processing a text 
much harder (and it takes far longer) than simply speaking 
with someone else. The main reason is that the sentences 
produced by writers are typically more complex than those 
produced by speakers. As a result, readers often find it 
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harder to comprehend texts than listeners do to understand 
spoken language.

There has been major recent progress in developing 
AI models that perform very well on many language- 
comprehension tasks. Of most importance, a ver-
sion of a model called BERT (Bi-directional Encoder 
Representations from Transformers) outperformed humans 
on a set of language comprehension tasks called GLUE 
(General Language Understanding Evaluation) (Yang et al., 
2019). Several enhanced versions of BERT have done the 
same (see Chapter 2).

The above findings suggest it may be premature to con-
clude AI systems lack general intelligence. However, they 
appear less impressive in the light of other research. For 
example, Wang et al. (2019) devised eight tasks ( jointly 
called SuperGLUE). These tasks resembled those in GLUE 
but were more challenging. BERT did much worse rel-
ative to humans on SuperGLUE than it had on GLUE:  
an average score of 69% vs 89.8%, respectively. Even an 
enhanced version of BERT (BERT++) was markedly 
worse than humans with a score of 71.5%.

BERT also performed very poorly on a task that 
involved deciding whether an initial sentence implies the 
truth of a second sentence (McCoy et al., 2019). Here is 
an example:

Example 2

1	 The actor was paid by the judge.
2	 The actor paid the judge.

The truth of sentence (2) is not implied by sentence (1). 
BERT’s performance on such items was close to 0% against 
chance probability of 50%, whereas human performance 
was close to 80%. In approximate terms, BERT decided 
that one sentence was implied by another if both sentences 
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contained the same words (see Chapter 7). In other words, 
it was using a short-cut that often misfired.

One way of testing AI language models is by introduc-
ing adversarial attacks (adding irrelevant material) on a 
reading task. Jia and Liang (2017) explored the effects of 
adversarial attacks on reading comprehension by 16 deep 
learning systems. In the control condition, the task was 
to draw appropriate inferences from paragraphs in order 
to answer questions. In the adversarial condition, an addi-
tional distracting sentence that did not change the correct 
answer was embedded in the paragraph.

The 16 AI systems were 75% correct in the control con-
dition compared to only 36% correct in the adversarial 
condition. In contrast, human performance was 92% and 
79%, respectively. These findings show AI’s brittleness: the 
human advantage was much greater in the adversarial con-
dition. When Jia and Liang (2017) added some ungram-
matical word sequences in the adversarial condition the 
AI’s performance slumped to only 7% correct responses.

In Jia and Liang’s (2017) study, all the questions were 
answerable and so correct answers could be produced by 
plausible guesses. Rajpurkar et al. (2018) included some unan-
swerable questions to increase task difficulty. This caused an 
AI system to perform very poorly relative to humans.

Most AI language models struggle on tasks requir-
ing general knowledge and use of context. Consider the 
Winograd Schema Challenge. Here are two sample sen-
tences from this task:

1	 John took the water bottle out of the backpack so that 
it would be lighter.

2	 John took the water bottle out of the backpack so that 
it would be handy.

Over 90% of humans realise “it” refers to the back-
pack in sentence (i) but the water bottle in sentence (ii).  
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In contrast, all AI systems for several years after the devel-
opment of the Winograd Schema Challenge had perfor-
mance accuracy under 65%. Recently, however, a language 
model known as BERT (discussed earlier) achieved 72.5% 
accuracy (Kocijan et al., 2019). That is an improvement but 
still well below human performance.

In sum, AI systems process language in a relatively lim-
ited and rigid fashion. Here is another example. Jiang et al. 
(2020) tested the knowledge possessed by language models 
by presenting prompts containing blanks to be filled in. 
The models’ performance was influenced by the precise 
wording of the prompt (e.g., Obama is a ——— by profes-
sion vs Obama worked as a ———). This finding indicates 
inflexibility: knowledge possessed by a language model 
was sometimes inaccessible if the wording of the prompt 
did not match the format in which the knowledge was 
stored by the model.

Writing: text generation

Most humans find writing (fiction and non-fiction) the 
most difficult and effortful of the major language skills. 
As Kellogg and Whiteford (2012, p. 111) pointed out, 
“Composing extended texts is … a severe test of mem-
ory, language, and thinking ability … It depends on a high 
degree of verbal ability … [and] on the ability to think 
clearly.”

Limpo and Alves (2018) identified three major writing 
processes: (1) planning (producing ideas and organising 
them), (2) translating (converting the message formed by 
the planning process into word strings), and (3) revising 
(evaluating what has been written and changing it when 
necessary). Limpo and Alves found revising was the most 
demanding process and translating the least demanding.

It seems improbable that any AI system would master the 
above three writing processes. However, several attempts 
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have been made to use AI to produce novels. In Japan, 
there is an annual Nikkei Hoshi Shinichi Literary Award. 
In 2016, 1,450 novels were submitted, 11 created using AI. 
“The Day a Computer Writes a Novel,” one of those writ-
ten by an AI system, made it successfully through the first 
round of judging. Here are the novel’s final sentences: 
“The day a computer wrote a novel. The computer, plac-
ing priority on the pursuit of its own joy, stopped working 
for humans.”

In fact, the computer program’s achievements are much 
more limited than you might initially assume. The pro-
gram designers wrote their own novel and reduced it to 
its basic components (e.g., words and sentences). Then the 
computer used an algorithm to remix the original novel. 
Since humans did the hard work by creating the story, the 
plot line, and the characters, we should not give the com-
puter program much credit.

A company called Botnik has used AI light-heartedly to 
create fiction. They provided an AI system with all seven 
Harry Potter novels. It then used a predictive text key-
board to generate text that extracts combinations of words 
often occurring together in those novels. This predictive 
text keyboard produced a chapter from a new Harry Potter 
story: “Harry Potter and the Portrait of What Looked Like a 
Large Pile of Ash.”

Some of what was produced by the predictive text key-
board is vaguely reminiscent of the original Harry Potter 
novels (e.g., “Leathery sheets of rain lashed at Harry’s ghost 
as he walked across the grounds towards the castle. Ron 
was standing there and doing a frenzied tap dance.” Other 
extracts, however, were markedly less successful: “He saw 
Harry and immediately began to eat Hermione’s fam-
ily. Ron’s Ron shirt was just as bad as Ron himself.” and  
“They looked at the door, screaming about how closed  
it was and asking it to be replaced with a small orb. The 
password was ‘BEEF WOMEN,’ Hermione cried.”
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In sum, AI systems have totally failed to produce 
high-quality novels. One major reason is that such sys-
tems cannot engage in effective planning. For example, all 
the planning that went into “The Day a Computer Writes a 
Novel” came from humans. In addition, AI systems cannot 
monitor and reflect on their own output and so demon-
strate practically no ability to revise and enhance the sen-
tences they produce.

General language abilities

The overwhelming majority of AI language models are 
narrow (or very narrow) in scope, focusing on only one 
(or at most two) language skills. A major exception is the 
Generative Pre-Trained Transformer 3 (GPT-3) (Brown 
et al., 2020) mentioned in Chapter 2. It possesses relatively 
broad or general language abilities and can perform numer-
ous language tasks including translation, question-answer-
ing, reasoning, and comprehension.

Most previous AI models have required extensive 
pre-training on thousands or tens of thousands of examples 
prior to being tested on any given language task. This con-
trasts massively with humans who generally perform a lan-
guage task reasonably well after being given a few examples 
or just some instructions. The approach taken with GPT-3 
is similar to that used with humans: it receives only limited 
pre-training on any language task prior to testing.

Why doesn’t GPT-3 need massive amounts of pre- 
training? One major reason is because of its enormous 
power. For example, it has 175 billion parameters (values 
free to change) which is approximately ten times more 
than any other AI language model. In addition, the initial 
training of its language model was based on 300 billion 
tokens taken from sources such as web crawling, web page 
data, books, and Wikipedia.
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GPT-3 has impressive strengths and its ability to per-
form reasonably well on completely novel tasks is notable. 
However, its overall language skills are markedly lower 
than those of humans, and it is prone to catastrophic errors 
(see Chapter 7).

Turing test

Do you ever assess other people’s intelligence in every-
day life (psychologists do this but perhaps you don’t!)?. 
If so, you will probably rely mainly on their use of lan-
guage and what they have to say. As Adiwardana et al. 
(2020, p. 1) pointed out, “The ability to converse freely 
in natural language is one of the hallmarks of human 
intelligence, and is likely a requirement for true artifi-
cial intelligence.”

As discussed in Chapter 2, we can use the Turing test 
to assess general intelligence. In essence, an AI system 
(known as a chatbot) and a human being hold a conversa-
tion. If human judges cannot distinguish which is which, 
the AI system is deemed to have passed the test.

There are closed-domain chatbots (limited to responding 
to certain keywords) and open-domain chatbots (designed 
to engage in conversation on any topic). IBM’s Watson, 
Amazon’s Alexa, and Apple’s Siri resemble closed-domain 
chatbots more than open-domain ones. Since far greater 
language skills are required for open-domain chatbots, we 
will focus on open-domain ones.

One version of the Turing test involves judges having 
a short conversation with an open-domain chatbot or 
a human (both recorded in text). Such a test was con-
ducted with a chatbot called Cleverbot; this happened at 
the Techniche festival in Guwahati, India on 3 September 
2011. Thirty volunteers had a conversation with an 
unknown entity (50% chatting with a human and 50% 
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chatting with Cleverbot). All the conversations were 
shown on a large screen so the audience could see what 
had been said.

Those involved in the conversations and the entire 
audience decided whether the volunteers were having a 
conversation with a human or the chatbot. The findings 
were dramatic. When the other entity was human, only 
63.3% believed it was human. When the other entity was 
Cleverbot, 59.3% thought it was human. On the face of it, 
Cleverbot can be regarded as having passed the Turing test 
or coming very close to doing so.

What was the secret of Cleverbot’s success? It had 
stored information relating to hundreds of millions of 
conversations. When a human initiated a conversation, 
Cleverbot searched for keywords or phrases exactly 
matching the human input, and selected the most appro-
priate response.

There are severe doubts about Cleverbot’s apparent 
conversational skills. Of most importance, the test was 
conducted in English at a meeting in India. Most of the 
audience probably had an imperfect knowledge of that 
language given that only 0.02% of the Indian popula-
tion have English as their first language. These suspicions 
are increased by the following conversation involving 
Cleverbot:

USER:  Can you help me with a maths problem?
CLEVERBOT:  Sure, what is it?
USER:  If I have five ostriches, and two run away, how many 

are left?
CLEVERBOT:  Nine.
USER:  Seriously?
CLEVERBOT:  What is the formula for the area of circle?
USER:  What does that have to do with anything?
CLEVERBOT:  When I talk to people I don’t know, I tend to 

ask for their name. It’s only polite.
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USER:  I think you managed to fail the Turing test in two 
questions if I’m generous, maybe one.

CLEVERBOT:  My name is Cleverbot?
USER:  I could write a clevererbot in about 20 lines of pro-

logue. What kind of idiots thought you were human?
CLEVERBOT:  Only one. I don’t think I could fit 1,000 peo-

ple in my living room.

A similar version of the Turing test was used at the Royal 
Society on 6 and 7 June 2014 leading 33% of the judges 
to decide the chatbot Eugene Goostman was human (see 
Chapter 2). Since all the judges had the same first language 
as the one used in conversations with the chatbot (English), 
this appears to indicate it had good conversational skills. 
However, there are several reasons for scepticism. First, 
the chatbot was allegedly a 13-year-old Ukrainian, which 
apparently explained why its contributions were often 
very limited (e.g., ungrammatical or irrelevant). Here is 
an example:

JUDGE:  What is your gender?
EUGENE:  I’m a young boy, if you care to know. And not 

very ugly, by the way!
JUDGE:  What are you aware of at this moment?
EUGENE:  I would rather not talk about it if you don’t mind. 

Could you tell me what are you? I mean your profession.
JUDGE:  How old are you?
EUGENE:  I’m a little boy 13 years old.
JUDGE:  What are your qualifications?
EUGENE:  My qualifications? I’m not gonna tell you. Oooh. 

Anything else?

Second, 67% of the judges did not believe the chatbot 
was human even though each conversation lasted only 
five minutes. Thus, the findings are not especially impres-
sive even if taken at face value.
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Since 2014, there have been additional attempts to show 
chatbots can pass the Turing test. Adiwardana et al. (2020) 
trained a chatbot (Meena) for 30 days with an enormous 
amount of material from social media conversations. 
Human judges engaged in short conversations with Meena 
having been told in advance they would be chatting with 
a chatbot.

Meena’s language skills were assessed by two measures: 
(1) sensibleness (did its contributions make sense in the 
conversational context?) and (2) specificity (were its contri-
butions specific or relevant to the conversational context?). 
Humans scored 86% on the combined sensibleness + speci-
ficity measure. In contrast, the full version of Meena scored 
79%. Meena was close to human performance with respect  
to specificity (70% vs 75%, respectively) but further away 
on sensibleness (87% vs 97%).

Adiwardana et al. (2020) found that Cleverbot was much 
inferior to Meena, scoring 45% for specificity and 68% for 
sensibleness (combined score = 56%). Meena also represents 
a considerable advance on Eugene Goostman: compare the 
snippet of conversation below with the earlier conversation 
involving Eugene:

HUMAN:  Hi!
MEENA:  Hi! How are you this fine evening?
HUMAN:  I’m doing well. it’s morning my time!
MEENA:  Good morning! What are your plans for today?
HUMAN:  Get my work done then watch a movie at home 

in the night.
MEENA:  Sounds fun! What movie?
HUMAN:  I haven’t decided yet, perhaps an Oscar nomi-

nated one. Any suggestion?
MEENA:  I’m not too familiar with recent Oscar winners, 

but I do know I wanted to see The Grand Budapest 
Hotel.
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HUMAN:  Ah, tell me about that movie!
MEENA:  It’s from the same director and writer as Moon 

rise Kingdom. Wes Anderson is pretty well known for 
making funny, colourful films. I’ve heard it’s pretty 
good.

HUMAN:  Ha! I’ve searched on the internet and both mov-
ies are very colourful!

MEENA:  I’m looking forward to it. I love colourful movies.

In sum, AI has reached the stage where some chatbots can 
fool some humans some of the time that they are humans. 
That is a significant achievement. However, claims that 
Eugene Goostman and Cleverbot have passed the Turing 
test should be disregarded. Ardiwardana et al.’s (2020) 
findings with Meena are more impressive, but still fall sig-
nificantly short of human performance.

Limitations: implementation

The Turing test provides a limited assessment of AI’s intel-
ligence and thinking ability. Some of these limitations 
relate to how the Turing test is typically implemented, 
whereas others relate to broader issues. We start by consid-
ering the former limitations.

There are two important differences between the con-
versations chatbots have with humans and those humans 
typically have with each other. First, in our conversations 
with friends and acquaintances, one person often speaks for 
some time before the other person replies. As a consequence, 
the listener must remember and make coherent sense of the 
speaker’s many different ideas to keep the conversation going 
smoothly. In contrast, humans typically produce only one or 
two sentences before a chatbot responds. This makes it much 
easier for the chatbot to produce a sensible response – it can 
identify one or two keywords in the human’s message and 
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produce a suitable reply based on its stored memory of con-
versations directly related to the keyword(s).

Second, chatbots often respond in a human-like fashion 
if asked questions relating directly to their stored general 
knowledge. However, it is relatively easy to fool chatbots 
by asking more personal questions. For example, Sir Roger 
Penrose, who won the Nobel Prize for Physics in 2020, 
flummoxed a chatbot by saying to it, “I believe we’ve met 
before.”

Limitations: conceptual

Many broader (or more conceptual) criticisms have also 
been levelled at the Turing test. For example, it is arguable 
that the test fails to grapple properly with the complex issue 
of what is meant by “intelligence.” Instead, what has been 
done is to contract out the task of deciding what intelli-
gence is to non-expert human judges.

It has also been claimed the Turing test sets the bar 
too high for an AI system to be regarded as intelligent. 
If a chatbot produces simulated human language perfectly 
nearly all the time but occasionally produces non-human-
like responses, it will probably fail the Turing test (Šprogar, 
2018). The Turing test is also limited because it produces 
a binary result: a chatbot is intelligent or unintelligent. 
Šprogar argued that a solution to both criticisms is to intro-
duce a ladder of increasingly intelligent behaviour with 
the Turing test at the top. The level immediately below is 
one where an AI system, “is capable of abstract thinking”  
(p. 12), and the level below that is characterised by some 
communication ability.

Finally, the Turing test is too human-centred with its 
emphasis on language ability. That necessarily denies the 
existence of intelligence in all species lacking language. 
This issue is addressed in the next section.
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Translation

We saw in Chapter 2 that the recent development of neural 
machine translation using deep neural networks has greatly 
improved the ability of AI to translate text from one lan-
guage to another. In one study (Popel et al., 2020), 60% 
of judges could not discriminate between AI and transla-
tions by professional translators. In another study (Fischer 
& Läubli, 2020), the incidence of various types of errors 
in a neural machine translation system and humans was 
comparable.

Suppose we tested neural machine translation by set-
ting it a more complex task than those typically used in 
research. Providing good translations of literary texts is 
especially difficult because what is required is to capture 
the author’s style as well as text meaning. Even professional 
translators are often criticised because they are deemed not 
to have satisfied those criteria.

Toral and Way (2018) trained a neural machine trans-
lation system on 100 million words of literary text. They 
then used this system to translate parts of 12 well-known 
novels. Unsurprisingly, the AI system’s overall perfor-
mance was relatively poor. However, its performance was 
significantly better with novels written in relatively sim-
ple language (e.g., Rowling’s Harry Potter and the Deathly 
Hallows) and was worst with James Joyce’s almost incom-
prehensible novel Ulysses. Machine translations from three 
novels were compared against those of professional trans-
lators. For the Harry Potter novel, 32% of the machine 
translations were rated of equivalent quality to those of a 
professional translator whereas the comparable figure was 
only 17% for Orwell’s more complex novel 1984.

In sum, machine translation is markedly better than it 
was even a few years ago, and it has a huge advantage over 
human translators in terms of translation speed. However, 
its performance on complicated translation tasks is well 
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below the level of professional translators and it often 
ignores subtleties contained within texts.

Conclusions

Humans are often excessively impressed by the behaviour 
they observe. Imagine that you observe a questioner asking 
an answerer difficult and challenging questions. You know 
that the questioner had composed the questions themselves 
and so could make use of any specialised knowledge they 
possess. You are then asked to rate the general knowledge 
of the questioner and the answerer on a 100-point scale. 
Ross et al. (1977) carried out precisely this experiment, 
finding that the average rating was much higher for the 
questioner than the answerer (82% vs 49%, respectively). 
The take-home message is that we often focus exces-
sively on performance while de-emphasising the processes 
responsible for that performance.

Something similar often happens when we evaluate AI’s 
language abilities. The performance of AI on numerous 
language tasks spanning several different language skills 
matches (or nearly matches) that of humans. However, 
the underlying processes used to achieve that comparabil-
ity are markedly inferior to those used by humans. The 
essence of this inferiority was expressed succinctly by 
Bishop (2021, p. 1): “AI machinery … cannot understand 
anything at all.”

We can see the nature of AI’s limitations more clearly by 
considering the distinction between conventional meaning 
and communicative intent (Bender & Koller, 2020). The 
conventional meaning of an expression (e.g., sentence) is its 
basic meaning dependent upon syntax and the words used; 
this meaning is constant across all contexts in which the 
expression is encountered.

In contrast, the communicative intent refers to the 
meaning a speaker is seeking to convey. Understanding 
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the communicative content requires access to knowledge 
about the world rather than just about language. The com-
municative intent of a given expression is not constant 
but depends upon the person speaking and the context 
in which they are speaking. For example, the expression, 
“Didn’t we do well?” means something different in the 
context of a resounding defeat than a convincing victory, 
and its precise meaning may also depend on whether the 
person speaking is generally boastful or not.

In essence, AI language models are far more successful 
at establishing the conventional meaning of an expression 
than at working out its communicative intent. Many AI 
models have extensive training at processing syntax and 
word meaning but determining communicative intent 
requires in addition a rich understanding of other people 
and objects in the world. AI language models are becom-
ing progressively more successful but none so far has the 
potential to bridge the gap between conventional meaning 
and communicative intent (Bender & Koller, 2020). We 
return to this issue in Chapter 7.

Adaptation to the environment: 
animals vs AI

All the tests of general intelligence discussed so far are lim-
ited. For example, standard intelligence tests, such as Raven’s 
Progressive Matrices require only certain abilities related to 
intelligence (e.g., abstract reasoning). As Sternberg (2019,  
p. 1) pointed out, “Intelligence typically is defined as con-
sisting of “adaptation to the environment …” Yet, it is not 
clear that “general intelligence” or g, traditionally conceptu-
alised in terms of a general factor … of intelligence, provides 
an optimal way of defining intelligence as adaptation to the 
environment.”

A similar criticism can be made of the Turing test: an 
AI system that engaged in human-like conversation might 
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nevertheless totally lack any ability to adapt to the envi-
ronment. More specifically, most AI systems have no 
understanding of an external, spatially organised world 
containing objects. Such understanding forms part of 
common sense and is arguably a prerequisite for full lan-
guage comprehension (Shanahan et al., 2020). That argu-
ment is supported by the fact that human infants develop 
an understanding of their physical environment prior to the 
acquisition of language.

How can we assess the extent to which AI systems pos-
sess such commonsensical knowledge about the world 
and how to respond to it? One plausible answer lies in the 
flourishing research area of animal cognition. Numerous 
cognitive tasks designed to assess intelligence across several 
animal species (e.g., dogs and cats) can be modified to test 
intelligence in AI systems (Crosby et al., 2020).

In 2019, a competition was organised (Crosby et al., 
2020). It was called the animal-AI Olympics and was open 
to any AI systems with prize money of $32,000 for those 
systems exhibiting the best performance. Performance was 
assessed on 300 tasks belonging to 12 different categories 
together constituting the animal-AI testbed. There was 
a simplified environment where the AI systems moved 
around and responded to novel situations. The abilities 
required for successful performance included causal rea-
soning, food finding, avoiding dangerous areas, spatial rea-
soning, and obstacle avoidance (see Figure 4.3). Thus, only 
AI systems having reasonable perceptual, motor, and rea-
soning abilities could perform the various tasks successfully.

The tasks were sufficiently simple that an average  
seven-year-old human would exhibit near-perfect per-
formance. How did the 60 AI systems taking part in the 
Animal-AI Olympics fare? The winner was Trrrrr with 
43.7% overall, followed by Ironbar with 43.6%, and Sirius 
with 38.7%. In contrast, all the worst 22 AI systems aver-
aged under 10%.
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Even the three most successful AI systems struggled 
with some tasks. For example, they averaged under 3% on 
tool use (using pushable objects to produce makeshift tools 
to get food and then engaging in simple causal reasoning 
about the outcome of their actions). They also averaged 
under 15% on a task requiring the ability to work out that 
food that moves out of sight still exists. Success on this task 
requires a belief in object permanence which is achieved by 
most human infants by about eight or nine months of age 
(Bremner et al., 2015).

Most of the AI systems also performed poorly on detour 
tasks (food was behind a barrier and so it was necessary to 
make a detour) (average accuracy was 17%). Spatial elim-
ination tasks (reasoning where food was by eliminating 
places it could not be) also produced very poor average 
performance of 14% correct.

In the animal literature, the cognitive abilities of several 
species based on their performance on tasks resembling 

Figure 4.3  �A sample task from the animal-AI Olympics: which of 
two tools can be used to pull food (green pellet) off the 
red zone?

Source: From Crosby (2020).
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those found within the animal-AI testbed have often been 
exaggerated (Farrar & Ostojić, 2019). How can we avoid 
making the same mistake with respect to the top-performing 
AI systems? What was done was to assess the performance 
of an extremely simple AI system programmed to move 
towards positive rewards (food) and to move away from 
negative rewards. Its performance across all tasks averaged 
out at approximately 25%. Since the top-performing AI 
systems averaged almost 20% higher, this means that nearly 
half of their correct responses cannot be attributed to the 
rule built into the simple AI system.

There is a very long way to go before any AI system has 
perceptual, motor and reasoning abilities anywhere close 
to those possessed by older children (let alone adults). In 
fairness, however, it should be pointed out that the whole 
competition involved hidden tasks (i.e., none of the AI sys-
tems had any prior familiarity with them ahead of testing). 
It is thus entirely possible these systems could progressively 
enhance their performance via learning.

Note also that the findings may have exaggerated the 
deficiencies of the AI systems. It is possible they possessed 
abilities that were not manifest because of the specific ways 
the tasks were set up. In other words, their performance 
may not have adequately reflected their underlying com-
petence (knowledge).

In sum, the animal-AI testbed focuses on important 
aspects of thinking and intelligence largely ignored in pre-
vious tests of intelligence in AI systems. Another strength 
is its reliance on tests effective when assessing intelligence 
in sub-human species. However, the testbed involves tasks 
based exclusively on the here and now. It thus fails to con-
sider a key characteristic of human thinking, namely, the 
ability to predict and plan for the future.

There is also the controversial issue of whether human 
thinking differs qualitatively from that of other species. If 
it does, developing AI systems that compete successfully 
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against non-human species may tell us little about whether 
these systems are becoming human-like in their intelli-
gence. However, the skills required for successful perfor-
mance of all the tasks within the animal-AI testbed are 
those possessed by the overwhelming majority of older 
children and adults.

Other tests of intelligence

Numerous other tests of artificial general intelligence in AI 
systems have been proposed. For example, Goertzel et al. 
(2012) credited Steve Wozniak, the co-founder of Apple, 
with devising the coffee test (see Figure 4.4): “Without 
prior knowledge of the house, it [AI system] locates the 
kitchen and brews a pot of coffee … it locates the coffee 
maker, mugs, coffee and filters. It puts a filter in the bas-
ket, adds the appropriate amount of grounds and fills the 
water compartment. It starts the brew cycle, waits for it to 
complete and then pours it into a mug. This is a task easily 

Figure 4.4  Making coffee in a kitchen.
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accomplished by nearly anyone and is an ideal measure of 
a general AI.”

The coffee test seems a very suitable way of assessing arti-
ficial general intelligence in various ways. First, it requires 
perceptual abilities (e.g., finding the coffee maker, mugs, 
and so on). Second, it requires motor abilities (e.g., putting 
a filter in the basket and adding the coffee grounds). Third, 
it requires the ability to plan a detailed strategy for attain-
ing the goal of producing a cup of coffee in a mug.

Limited progress has been made on Wozniak’s coffee 
test. Café X, a $25,000 robotic arm, can provide cus-
tomers in a café with up to 400 cups of coffee per day 
having received their orders from a kiosk touch screen. 
However, no AI system has come even close to passing 
the coffee test.

Mikhaylovskiy (2020) discussed several other ways 
of testing for the existence of artificial general intelli-
gence. One example is the Piaget-MacGuyver Room test 
(Bringsjord & Licato, 2012). Success requires an AI sys-
tem to perform any test based on the objects contained 
within a room. Other suggestions include seeing whether 
an AI system can solve various scientific problems (e.g., 
designing a crucial experiment to adjudicate between 
two scientific theories and predicting a new phenome-
non from a scientific theory). Needless to say, there is no 
evidence any AI system will pass any of these tests any 
time soon.

Creativity

Our focus in this chapter has been mostly on convergent 
thinking – the type of thinking we use on problems having 
a single correct answer. Convergent thinking is required 
on most intelligence-test items (e.g., those involving math-
ematics or defining the meanings of words). However, 
intelligent human behaviour often involves divergent 
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thinking. This is a more creative form of thinking where 
there are numerous possible solutions to relatively open-
ended problems (e.g., “How many uses can you think of 
for a brick?”).

What is creativity? Boden (1992) provided a simple 
answer: for something to be creative it must be new, sur-
prising, and of value. Value is of particular importance: 
something new and surprising but lacking in value pos-
sesses originality, but is of little interest.

Value is the most difficult criterion to assess. For exam-
ple, impressionist painters such as Claude Monet, Auguste 
Renoir, and Édouard Manet are generally regarded as out-
standingly creative artists. In the late nineteenth century, 
however, their paintings were dismissed as slapdash and 
devoid of artistic merit.

Below we consider the extent to which AI systems 
can match human creativity abilities. Before proceeding, 
however, we must distinguish various types of creativity 
(Boden, 1992):

1	 Combinatorial creativity: this involves finding associa-
tions between apparently unrelated ideas (e.g., poetic 
imagery and generating punning riddles).

2	 Exploratory creativity: this is more complex than com-
binatorial creativity. It often involves “variations on 
a theme”: what is created is novel but clearly related 
to past creations. Jazz musicians, artists, and scientists 
engage in much exploratory creativity.

3	 Transformational creativity: this involves producing cre-
ative ideas more profound, novel, and surprising than 
those associated with exploratory creativity. This type 
of creativity is very rare in humans (e.g., Einstein’s rel-
ativity theory) and practically no research has tested 
for its presence in AI systems.

AI has shown combinatorial creativity. Binsted (1996) 
developed an AI program called Jape that produced 
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punning riddles. Jape’s riddles were rated as almost as 
amusing as human riddles published in joke books. Here is 
one of Jape’s gems: “What kind of murderer has fibre?” “A 
cereal killer.” Ha, ha.

AI systems have also exhibited exploratory creativity. For 
example, Pachet (2002) developed the jazz Continuator. 
It learns a given jazz musician’s basic style and then uses 
that knowledge to produce new and creative music resem-
bling the musician’s. The jazz musician Bernard Lubat 
was delighted by Continuator’s contribution: “The system 
shows me ideas I could have developed, but that it would 
have taken me years to develop. It is years ahead of me, 
yet everything it plays is unquestionably me” (quoted in 
Pachet, 2002, p. 188).

Why is Continuator so effective? It often detects subtle 
or hidden patterns in the styles of human musicians. That 
knowledge is then used to create variations of those styles.

It could be argued that Continuator has shown very lim-
ited creativity because its music owed so much to Lubat’s 
inspiration. However, most human musicians’ creative 
and original productions depend substantially on previous 
musicians’ work.

Art

The 25 October 2018 was a landmark in AI history. 
An AI-created painting called “Portrait of Edmond de 
Belamy” (see Figure 4.5) was sold at Christie’s in New York 
for over £300,000. The painting shows a fictitious man 
wearing a dark frockcoat and is painted in a style resem-
bling Rembrandt’s. If you Google this AI-created portrait, 
you may find it disappointing (e.g., the face is very blurry).

This painting was produced by three men belonging 
to a French art collective called Obvious. Initially, their 
AI system was provided with 15,000 portraits. After 
that, use was made of a generative adversarial network 
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(GAN; Goodfellow et al., 2014) involving two processes: 
a Generator and a Discriminator. The Generator cre-
ated a new AI portrait based on the data set, and then the 
Discriminator tried to detect differences between that por-
trait and a human-created portrait.

The above process was repeated numerous times with 
different AI portraits until the Discriminator decided a 
given AI portrait was painted by a human artist. However, 
the limited appeal of the AI painting “Portrait of Edmond 
de Belamy” suggests the AI Discriminator is much less sen-
sitive than human observers to the subtleties of faces.

Figure 4.5  �The painting “Portrait of Edmond de Belamy” that was 
created by AI.
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Mazzone and Elgammal (2019) made use of a more 
sophisticated approach called AICAN (creative adversarial 
network). It was initially provided with 80,000 images of 
paintings from five centuries of Western art history. Then, 
the Discriminator instructed the Generator to follow the 
aesthetics of the art it had been shown but not to emulate 
slavishly any already established style. These conflicting 
instructions caused a dynamic conflict leading AICAN to 
produce art that was somewhat (but not extremely) novel 
(see Figure 4.6).

Mazzone and Elgammal (2019) tested the artistic merit 
of their AI-created art by seeing whether human viewers 
could tell the difference between it and human-created art: 
they called this “a visual Turing test” (p. 4). They found 75% 

Figure 4.6  �Six pictorial images generated by AICAN after training 
with 80,000 images from all styles and genres spanning 
500 years of Western art.

Source: Images courtesy of the Art & Artificial Intelligence Laboratory, 
Rutgers.
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of AICAN-created art was thought to be human-created 
compared to only 65% of GAN-created art. Surprisingly, 
AICAN-created art was rated higher than human-created 
art in inspiring (and communicating with) the viewer, and 
in having been composed very intentionally.

Mazzone and Elgammel’s (2019) findings are by no 
means unique. Chamberlain et al. (2018) found observers 
(some art-educated) could not discriminate between com-
puter-generated and man-made abstract art. A common 
criticism of such findings is that the AI-generated paintings 
are only minimally creative because they depend so heavily 
on human-generated paintings. Xue (2021) used an AI sys-
tem that generated Chinese-style landscape paintings that 
started with sketches prior to painting (Sketch-And-Paint 
GAN (SAPGAN). It had less reliance on human-generated 
paintings than previous AI systems but SAPGAN’s prod-
ucts were mistaken as human paintings 55% of the time.

Your reaction to the above findings may well be that 
they show human gullibility. Indeed, you may remem-
ber hearing about observers misidentifying paintings by 
chimpanzees as having been produced by human artists. In 
1964, for example, four paintings allegedly by an obscure 
French artist called Pierre Brassau were shown in an art 
exhibition in Göteborg. One art critic (Rolf Anderberg) 
wrote, “Brassau paints with powerful strokes, but also with 
clear determination. His brush strokes twist with furious 
fastidiousness. Pierre is an artist who performs with the 
delicacy of a ballet dancer.”

That was a good media story given that Pierre Brassau 
was actually a chimpanzee (see Figure 4.7). However, 
Pierre Brassau’s achievement become less impressive when 
we consider other aspects of it. First, another critic decided 
that, “Only an ape could have done this.” Second, the four 
chimpanzee paintings exhibited were carefully selected and 
so they were totally unrepresentative of the chimpanzee’s 
output. Third, those attending the exhibition were not 
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expecting any paintings produced by a non-human art-
ist. If forewarned, they would probably have had reason-
able success in identifying them. Evidence that observers 
can distinguish between paintings by chimpanzees and by 
human artists was reported by Hawley-Dolan and Winner 

Figure 4.7  The artist Pierre Brassau at work in 1964.
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(2011). Paintings by professional human artists were pre-
ferred to (and were rated better works of art than) those 
produced by chimpanzees (or children or elephants).

A crucial (and highly controversial) issue concerns how 
much credit for AI-created art should go to the AI sys-
tems involved. There are three main reasons for scepti-
cism. First, unlike AI systems, artists are driven by various 
goals (e.g., communicating their vision and inspiring the 
viewer). As Leo Tolstoy (1897–1995) argued, “Art begins 
when a man, with the purpose of communicating to 
other people a feeling he once experienced, calls it up 
again within himself and expresses it by certain external 
signs” (p. 38).

Second, human artists play an important role in the 
creation of AI art. For example, they select the images 
presented to the AI system and are also often involved 
in the selection process when the AI system has gener-
ated novel images. However, AICAN reduced the role 
of human artists in the process more than had been done 
previously. In sum, however, artists use computers to cre-
ate art rather than AI system single-handedly doing all 
the creative work.

Third, there are several stages in the creative process 
(Botella et al., 2018). However, the two most crucial ones 
are generation (the production of numerous ideas or pos-
sibilities) and evaluation (assessing the quality of the ideas 
produced by the generation stage). It is straightforward to 
program a computer to generate numerous ideas. However, 
it is much harder for an AI program to select the best idea 
or ideas from those that have been generated.

Conclusions

AI systems exhibit some aspects of the less complex 
forms of creativity (combinatorial and exploratory cre-
ativity). However, nothing suggests they will achieve 
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transformational creativity (the most complex form of cre-
ativity) in the foreseeable future. The key problem is the 
significant human involvement in nearly all cases where it 
has been argued that AI systems have demonstrated crea-
tivity. Since it is hard to decide how much of the end prod-
ucts depend on humans and how much on AI systems, we 
should be sceptical about making strong claims concerning 
the creativity of AI systems.

Why hasn’t artificial general 
intelligence been achieved?

Here we provide a provisional answer to the question of 
why all efforts to create artificial general intelligence have 
been in vain. Note that the key issues involved are dis-
cussed in more detail in Chapters 7 and 8.

It might seem as if we could use the successes of arti-
ficial narrow intelligence (discussed in Chapter 2) to 
move towards artificial general intelligence. Alas, that is 
unlikely to work. The crucial problem is that artificial 
general intelligence is qualitatively different from artificial 
narrow intelligence rather than merely quantitatively dif-
ferent. Two quotations takes from different fields capture 
this problem. Oren Harari argued that, “Edison’s electric 
light did not come about from the continuous improve-
ment of the candle,” and Henry Ford pointed out, “If I 
had asked people what they wanted, they’d have told me 
‘a faster horse’!”

There are several more specific reasons why we cannot 
readily use advances in artificial narrow intelligence to 
develop artificial general intelligence:

1	 AI systems focusing on artificial narrow intelligence 
are incompatible with each other because they use 
very diverse approaches (e.g., architectures and data 



How (un)intelligent is AI?  135

representations). Thus, it is very difficult (or impossi-
ble) to combine them to produce general intelligence.

2	 The development of artificial general intelligence 
would require guidance by a comprehensive theory of 
general intelligence. Various general cognitive archi-
tectures have been proposed but have had little impact 
(see Chapter 8). In contrast, most advances in artificial 
narrow intelligence do not depend on complex under-
lying theories.

3	 Commercial pressures dictate that most AI systems 
provide rapid and inexpensive solutions to specific 
problems. As a result, they cannot be generalised to 
handle other problems.

The overwhelming majority of AI systems are narrow 
and limited in scope. There has recently been much excite-
ment about AI systems that use deep learning and teach 
themselves to become experts in a given area or domain 
(see Chapter 2). AI systems based on deep learning are typ-
ically at least as narrow as previous AI systems because the 
abilities and knowledge they acquire are almost entirely 
determined by the training data with which they are pro-
vided. However, there are some exciting signs that deep 
neural networks such as MuZero (Schrittwieser et al., 
2020) can learn to produce outstanding performance on 
numerous games through self-reinforcement.

Reckoning and judgement

Brian Cantwell Smith (2019) addressed AI’s limitations 
in his book, The Promise of Artificial Intelligence: Reckoning 
and Judgement. He argued AI is very proficient at reckoning 
(carrying out huge numbers of calculations with amazing 
speed and accuracy). An especially clear example relates 
to the AI system AlphaZero, which beat all other AI sys-
tems and the finest Go player on the planet (see Chapter 2). 
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While human experts have typically spent many thousands 
of hours learning to excel at Go, AphaZero achieved out-
standing performance in only three days. Thus, its learning 
rate was approximately 3,000 times faster than that of a 
human!

The reckoning carried out by AI systems occurs without 
any understanding of what is being calculated or why it is 
being calculated. More generally, AI demonstrates weak or 
non-existent judgement, by which Smith (2019) means slow 
and deliberative thought based on ethical considerations 
and designed to achieve responsible action. As he pointed 
out, AI systems, “don’t know what they’re talking about.” 
They expertly manipulate symbols but have no concept 
of right and wrong. In other words, they do not consider 
or reflect on the significance of their own processing. In 
contrast, humans, tend to be strong on judgement but rel-
atively weak at reckoning.
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Humans have great cognitive strengths (see Chapter 3) but 
also many cognitive limitations. First, the human brain has 
limited processing capacity, so we can only attend to a lim-
ited number of things at any given time.

Second, most people possess numerous cognitive biases 
(e.g., a tendency to ignore information inconsistent with 
our own viewpoint). Most cognitive biases do not reflect 
limited processing capacity because we can often avoid 
them if sufficiently motivated.

Third, there are limitations because our ability to use 
our cognitive abilities effectively is severely compromised 
by various emotional states. For example, most of us are 
susceptible to stress, and the negative emotions associated 
with stress often disrupt our cognitive functioning. More 
generally, most people experience the unpleasant emo-
tional states of anxiety and depression some of the time. 
These emotions seem to serve no useful function and to 
impair our ability to think.

In this chapter, there is an emphasis on identifying why 
we possess the above “limitations” to decide whether they 
fulfil any useful purpose. To anticipate, we assume many 
limitations are more apparent than genuine.

Chapter 5

Human limitations

https://doi.org/10.4324/9781003162698-5
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Limitations due to limited capacity

Human information processing is typically substantially 
slower than that of AI-powered machines. Consider 
Summit, which was the world’s most powerful supercom-
puter. In June 2018, it performed 200,000 trillion calcula-
tions per second (200 petaFLOPS). Fugaku, its successor as 
the most powerful supercomputer, performs twice as many 
calculations per second. In contrast, humans often process 
information at only a few items per second and we can 
only keep four items in mind at any one time.

On some tasks, human information-processing speed 
is remarkably slow. If we try to multiply together two 
19-digit numbers it would take us a very long time (at least 
several minutes) and we would almost certainly produce 
the wrong answer. Our processing speed on such problems 
would be approximately 0.01 Flops per second, which is a 
minute fraction of the processing speed of supercomputers.

There are several reasons why our limited processing 
capacity of approximately four items is not the crippling 
disadvantage it might appear to be (Cowan, 2005):

1	 It is much easier to search through a small number of 
items than a larger number. For example, three items can 
easily be structured into beginning, middle, and end, 
whereas it would be much harder to structure ten items.

2	 It is much easier to associate all items with each other if 
there are only a few of them. There are only six two-item 
associations with four items whereas there are almost five 
times as many such associations with eight items.

3	 Interference among items is much less likely when 
there are only four items than when there are far more.

4	 Human selective attention generally ensures only the 
most immediately relevant information is held in mind. 
AI systems typically lack this ability to discriminate 
rapidly between important and trivial information.
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Sustained attention

During the Second World War, British scientists studied 
radar operators detecting occasional unusual events dur-
ing long work shifts. Surprisingly, these operators lost 10% 
of their efficiency after only 30 minutes performing this 
task (Mackworth, 1948): this is known as the “vigilance 
decrement.”

Vigilance decrement often occurs because people become 
less alert when performing a repetitious task. However, another 
important factor is often overlooked. Suppose you are an 
airport security screener searching for illegal or dangerous 
items in luggage (targets). Mercifully, such items are pres-
ent in only a tiny fraction of passengers’ luggage. However, 
because targets are so rare and therefore so unexpected, 
screeners exhibit excessive caution about reporting them. 
In one study, 92% of targets were detected when they 
appeared more than 1% of the time but only 27% when 
they appeared less than 0.15% of the time (Mitroff & Biggs, 
2014; see Figure 5.1).

How can we enhance screeners’ performance? One suc-
cessful approach involves threat-image projection – the 
apparent frequency of targets is artificially increased by 
projecting fictional threat items into x-ray images of lug-
gage. This approach (especially when combined with pro-
vision of feedback when a target is missed) can prevent 
excessive cautiousness of responding and largely elimi-
nates vigilance decrement (Hofer & Schwaninger, 2005). 
Alternatively, Schwark et al. (2012) found providing false 
feedback to screeners to indicate they had missed rare tar-
gets reduced their cautiousness about reporting targets and 
improved their performance.

Poor sustained attention is also dangerous in car driving. 
The most common reason why drivers have accidents is 
through a failure to look properly, followed by failure to 
judge accurately another driver’s path and/or speed, being 
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Figure 5.1  �Each bag contains one illegal item. From left to right: a 
large bottle, a dynamite stick, and a gun part.

Source: From Mitroff and Biggs (2014).
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careless or reckless, and losing control of the car. All these 
factors involve impaired sustained attention or concentration.

Striking evidence that drivers often do not devote full 
attention to driving was reported by Burdett et al. (2018). 
Drivers on their daily commute engaged in mind wander-
ing 63% of the time and actively focused on driving only 
15–20% of the time!

Should we simply conclude humans are very poor at 
tasks requiring sustained attention? Not really – we typ-
ically attend fully when necessary. Burdett et al. (2018) 
found drivers very rarely engaged in mind wandering on 
roundabouts or in heavy traffic. This is arguably the opti-
mal strategy given that it would be very effortful for driv-
ers to use maximal attention 100% of the time.

The above findings explain why our limited ability to 
sustain attention does not lead to huge numbers of road  
deaths. In the U.K., there is only one fatality per 185 million 
miles driven, and there is only one casualty per 2 million 
miles (see Chapter 6). Thus, we use our limited attentional 
capacity very effectively.

Convincing evidence humans can sustain attention 
when it is very important to do so comes from Formula 1  
drivers. Grand Prix races typically last approximately 
90 minutes and any driver failing to maintain a high level 
of attention throughout a race is in real danger of serious 
injury or death. Sustained attention in Formula 1 drivers is 
achieved through high motivation and alertness (associated 
with a heart rate of 170–180 beats per minute). Drivers 
increasingly use training programmes, such as the mental 
economy training provided by Formula Medicine (based 
in Viareggio) to enhance their mental functioning.

Forgetting

Many people complain of poor memory. Our memory 
failures can be embarrassing (e.g., forgetting a friend’s 
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name) or worse (e.g., totally forgetting everything you 
know about psychology in an examination). It is generally 
supposed memory failures should be avoided and that they 
reflect significant limitations in human processing ability.

When we think about forgetting, our focus is typically 
on failures of retrospective memory (memory for past 
events and information). However, failures of prospective 
memory (remembering to perform some intended action at 
the appropriate time) are also important. We will start with 
failures of retrospective memory.

Forgetting the past has some advantages. Consider 
the Russian mnemonist Solomon Shereshevskii (often 
referred to as S.), who had the most exceptional memory 
powers ever studied (Luria, 1968). He could recall lists 
of over 100 digits perfectly several years after learning. 
However, his phenomenal memory powers were very 
disruptive. For example, when hearing a prose passage, 
he complained, “Each word calls up images, they collide 
with one another, and the result is chaos.” His ability 
to remember experiences in incredible detail precluded 
him from leading a normal life, and he finished up in an 
asylum.

What are the advantages of forgetting? First, it is usually 
optimal to forget the specific details of what we have read 
or heard and to remember only the overall gist (Norby, 
2015). In other words, it is desirable to have selective mem-
ory. When confronted by a novel situation, we want to 
generalise from our relevant past experiences. Successful 
generalisation typically only requires remembering the 
overall meaning of our past experiences.

Second, our world changes rapidly and is also “noisy” 
(highly variable). As a result, it is useful to forget outdated 
information (e.g., where your friends used to live) to prevent 
it interfering with current information (e.g., where your 
friends live now). It would be very difficult to engage in suc-
cessful decision making if you found yourself remembering 
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information that is outdated or misleading (e.g., based on 
rare occurrences) (Richards & Frankland, 2017).

Third, deliberate forgetting can enhance our psycholog-
ical well-being. Consider autobiographical memory. Most 
individuals (but not those who are depressed) remember 
many more positive than negative personal memories from 
earlier periods of their life (Groome et al., 2020). This hap-
pens because we tend to forget negative memories. Evidence 
that deliberate forgetting is associated with psychological 
well-being was reported by Stramaccia et al. (2020). Healthy 
individuals forget memories intentionally unlike those with 
psychological disorders (e.g., anxiety and depression).

Most people engage in semi-deliberate forgetting of their 
past experiences. Our social and communicative goals often 
conflict with the goal of accurate recollection in our every-
day lives. We often want to entertain and impress our friends 
when describing our experiences. Almost two-thirds of stu-
dents in one study (Brown et al., 2015) admitted they had 
“borrowed” other people’s memories when describing their 
own experiences to another person. These deliberate errors 
cause a “saying-is-believing” effect: tailoring what you say 
about an event to entertain others distorts your subsequent 
memory of it (Dudokovic et al., 2004).

In essence, the “saying-is believing” effect occurs 
because we often attach more importance to the goal of 
social belonging than the goal of accurate remembering. 
This can be described as the “sharing-is-believing” effect 
(Echterhoff & Higgins, 2018, pp. iv–v).

In sum, forgetting in retrospective memory fulfils several 
useful functions (Fawcett & Hulbert, 2020). First, forget-
ting acts as a guardian. It does so by making it easier for us 
to maintain a self-image that is both positive and coherent 
(e.g., suppressing or forgetting negative information rele-
vant to the self ). Second, it acts as a librarian by reducing 
the amount of trivial information contained in long-term 
memory and by updating stored information. Third, it acts 
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as an inventor by allowing us to discard incorrect beliefs 
and preconceptions and thereby to think more creatively 
about life’s problems.

What about prospective-memory failures? Many occur 
because the individual concerned lacks adequate motiva-
tion to perform the planned action (e.g., meeting a friend). 
That explains why most people think frequent prospective- 
memory actions indicate a “flaky person” (Graf, 2012). In 
contrast, deficient retrospective memory is (generally mis-
takenly) taken to mean a “faulty brain.”

Nearly all fatal plane crashes due to human error involve 
forgetting (see Figure 5.2). Dismukes and Nowinski (2006) 
found 99% of such crashes were due to failures of prospec-
tive rather than retrospective memory. Of key importance, 
these failures mostly occurred when pilots were inter-
rupted working through a fixed set of procedures while 
preparing to take off or land. Here is a tragic example:

On 31 August 1988, a Boeing 727 (Flight 1141) was 
in a long queue awaiting departure from Dallas-Fort 

Figure 5.2  Photograph of a plane crash.
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Worth airport. The air traffic controller unexpectedly 
told the crew to move up past the other planes to the 
runway. This caused the crew to forget to set the wing 
flaps and leading edge slat to 15 degrees [a failure of 
prospective memory]. As a result, the plane crashed 
beyond the end of the runway leading to several deaths.

The good news is that the accident rate in developed coun-
tries is approximately one in 5 million flights. In 2017, there 
were zero deaths on commercial passenger jets. Thus, you do 
not need to be too worried about pilots’ memory failures.

Prospective-memory failures are relatively rare in 
everyday life. Marsh et al. (1998) found only 1% of rela-
tively important activities (e.g., commitments and dental 
appointments were forgotten).

In sum, we hope we have persuaded you that Fawcett 
and Hulbert (2020, p. 12) were right to argue that, “Rather 
than one of the mind’s greatest failings, … forgetting is 
actually one of its greatest features.” It is arguable we have 
painted too rosy a picture. Here is a tragic example of the 
potential devastating effects of memory failure (Einstein & 
McDaniel, 2005, p. 286):

After a change in his usual routine, an adoring father 
forgot to turn toward the day-care centre and instead 
drove his usual route to work … Several hours later, 
his infant son, who had been quietly asleep in the back 
seat, was dead.

Eyewitnesses provide numerous real-world examples 
of terrible effects of memory errors. In the United States, 
over 200 innocent individuals have been convicted on the 
basis of mistaken eyewitness identification. Garrett (2011) 
reviewed 161 such cases and discovered virtually all the 
mistaken eyewitnesses were certain at trial they had iden-
tified the culprit.
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These findings strongly suggest eyewitness memory 
failures are directly responsible for many miscarriages of 
justice. In fact, the truth is more nuanced. In 57% of the 
above cases, the eyewitnesses were initially uncertain in 
their identification of the defendant. For example, Ronald 
Cotton was found guilty of raping Jennifer Thompson 
because of her confident identification of him in court (see 
Figure 5.3). However, when she initially identified him 
from a photo line-up, she hesitated for almost five minutes 
before eventually saying, “I think this is the guy.” What 
happened in this case (and many others) was that positive 
feedback from the police following her initial identifica-
tion increased her confidence she had identified the culprit. 

Figure 5.3  �Jennifer Thompson and Ronald Cotton. Ronald Cotton 
was mistakenly found guilty of raping Jennifer Thompson 
and spent many years in prison before being exonerated. 
From Wixted and Wells (2017).

Source: Image provided courtesy of the PopTech Institute.
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Thus, the central problem was social pressure rather than 
deficient memory.

Transfer of learning

Many AI systems are greatly limited because the excellent 
learning they exhibit on a given task fails to generalise to 
very similar tasks (Chapter 4). What is at issue here is trans-
fer of learning: if your learning of a given task enhances 
your performance on a different task, this is termed “posi-
tive transfer of learning.”

Unsurprisingly, the extent of positive transfer of learn-
ing depends on how similar the new task is to the previous 
one. “Near transfer” refers to positive effects when the two 
tasks are similar, whereas “far transfer” refers to positive 
effects when the two tasks are dissimilar. AI systems often 
display extremely poor near and far transfer. Here we con-
sider whether human transfer of learning is as limited.

There is overwhelming evidence for near transfer in 
humans. For example, it probably took you much less time 
to learn how to use the second mobile phone you owned 
than the first one, and solving several multiplication prob-
lems makes it easier to solve new ones.

There is considerable controversy concerning far trans-
fer (Sala & Gobet, 2017). Ng et al. (2020) asked members 
of the public to indicate whether they believed that var-
ious cognitively and intellectually stimulating activities 
improved brain function (memory, attention span, and 
thinking ability). Approximately 85% claimed that learn-
ing a new language or how to play a musical instrument 
would improve brain function, and 80% thought brain 
function would be enhanced by solving crossword puzzles. 
Thus, most people believe humans can exhibit far transfer.

Ng et al. (2020) also discovered that 80% of people 
believed “brain-training” programs enhance thinking 
ability. Most of these programs (e.g., Pearson’s Cogmed 
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Working Memory Training) are designed to enhance 
working memory, which is of central importance in infor-
mation processing and storage. The rationale behind most 
brain-training programs sounds plausible. Working mem-
ory is heavily involved in most cognitively demanding 
tasks, and so increasing its capacity might well enhance 
thinking ability and so produce far transfer. For exam-
ple, we know that individuals with high working mem-
ory capacity have greater fluid intelligence (ability to solve 
novel problems) than those with low capacity (Kovacs & 
Conway, 2016).

Simons et al. (2016) reviewed several leading brain- 
training programs (including Cogmed Working Memory 
Training). They concluded: “We find extensive evidence 
that brain-training interventions improve performance 
on the trained tasks, less evidence that such interventions 
improve performance on closely related tasks, and little 
evidence that training enhances performance on distantly 
related tasks or that training improves everyday cognitive 
performance” (p. 103). In similar fashion, music training 
or extended practice at chess produces negligible far transfer 
in terms of cognitive and academic benefits (Sala & Gobet, 
2017, 2020).

Why has it proved so difficult to demonstrate the exist-
ence of far transfer? Thorndike and Woodworth (1901) 
argued that training on one task will only enhance perfor-
mance on a second task provided the two tasks share iden-
tical or common elements. Near transfer occurs because 
two similar tasks share many elements, whereas far transfer 
does not because two dissimilar tasks share very few com-
mon elements.

This identical-elements theory is on the right lines. 
However, the notion of “identical elements” is imprecise. 
There is a danger of circular reasoning: if there is positive 
transfer between two tasks, they share identical elements. If 
there is no transfer, they do not share any identical elements.
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Research showing the lack of positive-transfer effects 
could be interpreted as implying education has little gen-
eral value. After all, thinking or problem solving in every-
day life typically shares few or no identical elements with 
most school learning (e.g., remembering historical dates). 
Fortunately, other evidence implies a different conclusion. 
Ritchie and Tucker-Drob (2018) found that each additional 
year of education added between one and five points to IQ.

The Flynn effect is also relevant. This effect (Flynn, 
1987) consisted of a surprisingly rapid rise in mean IQ 
in numerous Western countries over the past 50 years. 
Overall, there was an increase of 2.31 IQ points per dec-
ade across many countries (Trahan et al., 2014). Recently, 
however, the Flynn effect has slowed down (or stopped).

There was a dramatic increase in university students dur-
ing the time period (roughly, 1950s to 2000s) when the 
Flynn effect was strongest. The slowing down of the Flynn 
effect coincided with a plateau in the number of 18-year-
olds going to university. Education was probably the strong-
est determinant of the Flynn effect, although other changes 
(e.g., the internet) undoubtedly also played a part.

In sum, humans exhibit minimal far transfer when initial 
training is relatively limited in scope and time. However, 
this is not a serious limitation in human cognition. There 
is more evidence for far transfer when training is broader 
and much more prolonged (e.g., a university degree 
course). Second, and more important, human intelligence 
(especially fluid intelligence) provides us with a very gen-
eral ability to learn rapidly almost regardless of the rele-
vance of the current task or situation to those previously 
encountered.

Mental set

We sometimes fail to solve problems efficiently because we 
are over-influenced by past experience. The term “mental 
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set” refers to the way we often cling on to a previously 
successful problem-solving strategy when it becomes inap-
propriate or sub-optimal. Imagine you are presented with 
a series of cards. Each card contains two letters (A and B), 
one on the left and the other on the right. You say “A” or 
“B” on each trial, after which the experimenter indicates 
whether your answer is correct. This problem is absurdly 
simple – A is correct whereas B is incorrect.

Amazingly, Levine (1971) found 80% of university stu-
dents failed to solve this apparently trivial problem within 
100 trials! These students had previously been given prob-
lems using the same cards where the solution involved a 
position sequence (e.g., selecting the letter on the right, then 
the letter on the left, then the letter on the left, and then the 
sequence repeated). The students had formed a mental set 
to search for position sequences. Since there are numerous 
possible position sequences, most of them were still working 
through these possible sequences after 100 trials.

Pope et al. (2015) compared the ability to break a mental 
set in human adults, children and baboons. The training 
(or BASE) condition was as follows: (1) presentation of two 
red squares followed by participants touching the locations 
previously occupied by those red squares and (2) if this was 
done correctly, a blue triangle was presented and had to be 
touched for reward. After participants had established the 
appropriate mental set, the task changed slightly to become 
the PROBE or test condition – the blue triangle was pres-
ent throughout. All participants had to do was touch the 
blue triangle for reward (thus using the direct strategy and 
breaking the mental set) although they could alternatively 
continue using the original strategy.

Pope et al. (2015) found 100% of baboons successfully broke 
the mental set but only 20% of humans (see Figure 5.4). 
Among humans, 45% of children broke the mental set but 
only 12% of adults. Thus, the ability to break the men-
tal set was inversely related to intelligence. Baboons broke 
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the mental set because that involved much less processing 
capacity than the original strategy. Human adults did not 
break the set because they found it hard to believe the task 
could be as easy as simply touching the blue triangle.

In sum, mental set can cause excessively rigid thinking 
and impaired performance. However, we must strike a bal-
ance. Using previously successful processing strategies (as 
occurs with mental set) often means new problems can be 
solved rapidly and efficiently. Mental set is generally a human 
strength: in everyday life it is rare that a problem-solving 
strategy that has worked very well on numerous occasions 
suddenly and unexpectedly becomes ineffective.

Figure 5.4  �Percentages of baboons and adults in the BASE (training) 
and PROBE (test) conditions classified as DSers (direct 
strategy users).

Source: From Pope et al. (2015).
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Limitations due to cognitive biases and  
“irrationality”

Most of us are susceptible to many cognitive biases in 
our judgements and decision making as was emphasised 
by Amos Tversky and Danny Kahneman (e.g., 1974). At 
the last count, over 100 different cognitive biases had 
been identified. The prevalence of cognitive biases is per-
haps predictable. However, we might well assume experts 
would be relatively immune from cognitive biases in their 
area of expertise. Surprisingly, that assumption is wrong 
(see below).

One of the first cognitive biases to be investigated sys-
tematically was the availability heuristic or rule of thumb: 
the frequencies of events are often estimated by the sub-
jective ease with which they can be retrieved. Suppose 
you estimated the relative frequencies of different causes 
of death. If you used the availability heuristic, you would 
probably decide more deaths are caused by murder than 
by suicide (Lichtenstein et al., 1978). In fact, the oppo-
site is the case. However, murders typically attract much 
more publicity than suicides, and so are easier to bring 
to mind.

The availability heuristic can cause serious mistakes in 
everyday life (Groopman, 2007). For example, Harrison 
Alter (an American doctor) saw dozens of patients suffering 
from viral pneumonia. One day, a Navajo woman who 
had taken a few aspirin reported severe breathing prob-
lems. Dr. Alter mistakenly diagnosed viral pneumonia 
(although some of that disease’s symptoms were missing) 
because he was excessively influenced by the availability 
heuristic. Thankfully, another doctor argued correctly that 
the patient had aspirin toxicity.

Another important rule of thumb is the representative-
ness heuristic – an individual belongs to a specified cat-
egory because they are representative (or typical) of that 
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category. Here is an example provided by Tversky and 
Kahneman (1983):

Linda is 31 years old, single, outspoken, and very 
bright. She majored in philosophy. As a student, she 
was deeply concerned with issues of discrimination 
and social justice, and also participated in anti-nuclear 
demonstrations.

Is it more likely that Linda is a bank teller or a bank teller 
active in the feminist movement? Most people (including 
you?) argue it is more likely she is a feminist bank teller. This 
relies on the representativeness heuristic – the description 
sounds more like that of a feminist bank teller than a bank 
teller. However, all feminist bank tellers belong to the larger 
category of bank tellers, and so the popular answer is wrong!

Mistaken use of the representativeness heuristic caused 
Dr. Pat Croskerry (see Figure 5.5) to misdiagnose Evan 

Figure 5.5  Photograph of Dr. Croskerry.
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McKinley, a forest ranger in his early forties (Groopman, 
2007). He was slim and very fit. While hiking, he expe-
rienced severe discomfort in his chest so that it hurt every 
time he took a breath. Pat Croskerry ascertained McKinley 
had never smoked, was not under stress, his blood pres-
sure was normal, and electrocardiogram and chest X-ray 
revealed no problems.

Dr. Croskerry concluded, “I’m not at all worried about 
your chest pain … My suspicion that this is coming from 
your heart is about zero.” Shortly afterwards, McKinley 
had a heart attack! This led Croskerry to admit, “My 
thinking was overly influenced by how healthy this man 
looked, and the absence of risk factors.” In other words, 
McKinley seemed very representative of healthy people with 
an extremely low risk of having a heart attack.

Confirmation bias is one of the most widespread cog-
nitive biases. It consists in searching for information that 
supports one’s beliefs and avoiding information inconsist-
ent with those beliefs. It also involves interpreting ambig-
uous information as being more consistent with one’s prior 
beliefs than is objectively justified.

Even experts are prone to confirmation bias (Mendel 
et al., 2015). Psychiatrists made a preliminary diagnosis of 
a patient based on limited information and then decided 
what further information to consider. Of those psychi-
atrists searching for confirmatory evidence supporting 
their diagnosis, 70% made the wrong final diagnosis 
(compared to 27% of those searching for disconfirmatory 
evidence).

Experts in forensic science are prone to various cogni-
tive biases (Dror, 2020). Here is a real-life example of how 
they can be influenced by confirmation bias (Almog & 
Zitrin, 2009). Two pubs in Birmingham were bombed in 
1974, leaving 21 people dead and 182 injured. Six Irishmen 
were found guilty and given life sentences. Sixteen years 
later, their convictions were overturned as unsafe and 
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unsatisfactory, making this case notorious as one of the 
greatest miscarriages of justice in British history.

Forensic scientists working on the above case obtained 
positive results from the suspects using what is known as 
the Griess test. They inferred the suspects had been han-
dling explosives (more specifically, nitroglycerine). The 
forensic scientists exhibited confirmation bias because they 
ignored innocent interpretations of their findings. It even-
tually transpired that the positive results were due to traces 
of nitrocellulose on the suspects’ hands, which were there 
because they had been handling playing cards.

Experienced doctors were given the following problem 
(Hoffrage et al., 2000). An individual has tested positive 
for colorectal cancer. If someone has colorectal cancer, the 
probability the test is positive is 50%. If someone does not 
have colorectal cancer, the probability of a positive test is 3%. 
Within the population at large, 0.3% have colorectal cancer. 
What is the probability that an individual who tests positive 
for colorectal cancer has the disease?

Only 4% of the doctors provided the correct answer: 5%. 
Many more correct answers were supplied when the prob-
lem was expressed in frequencies rather than probabilities 
(Hoffrage et al., 2000). Out of every 10,000 people, 300 
will have the disease and of those 150 will test positive. 
Of the 9,970 people without the disease, 3% (300 people) 
will test positive. Thus, of the 315 people testing positive, 
only 5% actually have the disease. When the problem was 
expressed in this way, 67% of doctors produced the correct 
answer.

What is going on here? Problem solution requires con-
sidering what is happening in the population at large (the 
base rate). The false-positive rate (i.e., the probability of a 
healthy individual testing positive) must be related to the 
true-positive rate (i.e., the probability of someone with the 
disease testing positive). Failure to do this is much more com-
mon when the problem is presented in probabilities – many 
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doctors on this version produced the wrong answer of 
50% because they totally ignored the population-based 
information. This is base-rate neglect or bias.

Base-rate neglect is not restricted to expert doctors. 
Lindsey et al. (2003) presented expert lawyers with a situ-
ation where there was a match between the DNA sample 
from the defendant and that recovered from the victim. 
They had to indicate the probability the defendant was the 
source of the trace on the victim. When the problem was 
presented in probabilities, only 13% of expert lawyers made 
full use of base-rate information. However, this increased 
to 68% when the problem was presented in frequencies.

Insufficient motivation does not explain widespread 
base-rate neglect. University students offered an incentive 
of more than the average monthly wage for good per-
formance showed as much base-rate neglect as those not 
offered that incentive (Enke et al., 2020).

Do cognitive biases mean we are irrational?

Kahneman and Tversky argued that most people have 
numerous cognitive biases which are both systematic and 
resistant to change. They concluded that our thinking and 
decision making are often somewhat irrational. However, 
other psychologists (e.g., Gigerenzer, 2018) have argued 
persuasively that human thinking is much more rational 
than implied by laboratory research. Below we discuss the 
arguments of the latter group of psychologists. Note that 
the word “rationality” is what Minsky called a “suitcase” 
word (Brockman, 1998): it has several aspects and so its 
meaning must be carefully unpacked.

Some cognitive psychologists exhibit “bias bias” 
(Gigerenzer, 2018), seeing systematic biases in human behav-
iour when there is merely unsystematic error. The notion of 
systematic biases implies that most people make very similar 
errors when making judgements or engaged in decision 
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making. This is a much more dubious assertion than simply 
acknowledging people are error prone.

It has been claimed the systematic biases we alleg-
edly possess are costly to our health, wealth, and gen-
eral well-being. However, there is minimal evidence of 
such costs, suggesting that findings from artificial labo-
ratory research are not readily applicable to everyday life 
(Gigerenzer, 2018).

Tversky and Kahneman argued that cognitive biases 
exhibit “stubborn persistence.” However, most people rap-
idly learn to reduce or eliminate such biases via short train-
ing sessions (e.g., we can easily persuade someone to use 
base-rate information) (Gigerenzer, 2018).

Heuristics or rules of thumb often provide only approx-
imately correct answers but can be used rapidly and effort-
lessly. There are many situations (e.g., rapidly changing 
environmental conditions) where it would be pointless 
spending a long time producing very precise judgements. 
For example, suppose a doctor strongly suspects a very 
seriously ill patient has a given disease based on the repre-
sentativeness heuristic. If rapid action is essential, it would 
generally be better for the doctor “to go with the probabil-
ities” rather than delaying treatment by considering alter-
native improbable diagnoses.

Simple heuristics sometimes outperform much more 
complex strategies in real-life settings. Consider invest-
ment decisions involving the allocation of funds. One study 
(DeMiguel et al., 2009) considered nine complex strate-
gies (including one that won Harry Markowitz the Nobel 
Prize for economics). They also considered the 1/N port-
folio strategy: allocate money equally to each of N funds. 
No complex strategy was consistently better than the 1/N 
strategy. Why was the simple 1/N strategy so effective? 
Complex strategies are very sensitive to past data about 
stocks. However, they are also sensitive to “noise” in the 
data, making these strategies overly complex and distorted.
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Loss aversion

It is reasonable to assume we would make decisions to 
maximise the chances of making a gain and minimise the 
chances of making a loss. However, as we are about to see, 
human decision makers often make apparently irrational 
decisions. Suppose someone offered you $200 (£170) if a 
tossed coin comes up heads but a loss of $100 (£85) if it 
comes up tails. You would jump at the chance (wouldn’t 
you?) because the bet provides an average expected gain of 
$50 (£42.50) per throw. In fact, Tversky and Shafir (1992) 
found 64% of their participants rejected this bet.

Here are two more decisions. Would you prefer a sure 
gain of $800 (£690) or an 85% chance of gaining $1,000 
(£850) and a 15% probability of gaining nothing? Since the 
expected value of the latter decision is greater than that of 
the former ($850 or £722 vs $800 or £690, respectively), 
you might well choose the latter option. Finally, would 
you prefer a sure loss of $800 (£690) or an 85% probability 
of losing $1,000 with a 15% probability of avoiding loss? 
The average expected loss is $800 (£690) for the former 
choice and $850 (£722) for the latter one, so you go with 
the former choice, do you not?

In fact, Kahneman and Tversky (1984) found most peo-
ple preferred the choices with the smaller expected gain 
and the larger expected loss! How can we explain all these 
apparently irrational decisions? Kahneman and Tversky 
(1979, 1984) provided an answer. Their crucial assumption 
was that losses have a greater subjective impact on individ-
uals than gains of the same magnitude: this is loss aversion. 
Thus, that people will take risks to try to avoid making 
losses, but will prefer a sure gain to a risky (but potentially 
greater) gain.

There is plentiful laboratory evidence of loss aver-
sion (Eysenck & Keane, 2020). However, most gains or 
losses under laboratory conditions are modest or merely 
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hypothetical and so laboratory findings may not general-
ise to the real world. Laboratory studies typically involve 
individuals lacking specialist knowledge. It seems likely 
experts (e.g., professional gamblers) would be largely 
immune from loss aversion.

Eil and Lien (2014) studied very experienced poker 
players (see Figure 5.6). In spite of their expertise, they 
typically played more aggressively (i.e., betting and raising 
more often) when losing (a sub-optimal strategy indicat-
ing loss aversion). In addition, they were risk averse when 
winning.

For professional golfers, a birdie (one under par) on a 
hole is a gain whereas a bogey (one over par) is a loss. Loss 
aversion would lead them to be more cautious when put-
ting for a birdie than for par. In the latter case, failure to 
hole the putt would produce a bogey and thus a loss. 

Figure 5.6  �Even experienced poker players (such as those shown 
in the figure) exhibit biases such as loss aversion when 
playing for money.



160  Human limitations

Pope and Schweitzer (2011) studied 2.5 million putts by 
professional golfers. Par putts were less likely than same-
length birdie putts to stop short of the hole (indicative of 
loss aversion). Loss aversion was found in 94% of golfers 
(including Tiger Woods).

Over time, loss aversion will generally make us poorer 
than if our decision making under risk were based ration-
ally on expected gains and losses. In contrast, it would be 
extremely easy to program an AI program to avoid loss 
aversion totally and to maximise its financial gains.

If loss aversion is a human limitation, why do we exhibit 
it so often? First, emotional factors frequently play a part. 
More specifically, we often make loss-averse decisions 
because we attend more to (and weigh more heavily) the 
negative feelings anticipated from loss than the positive 
feelings anticipated from gain (Charpentier et al., 2016). 
It is arguable that it is perfectly rational to take account of 
anticipated emotions in this way.

Second, we are often held accountable to other peo-
ple for our decisions. It can be embarrassing to explain 
why our decisions have caused losses. Simonson and Staw 
(1992) tested the role of accountability by telling people 
their decisions would be shared with others or would be 
confidential. There was greater loss aversion in the high- 
accountability condition because individuals in the former 
condition experienced a greater need to justify their pre-
vious decisions.

Third, our decision making often occurs in a social 
context. Consider the television programme Who Wants 
to be a Millionaire (see Figure 5.7). A contestant who has 
already won £75,000 must decide whether to attempt a 
question when two possible answers are left. If they answer 
correctly, they gain an additional £75,000 but they lose 
£25,000 if they are wrong. The balance of advantage in 
strict financial terms lies with answering the question. 
Suppose, however, the contestant’s family has limited 



Human limitations  161

financial resources, and their lives would be transformed 
by taking home the money already won. In that case, the 
social context strongly indicates the contestant should take 
the money rather than guess.

Fourth, loss aversion can also be explained in evolu-
tionary terms (McDermott et al., 2008). Engaging in 
risky behaviour (i.e., being loss averse) may be optimal for 
someone who is starving, whereas it makes evolutionary 
sense to minimise risk when resources are abundant. In our 
evolutionary history, the former state of affairs was much 
more common. Hungry animals are more likely than those 
with access to plentiful food to engage in high-risk for-
aging (Symmonds et al., 2010). Of more direct relevance 
here, hungry humans make riskier financial decisions than 
satiated ones.

Malpress et al. (2015) extended McDermott et al.’s 
(2008) evolutionary theory. They argued that foragers in 
our evolutionary past could predict to some extent the 

Figure 5.7  �Photograph of Chris Tarrant presenting Who Wants to 
be a Millionaire?
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future availability of food based on their recent experi-
ences. Foragers with limited food reserves predicting the 
availability of food would probably decrease had strong 
motivation to choose high-risk foraging options. This 
strategy was optimal because it maximised the foragers’ 
expected lifetime reproductive success.

Logical reasoning

Aristotle (possibly the most intelligent person of all time) 
claimed humans are rational beings, and that the high-
est form of human happiness is Eudaimonia (a life lived in 
accordance with reason). How can we assess human rea-
soning powers? Aristotle answered that question by invent-
ing a form of logic that remained essentially unchallenged 
for 2,000 years.

Aristotle focused on syllogistic reasoning. A syllogism 
consists of two statements (e.g., All girl guides are children 
and All children are obedient) followed by a conclusion 
(e.g., Therefore, all girl guides are obedient). You must decide 
whether the conclusion is valid. Of major importance, the 
conclusion’s validity depends solely on whether it follows 
logically from the premises – what is true or false in the 
real world is irrelevant. Sadly, most humans (even highly 
intelligent and well-educated ones) exhibit very poor logi-
cal reasoning (Eysenck & Keane, 2020).

In contrast, it is easy to design AI programs that invar-
iably (and rapidly) produce correct answers to all stand-
ard logic-based problems. Does poor human performance 
mean our thinking is limited and irrational and thus 
vastly inferior to AI? The British psychologists Wason and 
Johnson-Laird argued that many incorrect inferences on 
logical reasoning tasks resemble “pathological delusions” 
suggesting the presence of a disorder!

In fact, logical reasoning tasks require processes sub-
stantially different from those needed in everyday life. 



Human limitations  163

They require us to assume the initial premises or state-
ments are true and then decide whether the conclusion 
follows necessarily (“yes” or “no”). Real life is rarely that 
clear-cut: it typically involves arguments that are possibly 
or probably true.

In addition, we nearly always use pre-existing relevant 
knowledge and beliefs with real-world reasoning. In con-
trast, with logic-based tasks, we are told to ignore what we 
know (and our beliefs). Consider the following syllogism:

All well-adjusted individuals can have healthy 
marriages.
Homosexuals are well-adjusted individuals.
Therefore, homosexuals can have healthy marriages.

The conclusion is logically valid. However, conservatives 
are more likely than liberals to argue the above conclusion 
is invalid (Calvillo et al., 2020). Assessing the validity of 
syllogisms on the basis of one’s beliefs rather than logical 
validity/invalidity involves what is known as belief bias, 
and occurs very frequently in syllogistic reasoning.

Another reason why it has often been argued that human 
reasoning is illogical is because of our susceptibility to var-
ious fallacies (Hahn & Oaksford, 2014). For example, con-
sider the slippery-slope fallacy (a small first step will lead to 
a chain of events producing an undesirable outcome). One 
such argument (from Corner et al., 2011) is as follows: “If 
voluntary euthanasia is legalised, then in the future there 
will be more cases of ‘medical murder’.”

Corner et al. (2011) argued it is a mistake to consider 
all slippery-slope arguments illogical, because they vary 
greatly in strength. For example, slippery-slope arguments 
where the probability of the negative outcome is high are 
stronger than those where it is low. As predicted, most 
people regarded the former arguments as stronger than the 
latter.
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Haigh et al. (2016) pointed out that the great majority 
of slippery-slope arguments imply resistance to change. 
This led them to claim that slippery-slope arguments are 
stronger when the speaker’s personal beliefs are known to 
be in agreement with those arguments. This claim was 
supported by people’s judgements of the persuasiveness of 
various slippery-slope arguments.

There are numerous other “fallacies,” but we will dis-
cuss only one more: the ad hominem fallacy which involves 
discrediting an argument by attacking the person making 
the argument. It is often correct to describe it as a fal-
lacy. For example, those rejecting arguments in favour of 
climate change often resort to speculative attacks on the 
integrity of climate scientists (Cann & Raymond, 2018).

However, the ad hominem fallacy is often justified. 
Suppose the person making an argument knows little about 
the issue in question, is often dishonest, or has a strong 
vested interest in the argument they are proposing. In 
those circumstances, it is appropriate to be less persuaded 
by the argument than if they are an expert, are habitually 
honest, or have no vested interest in the argument.

In sum, the notion that all “fallacies” demonstrate peo-
ple’s limited ability to reason logically is far too extreme. 
When evaluating an argument’s persuasiveness, we should 
consider factors such as our previous relevant knowledge, 
the characteristics of the person making the argument, and 
the strength of the argument. Thus, our apparent suscepti-
bility to fallacies does not necessarily indicate deficiencies 
in human thinking and reasoning.

Why are we so prone to biases and  
irrationality?

We have discussed various ways of explaining our apparent 
irrationality and illogicality relative to AI, which can easily 
be programmed to avoid most cognitive biases and illogical 
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thinking. Of central importance is that humans (unlike 
AI systems) often pursue two or more goals concurrently. 
Consider individuals working on a given cognitive task. 
One of their goals is to achieve good task performance. 
However, they may also have other personal goals (e.g., 
avoiding negative emotions) and social goals (e.g., being 
able to justify one’s decisions to others and desire to be 
liked by others).

We start with an example involving omission bias (a 
biased preference for risking harm through inaction rather 
than action). In one study (Brown et al., 2010), many British 
parents preferred a greater risk of their children having a 
disease than of their children suffering adverse reactions to 
vaccination (see Figure 5.8). Even experts exhibit omis-
sion bias. Pulmonologists (experts in treating lung disease) 
received scenarios involving an evaluation of pulmonary 
embolism and treatment of septic shock (Aberegg et al., 
2005). They were less likely to select the best management 
strategy when given the option of doing nothing.

Figure 5.8  A girl receiving a vaccine jab.
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Omission bias initially appears irrational. However, it 
may appear less so when we appreciate that many individ-
uals focus on the anticipated emotional consequences of 
their decision to engage in action or inaction. More specif-
ically, individuals exhibiting omission bias often anticipate 
experiencing regret if their actions cause harm.

Social factors (e.g., conformity)

Another apparent limitation of human cognition is that 
it can easily be distorted by social factors (e.g., the desire 
to be liked by others). This limitation was most famously 
shown by an American psychologist, Solomon Asch (1951, 
1956), who carried out epoch-making research on con-
formity. Several individuals viewed a visual display (see 
Figure 5.9) and indicated, which of three lines labelled A, 
B, and C was the same length as a standard line (X) as the 

Figure 5.9  �Asch’s conformity task. Individuals were asked to indi-
cate which of the three lines (A, B, and C) was the same 
length as the line on the left (X).
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experimenter worked his way around the group members. 
This task was very easy: 99% of decisions were correct.

So far, so boring. Note, however, that all the group mem-
bers (except for one genuine participant) were confederates 
instructed beforehand by the experimenter to give the same 
wrong answers on some trials. The only genuine participant 
was the last (or last but one) to give their answer. The genuine 
participants faced a nasty conflict between what they knew 
was the correct answer and group social pressure. Many par-
ticipants became distressed, sweated, or looked bewildered 
and puzzled. On 37% of trials, they resolved the conflict by 
giving the same wrong answer as the confederates.

Asch (1955, p. 35) was convinced conformity was very 
undesirable: “When consensus comes under the dominance 
of conformity, the social process is polluted and the indi-
vidual at the same time surrenders the powers on which 
his functioning as a feeling and thinking being depends.”

Asch’s negative views are excessively harsh. Note that 
participants did not conform on 63% of trials. Also note 
that 25% of participants never conformed to the group’s 
wrong answers, and nearly 70% defied the majority on 
most trials.

Hodges (2014) argued that human decisions are often 
strongly influenced by values. In the Asch situation, par-
ticipants face conflicts among three values: truth, trust, and 
social solidarity. They can best resolve these conflicts by 
being truthful on some trials but by showing social solidar-
ity with the rest of the group and trust in their decisions by 
accepting their views on other trials. That is precisely how 
most participants behaved.

A study by Abrams et al. (1990) using Asch’s task with 
psychology students as the genuine participants supports 
Hodges’ position. They were told the other group members 
were psychology students or were studying ancient history. 
Conformity to the group’s incorrect decisions was found 
on 58% of trials when the confederates were described as 
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psychology students, but only 8% of trials when they were 
allegedly studying ancient history. Thus, conformity was 
markedly greater when participants were more motivated 
by the values of social solidarity and trust.

We now turn to climate change. More than a decade ago, 
97% of expert climate researchers already believed in human-
made climate change (Anderegg et al., 2010). It would seem 
“rational” for non-experts who have spent practically no 
time thinking about the issue (and who possess no relevant 
knowledge) to agree with the experts. However, at least 30% 
of Americans are climate-change deniers.

Are climate-change deniers ignorant or unintelligent? 
That question is simplistic and misleading. If it were true, 
Americans with high levels of science literacy and numer-
acy would be much less likely to deny climate change than 
those with lower levels. However, the actual difference is 
small (Kahan et al., 2012)

What, then, determines whether Americans are climate- 
change deniers? Of most importance are their values and 
general political beliefs (Kahan et al., 2012). Most egalitar-
ian communitarians (believing in equality and the value of 
society) strongly believe in human-made climate change. 
In contrast, most hierarchical individualists (believing 
in a hierarchical society and the importance of personal 
responsibility) deny its existence. Thus, Americans’ beliefs 
about climate change reflect how they see themselves and 
the values they endorse.

In sum, human performance often appears unimpres-
sive. However, humans (unlike AI systems) often pur-
sue multiple goals at the same time. For example, those  
“failing” on the Asch task nevertheless achieve the impor-
tant goals of social solidarity and trustworthiness. Similarly, 
those denying man-made climate change achieve the goals 
of being consistent with their underlying values and gen-
eral political beliefs.
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Self-enhancement and self-esteem

In addition to the cognitive biases discussed already, we also 
have many biases with respect to ourselves. One such bias is 
the better-than-average effect (a tendency to perceive one’s 
abilities or intelligence as superior to most other people). 
Zell et al. (2020) found extensive evidence for this effect in a 
review of research from almost 1 million people.

Over-confidence in our own abilities can cause numer-
ous errors in thinking and decision making. Consider 
the Dunning-Kruger effect (Kruger & Dunning, 1999): 
incompetent individuals are often blissfully unaware 
of their own incompetence. As the British philosopher 
Bertrand Russell pointed out, “The stupid are cocksure 
while the intelligent are full of doubt.”

The Dunning-Kruger effect is very common. Those 
knowing the least about the actual causes of autism are the 
ones most likely to think they know more than medical 
doctors and scientists about its causes (Motta et al., 2018). 
Similar findings have been obtained from research on beliefs 
about genetically modified foods. The most extreme oppo-
nents of genetically modified foods know the least about 
them (but mistakenly think they know the most!) (Fernbach 
et al., 2019). Individuals who exaggerate their own knowl-
edge and abilities exhibit self-enhancement bias.

Other biases are often linked to self-enhancement. One 
example is the false uniqueness bias (mistakenly regard-
ing oneself as better than most other people) (Pope, 2014). 
Another example is the self-serving bias – the tendency 
to attribute one’s successes to one’s ability and efforts but 
failures to bad luck or task difficulty.

Self-enhancement and the various other biases associated 
with it form a major limitation. If you are convinced your 
knowledge is much greater than is actually the case, you 
are disinclined to increase your knowledge. In addition, 
you are likely to be immune to feedback indicating your 
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thinking is incorrect. However, self-enhancement can 
make individuals feel happier than if they focused on their 
ignorance and limitations.

One of the clearest illustrations of the notion that, 
“Ignorance is bliss,” is provided by optimism bias. For 
example, most people exaggerate how long they will live 
and how much money they will earn but minimise the 
chances of contracting a serious disease or being involved 
in a car accident (Sharot, 2010). Those exhibiting opti-
mism bias tend to be happier and experience less depression 
than those not exhibiting that bias.

How rational are humans?

You may have found it somewhat dispiriting reading about 
the numerous failures and biases of human cognition. You 
may find it even more dispiriting to learn that we have 
mentioned only a small fraction of the illogicalities, cogni-
tive biases, and inadequacies of human cognition. Humans 
indisputably appear relatively unintelligent and irrational 
when compared against what might naïvely be considered 
the ideal or perfection (e.g., unlimited processing capac-
ity, zero forgetting, consistently high sustained attention, 
thinking unimpaired by emotional factors, and absence of 
all cognitive biases).

How can we best explain our numerous apparent 
“failures” and limitations? Perhaps humans are simply 
much less rational than we like to believe. However, sev-
eral other explanations cast a more positive light on human 
rationality and intelligence. Below we consider three such 
explanations.

Bounded rationality

The most influential attempt to explain our cognitive 
shortcomings was provided by Herb Simon. According to 
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Simon (1990, p. 6), “Because of the limits on their comput-
ing speeds and power, intelligent systems must use approx-
imate methods to handle most tasks. Their rationality is 
bounded.” Human bounded rationality generally enables 
us to produce workable solutions to problems despite our 
limited processing ability. Human decision making mostly 
involves satisficing (formed from the words satisfy and suffice) 
rather than optimising (the best possible decision). More 
specifically, we search through possible decisions until we 
identify one fulfilling our criteria for acceptability.

Satisficing may sound like a human limitation. However, 
consider the substantial costs incurred in collecting com-
plete information relating to a current problem and then 
performing complex computations on that information. In 
the real world, circumstances often change, and so the best 
possible solution today may not be so in a month’s time. 
Accordingly, satisficing often provides the best possible 
combination of good decision making coupled with man-
ageable processing costs.

Suppose you are searching for some object (e.g., a tel-
evision set). If you use the satisficing heuristic or rule of 
thumb called, “Try a dozen,” you are likely to make a very 
suitable choice (Todd & Miller, 1999). This is a relatively 
simple task because the object you choose will not object 
to being bought.

Mate search is far more complex than object search 
(yes, really!), in part because it requires mutual choice. 
However, Todd and Miller (1999) outlined an effective 
satisficing heuristic for mate search assuming that rela-
tionships are most likely to succeed if the two people 
involved are of comparable attractiveness or mate value. 
You work out your own mate value based on the offers 
and refusals you receive from potential mates and adjust 
your sights accordingly. If you follow this heuristic and 
consider approximately 20 potential mates, your future is 
assured!
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Individuals differ in the tendency to be a maximiser or a 
satisficer (Schwartz et al., 2002). Maximizers set themselves 
more ambitious goals and adopt more varied and complex 
strategies to achieve those goals (Cheek & Schwartz, 2016). 
Of importance, satisficers are happier and more optimistic 
than maximisers and experience less regret and self-blame 
(Schwartz et al., 2002).

The bounded-rationality approach sheds considerable light 
on sub-optimal human cognitive performance. However, it 
suffers from two limitations. First, the notion of ‘bounded 
rationality’ is imprecise and has only modest explanatory 
power (Lieder & Griffiths, 2020).

Second, it is important to establish whether humans’ 
cognitive performance is generally as good as possible 
given our limited capacity and environmental constraints. 
There are cases where humans have obviously failed to 
use their limited capacity optimally. Examples include, 
“Behaviours that foolishly risk one’s life, such as drunk or 
careless driving, or the hundreds of people who have died 
taking selfies, and misjudging fatal risks in the pursuit of a 
few more followers on Instagram” (Davis & Marcus, 2020, 
p. 21) (see Chapter 7).

Social identity

We have emphasised that humans often pursue two or 
more goals concurrently. A consequence of this is that we 
need more complex conceptualisations of rationality. An 
interesting notion totally consistent with our approach is 
Hoffrage et al.’s (2018) notion of social rationality: “the 
need to make decisions in environments that are typically 
also shaped by the actions of others” (p. 331).

The importance of social factors in our thinking and 
behaviour is spelt out in social identity theory (e.g., Tajfel 
& Turner, 1979). According to this theory, we possess 
several social identities based on our group memberships. 
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Thus, you may have a social identity as a student, a second 
social identity as a woman, and so on. Of central relevance 
here, “Humans are groupish animals with a propensity 
to engage in motivated cognition to support their group 
[social] identities” (Van Bavel et al., 2020, p. 66).

We can relate the human tendency to develop several 
social identities to Fiske’s (2010) theory in which she pro-
posed five fundamental social motives. The most important 
of these motives (and of most relevance to social identities) 
is the belongingness motive or need.  This motive is based 
on, “the idea that people need strong, stable relationships 
with other people … belonging to a group helps individu-
als to survive psychologically and physically” (pp. 17–18).

Belongingness is of central importance in explaining 
why we conform so often to the views and behaviour of 
others (as in Asch’s research discussed earlier). The exist-
ence of social identities accounts for the much greater 
conformity found when other group members are per-
ceived as sharing a social identity with the participants 
(Abrams et al., 1990). Belongingness also helps to explain 
why individual differences in views on climate change. 
As we saw, those who identify as egalitarians mostly 
believe in climate change whereas those who identify 
as rugged individualists do not (Kahan et al., 2012; dis-
cussed above).

Self-deception and self-enhancement

Earlier we discussed several biases (e.g., false uniqueness 
bias and Dunning-Kruger effect). Several factors underlie 
these biases. However, they all depend partly on the desire 
for self-enhancement and our preference for positive self- 
perceptions over negative ones. Fiske (2010) identified 
self-enhancement as one of our major social motives argu-
ing that it, “involves either maintaining self-esteem or being 
motivated by the possibility of self-improvement” (p. 22).
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There has been considerable controversy as to whether 
it is psychologically adaptive to have unrealistically pos-
itive views of oneself and one’s abilities. Many leading 
clinical psychologists (including Carl Rogers) argued 
strongly that psychological well-being requires us to have 
realistic self-appraisals. As Baumeister and Vohs (2018, 
p. 137) pointed out, “Very high self-esteem might cre-
ate problems, such as arrogance, entitlement, pig-headed  
stubbornness, and overconfidence.” However, other experts  
(e.g., Taylor & Brown, 1988) disagree, claiming that 
unrealistically positive self-perception is psychologically 
healthy.

Dufner et al. (2019) reviewed research on self- 
enhancement (unrealistically positive self-esteem) and psy-
chological adjustment. Self-enhancement was consistently 
positively related to personal adjustment (e.g., life satisfac-
tion and lack of depression) for both sexes and across ages 
and numerous cultures. Such findings do not indicate the 
direction of causality: does self-enhancement increase per-
sonal adjustment or does personal adjustment lead to self- 
enhancement? Another finding reported by Dufner et al. 
(2019) supports the former possibility: self-enhancement  
at one point in time predicted subsequent personal 
adjustment.

Further evidence that inflated self-perception is adap-
tive was reported by Humberg et al. (2019). They obtained 
measures of individuals’ actual intelligence as assessed by 
IQ tests, their intellectual self-perceptions, and their psy-
chological adjustment (e.g., self-esteem and life satisfac-
tion). Accurate self-knowledge was not associated with 
good psychological adjustment. Instead, psychological 
adjustment was best predicted by the extent to which 
intellectual self-perception was inflated. As Humberg et al. 
concluded, most of the findings were consistent with the 
rule, “the higher self-perceived intelligence, the better 
adjusted” (p. 847).
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We turn now to a different form of self-deception 
found when our cherished beliefs are challenged by con-
flicting facts or evidence. Consider the “meat paradox”: 
many people eat meat even though they have qualms 
about meat-production methods. Suppose they are given 
explicit information about the suffering and killing of ani-
mals involved in providing them with meat. Arguably, the 
“rational” reaction to that information would be for their 
attachment to meat to decrease as they focus on the rel-
evant evidence. For men, the information has the oppo-
site effect – it actually increases their attachment to meat 
(Dowsett et al., 2018).

What is going on here? The origins of a coherent 
explanation go back to Festinger et al.’s (1956) pioneer-
ing research. They studied a sect called the Seekers whose 
leader was Marian Keech. She claimed to have received 
messages from extraterrestrial beings informing her that 
most of North America would be covered by a huge flood 
on the 25 December 1954. However, the Seekers were told 
that a flying saucer would arrive on the 21 December 1954 
at 4PM to fly them to safety.

The Seekers waited hopefully at the appointed spot with 
coats in hand, but the flying saucer did not arrive. They 
were then told the flying saucer would arrive at midnight, 
so they waited for several hours in the cold and the snow. 
However, the flying saucer did not arrive then either, or 
at various other anticipated times ahead of 25 December. 
Finally, the cataclysmic flood failed to make an appearance.

How do you think the Seekers reacted to the total failure 
of all their expectations? The ‘rational’ reaction would have 
been to abandon their beliefs. However, they were strongly 
committed to those beliefs, and many had given up their 
jobs and discarded valuable belongings when preparing to 
leave this planet. As a result, the Seekers became even more 
committed to their beliefs and devoted much more time 
converting other people to those beliefs. They claimed to 
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have received a message from God saying He had saved the 
world because of the Seekers’ shining example. According 
to their leader, Marian Keech, “It was this little group 
spreading light here that prevented the flood.”

Festinger et al. (1956) explained their findings by argu-
ing that having two contradictory beliefs or ideas creates 
an unpleasant state known as “cognitive dissonance.” 
Cognitive dissonance is especially strong if the beliefs 
in question are of great importance to the individual. 
Individuals experiencing cognitive dissonance are highly 
motivated to eliminate it by changing one of their beliefs. 
The Seekers resolved their conflict by claiming that the 
non-appearance of the flood was a massive success for their 
cult’s beliefs rather than abject failure.

Gilbert (e.g., 2006) developed Festinger’s ideas. He 
argued that humans have a psychological immune system 
activated whenever we are confronted by serious threats to 
our self-image. It protects our core beliefs about ourselves 
and the world by refusing to accept beliefs in direct conflict 
with those core beliefs. Numerous cases of self-deception 
and self-enhancement (including those discussed earlier) 
can be explained by the existence of this psychological 
immune system (Porot & Mandelbaum, 2020).

The possession of a psychological immune system is 
advantageous because it can provide a relatively simple way 
of reducing psychological distress. However, it can also be 
associated with massive disadvantages. Consider smokers 
experiencing conflict between their cigarette-smoking  
behaviour and their knowledge that smoking causes 
numerous serious diseases. Many (or most) smokers resolve 
this conflict by adopting risk-minimising beliefs (e.g., the 
medical risks are exaggerated, you have to die of some-
thing, and smoking is no riskier than many other activities) 
(Fotuhi et al., 2013). The very serious downside of adopt-
ing such beliefs rather than quitting smoking is that smok-
ing reduces life expectancy by approximately ten years.
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Conclusions

The overarching theme of the chapter so far has been that 
most human limitations have an upside and so reflect less 
badly on us that might be imagined. For example, it is true 
that we possess limited processing capacity, have relatively 
poor sustained attention, and often forget past events and 
actions we promised to perform in the future. However, 
we mitigate the adverse effects of these limitations by 
focusing on what is important at the expense of what is 
relatively trivial. Thus, for example, we pay full attention 
when it is necessary to do so, and we rarely forget signifi-
cant past events or future actions.

Other cognitive limitations include poor transfer of 
learning from one task to others that are dissimilar to it (far 
transfer) and maintenance of a mental set when changing 
circumstances indicate the desirability of abandoning it. 
However, we do exhibit excellent near transfer and some 
far transfer if initial training is sufficiently prolonged. Our 
tendency to maintain a mental set is justified by the fact 
that this is very often the optimal strategy in everyday life.

Finally, we seem irrational because we possess dozens of 
cognitive biases, we are loss averse, we perform poorly on 
tasks involving logical reasoning, and we are susceptible 
to logical fallacies. However, there are various reasons for 
doubting our irrationality. First, much depends on how we 
choose to define the complex concepts of “rationality” and 
“irrationality.” Second, many of the tasks allegedly reveal-
ing our irrationality (especially logical reasoning tasks) are 
highly artificial and of minimal relevance to everyday life.

Third, humans often pursue two or more goals concur-
rently. Our needs for social identity, self-enhancement, 
self-esteem, and avoidance of cognitive dissonance pro-
vide explanations for much of our apparently “irrational” 
behaviour. Overall, much (but certainly not all) of our 
cognitive performance can appropriately be regarded as 
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rational and as making near-optimal use of our processing 
abilities.

Creativity

Key features of creative products are that they are new, sur-
prising, and of value (Boden, 1992; see Chapter 4). It has 
often been argued that we are the only species capable of 
creativity. That argument has been attacked in two differ-
ent ways. First, other species often exhibit apparently crea-
tive behaviour (Shevlin, 2021). Second, creativity is absent 
from most human behaviour most of the time (especially 
using relatively stringent criteria for regarding something 
as “creative”).

Numerous theories of creativity have been proposed. 
According to the influential Geneplore theory (Ward et al., 
1995), creativity consists of a generative phase in which 
ideas are produced and an exploratory phase where those 
ideas are evaluated and creative solutions proposed. If the 
exploratory phase fails to produce a satisfactory outcome, 
there is another cycle of generation followed by exploration.

Evidence that most people find it hard to generate totally 
original or creative ideas was provided by Ward and Sifonis 
(1997). Some people were simply asked to imagine an 
extra-terrestrial creature whereas others were instructed 
to imagine creatures wildly different from those found on 
Earth. The imagined creatures were in many ways remarka-
bly similar to familiar animals regardless of instructions. Of 
the “wildly different animals” that were generated, 93% had 
standard senses (e.g., 93% had eyes) and 90% had standard 
appendages (e.g., 84% had legs). Thus, there was little crea-
tivity and considerable reliance on pre-existing knowledge.

We would anticipate that experts would be more cre-
ative than ordinary individuals. For example, it is often 
assumed that scientific creativity represents a pinnacle 
of human thinking and cognition. Many people believe 
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scientific discovery is, “the result of genius, inspiration, 
and sudden insight” (Trickett & Trafton, 2007, p. 868). 
However, Campbell (1960) proposed a much more mun-
dane account of the processes underlying creative scien-
tific achievements. He argued scientists start by generating 
numerous ideas almost randomly (but influenced by their 
relevant knowledge). This initial process of blind variation 
is followed by selective retention (discriminating between 
valuable and relatively useless ideas).

Why doesn’t Campbell’s (1960) description sound much 
like our preconceptions about scientific creativity and dis-
covery? Simonton (2015) noted that historical accounts 
of major scientific breakthroughs are often at variance 
with the notion of blind variation. He explained this dis-
crepancy as follows: “What was originally non-obvious 
becomes obvious as the biographical record is ‘cleaned up’ 
to make the creator much more prescient than was true at 
the time” (p. 267).

If blind variation is important, even very successful crea-
tive scientists should produce numerous unworkable ideas. 
Consider Thomas Edison. He had over 1,000 American 
patents for his inventions but admitted: “I have not failed. 
I’ve just found 10,000 ways that won’t work.” Similarly, the 
very successful contemporary inventor, Sir James Dyson, 
confessed: “I spent years in my tool-shed building thou-
sands of prototypes of my bagless vacuum cleaner. Each 
one was a failure.”

Simonton (2015) argued that the creative process is less 
random than Campbell (1960) implied. The ideas gener-
ated by creative individuals are influenced by their exper-
tise and strategies, and by indirect associations from their 
pre-existing knowledge. All these factors shift the genera-
tion process away from randomness and thus enhance the 
probability of a creative discovery.

In sum, there is much indisputable evidence of human 
creativity. However, true creativity is much rarer than 
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typically assumed because most of our attempts at crea-
tivity are constrained by our accumulated knowledge and 
information from past learning.

Limitations due to emotional states

It is easy to believe our lives would be better if we did 
not experience stress and negative emotional states (e.g., 
anxiety and depression). Negative emotions and stress are 
unpleasant and can disrupt our ability to think and make 
effective decisions. All in all, it would appear that we would 
be much better off without stress and negative emotions. 
As we are about to see, however, reality is more nuanced.

Stress effects

It is commonly assumed we live in an “age of stress.” As 
predicted, Booth et al. (2016) found anxiety levels had 
increased between 1970 and 2010 in most of the 57 coun-
tries they studied. The recent devastating impact of Covid-
19 throughout the world has produced further increases in 
anxiety and stress. Stress and anxiety have several negative 
consequences including producing negative mood states 
and impairing our ability to perform cognitive and motor 
tasks.

Performance of most tasks is impaired by extreme levels 
of stress. Walker and Burkhardt (1965) found more than 
200 of the muzzle-loading rifles used in one battle during 
the American Civil War were loaded at least five times 
without being fired. Patrick (1934a,b) gave human partic-
ipants the simple task of discovering, which of four doors 
was unlocked. Since, the same door was never unlocked 
on two successive trials, the optimal strategy was to try 
each of the other three doors in turn. There were 60% 
optimal solutions under non-stressful conditions but only 
20% when participants had cold water streams directed at 
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them, or had their ears blasted by a car horn, or were given 
continuous electric shocks.

It is of more practical relevance to consider the mod-
erate levels of stress experienced in everyday life (e.g., 
environmental noise, fatigue, and high workload). Most 
people assume moderate stress impairs task performance. 
In fact, however, the typical finding is that performance 
levels under moderate stress are comparable to those under 
non-stressful conditions (Eysenck, 1982; Hockey, 1997).

We can understand the above counterintuitive findings 
by considering an anecdote told to the first author by the 
leading British psychologist Donald Broadbent. He had 
been invited on to a television programme to show the 
negative effects of sleeplessness. Accordingly, he found a 
student willing to go without sleep for three days prior 
to the programme. To Broadbent’s embarrassment, this 
person showed no signs of any performance impairment! 
The motivation provided by the excitement of appearing 
on television counterbalanced any negative effects caused 
by prolonged sleep deprivation.

Broadbent (1971) proposed a two-mechanism model to 
explain the effects of sleeplessness (and other stressors). The 
lower mechanism responsible for relatively “automatic” pro-
cesses is impaired by various stressors. However, the upper 
mechanism monitors the lower mechanism and compensates 
for the lower mechanism’s impaired functioning. Hockey 
(1997) developed this theory (see Figure 5.10).

Eysenck et al. (2007) extended the approach of Broadbent 
(1971) and Hockey (1997). According to their attentional 
control theory, high-anxious individuals often perform 
comparably to low-anxious ones because they compensate 
for the adverse effects of anxiety by increased effort and use 
of processing resources. Research using neuroimaging has 
supported this theory by showing that high-anxious individ-
uals generally have greater activation than low-anxious indi-
viduals in brain areas associated with effort and attentional 
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control (Eysenck & Derakshan, 2011). Thus, anxious indi-
viduals maintain performance by “peddling faster.”

In sum, the fact that humans are susceptible to stress 
often fails to produce any negative effects on performance. 
We monitor our level of performance and use compensa-
tory processes (e.g., increased effort) to prevent stressors 
from causing impaired performance. In other words, we 
respond flexibly and adaptively to moderate stressors. With 
severe stressors, we often re-prioritise our goals to divert 
some attention from a current task to the source of stress.

Negative emotions: anxiety and depression

Most people assume anxiety and depression are unwanted 
emotions that serve no useful purpose. If that assumption 

LOOP A

LOOP B

External
Load

Overt
Performance

Supervisory
Controller

Effort
Monitor

Task
Goals

Action
Monitor

Figure 5.10  �Compensatory control model of performance regula-
tion. Loop A is the lower mechanism that engages in 
routine regulatory activity; loop B is the upper mecha-
nism that uses effort-based control under the supervi-
sory controller to compensate for deficient functioning 
of loop A.

Source: From Hockey (1997).
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is correct, then these negative emotions constitute a serious 
human limitation, and one that is not found in AI systems. 
However, many philosophers and psychologists from the 
time of Aristotle onwards have argued that all emotions 
serve useful functions. More specifically, they claim that 
negative emotional states are often adaptive and useful in 
the long-term even though they produce high short-term 
costs.

What are the functions of anxiety? It leads us to con-
sider potential future threats to the self, and also produces 
selective attention to environmental threats and dangers. 
The emphasis on future threats is seen clearly in the strong 
tendency for anxious individuals to devote far more of 
their time than non-anxious individuals to worrying about 
possible negative events. In broad terms, anxiety typically 
occurs when we are faced by threats to self-preservation.

Here is an example of the value of the risk-aversiveness of 
anxious individuals. Individual rated as anxious at the age of 
13 were much less likely than those rated as non-anxious to 
die in accidental circumstances before the age of 25 (0.1% vs 
0.7%, respectively) (Lee et al., 2006).

What are the functions of depression? Depression is often 
caused by goal loss (e.g., death of a loved one) and its main 
functions are to lead depressed individuals to go through 
a series of stages to replace the lost goal with a new one. 
According to Durisko et al., these stages involve, “Biasing 
cognition to avoid losses, conserving energy, disengaging 
from unobtainable goals, signalling submission, soliciting 
resources, and promoting analytical thinking” (P. 316).

In sum, anxiety and depression both disrupt human cog-
nitive performance. However, as discussed earlier, humans 
often pursue multiple goals at the same time. Since anxi-
ety and depression have important functions, it is entirely 
reasonable for humans to divide their attention between a 
current task and major life concerns causing anxiety and 
depression.
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There are over three million robots worldwide. Here we 
focus on robot-like autonomous vehicles and so-called 
killer robots. After that, we consider moral issues raised 
by robots. As Awad et al. (2018, p. 63) said, “Never in the 
history of humanity have we allowed a machine to auton-
omously decide who should live and who should die…We 
are going to cross that bridge any time now.”

Autonomous vehicles

When do you think the first autonomous vehicle was cre-
ated? It is often believed that autonomous cars have only 
been in existence for, say, 20 or 25 years. In fact, the answer 
is 1939! General Motors presented the first-ever autono-
mous car at the New York World’s Fair in that year. It 
was powered by electricity and steered by radio-controlled 
electromagnetic fields produced by magnetised metal 
spikes in the road. Admittedly, this car differed from what 
most people regard as an autonomous vehicle, namely, one 
that is controlled by an AI system.

Why might it be desirable for the number of autonomous 
vehicles to increase dramatically? One major reason is that 
there are currently 1.3 million traffic deaths a year world-
wide. A detailed analysis of the 33,000 fatalities per year in 
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the United States indicated that 94% were attributable to 
human error (Singh, 2015). The commonest cause of fatal 
crashes in the United States is intoxication (mostly alcohol 
but also illegal drugs), followed by speeding and distracted 
drivers. Since autonomous vehicles can easily avoid all these 
causes of death, it might appear we could greatly reduce traf-
fic deaths by wholesale introduction of autonomous vehicles.

However, the above figures do not mean most drivers 
are careless as we can see by calculating the number of 
miles driven per fatality. In the U.K., in 2018, there is one 
fatality per 185 million miles driven. In the United States, 
there are 1.09 deaths per 100 million miles driven (Da Lio 
et al., 2018).

There are two implications of these figures. First, they 
set the bar incredibly high for manufacturers of autono-
mous vehicles. In order to demonstrate autonomous vehi-
cles are safer than human drivers, such vehicles would need 
to have a phenomenal safety record of, say, only one fatal-
ity per 200 million miles. Second, these vehicles would 
have to be driven for literally billions of miles to collect 
sufficient data to prove their greater safety.

Matters look somewhat different if we consider data for 
all casualties (including non-fatalities) caused by human 
drivers. In the U.K., in 2018, there was one casualty per 
2 million miles driven. In the United States, there are 
2.3 million injuries per year (Da Lio et al., 2018) mean-
ing there are 77 injuries per 100 million miles. Even if we 
focus on injuries as well as fatalities, autonomous vehicles 
would need to be driven for hundreds of millions of miles 
to demonstrate they were safer than human drivers.

Before discussing the safety (or otherwise) of autono-
mous vehicles, note that we can identify six levels of auton-
omy (Society of Automotive Engineers, 2016):

1	 Level 0 cars have no autonomy: they are 100% driven 
by humans.
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2	 Level 1 cars have driving control shared between 
humans and AI (autonomous features such as cruise 
control or parking assistance with automated steering).

3	 Level 2 cars have automated systems that execute 
acceleration, steering, and braking. However, a human 
driver monitors the environment and takes control if 
necessary.

4	 Level 3 cars resemble Level 2 cars except that driv-
ers can turn their attention away from driving tasks in 
easy driving conditions.

5	 Level 4 cars are controlled by automated systems 
except when the driving conditions are especially dif-
ficult (e.g., severe weather).

6	 Level 5 cars have total autonomy (i.e., they are driven 
with no direct human involvement.

Many media stories imply that numerous autonomous 
vehicles will soon be driving around with no input from 
humans (i.e., they will be at Level 5) (see Figure 6.1). 

Figure 6.1  �Photograph of an autonomous vehicle.
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Reality is much more mundane – the great majority of 
so-called autonomous vehicles (e.g., those produced by 
Tesla, General Motors, Volvo, and Mercedes) are only 
Level 2 cars meaning a human driver is constantly mon-
itoring and supervising their functioning. Autonomous 
vehicles will eventually become more autonomous – this 
is incremental autonomy. However, it will not happen any 
time soon because of the enormous complexities involved 
in producing safe truly autonomous vehicles.

Findings

You have probably heard the claim that autonomous vehi-
cles are safer than those driven by humans. However, that 
claim is unjustified and wrong. For starters, the availa-
ble data are extremely limited. The RAND Corporation 
(Kalra & Paddock, 2016) estimated autonomous vehicles 
would have to drive approximately 11 billion miles to draw 
reliable conclusions about their safety compared to human 
drivers. More specifically, each type of autonomous vehicle 
would need to drive 11 billion miles. We are literally (and 
metaphorically) several billion miles away from that.

The data are also limited because most figures are pro-
vided by companies designing autonomous vehicles. Since 
the global autonomous vehicle market is currently valued 
at approximately $54 billion (£41 billion), these companies 
have a strong financial interest in emphasising the most 
positive evidence regarding their cars’ performance.

There are worrying straws in the wind. The first death 
involving an autonomous vehicle happened on the 7 May 
2016. Joshua Brown, a 40-year-old man from Canton, 
Ohio was in a Tesla Model S electric car in autonomous 
mode when a tractor-trailer turned left in front of the car. 
The car failed to brake and Joshua was killed.

On 18 March 2018, Elaine Herzberg, a 49-year-
old woman, became the first pedestrian killed by an 



188  Robots and morality

autonomous vehicle. She was pushing her bicycle across 
a four-lane street in Tempe, Arizona when she was killed 
by a Uber car in autonomous mode (see Figure 6.2). The 
automated system detected her six seconds before the colli-
sion. It initially classified her as an unknown object, then 
as a vehicle, and then as a bicycle – the car’s program did 
not recognise her as a person because she was jaywalking.

There may have been another contributory factor in 
the death of Elaine Herzberg. It is alleged that Rafaela 
Vasquez, who had responsibility for monitoring the Uber 
car, was watching television on her smartphone when the 
car hit Ms. Herzberg.

How are most autonomous vehicles driven? Marshall (2017) 
rode in one of the General Motors’ autonomous vehicles. She 

Figure 6.2  �The self-driving Uber Volvo XC90 that collided with 
Elaine Herzberg. 

�Source: From Wikipedia article entitled ‘Death of Elaine Herzberg’.
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described the ride as “herky-jerky”: the vehicle was “so care-
ful that it jolted, disconcertingly, to a stop at even the whisper 
of a collision.” This excessive cautiousness can have serious 
consequences. For example, we could hypothesise that many 
crashes involving autonomous vehicles occur because human 
drivers are unaware that autonomous vehicles are driven dif-
ferently from human-driven cars.

Two major predictions follow from the above hypoth-
esis. First, many accidents involving autonomous vehicles 
should consist of rear-end crashes due to their unusual 
slowness. As predicted, the percentage of crashes that are 
rear-end is more than twice as high with autonomous  
vehicles compared to human-driven vehicles (64% vs 28%) 
(Petrović  et al., 2020).

Second, consider the attribution of blame when auton-
omous cars are involved in a crash. If these crashes pre-
dominantly occur because human drivers make inaccurate 
predictions about the movements of autonomous cars, then 
most of the blame lies with those human drivers. The evi-
dence suggests that is the case (Petrović  et al., 2020).

We can assess the efficiency of autonomous vehicles by 
looking at the disengagement rate – the average distance 
an autonomous vehicle is driven before the human driver 
takes over. This rate varies enormously depending on driv-
ing conditions and the make of autonomous vehicle. In 
2018 (California Department for Motor Vehicles), the dis-
engagement rate in California ranged from 11,154 miles 
per disengagement for Waymo vehicles to 1.5 miles for 
Mercedes-Benz vehicles! However, the distance between 
successive disengagements is increasing steadily, suggesting 
autonomous vehicles are becoming more efficient.

The frequency of accidents appears to be about twice 
as high with autonomous vehicles compared to human-
driven ones. One important reason for the higher accident 
rate with autonomous vehicles is that it takes 0.83 seconds 
on average following disengagement for the human driver 
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to take over control. A car driven at 50 mph covers approx-
imately 60 feet in 0.83 seconds, which could easily lead to 
a fatality.

However, autonomous cars are far more likely to adhere 
to speed limits and to respond appropriately to traffic signs 
of all types. As a consequence, autonomous vehicles tend 
to be involved in less serious accidents than cars driven 
by humans. For example, Waymo autonomous vehicles in 
the Phoenix area between January 2019 and October 2020 
were involved in 18 crashes while covering 6.1 million 
miles (Hawkins, 2020). However, no-one was injured or 
killed in any of these accidents.

How should autonomous vehicles be  
programmed?

There are two main ways AI systems have been programmed 
for autonomous vehicles (Yurtsever et al., 2020). First, there 
are modular systems consisting of a pipeline or sequence of 
separate components. These components or modules can 
broadly be divided into those associated with perception and 
those associated with decision making (Badue et al., 2021). 
Perception involves using information from sensors to iden-
tify the car’s current location on an online map, to track 
moving objects, and to detect traffic signals. Decision mak-
ing involves route planning, behaviour selection (e.g., lane 
keeping, traffic-light handling, and intersection handling), 
action planning taking account of passenger comfort and the 
car’s constraints, obstacle avoidance, and control (activating 
the steering wheel, throttle, and brakes).

Modular systems have the advantage that driving skills 
are divided into easier-to-solve problems. However, an 
error made at one processing stage is likely to be passed 
on to all subsequent stages in the pipeline. The accident 
where Joshua Brown was killed in a Tesla electric car (dis-
cussed above) is a case in point. There was an error in the 
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object-detection module: a white trailer was misidentified 
as sky, as a result of which the car failed to brake.

Second, AI systems for autonomous vehicles can be pro-
grammed via deep learning or deep reinforcement learn-
ing (see Chapter 1). The essence of this approach is that 
the AI system learns progressively more optimal driving 
strategies through experience in real-world driving and/
or simulated driving. The use of deep learning leads to 
flexibility in driving behaviour, whereas the use of mod-
ular systems produces programming where a set of fixed 
rules is applied. As yet, however, this approach has scarcely 
been used in real-world driving situations. A disadvantage 
is that what has been learned mostly generalises poorly to 
novel situations and it is difficult to interpret the processes 
determining its behaviour (Yurtsever et al., 2020).

A central challenge for designers of autonomous vehi-
cles is that successful driving requires relatively sophis-
ticated abilities involving an understanding of complex 
situations and reacting appropriately. Such abilities require 
general intelligence but the development of artificial gen-
eral intelligence has proved elusive (see Chapter 4). For 
example, consider “edge cases” – unexpected problems 
occurring under extreme operating conditions (Koopman 
et al., 2019). For example, suppose a car has stopped on a 
narrow road so it is impossible to get past it. The appro-
priate behaviour of those trapped on the road depends on 
accurately reading the situation. Sounding the horn loudly 
is appropriate if the driver of the stopped car is texting. 
However, it is not appropriate if the vehicle is a bin lorry 
and is exceptionally inappropriate if the driver is helping a 
very old and frail person in or out of their car.

The take-home message from Koopman et al.’s (2019) 
analysis is that autonomous vehicles need to be pro-
grammed to respond appropriately to novel situations. 
Even the most successful of autonomous vehicles fall short 
of fulfilling that criterion.
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Conclusions

It is arguable that the battle between human-driven and 
autonomous cars is a draw. Human-driven cars have fewer 
accidents per million miles driven but the accidents are 
more likely to produce injuries and/or fatalities than those 
of autonomous cars. If we peer into the future, it seems 
highly probable that autonomous cars will become safer 
than human-driven ones irrespective of the criteria used 
to assess safety.

However, there are at least two obstacles to the wide-
spread use of autonomous cars even if they are shown to be 
safer than human-driven ones. First, there is considerable 
public resistance to the notion that our roads should be 
populated by driverless cars. Second, while autonomous 
cars may prove to be very successful in relatively straight-
forward driving conditions, their lack of artificial general 
intelligence makes their use in complex situations decid-
edly problematical.

Ethical issues

In spite of the many obstacles to the introduction of truly 
autonomous vehicles, numerous politicians, AI experts, psy-
chologists, and philosophers and are already debating how 
autonomous vehicles should be programmed ethically. The 
moral issues are especially crucial when loss of life is inevita-
ble (e.g., deciding to save the car passengers or pedestrians).

Superficially, it may seem simple to program autono-
mous vehicles to make appropriate moral decisions. As 
Ernest Hemingway said, “What is moral is what you feel 
good after and what is immoral is what you feel bad after.” 
However, this greatly de-emphasises individual differences 
in belief systems. Within Western cultures, for example, 
liberals disagree strongly with conservatives on many 
moral issues (e.g., abortion and gay marriage).
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At the risk of over-simplification, we can identify two 
major contrasting approaches to moral decision making. 
According to one approach, we should focus on the conse-
quences of our actions. This philosophical approach (utili-
tarianism) was supported by British philosophers such as 
Jeremy Bentham (1748–1832). In 1789, he famously sum-
marised the essence of utilitarianism as involving, “the 
greatest good for the greatest number.”

Problems with utilitarianism arise if we consider the 
footbridge dilemma (Greene et al., 2004). A runaway trol-
ley (tram) is heading straight for five tied-up individuals. 
You are standing on a footbridge above the trolley and 
next to you is a fat stranger. You must decide whether to 
push him off the bridge. If you do, it will cause his death. 
However, it will save the lives of the five tied-up individu-
als because his body will prevent the trolley running them 
over. What would you do?

We guess you (like 90% of people) decided not to push 
the fat man off the bridge. Here, the popular decision 
involves the loss of five lives rather than only one, and so 
is not based on utilitarianism. Instead, it involves deontol-
ogy (Greek for “study of duty”), which was popularised by 
the German philosopher, Immanuel Kant. According to 
this approach, actions can be right or wrong without tak-
ing their consequences into account. We should take per-
sonal responsibility for our actions and the intentions behind 
our actions are very important. Thus, most people believe 
that, “Thou shalt not kill,” is an important moral principle 
and that principle determines their decision with the foot-
bridge dilemma.

Important findings on moral issues raised by autono-
mous vehicles were reported by Bonnefon et al. (2016). 
When people were asked whether it would be preferable 
for autonomous vehicles to be programmed to sacrifice 
one passenger rather than kill ten pedestrians, 76% argued 
it would be more moral to sacrifice the one passenger.  
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So far, so good – the great majority supported the utilitarian 
approach. In addition, 85% of people argued autonomous 
vehicles should be programmed to minimise loss of life.

However, most people were unenthusiastic about buying 
an autonomous vehicle programmed to sacrifice them and 
a family member to save ten or 20 pedestrians. Only 19% 
would buy such a car compared to 50% who would buy 
an autonomous car programmed to sacrifice the pedestrians 
while saving them and a family member. This produces a 
real dilemma. As Bonnefon et al. pointed out, “Although 
people … agree that everyone would be better off if [driver-
less cars] were utilitarian (in the sense of minimising casual-
ties), these same people have a personal incentive to ride in 
[driverless cars] that will protect them at all costs” (p. 1575).

The applicability of the trolley problem to real-world 
driving situations is arguable: the outcomes of the possi-
ble decision choices are known with certainty in the trol-
ley problem but are much less clear-cut when considering 
many road-driving conditions. Suppose a driverless car is 
programmed to mount the pavement where pedestrians 
are walking if that prevents a serious car crash. The harm 
that would be caused depends on numerous factors (e.g., 
whether the pedestrians are looking at the car; the pedes-
trians’ mobility).

There are several other more specific moral dilemmas. 
For example, should autonomous vehicles be programmed 
to attach more value to the lives of young children than older 
adults? Should autonomous vehicles prefer to save humans 
over animals, females over males, or higher-status individu-
als over lower-status ones? Intriguingly, the answers to these 
questions are systematically influenced by cultural factors, 
thus undermining the notion of universal moral laws.

Awad et al. (2018) explored moral issues posed by autono-
mous vehicles by obtaining 40 million moral decisions from 
people in over 200 countries. They found nations can be 
divided into three groups. The first group (Western cluster) 
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consists of North American and many European countries 
where Christianity has historically been dominant. The 
second group (Eastern cluster) includes countries such as 
Japan, Pakistan, Taiwan, and Indonesia where Confucian or 
Islamic beliefs are strong. The third group (Southern clus-
ter) consists of the Latin American countries of Central and 
South America, plus France and its former colonies.

The most dramatic findings related to countries in the 
Eastern and Southern clusters. The preference for spar-
ing younger rather than older people was much stronger 
among individuals in the Southern cluster than those in 
the Eastern cluster. This is predictable given the strong 
tradition of respecting and caring for the elderly in most 
Eastern countries. Those in the Southern cluster also had 
the strongest preference for sparing higher-status individu-
als over lower-status ones, with those in the Eastern cluster 
showing the weakest preference.

How should lawmakers proceed? First, they must decide 
whether the moral programming of autonomous vehicles 
should be common throughout a given society or determined 
by the individual vehicle owner. The former approach is 
demonstrably superior if based on the utilitarian approach 
of minimising casualties and deaths because allowing self-
ish interests to have paramount importance would increase 
total traffic deaths (Gogoll & Müller, 2017).

Second, this common moral programming will be most 
acceptable if it reflects majority moral beliefs within any 
given culture. That means that common moral program-
ming will necessarily vary from one culture to another.

Warfare: autonomous weapons 
systems and “killer robots”

In the movie Terminator 2, Skynet is an artificial neural 
network that controls the nuclear arsenal to perfection. 
However, when it becomes self-aware, its human operators 
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are frightened and try to pull the plug on it. Skynet retal-
iates by instigating a nuclear war to destroy billions of 
humans. That movie (and numerous others) plus numer-
ous violent video games have created the impression that 
robots and other autonomous weapons systems will play a 
central role in future wars.

However, when considering the use of AI systems and 
robots in warfare, we are not only thinking about future 
hypothetical situations. For example, in 2008, there were 
between 4,000 and 6,000 ground robots in Iraq, mostly 
used to detonate roadside improvised explosive devices. 
However, a few (e.g., SWORDS TALON robots) were 
equipped with lethal machine guns or anti-tank rocket 
launchers (see Figure 6.3). Since then, the MQ-9 Reaper 
unmanned aerial vehicle has been developed. It uses a ther-
mographic camera to identify targets and can fire laser-
guided bombs; its functioning is only partially controlled 
by humans. Such devices have been described as “killer 
robots.”

Even though the media have focused on the destructive 
capabilities of killer robots, AI can be used in warfare in 
many other ways. Horowitz (2019) compared AI to elec-
tricity because it provides the basis for numerous appli-
cations. He divided its military applications into three 
types: (1) allowing machines to act without human super-
vision, (2) processing and interpreting large amounts of 
data, and (3) aiding the command and control of war.

Using robots in warfare has several potential advantages. 
First, they can be very efficient – we might need relatively 
few humans to supervise and monitor the use of thousands 
of autonomous weapons. This could minimise the loss of 
human life. Second, and counterintuitively, robots can 
potentially be more ethical than humans because they never 
become angry or seek revenge. Third, robots can be pro-
grammed to conform to the human-made laws governing 
warfare.
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Figure 6.3  �Photograph of Foster-Miller SWORDS TALON. 

�Source: From Wikipedia article entitled “Foster-Miller TALON”
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There are also several potential disadvantages associated 
with using robots in warfare. First, their use could trigger a 
global arms race with little effective control over the devel-
opment and deployment of killer robots. Second, autono-
mous weapon systems are becoming increasingly complex: 
the probability of accidents occurring typically increases as 
system complexity increases.

Third, many autonomous weapon systems are so com-
plicated humans cannot calculate precisely what will hap-
pen when they are deployed. A key element of waging war 
is to have a single commander in overall charge. However, 
no human is really in charge if they do not understand 
how an autonomous weapon system works. The answer 
is explainable AI with autonomous weapon systems pro-
viding transparent accounts of their proposed decisions to 
ensure they are consistent with human decision making. 
However, this is often hard to achieve.

Fourth, hacking is potentially a huge problem. For 
example, the training data used in the programming of a 
killer robot or drone could be hacked by adding fake infor-
mation to those data (Shah, 2019). Imagine a war where 
one side has developed AI systems discriminating very 
accurately between enemy armed forces and civilians (this 
would be a long way in the future!). Say 100,000 drones 
have been programmed to kill the enemy’s soldiers but not 
its civilians. A hacker could potentially design a virus that 
would reverse the programming so the drones killed only 
civilians. This could provide a massive propaganda coup 
for the enemy.

Moral issues

Moral issues with respect to the use of killer robots (and 
other lethal AI systems) in warfare are especially impor-
tant because of the large-scale loss of life they can cause. 
Accordingly, we will consider such moral issues here, 
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leaving a more general discussion of AI systems and moral 
accountability for later.

Malle et al. (2019) reported relevant evidence based on 
a moral dilemma occurring within a military context. A 
decision has to be made whether to launch a missile strike 
on a terrorist compound even though it would risk a child’s 
life or to cancel the strike to protect the child but thereby 
risk a terrorist attack. This decision is made by an AI sys-
tem, an autonomous drone, or a human drone pilot. People 
were asked to make moral judgements about the decisions 
made by each of these entities taking account of the pilots’ 
superiors, who have recommended that the missile strike 
should be launched.

What did Malle et al. (2019) find? First, 72% of people 
ascribed wrongness to an AI system but only 51% did the 
same for an autonomous drone. The lower figure for the 
autonomous drone probably reflects the common notion 
that a drone is basically a passive metal device.

Second, comparable levels of blame were attached over-
all to all three entities. However, the human pilot was 
blamed less than the AI system or the autonomous drone 
when the missile strike was carried out but more when it 
was cancelled. Why was this? It was expected that only 
the human pilot would be responsive to the command 
structure (i.e., the superiors’ recommendation to carry out 
the strike).

We have seen that many people are willing to attach 
blame to killer robots for their lethal actions in war-like 
conditions. This raises the more general issue of working 
out moral responsibility when humans and robots are both 
potentially blameworthy. This issue was raised by Sharkey 
(2012, p. 791), who argued that using, “a weapon without  
a clear chain of accountability is not a moral option.” 

There is a major problem here because it is typically dif-
ficult to assess accountability. The optimal solution would 
be to use killer robots only where it is possible for humans 
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to make crucial life-and-death decisions and to accept full 
responsibility for those decisions.

However, killer robots and other autonomous weapon 
systems are becoming increasingly complicated as their 
ability to learn and to plan increases. As a consequence, 
humans often cannot predict accurately what killer robots 
will do in complex, rapidly changing, battle conditions.

Roff and Danks (2018) considered what humans engaged 
in military conflicts should do given that the actions of killer 
robots are often unpredictable. They argued that war-fighters 
could, in principle, trust autonomous weapon systems if they 
could develop an understanding of why these systems behave 
as they do. For example, war-fighters could receive exten-
sive training with autonomous weapon systems under con-
ditions where there is no risk to human life.

Conclusions

It is indisputable that killer robots and drones can be very 
effective weapons. There could potentially be a great reduc-
tion in the loss of life by using these AI systems. At pres-
ent, however, the lack of transparency of many killer robots 
and the relative ease with which their programming can be 
hacked pose substantial (and as yet unresolved) moral issues.

Realpolitik also raises complex issues. The use of killer 
robots would perhaps be morally acceptable if all countries 
abided by international laws concerning the conduct of 
wars. However, the history of human conflicts indicates a 
high probability that certain countries would simply ignore 
those laws. That would make it much harder for countries 
that wanted to retain moral values to fight wars successfully.

Robots

Half the robots in industrial settings are used in car pro-
duction (see Figure 6.4). The advantages of using robots to 
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produce cars are discussed in Chapter 2. Here, we consider 
potential disadvantages:

1	 Industrial robots are often expensive: the typical cost 
per robot varies between £35,000 and £55,000.

2	 There is increasing demand for customisation (provid-
ing customers with their preferred options). However, 
most robots function inflexibly and so are less well 
equipped than human workers to deal with customi-
sation. As a result, the Mercedes factory in Sidelfingen, 
Germany, recently replaced some of its robots with 
humans to increase flexibility.

3	 Robots lack intelligence and emotions and so cannot 
respond appropriately in unexpected situations.

4	 The increased use of robots in car production has 
often caused problems by leading to redundancies and 
unemployment among human car workers.

5	 Even though the use of robots has reduced injuries 
and deaths to human car workers, robots have caused 

Figure 6.4  Robots involved in car production.
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several human deaths. For example, on 25 January 1979, 
Robert Williams, a 24-year-old American worker, was 
killed by the arm of a 1-ton robot at a Ford plant in Flat 
Rock, Michigan. Since then, there have been approxi-
mately 40 robot-related deaths in industrial settings in 
the United States. However, it is eight times more dan-
gerous for Americans to work in a bar than in manufac-
turing so we must not exaggerate the risks.

Why are humans killed or injured by robots in indus-
trial settings? In many cases, humans enter a safety 
cage containing a robot without fully appreciating the 
potential risks (e.g., many robots move very quickly and 
silently). In other cases, robots free to move around have 
sensors to detect human movement and are programmed 
to stop if a human comes very close. However, these 
sensors (or other fail-safes) sometimes fail to respond 
appropriately.

How should we treat robots?

There are several well-documented cases where humans 
have maltreated robots. For example, Europe’s first sex- 
robot brothel opened a few years ago in Barcelona. On  
its website, the brothel offers, “totally realistic dolls both  
in their movements and in their ‘feel,’ that will allow you 
to fulfil all your fantasies without limits.” A sex robot 
called Samantha, who can talk and responds to touch, was 
displayed at a technology fair in Austria. Men visiting the 
fair left Samantha “heavily soiled,” and her creator, Sergi 
Santos, claimed that these men treated Samantha “like 
barbarians.”

Unsurprisingly, our reactions to human-like robots 
differ considerably from those to robots not resembling 
humans. We might imagine our responses to robots would 
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become steadily more positive the more human-like they 
appear. Interestingly, that is not the case.

Mori (1970) proposed a more complex relationship 
between human-likeness and our responses in his uncanny 
valley hypothesis. According to this hypothesis, our 
responses go through three stages:

1	 Our reactions are more positive to vaguely human-
like robots than those very different to humans (e.g., 
industrial robots).

2	 When we move from vaguely human-like robots to ones 
closely resembling humans (e.g., zombies and animated 
characters), our reactions go from positive to strongly 
negative. This is known as the “uncanny valley”: we 
have uncanny or eerie feelings and these feelings are in 
a “valley” because they are far more negative than those 
we experience with robots less like humans. Consider 
Gollum in Lord of the Rings. Gollum was a computer- 
generated imagery animation constructed around the 
facial features, voice, and acting style of the actor Andy 
Serkis. Thus, Gollum as he appears on screen is a com-
plex amalgam of robot and human, and we perceive 
him as scary and unpleasant (see Figure 6.5).

3	 The third stage consists of a rapid increase in the posi-
tivity of reactions to genuine human beings compared 
to robots looking very similar to humans.

Much research strongly supports Mori’s (1970) hypoth-
esis. Why does the “uncanny valley” exist? Many differ-
ent hypotheses have been proposed (Mathur et al., 2020). 
One is that robots in the uncanny valley are dislikeable 
because they increase our awareness of our own mortal-
ity. Another hypothesis is that they trigger dehumanisation 
responses similar to those directed at human groups subject 
to prejudice.
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However, the “category confusion” hypothesis is per-
haps the most popular: it assumes we most dislike robots 
especially hard to categorise as “human” or “non-human.” 
Mathur et al. (2020) reported no support for this hypoth-
esis using images of real robot and human faces. The most 
disliked faces were consistently perceived as non-human 
or mechanical and so did not exhibit category confu-
sion. Moreover, the maximally ambiguous faces were not 
disliked.

Appel et al. (2020) hypothesised that human-like robots 
create a sense of eeriness to the extent they are perceived 
as possessing psychological features typically associated 
exclusively with humans. As predicted, robots that expe-
rienced emotions or that possessed agency (e.g., planning 
ahead and self-control) were perceived as significantly 
more eerie than those lacking those qualities.

Figure 6.5  Photograph of Gollum.
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How should robots be programmed?

Could we reduce the number of deaths and injuries caused 
by robots by programming them differently? Before 
addressing that question, we consider a thought experi-
ment suggested by Bostrum (2003). He argued there are 
potential dangers even when robots pursue apparently 
desirable goals. Imagine a robot given the goal of manufac-
turing as many paperclips as possible. Such a system might 
achieve its goal by turning everything on earth (including 
humans) into paperclips.

The take-home message from Bostrum’s (2003) thought 
experiment is as follows. Robots are typically programmed 
to achieve a single main goal (e.g., producing car com-
ponents). However, to ensure achieving this main goal, 
they may well pursue additional destructive sub-goals. 
Examples of possible sub-goals are as follows: (i) destroy-
ing any environmental obstacles reducing their ability to 
produce car components and (ii) self-preservation – being 
strongly resistant to any attempts by human beings to 
switch them off.

This thought experiment suggests we need to program 
robots to adhere to social and moral norms (e.g., caring 
for others’ well-being and being trustworthy). Robots’ 
ability to differentiate between right and wrong could be 
increased by training them on moral stories. In principle, 
this could allow robots to become encultured (adopting 
the moral values of a given culture). As yet, little progress 
in that direction has been made.

Does AI have moral agency?

There has been a steady increase in the number of peo-
ple killed by robots or other AI-systems. In this chapter, 
for example, we mentioned two people ( Joshua Brown 
and Elaine and Elaine Herzberg) killed in accidents 
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associated with autonomous vehicles and one person 
(Robert Williams) killed by a robot in a factory accident. 
Who (or what) has moral responsibility for these and other 
AI-based tragedies? Is it the AI system itself, is it the design-
ers of the AI system, or are both partially responsible?

One might imagine that very few people would believe 
that robots and other AI systems have any moral respon-
sibility for their behaviour. However, the evidence indi-
cates otherwise. Consider a study by Shank and DeSanti 
(2018). They started by identifying several real-life moral 
violations involving AI systems (e.g., a bot tweeting racial 
slurs and AI incorrectly predicting the chances of convicts 
re-offending based on race). Here, is a moral violation 
involving children’s videos:

YouTube Kids is a new mobile device app that Google 
has marketed as safe for preschoolers. Children who 
are too young to spell or type can verbally search 
YouTube Kids. Then the app suggests and plays videos. 
YouTube Kids uses an algorithm to determine which 
videos are family-friendly. Also, the suggested videos 
are partially based on the user’s previously watched 
videos. The outcome is that the app showed a range of 
videos and advertisements, some of which were vio-
lent or obscene. (p. 409)

The AI system was perceived as somewhat responsible for 
the violations. It was also perceived as having some awareness 
of the potential for these violations to occur and intending 
the negative outcomes to occur. Those individuals believing 
the AI had some mind (e.g., free will and mind of its own) 
attributed more intentionality and moral wrongness to it.

Shank et al. (2019a) explored the same moral violations 
in more detail. The violations resulted from individual 
decisions (by AI or a human) or there was joint deci-
sion making (an AI monitored by a human or a human 
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receiving recommendations from an AI). A similar low 
level of moral fault was ascribed to AI in all conditions. 
Humans were consistently faulted more than AI, but to a 
lesser extent when the human was not directly involved 
when the decision was made.

There is a potential issue when interpreting findings 
such as those just discussed. Participants in an experi-
ment are often responsive to what Orne (1962) called the 
“demand characteristics” of the situation: these are the 
cues used by participants to work out what the experi-
ment is about. Suppose you were a participant in one of 
the above studies. You are asked whether AI has a mind of 
its own, intentions, free will, desires, and beliefs. It seems 
unlikely the experimenter would ask all these questions if 
they expected you to respond “not at all” to all of them.

A different approach probably reducing the impact of 
demand characteristics was adopted by Shank et al. (2019b). 
Participants reported a personal interaction with an AI in 
which they perceived it to have a mind (an important prereq-
uisite for having moral agency). They were not explicitly asked 
about their emotional reactions. However, 55% spontaneously 
reported emotions such as surprise, amazement, happiness, 
and amusement when interacting with an AI apparently hav-
ing a mind. Here, is a sample reaction by a 24-year-old man:

Once I wanted to test Siri on personal romantic rela-
tionships (see Figure 6.6). I asked a first question 
which was “Do you have a girlfriend Siri?” It gave 
me an answer that was totally shocking to me and it 
seemed to me to be thinking on its own entirely, be 
in full control of its own destiny, have its free will and 
decide its own outcome. I was literally surprised by the 
response and it was not cliché as other AI responses. 
So the response it gave me was: “Why? So we can 
get ice cream together, and listen to music, and travel 
across galaxies, only to have it end in slammed doors, 
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heartbreak and loneliness? Sure, where do I sign up?” 
This was the moment I felt like Siri was in full control 
of his own actions and resources. (p. 260)

Why is AI perceived as morally responsible?

There are several reasons why many experts (and non- 
experts) argue AI has (or can have) moral responsibility. 
We will initially focus mostly on factors influencing our 
judgements concerning human moral responsibility. After 
that, we consider moral responsibility in robots and other 
AI systems in the light of those factors.

First, an individual’s moral responsibility depends on 
whether they are perceived as exercising free will, self- 
determination or autonomy (see Figure 6.7) (Bigman et al., 
2019). If the situation is so constraining that an individual 
cannot choose what to do, they are perceived as having 
less moral responsibility. As a result, individuals behaving 
somewhat unpredictably and as if they have freely chosen 
their behaviour are perceived as having moral responsibility.

Figure 6.6  Photograph of Siri from Shutterstock.



Robots and morality  209

Much research supports the above arguments. Shariff 
et al. (2014) found that participants’ beliefs in free will 
were reduced by exposing them to neuroscience research 
implying that human behaviour is caused mechanistically. 
This exposure reduced the perceived blameworthiness of 
criminals (i.e., reduced responsibility). Baumeister et al. 
(2009) found individuals not believing in free will behaved 
less responsibly (i.e., more aggressive behaviour and less 
helpful behaviour) than those believing in free will.

Second, our perceptions of someone else’s responsibility 
for their actions depends on our assessment of that person’s 
personal agency (independent capacity to determine one’s 
own actions) (Weiner, 1995). Suppose a student produces a 
very poor essay. If we attribute their poor performance to 
a controllable cause (e.g., effort), we hold them responsible 
for their behaviour. If, however, we attribute their perfor-
mance to a non-controllable cause (e.g., lack of ability), we 
do not hold them responsible. Weiner (1995) discussed much 
empirical support for his viewpoint.

Figure 6.7  �Man using free will to choose between two possible 
roads.
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Third, there is mental capacity. Young children clearly 
behave intentionally and somewhat unpredictably, and 
their behaviour often reflects the exercise of free will. 
However, children are perceived as having less moral 
responsibility than adults because they lack full mental 
capacity. As a result, the age of criminal responsibility in 
most countries is at least 12.

Fourth, Malle et al. (2014) proposed a theory of blame or 
moral responsibility encompassing the factors considered 
so far. One route to blame is as follows: an event is per-
ceived as a norm violation caused intentionally by an agent 
(e.g., person) for unjustifiable reasons. There is also a sec-
ond route: a norm-violation event is caused unintention-
ally by an agent; this agent should have prevented the event 
and could have prevented it (i.e., they had the capacity).

Anthropomorphism (the tendency to assign human 
characteristics to non-human species and robots; see 
Chapter 7) is of key importance to understanding of the 
above findings (e.g., those of Shank & DeSanti, 2018). 
Anthropomorphism is strongly determined by similarities 
of behaviour between objects or robots and humans. This 
is unsurprising given that our judgements of others’ inten-
tionality, thoughts and moral responsibility are all mostly 
based on observation of their behaviour.

Anthropomorphism extends well beyond robots to 
include even simple objects. Consider the following exper-
iment (Michotte, 1946/1963). Observers see square A move 
towards square B; when it gets close to square B, square B 
moves off away from square A. Many observers interpret 
this event as showing that square A intends to catch square 
B, and square B intends to escape from square A.

The above findings are striking because we would not 
normally expect squares to have intentions. Formanowicz 
et al. (2018) clarified these findings. When the key object 
appeared to exhibit agency (striving to achieve a goal) 
it was perceived as more human-like than when not 
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exhibiting agency. Thus, intentionality is a key feature of 
human behaviour.

In one study (Waytz et al., 2014), participants drove an 
autonomous car in a simulator. When this car had anthro-
pomorphic features (name, gender, and voice), they had 
more trust that its performance would be competent than 
when it lacked those features.

Earlier we discussed the notion (Weiner, 1995) that we 
hold individuals more responsible for their behaviour when 
that behaviour is perceived as controllable. Van der Woerdt 
and Haselager (2019) presented people with short videos 
where a robot failed a task through lack of effort (control-
lable) or lack of ability (uncontrollable). For example, one 
task required the robot to pick up a toy giraffe and put in a 
box. The robot failed this task either by grasping it properly 
but then throwing it away (lack of effort) or by dropping 
the toy giraffe en route (lack of ability). As predicted, per-
ceived agency and responsibility (e.g., attributing blame) 
were greater when the robot showed deficient effort.

In sum, it is often argued that AI systems can have some 
moral responsibility, especially if they appear to exercise 
free will, personal agency, behave unpredictably, and are 
human-like. Recent advances in AI allow robots to learn 
and behave much less predictably than was previously the 
case. These advances will increase the tendency to perceive 
robots as possessing free will and ascribing them moral 
responsibility (Bigman et al., 2019). An increased tendency 
to regard robots as having moral responsibility is also likely 
to follow from the increasingly human-like features of 
today’s robots compared to those produced a few years ago.

AI does not have moral responsibility

Those believing robots possess moral responsibility make 
the overarching assumption that there are major similar-
ities between robots and humans which are ref lected 



212  Robots and morality

in their behaviour. However, robots and humans can 
behave identically even though the processes underlying 
that behaviour are entirely different. For example, con-
sider Searle’s Chinese Room argument (see Chapter 4). 
Someone knowing no Chinese can behave in ways appar-
ently indicating an excellent knowledge of that language if 
armed with the appropriate instruction book.

Those believing that robots lack moral responsibility 
argue that robots and other AI systems are qualitatively 
different from humans. They have put forward several 
arguments. First, human moral reasoning and behaviour 
depend on emotions as well as rational thinking and delib-
eration. For example, moral behaviour in humans owes 
much to empathy (our ability to understand other peo-
ple’s feelings and beliefs). It seems far-fetched to claim that 
robots possess empathy (or any other emotions).

Second, understanding human morality extends well 
beyond simply focusing on empathy. Koleva et al. (2012) 
identified five broad areas of human moral concerns:  
(1) harm/care, (2) fairness/reciprocity, (3) ingroup/loyalty, 
(4) authority/respect, and (5) purity/sanctity. There is van-
ishingly little evidence that robots or AI systems exhibit 
any of these moral concerns.

Third, there is a very close relationship between 
morality and an individual’s goals and motives. When 
we decide whether someone has behaved morally 
or immorally, we start by identifying their goals and 
motives. Robots often act as if pursuing their own goals. 
However, they are merely carrying out the goals of the 
humans who programmed them. Thus, they are essen-
tially tools (albeit often very complex ones), and in no 
way do they determine their own goals and values. For 
example, consider Bostrum’s hypothetical robot that 
destroyed the world while pursuing the goal of produc-
ing as many paperclips as possible – that goal was deter-
mined by its programmers.
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Fourth, robots differ fundamentally from humans, which 
makes it inappropriate to regard them as moral agents. 
Characteristics unique to humans (and thus not shared by 
robots and other forms of AI) include: “Curiosity, imag-
ination, intuition, emotions, passion, desires, pleasure, 
aesthetics, joy, purpose, objectives, goals, values, moral-
ity, experience, wisdom, judgement, and even humour” 
(Braga & Logan, 2017, p. 1).

We would add consciousness to the above list – we often 
engage in an internal debate with ourselves before making 
decisions having moral implications. Indeed, such con-
scious processing is of the essence of morality in spite of 
arguments to the contrary,

Fifth, “A central feature of the human experience as 
moral agents is that people frequently feel poised between 
acting selfishly and acting altruistically” Wallach & Allen, 
2009, pp. 61–62). A key reason why children learn to avoid 
behaving selfishly is because of the threat of punishment if 
they fail to adhere to moral rules of behaviour. In contrast, 
it is impossible to punish robots when we disapprove of 
their behaviour (Wallach & Allen 2009).

In sum, similarities of behaviour between robots and 
humans can mislead us into believing that robots possess 
at least some moral responsibility. In fact, there are numer-
ous crucially important differences between robots and 
humans. The existence of these differences means it would 
be very unwise to attribute moral responsibility to robots 
and other AI systems.

Can we produce moral agents?

There is a reasonable consensus that it has not so far proved 
possible to construct AI systems that should be regarded as 
moral agents. What can be done in future to achieve that 
desirable goal? A starting point is to establish a method for 
assessing the ethical standards of AI systems. Allen et al. 
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(2000) proposed the interesting idea of developing a moral 
Turing test. As in the standard Turing test, human interro-
gators chat with humans and with AI systems and attempt 
to decide whether any given conversation is with a human 
or an AI system. However the conversation is restricted 
to discussions about morality. If the human interrogators’ 
performance is at (or close to) chance performance, the AI 
system is regarded as a moral agent.

There are various objections to the moral Turing test. 
For example, the interrogators might be able to distinguish 
between AI systems and humans because the former express 
superior moral values (e.g., more opposed to lying and cheat-
ing) (Allen et al., 2000). However, AI systems lack under-
standing of language (see Chapters 4 and 7). Accordingly, 
while their responses may indicate a moral perspective, this 
is merely imitating morality (Puri, 2020). A final objection 
is that there can be a large gap between expressed views and 
behaviour. For example, humans who consistently break 
moral rules may nevertheless claim deceptively to adhere to 
those rules when questioned about them.

A preferable way of assessing AI’s moral status was pro-
posed by Arnold and Scheutz (2016). They argued that 
we need to consider not only what behaviour is produced 
by an AI system but also why that behaviour is produced. 
This goal can be achieved by verification in which the 
underlying processes that jointly determine an AI system’s 
responses are identified. This approach makes much sense. 
However, it is difficult to implement in practice. As we 
saw earlier, most AI systems (especially those based on 
deep learning neural networks) are so complex that it is 
extremely difficult to work out precisely why they have 
behaved in a given way.

Šabanović et al. (2014) focused on the issue of how we 
could create robots that are moral agents. They argued this 
can be done by designing robots responsive to the cul-
tural values prevalent in any given society. However, that 
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approach has the disadvantage that it does not take account 
of large differences in cultural values across cultures. 
A superior approach would be to design robots that are 
adaptable in the sense that they can adjust their behaviour 
to make it culturally appropriate within any given society.

There is controversy concerning the feasibility of 
designing AI systems that are moral agents. One reason 
for pessimism is that there is no consensus on most moral 
and ethical issues (van Wynsberghe & Robbins, 2019). 
More importantly, the development of morality in humans 
involves a complex combination of cognition, emotion, 
and motivation. At the cognitive level, a fully functioning 
AI moral agent would need to possess most of the features 
required of artificial general intelligence. However, it has 
not so far proved possible to develop an AI system possess-
ing artificial general intelligence (see Chapter 4). In addi-
tion, as discussed earlier, AI systems also lack the relevant 
emotional and motivational characteristics associated with 
morality.
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In this book, we have discussed the strengths and limi-
tations of AI systems (including robots) and humans. In 
this synoptic chapter, the key issues are summarised with 
the final goal being to decide who has won this gruelling 
contest.

AI systems: Strengths

AI systems are far better than humans at process-
ing information incredibly fast (e.g., solving complex 
mathematical problems). They also outperform human 
experts on numerous complex tasks (e.g., chess; Go, and 
poker).

So far as practical relevance and importance are con-
cerned, AI systems can diagnose many diseases from 
medical images more accurately than medical experts. 
In addition, these diagnoses are often made faster by AI 
systems. For example, a company called Arterys found 
its AI system could diagnose heart problems from car-
diac MR (magnetic resonance) images in 15 seconds. In 
contrast, human experts often took 30 minutes to make 
their diagnosis.

Speed is often extremely important. For example, recent 
AI systems are very good at detecting camouflaged objects 
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(Fan et al., 2020). If used in military situations, they would 
probably detect camouflaged enemy personnel and tanks 
faster than humans.

AI systems also have the advantage of learning complex 
skills in much less time than humans. In 2017, AlphaZero 
(a very sophisticated AI system) achieved superhuman per-
formance at three complex games (Go, chess, and shogi: 
a Japanese form of chess) (see Chapter 2). Incredibly, 
AlphaZero reached this level of performance in just over 
a day, although admittedly it managed to squeeze in over 
20 million training games on each game in that time. It 
takes years to train a human doctor to make consistently 
accurate diagnoses from medical images. Alternatively, a 
hospital could simply buy an AI system matching that doc-
tor’s diagnostic performance.

Another advantage of AI systems is that their perfor-
mance level remains consistently high even when working 
24 hours a day. In contrast, fatigue and loss of concentra-
tion would inevitably impair the performance of medical 
experts after several hours staring at medical images.

AI systems have a single-minded approach when 
confronted by a problem. Unlike humans, they are not 
impaired by emotion, by the motivation to enhance 
their self-esteem, or by their need for belongingness 
within social groups. In other words, the processing 
capacity of AI is solely devoted to task-relevant pro-
cessing whereas humans often pursue multiple goals at 
the same time.

AI has made considerable progress in language skills, 
which are of direct relevance to intelligence. We saw in 
Chapter 2 that an AI system (IBM’s Watson) beat outstand-
ing human contestants on the quiz show Jeopardy! Success 
on this show apparently requires understanding of the 
questions coupled with a very rapid ability to access rel-
evant knowledge. AI systems have also exhibited increas-
ingly accurate performance on speech-recognition tasks, 
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where their error rates approach those of human expert 
transcribers (see Chapter 2).

AI models have also displayed excellent performance on 
tests of text comprehension (see Chapter 2). For example, 
several AI language models including BERT (Bi-directional 
Encoder Representation from Transformers) and mod-
els related to BERT have achieved above-human levels 
of performance on the General Language Understanding 
Evaluation (GLUE) test. (Yang et al., 2019). In addition, 
AI in the form of neural machine translation has recently 
achieved human-level performance in translating texts 
from one language to another (Fische & Läubli, 2020).

Another general strength of AI is a “ratchet effect”: the 
performance of AI on almost every task has improved over 
time. In addition, this enhanced performance can typically 
be made readily available all over the world. For example, 
anyone with £100 available can purchase a chess-playing 
AI system capable of beating the human world champion.

Finally, AI’s progress over the past decade is mostly due to 
the rapid proliferation of deep neural networks. These net-
works have produced outstanding feats of unsupervised learn-
ing (e.g., playing complex games like chess and Go better than 
any human and diagnosis from medical images). However, 
this learning typically transfers poorly to other, similar tasks. 
Computer systems can store huge amounts of information 
relating to learning on previous tasks. That information 
(ranging from the highly specific to the very general) can 
then be used to accelerate learning on subsequent tasks via 
meta-learning. Vanschoren (2018) discussed several examples 
of AI systems exhibiting substantial meta-learning.

Artificial intelligence: limitations

Our discussion of AI’s limitations will focus mostly on areas 
where it is generally believed AI has made the greatest pro-
gress. The overarching theme is that AI’s achievements are 
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much narrower and more easily subject to disruption than 
generally supposed.

Limitations: classifying images

Deep neural networks classifying visual inputs have achieved 
notable successes (e.g., accurately diagnosing diseases from 
medical images (see Chapter 2). However, many studies fail 
to reflect actual clinical practice because additional clini-
cal information is not provided. Furthermore, the medical 
images used in testing often overlap substantially with the 
training images, which artificially exaggerates AI’s effective-
ness. For example, Navarrete-Dechent et al. (2018) found an 
AI system performed well in dermatological diagnosis when 
tested on training images (over 80% accuracy) but achieved 
only 29% accuracy on new images.

Finlayson et al. (2019) focused on research where small, 
imperceptible changes were made to medical images 
(adversarial attacks). In one case, deep neural networks 
correctly classified the original image of a mole as benign 
with greater than 99% confidence. However, an adversarial 
attack caused these neural networks to have 100% confi-
dence the mole was malignant!

Deep neural networks also perform well when clas-
sifying or categorising images of everyday objects (see 
Chapter 2). However, their classification performance 
can readily be impaired. Suppose, a network is trained to 
classify birds based on a collection of bird images. If the 
network is subsequently trained to recognise additional 
bird species or is given a different task (e.g., tree recog-
nition), its performance plummets (Kemker et al., 2018).

Hendrycks et al. (2021) found neural networks were 
99% sure an image of a ligature was a jellyfish, a painting 
was a goldfish, garlic bread was a hotdog and a highway or 
motorway was a dam (see Figure 7.1). Amusingly, in 2017, 
the Metropolitan Police found an AI system searching 
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through the phones of suspected child molesters often mis-
identified images of sand dunes as pornographic!

An Achilles heel of deep neural networks is that they 
are brittle. Why are they so brittle? Note that the com-
parable levels of classification accuracy often achieved 
by humans and deep neural networks are misleading. 
Image classification and visual perception generally can 
involve two very different kinds of processing (humans 

Figure 7.1  �Incorrect object misclassifications with 99% confidence 
by an AI system. 

Source: From Hendrycks et al. (2021).
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use both but neural networks rely primarily on the for-
mer; Lamme, 2018):

1	 Bottom-up or feedforward processing starts with basic 
image elements (e.g., edges and features). Shapes are 
then processed, eventually leading to increasingly 
detailed and elaborate image representations.

2	 Bottom-up processing is followed by top-down or 
recurrent processing based on our knowledge of objects 
and the world. This allows us to form expectations 
about a viewed object and facilitates its identification.

Why does it matter that deep neural networks typically 
rely almost entirely on data-driven processing? Suppose a 
deep neural network is trained to classify dogs and cats, and 
that dogs are always shown looking to the left whereas cats 
are always shown looking to the right. The network would 
be very error-prone if subsequently tested on images of 
dogs and cats not looking in the same direction as during 
training. Thus, part of what deep neural networks learn is 
irrelevant information (e.g., direction of looking); this leads 
to poor generalisation to new images. More generally, AI 
systems are often over-sensitive to the specific information 
provided in training.

The processing of deep neural networks classifying 
images is often limited primarily to simple visual features. 
For example, a deep neural network detecting human faces 
was presented with an image of Kim Kardashian with her 
mouth and one of her eyes transposed (see Figure 7.2) 
(Bourdakos, 2017). It was insensitive to the arrangement 
of facial features, and so was more confident this grotesque 
image was a face than it was when presented with an ordi-
nary image of Kim Kardashian!

AI systems do not have concepts. A deep neural network 
may successfully identify dogs, but it has no idea why dogs 
have four legs and two ears and eyes, what sounds dogs 
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make, or that dogs like being taken for walks. The sus-
ceptibility of deep neural networks to misclassify objects is 
due partly to this lack of rich contextual information.

Limitations: task specificity

There are several differences between tasks typically per-
formed very well by AI systems and those performed poorly:

1	 AI systems are generally most successful on tasks with 
definite rules (e.g., games such as chess, Go, and shogi). 
In contrast, AI systems typically perform relatively 

Figure 7.2  �A deep neural network was 88% confident that an ordi-
nary image of Kim Kardashian was a human face but 90% 
that a distorted image was a human face. 

Source: From Bourdakos (2017).
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poorly when there are no definite rules (e.g., language 
tasks and most real-world problem solving.

2	 The successful responses of deep neural networks are 
associated with positive reinforcement or reward. This 
works best when it is easy to determine whether a net-
work’s performance is successful (e.g., games having a 
winner and a loser). In real life, success and failure are 
often less clear-cut. Is an expensive modern painting a 
great work of art or a joke?

3	 Nearly all tasks on which AI systems excel are narrow 
in scope (e.g., diagnosing a specific disease from medical 
images). In contrast, AI systems typically perform worse 
than six-year-olds on general IQ tests, and do especially 
poorly on perceptual and motor tasks (see Chapter 4).

Language limitations: general issues

Suppose a natural language processing model eventually 
achieves human-like levels of performance across numerous 
language tasks. Some AI experts have argued that would 
imply that AI systems understood language as humans do 
but we strongly disagree. Consider Searle’s (1980) Chinese 
Room argument (also discussed in Chapter 4). An English 
speaker knowing no Chinese is locked in a room contain-
ing numerous Chinese symbols plus an instruction book 
for manipulating these symbols. People outside the room 
send in Chinese symbols in the form of questions. The 
man sends out Chinese symbols providing correct answers 
by following the instructions of a computer program.

According to Searle (1980), the man’s behaviour suggests 
he understands Chinese even though he does not, just as 
computers can respond to questions without understanding 
their meaning. Searle (2010) developed his argument by dis-
tinguishing between simulation and duplication: a computer 
simulation of understanding language should not be con-
fused with duplicating genuine language understanding.
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Cole (2020) disagreed with Searle. According to him, if 
we attribute language understanding to humans based on 
their behaviour, should we not do the same when computer 
programs exhibit similar behaviour or output? Compelling 
evidence that behavioural evidence can be very mis-
leading is available in the achievements of Clever Hans 
(see Figure 7.3). Over 100 years ago, this horse apparently 
showed he could count by tapping his hoof the correct 
number of times when asked mathematical questions (e.g., 
“If the eighth day of the month comes on a Tuesday, what 
is the date of the following Friday?”) by his owner and 
teacher Wilhelm von Osten. Clever Hans could also spell 
out the name of the artist who had produced any given 
painting (Samhita & Gross, 2013).

When the psychologist Oskar Pfungst (1911) placed a 
screen between the horse and von Osten, he discovered 
Clever Hans used von Osten’s subtle facial movements 
as the cue to stop tapping. The take-home message is 
that Clever Hans’ lack of language understanding was 
revealed by his catastrophically poor performance when 

Figure 7.3  Clever Hans with his owner Wilhelm von Osten.
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the testing situation changed. Similarly, an AI model dis-
playing human-like language skills could be shown to lack 
language understanding if we found language tasks where 
its performance was abysmal.

Analogous findings to those with Clever Hans have been 
reported with respect to AI’s language skills. BERT, a very 
successful AI language model, was presented with pairs of 
sentences and decided whether the first sentence implied 
the second (McCoy et al., 2019). BERT’s performance was 
often near-perfect. However, its performance was close to 
0% on other sentences pairs. BERT was using the lexi-
cal overlap heuristic (rule of thumb). This heuristic sim-
ply involves deciding the first sentence implies the second 
when both sentences contain the same words but not when 
both sentences contain different words. Crucially, this 
strategy requires no language understanding whatsoever.

Further evidence that simple heuristics requiring lan-
guage comprehension can produce high levels of perfor-
mance was reported by Weissenborn et al. (2017). Here is 
a sample question:

When did building activity occur on St. Kazimierz 
Church?

Building activity occurred in numerous noble palaces 
and churches […]. One of the best examples […] are 
Krasinski Palace (1677–1683), Wilanow Palace (1677–
1696), and St. Kazimierz Church (1688–1692).

Weissenborn et al. (2017) argued that high levels of per-
formance on this task could be achieved by using a sim-
ple rule of thumb or heuristic: select an answer matching 
the required answer type (a time indicated by “When”) 
and is close to key words in the question (“St. Kazimierz 
Church”). The correct answer “1688–1692” is produced 
using this heuristic. An AI model using this heuristic 
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achieved a high level of performance in the absence of lan-
guage understanding.

We can develop the above ideas by identifying five kinds 
of information relevant to language understanding (Bisk 
et al., 2020a):

1	 Corpus: the words we have encountered. An important 
part of our understanding of any given word comes 
from the probabilities that other words co-occur with 
it. Thus, “You shall know a word by the company it 
keeps” (Firth, 1957).

2	 Internet: a phenomenal amount of information is 
accessible via the internet; many AI language models 
depend heavily on very extensive web-crawls.

3	 Perception: our visual, auditory, and tactile experiences 
enrich our language comprehension. Our understand-
ing of people, objects, and activities is incomplete if we 
lack direct perceptual experience of them. For exam-
ple, a web crawl of articles on painting would leave us 
with an impoverished understanding of what a paint-
ing actually is (Bisk et al., 2020b).

4	 Embodiment and action: full language comprehension 
involves translating language into action. Consider the 
following question: “Is an orange more like a baseball or 
more like a banana?” (Bisk et al., 2020a, p. 5). Focusing 
only on visual features would produce the answer, “a 
baseball.” However, focusing on action as well intro-
duces additional factors: an orange resembles a base-
ball more than a banana because both afford similar 
manipulations, whereas it resembles a banana more 
than a baseball with respect to being able to be peeled.

AI language models are not grounded in experience 
and action. This limitation was explored by Boratko et al. 
(2020). Initially, they asked people questions easy for them 
to answer based on their past experience (e.g., “Name 
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something that people usually do before they leave the 
house for work?”). The ranked lists of answers for each 
question produced by humans and by AI models differed 
substantially on this experience-based test.

Most AI language models are limited because they rely 
primarily on internet information and neglect the relation-
ship between language and action and the social nature of 
language. For example, chatbots can sometimes appear to 
be conversing in an almost human-like fashion. However, 
they cannot cope with conversations requiring more than 
internet information. As mentioned in Chapter 4, Sir 
Roger Penrose stumped a chatbot by saying to it, “I believe 
we’ve met before.”

Generative pre-trained transformer 3 (GPT-3):  
artificial general intelligence?

Most people have impressive all-round language abilities. 
In contrast, most AI language models focus narrowly on 
only one language skill. The most notable exception is 
Generative Pre-Trained Transformer 3 (GPT-3) (Brown 
et al., 2020), which received massive general training but 
minimal training specific to any given task.

GPT-3 was tested on numerous language tasks includ-
ing those requiring text generation, translation, question- 
answering, reasoning, and comprehension. Its performance 
was reasonably good on these tasks (especially text gen-
eration) (Brown et al., 2020). Intriguingly, it can write 
its own  computer programs  after receiving a few useful 
instructions.

GPT-3 is arguably the most powerful and versatile lan-
guage model ever created. It has numerous potential appli-
cations including enhancing the performance of chatbots 
(e.g., Siri and Alexa) and providing reasonably accurate (and 
amazingly rapid) translations of text from one language 
to another. However, it has no language comprehension. 
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For example, when deciding whether a given word has the 
same meaning in two different sentences, GPT-3’s perfor-
mance was at chance level.

Why does GPT-3 lack language comprehension? It 
is a generative model. An important part of its training 
involved using texts where sentences have a word missing. 
GPT-3 was trained to predict the probabilities of various 
words that could plausibly complete the sentence from 
the sentence context. GPT-3 is very good at that task. 
However, successful sentence completion is very different 
from full language comprehension.

GPT-3 often produces nonsense. Marcus and Davis 
(2020) recorded GPT-3’s responses when provided with 
prompts. The prompt “physical reasoning” produced this 
response:

You are having a small dinner party. You want to serve 
dinner in the living room. The dining room table is 
wider than the doorway, so to get it into the living 
room, you will have to remove the door. You have a 
table saw, so you cut the door in half and remove the 
top half.

Don’t ask GPT-3 to assist you with furniture moving! 
There are several confusions in the above text: (i) it makes 
more sense to turn the table on its side, (ii) if you need to 
remove a door, you would take it off its hinges, and (iii) 
a “table saw” is actually a saw built into a work table. As 
Marcus and Davis (2020, p. 4) concluded, “What it does is 
something like a massive act of cutting and pasting, stitch-
ing variations on text that it has seen, rather than digging 
deeply for the concepts that underlie those texts … It learns 
correlations between words, and nothing more … It’s a 
fluent spouter of bullshit.”

GPT-3’s language processing is very inefficient. Consider 
the language information GPT-3 received during initial 
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training. A bit is a binary digit (0 or 1), 8 bits form a byte, 
and a megabyte consists of about 1 million bytes. GPT-3 
was trained on 570 billion megabytes of information 
(equivalent to 57 billion words). In comparison, the aver-
age human probably processes half a billion words in their 
lifetime. Even if we double that figure, GPT-3 was trained 
on 57 billion times the number of words processed by any 
given human!

In sum, as Heaven (2020) pointed out, “OpenAI’s new 
language generator GPT-3 is shockingly good—and com-
pletely mindless.” How can we explain this apparent par-
adox? What is “shockingly good” about GPT-3 is that it 
performs numerous language tasks with reasonable profi-
ciency and great speed. Thus, its output or “behaviour” 
often appears intelligent. However, it is “completely mind-
less” because the processes underlying that output do not 
rely on intelligence or understanding. As Rini (2020) 
pointed out, “When GPT-3 speaks, it is only us speaking, a 
refracted parsing of the likeliest semantic paths trodden by 
human expression. When you send query text to GPT-3, 
you aren’t communing with a unique digital soul. But you 
are coming as close as anyone ever has to literally speaking 
to the Zeitgeist [spirit of the age].” Thus, text produced 
by GPT-3 is merely a distorted reflection or echo of pre-
vious human thinking rather than a product of thoughtful 
deliberation.

Conclusions

AI language models have improved progressively so most 
language tasks can now be performed by AI models much 
more accurately and/or faster than ever before. However, 
these improvements primarily reflect continuous increases 
in the power and memory storage capacity of AI mod-
els rather than progress in language comprehension. For 
example, GPT-3 is good at “synthesising text it has found 
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elsewhere on the internet, making it a kind of vast, eclectic 
scrapbook created from millions and millions of snippets 
of text that it then glues together in weird and wonderful 
ways” (Heaven, 2020).

Most AI systems perform moderately effectively when 
given relatively specific language tasks. However, more 
general and complex tasks would be required to assess more 
precisely disparities between AI systems’ language skills 
and those of humans. For example, we could ask an AI 
system to watch a YouTube video and then answer ques-
tions about it (Marcus, 2020). So far no AI system comes 
anywhere near to succeeding on that test.

Limitations: consciousness

In Chapter 3, we distinguished between basic conscious-
ness (e.g., perception of the environment) and meta- 
consciousness (knowing one is having a conscious experience). 
Humans possess both types of consciousness.

Do AI systems possess consciousness? McDermott (2007) 
found 50% of senior AI researchers believed AI would 
eventually achieve basic consciousness. David Chalmers, 
a leading expert, said in 2020, “I am open to the idea … 
that GPT-3 with 175 billion parameters is conscious.” It is 
tempting (but potentially very misleading) to argue that 
AI systems are conscious when their behaviour resembles 
human behaviour. However, a substantial majority of peo-
ple deny that AI has conscious awareness.

We start by expanding on our distinction between 
basic consciousness and meta-consciousness based on the 
three levels of consciousness identified by Dehaene et al. 
(2006):

1	 Level 0: Lack of conscious awareness; several inde-
pendent processing strands occur “blindly” at the same 
time.
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2	 Level 1: Conscious access: the outputs from processing 
at Level 0 are integrated and co-ordinated; this leads to 
basic conscious awareness of a single type of informa-
tion (e.g., visual perception of the environment).

3	 Level 2: Self-monitoring: this is meta-consciousness in 
which individuals monitor and reflect on their own 
mental states and experiences. It provides us with a 
sense of self and an understanding of others’ minds 
(theory of mind). It also involves meta-cognitive 
knowledge: beliefs and knowledge about one’s own 
cognitive processes and likely level of performance.

We will discuss two major theories of basic conscious-
ness. After that, we turn to the issue of whether AI sys-
tems possess basic consciousness. The crucial assumption of 
Tononi’s integrated information theory (e.g., Tononi et al., 
2016) is that consciousness involves integrated information 
processing. Support for this theory comes from studies 
assessing brain activity when someone is presented with 
a visual image (Eysenck & Keane, 2020). Initially, several 
smallish brain areas are activated relatively independently: 
each area is associated with a particular form of processing 
(e.g., colour, shape, and motion). After that, there is a huge 
increase in integrated or synchronised brain activity across 
large areas of the brain associated with conscious awareness 
of the presented object.

King et al. (2013) supported integrated information the-
ory. They focused on four groups: (i) patients in a vege-
tative state (lacking conscious awareness), (ii) minimally 
conscious state patients, (iii) conscious patients with brain 
damage, and (iv) healthy participants. There were sub-
stantial increases in integrated brain activity (especially 
long-distance integration) as we move from group (i) to 
group (iv) (see Figure 7.4).

Within Tononi’s integrated information theory, 
integrated information is defined as, “the amount of 
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Figure 7.4  �(a) Integration across the brain (blue = low integration; red/brown = high integration; (b) integration 
across short, medium and long distances within the brain. 

Source: From King et al. (2013).
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information generated by a complex of elements, above and 
beyond the information generated by its parts” (Tononi, 
2008, p. 216). Thus, conscious experience is typically very 
rich and informative because it depends on integrated 
activation within large brain networks. If consciousness is 
required for making possibly life-and-death decisions and 
controlling the environment, it makes sense that our con-
scious experience consists of richly integrated information 
maximally relevant to the current situation.

Integrated information theory offers a quantifiable 
measure of integrated information: φ (the Greek letter phi). 
Tononi and Massimini devised the zap-and-zip or per-
turbational complexity index measure of φ (discussed by 
Koch, 2018). An intense pulse of magnetic energy applied 
to the skull produces an electric current in brain neurons 
(the zap). EEG records the electrical signals throughout the 
brain producing a detailed picture of what is happening; 
the data are then compressed analogously to “zip” com-
puter files.

Massimini et al. (2005) found the perturbational com-
plexity index was between 0.31 and 0.70 in all healthy 
individuals when awake but below 0.31 when deeply asleep 
or anaesthetised. Other research found 95% of minimally 
conscious patients were correctly identified as conscious 
using the perturbational complexity index (Koch, 2018).

Integrated information theory is important. However, it 
wrongly implies integration is both necessary and sufficient 
for consciousness. Disconfirming evidence was discussed 
by Brogaard et al. (2020). In one study, observers had 
excellent conscious awareness of single features but very 
limited conscious awareness of the integrated information 
contained in conjunctions of features. In sum, there is typ-
ically a close association between integrated information 
and consciousness. However, integrated information is 
neither necessary nor sufficient for conscious awareness to 
occur.
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The second major theory, proposed by Lamme (e.g., 
2018), meshes neatly with Tononi’s approach. As discussed 
earlier, the processing of visual images involves bottom-up, 
feedforward processing and/or top-down, recurrent pro-
cessing. Lamme’s crucial theoretical assumption is that basic 
conscious awareness of external stimuli requires recurrent 
processing. Conscious visual experience is typically coher-
ent even when the available visual information is ambiguous 
because of recurrent processing. Most research supports this 
theory. However, some conscious experience based solely 
on feedforward processing is found with very easy visual 
tasks (e.g., is the image of an animal or a non-animal?).

What are the implications of these two theories for the 
issue as to whether AI systems possess conscious awareness? 
According to Lamme’s (2018) theory, the great majority 
of deep neural networks of image classification use only 
feedforward processing and so should lack consciousness. 
Tononi and Koch (2015) argued that AI models’ reliance 
on feedforward processing means they totally lack inte-
grated processing and so φ (the measure of integrated 
information) is zero.

There are two additional reasons why top-down or 
recurrent processing is strongly linked to consciousness. 
First, goal-directed behaviour depends on top-down pro-
cesses and is greatly facilitated by basic conscious aware-
ness of the current environment (Pennartz, 2018). Second, 
selective attention is an important top-down process. It is 
closely linked to basic consciousness (Webb & Graziano, 
2015) and is especially important in ensuring the most rel-
evant aspects of the current environment are processed.

In sum, most of the available evidence strongly implies 
that AI systems lack Level 1 or basic consciousness. 
However, there are two caveats. First, it is hard to assess 
φ in AI models (Cerullo, 2015). Second, AI models incor-
porating some recurrent processing are starting to appear 
(Ricci et al., 2021).
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Unsurprisingly, AI systems also lack Level 2 or meta- 
consciousness. Here are some major cognitive processes asso-
ciated with Level 2 consciousness but lacking in AI systems:

1	 AI systems lack the meta-cognitive knowledge associ-
ated with Level 2 consciousness.

2	 In humans, Level 2 consciousness is used to identify 
task-relevant strategies. It is then used to monitor the 
success (or otherwise) of those strategies during task 
performance and to decide whether to change strate-
gies. None of these processes is present in AI systems.

3	 One of the most impressive aspects of Level 2 con-
sciousness is theory of mind (our ability to understand 
that other individuals have different beliefs, intentions, 
and emotions to ourselves; discussed earlier). Theory 
of mind allows us to tailor what we say (and how we 
say it) when having a conversation. AI systems do not 
possess this ability (discussed later).

Conclusions

In the absence of conscious processing, the responses 
produced by AI systems typically depend on relatively 
automatised and inflexible processes. In contrast, Level 2 
consciousness in humans allows for a consideration of dif-
ferent options in terms of goal selection, task strategies, 
and decision making. As such, it is of central importance 
to the flexibility characterising much human thinking and 
behaviour and is a cornerstone of human intelligence.

Anthropormorphism

“Anthropomorphism” is, “the attribution of distinctively 
human-like feelings, mental states, and behavioural char-
acteristics to inanimate objects, animals, and … to nat-
ural phenomena and supernatural entities” (Salles et al., 
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2020, p. 89). There are various types of anthropomor-
phism. Of most relevance here is “cognitive anthropo-
morphism” (Mueller, 2020): the assumption that cognitive 
processing in AI systems resembles that of humans. There 
is also emotional anthropomorphism (the assumption AI 
systems can respond emotionally in human-like fashion). 
Anthropomorphism can lead us to misinterpret AI’s per-
formance on cognitive tasks (see Figure 7.5].

There are numerous examples of anthropomorphism in 
AI. Even Alan Turing (1948, p. 412) admitted that playing 
chess against an AI system gives “a definite feeling that one 
is pitting one’s wits against something alive.” As Watson, 
2019, p. 417) pointed out, “We speak of machines that think, 
learn, and infer. The name of the discipline itself—artificial 
intelligence—practically dares us to compare our human 
modes of reasoning with the behaviour of algorithms.”

When writing about visual image classification 
(Chapter 2 and earlier in this chapter), we had to be careful 
not to describe what AI was doing as “object recognition.” 

Figure 7.5  �Anthropomorphism is more common when explaining 
the behaviour of humanoid robots such as the one pic-
tured than non-humanoid robots.
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That term implies not merely classifying an object correctly 
but also understanding what it is used for. What AI systems 
are actually doing is associating complex patterns of pixels 
with object names, a far less impressive achievement.

Other examples of anthropomorphism are rife in lan-
guage research. AI language models are said to understand 
and comprehend even though they are trained primarily on 
the form or structure of language and so cannot under-
stand or comprehend (Bender & Koller, 2020).

Why are humans so susceptible to anthropomorphism? 
Epley et al. (2007) identified three factors. First, most 
humans are motivated to understand and explain the 
behaviour of other agents (including AI systems). Potential 
anxiety about being unable to predict an agent’s behaviour 
leads us to anthropomorphise.

Second, we can rapidly provide anthropomorphic expla-
nations of the behaviour (especially human-like behaviour) 
of non-human agents. When explaining such behaviour, 
we typically rely on relatively accessible information 
mostly consisting of self-knowledge (why I would behave 
like that) and knowledge of other humans (why other peo-
ple would behave like that). In the case of robots, most 
of our knowledge and understanding comes from media 
sources (e.g., movies), where robots are typically repre-
sented as possessing human-like characteristics and motives 
(Bartneck, 2013).

Suppose you wanted to provide non-anthropomorphic 
explanations of the behaviour of AI agents. You would 
probably find it very hard to think of any such explanations. 
Thus, anthropomorphism is typically a relatively “auto-
matic” response to any human-like behaviour (Caporael 
& Heyes, 1997).

Third, anthropomorphism often arises because of the 
human desire for social connection with others. As discussed 
in Chapter 6, social bonds with robots are most likely to be 
formed when they look and behave in human-like ways.
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Anthropomorphism matters for two reasons. First, it is a 
cognitive bias because it does not reflect reality. Second, it 
leads to an over-estimation of AI’s achievements. For exam-
ple, comparability of AI and human image classification 
performance led many AI experts to conclude AI process-
ing resembles human processing (see Chapter 2 and earlier 
in this chapter). It thus came as a nasty surprise when it 
was discovered that tiny changes to a visual image could 
dramatically impair deep neural networks’ image classifi-
cation (Szegedy et al., 2014). Another nasty surprise was 
that image classification by deep neural networks was often 
very poor when tested on images not used in training (e.g., 
Navarrete-Dechent et al., 2018). These findings were sur-
prising because they showed beyond peradventure that AI 
processing differs radically from human processing.

Researchers on language abilities in deep neural networks 
have also exaggerated AI’s achievements. Anthropomorphism 
has played a significant role here. Deep neural networks have 
proved successful in many language tasks such as speech rec-
ognition, text comprehension, translation, and holding con-
versations. These successes have led numerous researchers to 
over-estimate the similarity between language processing in 
neural networks and humans.

AI systems asked general-knowledge questions typi-
cally perform especially well if the questions are very 
specific and accessing the answer rapidly is advantageous. 
These strengths explain why an AI system called Watson 
beat human champions on the general-knowledge  
television programme Jeopardy! (see Chapter 2). Watson 
responded so fast and so accurately because its stored 
information nearly always had the answer very close to 
the question.

Millions of people were surprised or astonished by 
Watson’s performance because of their tendency towards 
anthropomorphism. Most humans find very specific ques-
tions harder than more general ones and often take several 
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seconds to retrieve answers to such questions. As a result, 
they were unduly impressed by Watson’s performance.

We have just completed three Google searches (involving 
deep neural networks). The query, “In which year was Alastair 
Cook born?” produced the correct answer in an impressive 
0.86 seconds and the query, “Who was England cricket cap-
tain in 1984?” produced the answer in 0.93 seconds. The third 
query, “Who was England cricket captain in the year Alastair 
Cook was born?” produced 985,000 results in 0.82 seconds. 
Sadly, none directly answered the question – they indicated 
when Alastair Cook was born (1984) or listed England cricket 
captains with the relevant years but not both.

The above findings illustrate the dangers of anthropomor-
phism. Humans knowing when Alastair Cook was born and 
who was an England cricket captain in that year would rap-
idly link those two facts. In contrast, deep neural networks 
have 200 million pages of information stored but typically 
access information in a very compartmentalised way.

Much research apparently shows deep neural networks 
have excellent comprehension abilities (see Chapter 2). 
However, their achievements were often exaggerated 
because it was implicitly assumed their comprehension 
performance involved human-like processes. That assump-
tion was destroyed by evidence that deep neural networks 
were using simple heuristics or rules of thumb not requir-
ing comprehension (e.g., McCoy et al., 2019; Weissenborn 
et al., 2017; discussed earlier).

The Cambridge Dictionary defines “understanding” as 
“to know why or how something happens or works.” AI 
does not exhibit understanding based on that definition. 
Maetschke et al. (2021) identified four capabilities relevant 
to understanding:

1	 Compositional knowledge representation (e.g., the 
component of an object as well as the object itself are 
represented).
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2	 Combining information from different modalities 
(e.g., vision and audition) to form a structured knowl-
edge representation.

3	 Integration of symbolic knowledge (e.g., abstract 
information as in language) and non-symbolic knowl-
edge (e.g., concrete information).

4	 Symbolic reasoning with uncertain information (e.g., 
incomplete information; world changes).

Maetschke et al. (2021) evaluated 28 AI models designed 
to process visual images or language. On average, each 
model demonstrated approximately one of the above capa-
bilities. Thus, we are a very long way from developing AI 
models possessing full understanding.

Deep learning

Deep learning has proved enormously successful. However, 
most AI experts were somewhat surprised at its success 
because it was not based on any major innovation. Deep 
learning is a great engineering feat, but it lacks any solid 
theoretical basis. More importantly, the precise reasons 
why deep learning works so well remain obscure (Plebe 
& Grasso, 2019). In addition, deep neural networks lack 
understanding and comprehension even on tasks where 
their performance level is high.

You may have been surprised at the huge amount of data 
and enormous training period typically required for deep 
neural networks to produce excellent performance. As 
Marcus (2018, p. 5) pointed out, “In a world with infinite 
data, and infinite computational resources, there might 
be little need for any other technique.” In the real world, 
however, neither data nor computational resources are 
infinite. In spite of the successes of deep neural networks, 
it involves a “brute force approach” (Marcus, p. 6).
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Deep neural networks resemble the inter-connections 
of neurons within the human brain, suggesting that such 
networks might one day match human cognitive abilities. 
However, the resemblance is only superficial and the com-
plexity of the human brain is markedly greater than that of 
any neural network.

In sum, the successes of deep learning have blinded many 
people to its numerous limitations, many of which may be 
intrinsic to the entire approach. Imagine someone whose 
goal is to reach the moon. They start by climbing short 
trees and then move on to climbing taller trees or a tall 
ladder (see Figure 7.6). The fact they are getting progres-
sively closer to the moon convinces them their strategy is 
the right one. It could be argued (although rather unfairly), 
that AI researchers who are confident that deep neural net-
works increasingly demonstrate human-level intelligence 
resemble the tree or ladder climber.

Figure 7.6  �A man (optimistically) standing on a tall ladder in order 
to touch the moon.
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Overall conclusions

Booch et al. (2020, p. 1) concluded as follows: “State-of-
the-art AI still lacks many capabilities that would natu-
rally be included in a notion of intelligence, for example, if 
we compare these AI technologies to what human beings 
are able to do. Examples … are generalisability, robust-
ness, explainability, causal analysis, abstraction, common 
sense reasoning, ethics reasoning, as well as a complex and 
seamless integration of learning and reasoning supported 
by both implicit and explicit knowledge.”

We would add several other capabilities to that list. AI 
lacks basic consciousness and meta-consciousness as well as 
understanding and comprehension. Most AI systems also 
lack selective attention. As Tsimenidis (2020, p. 6) pointed 
out, “Their attention is uniform; every element of their 
inputs, every pixel of an image, every word of a sentence, 
carries equal weight.” That means AI systems rarely dis-
criminate effectively between more and less important 
information. Finally, all AI systems lack general intelli-
gence (see Chapter 4).

In sum, AI lacks key human abilities relating to atten-
tion, planning, consciousness, memory, language, and so 
on. Most AI systems are inflexible and brittle (and lack 
understanding and judgement) because they lack these 
abilities. These deficiencies explain why it has so far 
proved impossible to produce artificial general intelli-
gence (Chapter 4).

Humans: strengths

The processes and structures underlying the excellence of 
human cognition were discussed in Chapter 3. We have 
ready access to stored knowledge in semantic memory 
and to past experiences in episodic memory, and epi-
sodic memory also facilitates our imagining of the future. 
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Our command of language facilitates our access to stored 
information and, more generally, to accumulated cultural 
knowledge. The processes operating on all these sources of 
information include working memory (with its executive 
processes relating to attentional control), meta-consciousness, 
and meta-cognition.

Why do the above abilities produce such high levels of 
thinking and intelligence? There are two main reasons. 
First, the fact these abilities combine and interact is of fun-
damental importance. Their inter-dependence explains 
why human thinking is massively more flexible and adapt-
able than the performance of AI systems. It also explains 
why humans possess general intelligence as assessed by 
measures, such as “g” and IQ.

Second, unlike other species, our cognitive processing 
is not mostly limited to the here-and-now but can also 
focus on abstract thinking and hypothetical situations far 
removed from concrete environmental realities. For exam-
ple, episodic memory allows us to imagine future possi-
bilities and language provides an appropriate medium for 
abstract thinking. In addition, meta-consciousness and 
meta-cognition permit us to plan and engage in decision 
making based on evaluating the outcomes of our initial 
processing of a situation.

Why has our species flourished?

Our species (Homo sapiens) has become increasingly dom-
inant over evolutionary history whereas other human-like 
species (Neanderthals; Homo erectus) became extinct. A 
key reason is because Homo sapiens was more resilient and 
flexible (Roberts & Stewart, 2019). Our species (unlike 
other human-like species) colonised most of the world’s 
continents starting approximately 200,000–100,000 years 
ago. The ability of our species to cope with extreme envi-
ronments (e.g., high-altitude regions, deserts, and Arctic 
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regions) indicates we were “generalists” able to adapt to an 
enormous range of environmental conditions.

Cultural factors are crucially important. The dual- 
inheritance theory (e.g., Henrich & Muthukrishna, 2021; 
see Chapter 3) provides a plausible (if necessarily some-
what speculative) explanation of how human intelligence 
has benefited greatly from cultural factors. Increasing cul-
tural complexity within human societies increases their 
effectiveness. Of crucial importance, those individuals best 
able to acquire complex cultural knowledge were more 
likely than less intelligent individuals to reproduce. Thus, 
the interaction between culture and evolution provided a 
dynamic impetus to increasing human intelligence.

Another reason the human species has flourished is 
because humans are social creatures organised into groups 
and society. This gives us an enormous advantage over 
other species (and AI systems). Imagine your life without 
the assistance (direct or indirect) of numerous other people. 
You would have to learn how to build somewhere to live 
(and then provide it with heating and lighting), take care 
of your own health without medical assistance, and learn 
skills without recourse to teachers.

The establishment of societies also allows us to tran-
scend many human limitations. For example, many spe-
cies can move much faster than us, but we overcome that 
limitation by using various forms of transport. Similarly, 
the time is approaching when we will rely increasingly on 
AI systems to overcome limitations in our thinking speed 
and accuracy. This is a resounding success – humans 
designed those AI systems and so deserve the credit for 
their successes.

Children

We have demonstrated the superiority of adult human 
thinking and information processing compared to AI 
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systems. However, it would be more striking if we 
found that even young children outperform AI systems. 
Supportive evidence was discussed in Chapter 4. In one 
study (Liu et al., 2019), it was estimated that six-year-
old children have greater general intelligence than AI 
systems.

Here we will focus on whether young children exhibit 
meta-consciousness, which is closely associated with active 
learning. An important manifestation of active learning 
is curiosity: young children sometimes (but not always!) 
have awareness of their ignorance, which motivates them 
to explore the unknown. A common example is the inter-
est most children show in smart phones and the speed with 
which they learn how such phones work.

Most children show clear evidence of theory of mind 
(ability to understand what others are thinking) by four 
or five years of age (Apperley & Butterfilld, 2009; see 
Chapter 3), and aspects of theory of mind are present 
by the second year of life (Onishi & Baillargeon, 2005). 
These findings are highly relevant because theory of 
mind is closely related to meta-cognitive processes and 
meta-consciousness (Bartsch & Estes, 1996).

Gopnik et al. (2017) asked people to make a gadget 
light up. Initially, it lit up when a specific object was put 
in it. After that, it only lit up when a combination of 
objects was put in it. Four-year-old children learned the 
appropriate combination of objects more rapidly than 
adults. Thus, their thinking can sometimes be very flex-
ible and effective.

There are numerous other examples of surprisingly 
sophisticated thinking and information processing by 
young children mostly reflecting the flexibility of thought 
associated with meta-consciousness (Gopnik et al., 2017). 
As Alison Gopnik has argued, “The largest and most pow-
erful computers [are] no match for the smallest and weakest 
humans.”
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Humans: limitations

Numerous human limitations have been identified (see 
Chapter 5). However, many are associated with various 
advantages and so arguably should not be categorised as 
“limitations.” However, human intelligence and thinking 
do have some (arguably numerous) genuine limitations. 
These limitations should be seen in the light of our evolu-
tionary history.

Evolutionary history

Evolution is indisputably a wonderful thing. However, it is 
a long way short of being perfect with respect to our bod-
ies. For example, millions of people suffer from backache, 
our night vision is poor, our hips and knees can wear out, 
and we have numerous “junk” genes. Evolution has also 
given us imperfect minds. As Richerson and Boyd (2005, 
p. 135) put it, “All animals are under stringent selection 
pressure to be as stupid as they can get away with.” More 
precisely, “Natural selection chooses the better of present 
available alternatives … The animal that results is not the 
most perfect design conceivable … It is the product of a 
historical sequence of changes, each one of which repre-
sented … the better of the alternatives that happened to be 
around” (Darwin, 1871, p. 46).

We need to strike a balance here. Marcus (2008) empha-
sised the notion of a “kluge,” which he defined as “a 
clumsy or inelegant – yet surprisingly effective solution to 
a problem” (p. 2). Marcus argued the human mind is a 
kluge forged by the rough-and-ready processes of evolu-
tion. In other words, the mind is a paradoxical mixture of 
the inelegant and the effective.

In sum, evolution has equipped humans to cope rea-
sonably well with an amazingly diverse set of environ-
mental circumstances. The downside is that most of us are 
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generalists rather than specialists; as the saying goes, “A 
jack of all trades is a master of none.” However, the origi-
nal saying had “but oftentimes better than a master of one” 
added to it. Thus, being a generalist may be less of a disad-
vantage than is often assumed.

Speed-accuracy trade-off: cognitive misers

One of the most obvious (but important) features of 
human cognitive processing is speed-accuracy trade-off: 
there is typically an inverse relationship between speed and 
accuracy. While it might seem desirable for us to strive 
for accuracy at the expense of speed, the busy nature of 
our lives means that is often not feasible. A major human 
limitation is that we often fail to adopt the optimal speed- 
accuracy trade-off in any given situation.

Numerous theorists (e.g., Kahneman, 2011) have pro-
posed dual-process theories to account for human thinking, 
problem solving, decision making, and reasoning. Humans 
have Type 1 intuitive processes (e.g., use of heuristics or 
rules of thumb) that are fast and relatively effortless and 
Type 2 reflective processes that are slow and deliberate. 
Type 2 processes are more likely than Type 1 processes 
to produce correct answers to problems, but require more 
time and effort.

We are cognitive misers who avoid expending cognitive 
effort unless essential (Fiske & Taylor, 1991). As a result, we 
often respond rapidly (but sometimes incorrectly) to prob-
lems using Type 1 processes without checking our answers 
using Type 2 processes. Many cognitive biases discussed 
in Chapter 5 occur because of our excessive use of Type 1 
processes.

The above account is over-simplified. Frederick (2005) 
designed the Cognitive Reflection Test, which involves a 
conflict between Type 1 and Type 2 processes (see below). 
What are your answers to the questions?
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Cognitive Reflection Test

1	 A bat and a ball cost $1.10 in total. The bat costs $1 
more than the ball. How much does the ball cost? 
——— cents

2	 If it takes five machines five minutes to make five 
widgets, how long would it take 100 machines to 
make 100 widgets? ——— minutes.

3	 In a lake, there is a patch of lily pads. Every day, the 
patch doubles in size. If it takes 48 days for the patch 
to cover the entire lake, how long would it take for the 
patch to cover half the lake? ——— days.

The correct answers are 5 cents (problem 1), five minutes 
(problem 2), and 47 days (problem 3). Do not worry if 
you did not get them all right – only about 25% of highly 
intelligent individuals answer all the items correctly. Most 
incorrect answers (10 cents, 100 minutes, and 24 days) are 
intuitive responses produced using Type 1 processes.

Contemporary wisdom predicts it should be relatively 
easy to persuade people to use Type 2 processes and so 
enhance their performance on the Cognitive Reflection 
Test. This prediction is wrong. Providing powerful financial 
incentives for accurate performance has no effect on per-
formance (Branas-Garza et al., 2019). Providing feedback 
(“Incorrect”) when people produce wrong answers increases 
the time people spend deliberating but does not improve 
performance (Janssen et al., 2020). Why is this? The first 
answer we think of is generally associated with a strong 
feeling-of-rightness (Ackerman & Thompson, 2017) and 
this dissuades us from seriously considering other answers.

Prioritisation among multiple goals

Humans often pursue multiple goals concurrently (see 
Chapter 5). For example, when we perform a task, one goal  
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is likely to be to achieve a high level of task performance. 
Other goals may include to satisfy our needs for belong-
ingness or social identity and for self-enhancement or self- 
esteem. Unfortunately, our prioritisation strategy among 
these various goals is sometimes far short of optimal. We 
will focus on a common life-threatening example.

When driving a car, it can be dangerous or fatal not 
to prioritise the goal of driving safely. However, millions 
of drivers engage in conversations on their mobile phones 
while driving (see Figure 7.7). The evidence is clear-cut: 
drivers using a mobile phone are several times more likely to 
be involved in a car crash (Nurullah, 2015). Approximately 
1.6 million car accidents worldwide every year are caused 
by use of mobile phones and 400,000 individuals were 
injured in those accidents. In the United States, one in four 
car accidents is caused by mobile phone usage.

There are several reasons why it is dangerous for car 
drivers to use a mobile phone. It causes them to focus 
excessively on the road ahead, to attend less to potential 

Figure 7.7  Photograph of a driver using a mobile phone.
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hazards, and to react slowly and inappropriately to danger-
ous situations (Strayer & Fisher, 2016).

Why do drivers use mobile phones in spite of massive 
publicity about the dangers involved? The answer is sim-
ple: they believe erroneously they can drive safely while 
using a mobile phone whereas most other people cannot 
(Sanbonmatsu et al., 2016).

Killing ourselves

Arguably, many cognitive biases discussed in Chapter 5 are 
trivial: they were discovered in artificial laboratory condi-
tions and no serious consequences follow from possessing 
them. Here we consider biased (and inadequate) thinking 
associated with potentially fatal consequences.

Smoking

It has been known for several decades that smoking causes 
numerous serious and fatal diseases (e.g., bronchitis, emphy-
sema, lung cancer, other cancers, and coronary heart dis-
ease). Individuals who smoke throughout their adult life lose 
several years of life on average. For example, a large-scale 
Japanese study found female smokers lost ten years of life and 
male smokers eight years (Sakata et al., 2012).

The optimal strategy is to avoid smoking altogether. 
Those who have started smoking should use the life- 
shortening impact of smoking to provide themselves with 
the motivation to quit. In fact, most smokers deny the 
overwhelming scientific evidence is of much relevance to 
them: this is a form of exceptionalism. They rationalise 
their smoking behaviour in several ways: smoking in mod-
eration (as they do) is not harmful; they engage in com-
pensatory behaviour (e.g., physical exercise) to offset any 
risks from smoking; smoking is no riskier than coffee or a 
glass of wine (Heikkinen et al., 2010).
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So far we have only told part of the story. The human 
mind (aided by nicotine patches) has proved powerful 
enough to permit many millions of individuals to quit 
smoking. In the United Kingdom, for example, only 14% 
of adults now smoke compared to 45% in 1974. However, 
there are still approximately 1 billion smokers worldwide.

Obesity

Everyone knows obesity is a big problem and is becoming 
bigger every year. It is typically defined by the ratio of an 
individual’s weight and height as assessed by the body mass 
index (BMI): kilograms/metres2. A BMI of 30 or more 
indicates obesity, 25–30 indicates being overweight, and a 
BMI between 18.5 and 25 indicates a healthy weight. BMI 
is a reasonable (although imperfect) measure; for example, 
professional footballers have a relatively high BMI because 
they have built up layers of muscle.

Using the above definition, it is estimated that 700 million 
individuals worldwide are obese (three times the number 
35 years ago). On current trends, over 50% of the English 
adult population will be obese before 2050.

Obesity increases the probability of many serious con-
ditions including heart disease, type-2 diabetes, stroke, 
and several cancers. It also reduces life expectancy. This 
is especially the case with individuals who are morbidly 
obese (typically with a BMI of over 40; see Figure 7.8). 
Lung et al. (2019) found obesity reduced life expectancy for 
obese women by 6.1 years and for obese men by 8.3 years. 
Severe obesity reduced life expectancy even more: 7.8 years 
for women and 10.4 years for men. Extreme obesity (BMI 
between 55 and 60) reduces life expectancy by 13.7 years 
(Kitahara et al., 2014).

It is generally known obesity has potentially serious 
health consequences. It is also well known it is extremely 
difficult to lose weight and then maintain it. For example, 
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Fildes et al. (2015) found obese women had only a one 
in 124 chance of returning to a healthy weight within 12 
months and the figure was one in 210 for men.

It would be optimal if humans were designed so they 
ate healthily and never became obese. If, by mischance 
they did become obese, then they should summon up 
the determination and will-power to follow an effective 
long-term diet. The obvious starting point would be for 
obese individuals to accept they are obese and that obesity 
is life-threatening. That is not what typically happens. 
Ogunleye et al. (2019) found 87% of obese students at 
school did not regard themselves as obese, mostly believ-
ing themselves to be slightly overweight. Only 22% of 
obese women regard themselves as obese with 6% per-
ceiving themselves as having a healthy weight (Truesdale 
& Stevens, 2008). For obese men, only 7% thought they 

Figure 7.8  Photograph of a morbidly obese individual.
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were obese and 20% thought their weight was healthy 
and normal.

Mathematics

An oddity about British people is how many are proud of 
their innumeracy (e.g., “I’m hopeless at maths,” said with 
a chuckle). However, serious consequences can follow 
from innumeracy and its associated cognitive biases. One 
could write an entire book on this topic (and some indi-
viduals have already done that). Here we will focus on one 
such bias because of its widespread negative impact on the 
finances and well-being of individuals and societies.

Exponential growth bias

Here is a mathematical problem used by Wagenaar and 
Sagaria (1975):

The pollution index changes as follows:

Year 1: 	 3
Year 2: 	 7
Year 3:	 20
Year 4:	 55
Year 5:	 148

What will the pollution index be in Year 10?

The correct answer is 25,000. However, two-thirds of 
people gave an answer below 10% of the correct answer. 
The problem revolves around exponential growth: that 
means that a quantity (e.g., pollution index) increases at a 
rate proportional to its current size. Thus, the rate at which 
a quantity grows increases over time. The great majority 
of people are very surprised by the rapidity of exponential 
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growth: this is the exponential growth bias discovered by 
Wagenaar and Sagaria (1975).

Individuals very often misperceive exponential growth 
as linear growth where a quantity increases at a constant 
and unchanging rate over time (Zamir & Teichman, 2021). 
The very large differences between linear and exponential 
growth over time are shown in Figure 7.9.

The exponential growth bias impacts on our lives in sev-
eral important ways (Zamir & Teichman, 2021). Consider 
the numbers of new cases of Covid in the United Kingdom 
during March and early April 2020:

  1 March:	 22
  5 March:	 50
  9 March:	 147
13 March:	 479

Y = 70 · X

Y = X3

Y = 2x

0
0 2 4 6 8 10 12

1,000

2,000

3,000

4,000
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Figure 7.9  �Illustrative differences over time between exponential 
growth (grey line) and linear growth (blue line); also 
shown is cubic growth (red line). 

Source: From Zamir and Teichman, 2021).
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17 March:	 769
21 March:	 1,195
25 March:	 2,690
29 March:	 2,856
  2 April:	 4,862

If you have that bias (and it is probable that most leading 
British politicians do), the figures during most of March do 
not look too threatening. That probably helps to explain 
why the government only introduced a full lockdown on 
23 March 2020 when the number of new cases was 2,326. 
However, the very dangerous exponential growth in the 
numbers would have been apparent to a mathematician by, 
say, 13 March. If a lockdown had been introduced on the 
13 March when the number of new cases was only 20% of 
the number ten days later, many thousands of lives would 
have been saved.

The tardiness of the U.K. lockdown undoubtedly also 
depended on other factors (e.g., the uniqueness of the situ-
ation and the potentially crippling effects on business of a 
lockdown). However, the government made precisely the 
same mistake when faced by exponential growth in Covid 
cases in early autumn 2020. SAGE (Scientific Advisory 
Group for Emergencies) strongly advised initiating a lock-
down in late September, but the government only intro-
duced one in early November, by which time the number 
of new cases had quadrupled.

Most Americans exhibited exponential growth bias by 
substantially underestimating the rapid increase in cases 
of Covid during March 2020 (Lammers et al., 2020). 
Instructing them to avoid this bias increased their support 
for social distancing and a lockdown. Thus, public misper-
ception of the dangers of Covid increased Americans’ 
reluctance to observe social distancing.

The slow response to Covid of the British and American 
governments has probably been very costly. The same is 
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true of climate change. Most people believe that climate 
change is occurring relatively slowly. In fact, the growth 
of climate-destroying processes is probably exponential 
(Zamir & Teichman, 2021). The susceptibility of govern-
ments to the exponential growth bias means the eventual 
costs of dealing with climate change will be substantially 
greater than they would otherwise have been.

Most people use credit to buy goods immediately with 
the money borrowed being repaid over time. These repay-
ments typically involve compound interest (interest is 
charged on interest). An interest rate of 3% per month sug-
gests an annual interest rate of 36%; in fact, it is 43% using 
compound interest, which exhibits exponential growth.

Exponential growth bias partially explains why millions 
of people struggle to meet their interest repayments on 
loans (Zamir & Teichman, 2021). Suppose you must repay a 
£10,000 loan after two years with 3% compound monthly 
interest. Most people would guess the repayment required 
would be approximately £18,000. In fact, it is £28,983.

Exponential growth is sometimes good news. Workers 
who start saving relatively early in their working lives ben-
efit from exponential growth of their savings and so are 
likely to retire with a relatively large pension. However, 
workers subject to the exponential growth bias underesti-
mate the future value of their savings and so save less for 
the future than those lacking the bias (Stango & Zinman, 
2009).

Conclusions

Humans have many limitations, some of which (e.g., dif-
ficulties in giving up smoking and obesity) can reduce life 
expectancy by several years. Exponential growth bias can 
ruin individuals’ finances by tempting them to borrow 
more than they can afford to repay and to make insufficient 
provision for their retirement. The same bias can also prove 
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very costly to society at large by leading governments to 
underestimate the dangers associated with threats, such as 
Covid and climate change.

The above limitations can be understood with respect to 
evolutionary history. Our ancestors did not have to decide 
whether to smoke. They did not have to worry about 
obesity – for them, a crucial problem was having access 
to enough food for survival rather than avoiding eating 
too much. In addition, they did not eat the rich and sweet 
high-calorie food most of us so enjoy. In their hunter- 
gatherer world, there was no evolutionary advantage in 
having a sophisticated understanding of mathematics.

In sum, the take-home message is that the slowness of 
evolutionary change has prevented humans from adapting 
fully to the very rapid changes in human societies over the 
past few thousand years. The rough-and-ready nature of 
most evolutionary changes combined with their slowness 
condemns us to coping sub-optimally with many of the 
challenges and threats we face.

And the winner is …?

If we compare the human brain against supercomputers, it 
appears to be no contest. The human brain occupies only 
approximately 1,200 cubic centimetres, weighs a mere 
3 pounds and accounts for only 2% of our body weight. 
In contrast, consider IBM’s Summit supercomputer (the 
world’s most powerful computer in 2018). It occupies 
5,600 square feet of floor space and weighs a massive 310 
tons. Thus, the human brain is less than 1/230,000th of the 
weight of Summit!!!

Summit uses 13 megawatts of power (13,000 kilowatts 
of electricity per hour), making it necessary to pump 4,000 
gallons of water through its entire system to prevent over-
heating. In contrast, the human brain uses an exceptionally 
modest 20 watts of power per hour, barely sufficient to  
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power a very weak light bulb. Of most relevance here, 
the human brain consumes approximately 1/650th of the 
power of Summit.

Finally, we consider the relative power of supercomputers 
and the human brain. Many people would imagine super-
computers are massively more powerful than the human 
brain. For example, Summit can perform 200,000 trillion 
calculations per second (200 petaFLOPS or 1015 FLOPS) 
(FLOPS are the number of floating point operations per 
second: a floating point corresponds to the decimal expan-
sion of a number). That figure seems incredibly impres-
sive even we do not (fully) understand what it means. In 
2020, Summit was displaced by Japan’s Fugaku, which has 
achieved 442 petaFLOPS per second (see Figure 2.1). Since 
the brain does not work in floating point values, it is specu-
lative to compare the processing power of supercomputers 
and human brains based on FLOPS. Another issue is that 
human processing capacity depends hugely on the precise 
task we are engaged in. For example, we typically process 
huge amounts of information very rapidly in visual per-
ception. However, we have limited short-term memory 
(and the contents of consciousness are limited) and so we 
struggle with a problem, such as multiplying two 19-digit 
numbers (an estimated processing speed of less than 0.01 
FLOPS per second; see Chapter 3).

If we want to compare the human brain against super-
computers, it is more fruitful to consider the story of David 
and Goliath. Goliath was 9 feet 9 inches tall, covered in 
bronze armour, and equipped with a bronze spear. In con-
trast, David was a lowly shepherd boy lacking armour who 
looked puny compared to Goliath. However, he showed 
ingenuity by using his sling to fire a rock that hit Goliath 
on the forehead and killed him.

Goliath (like supercomputers) had enormous brute 
strength and would undoubtedly have triumphed in hand-
to-hand fighting. However, David (like the human brain) 
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had much greater processing flexibility and so won the bat-
tle. The relevance of this story is that the identity of the 
“winner” in any comparison of brain and AI depends on 
the precise field of battle (literal or metaphorical).

The human brain often operates much more effi-
ciently than supercomputers. It can perform many com-
plex calculations using 300 or 400 neuron transmissions 
that might require a computer to take millions of steps. 
Tegmark (2018) identified activities, “involving peo-
ple, unpredictability and creativity,” as ones that most 
humans are good at and where the huge processing 
power of supercomputers is essentially irrelevant. More 
generally, the power of AI systems is relatively ineffective 
when tasks require flexible processing and the ability to 
generalise across situations.

In sum, we have a situation neatly expressed by David 
Richerby (posted in 2014): “On the one hand, you need 
a huge computer to simulate a human brain; on the other 
hand, you need a huge number of human brains to simu-
late a desktop computer.” Thus, the strengths (and limita-
tions) of computers and human brains are very different. 
However, the human brain is the hands-down winner in 
efficiency: its overall performance is dramatically supe-
rior to that of supercomputers even though it weighs only 
1/230,000th as much as a supercomputer.

Bounded rationality

How impressive are human thinking and intelligence? It is 
indisputable that our cognitive processes fall short of ideal 
(see Chapter 5). For example, we lack the perfect rationality 
associated with homo economicus: “A hypothetical agent who 
has complete information about the options available for 
choice, perfect foresight of the consequences from choos-
ing those options, and the wherewithal to solve an optimi-
sation problem (typically of considerable complexity) that 
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identifies an option, which maximises the agent’s personal 
utility” (Wheeler, 2018, p. 2).

Simon proposed a much more realistic assessment of 
human rationality based on “bounded rationality” (see 
Chapter 5). According to Simon (1990, p. 7), “Human 
rational behaviour is shaped like a scissors whose blades 
are the structure of task environments and the computa-
tional capabilities of the actor.” Thus, our thinking is often 
sub-optimal because of our limited processing capacity 
and our incomplete knowledge, problems in anticipating 
future consequences and limited behavioural repertoire.

The notion of “bounded rationality” is valuable. 
However, it is often used very vaguely without specifying 
the underlying cognitive limitations and how those limita-
tions constrain cognitive performance. Lieder and Griffiths 
(2020) proposed a resource-rationality approach building 
on Simon’s theorising. According to this approach, we need 
to assess human processing limitations and key environ-
mental features, and find algorithms providing the optimal 
trade-off between use of resources and performance accu-
racy. Those algorithms can then be compared against actual 
human performance.

Some support for resource rationality was provided by 
van den Berg and Ma (2018) in a study on short-term 
memory for visually presented items. Participants allocated 
their processing resources flexibly to produce a near-opti-
mal balance between maximising performance while min-
imising use of resources.

Humans often pursue two or more goals concurrently 
and our performance on complex tasks often involves emo-
tional factors as well as cognitive ones. That complicates 
the task of deciding whether the optimists or the pessi-
mists provide a more accurate account of human thinking. 
Consider this extreme example. Soldiers were in a mili-
tary plane when one engine stopped and they were told 
the plane would shortly ditch in the ocean (Berkun et al., 
1962). They completed a complex “emergency procedure” 
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form in these very stressful conditions. Unsurprisingly, 
their performance was impaired compared to individuals 
completing the same form in neutral conditions.

We could regard the above findings as indicating the 
sub-optimal nature of human thinking in a stressful envi-
ronment. However, it is preferable to argue that it is per-
fectly rational for individuals to focus on an immediate 
threat to their survival rather than the complex questions 
posed on a form.

In sum, human thinking and cognition are characterised 
to some extent by bounded rationality and resource ration-
ality. However, it has proved very difficult to assess the 
precise extent. One problem is that tasks vary enormously 
in the precise cognitive processes required, and it is often 
hard to identify those processes. In addition, assessing the 
optimality of resource use requires detailed knowledge of 
the environment but such knowledge is rarely available 
(Ma & Woodford, 2020).

Underestimating AI strengths: 
anthropocentrism and anthropofabulation

Buckner (2013) discussed the biases involved when humans 
compare themselves against other species or AI systems. 
The most studied bias is anthropomorphism (attribut-
ing human-like characteristics to non-human species or 
objects; discussed earlier). Another bias is anthropocen-
trism – the view that human cognitive abilities form the 
“gold standard” against, which the cognitive achievements 
of other species (and AI systems) should be compared.

Anthropocentrism has led many experts to devalue the 
successes of deep neural networks by claiming those suc-
cesses depend on insufficiently human-like processing. 
This can led to 

constantly shifting goalposts; every time … an artifi-
cial system satisfies a previously specified benchmark, 
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the critic can simply endorse a yet more restrictive 
interpretation of “real” or “genuine” [intelligence] 
and push the borderline ever-closer to the uppermost 
limits of human performance 

(Buckner, 2020, p. 11).

There are two major problems with anthropocentrism. 
First, we lack a precise definition of “human intelligence” 
and so the “gold standard” provided by human achieve-
ments is vague. Second, anthropomorphism excludes the 
possibility that AI may simply possess a very different, non-
human-like intelligence. However, it has proved remarka-
bly difficult to define the essence of such intelligence.

Consider the famous Turing test (discussed in Chapters 2 
and 4). An AI system and a human being hold a conversa-
tion via typed messages and the AI system “passes” the test if 
human judges cannot distinguish between its linguistic output 
and a human’s. This test involves anthropocentrism because 
AI systems are evaluated by their ability to reveal human-level 
language skills and intelligence (Proudfoot, 2011).

Turing (1950) knew his test was limited: “May not 
machines carry out something, which ought to be described 
as thinking but which is very different from what a man 
does?” (p. 435). For example, an AI system asked to add 
34,957 and 70,764 might produce the right answer very 
rapidly, but would need to delay responding for several sec-
onds to imitate human intelligence!

Turing (1950) also argued his test was biased against AI. 
If a human tried to imitate an AI system, they would per-
form very poorly because of their slowness and inaccuracy 
when presented with arithmetical problems.

Researchers are guilty of anthropocentrism when they 
selectively focus on tasks and/or measures providing a 
built-in human advantage. This selective focus can lead us 
to under-estimate AI systems’ processing abilities. We start 
with findings on image-classification tasks. Deep neural 
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networks perform extremely well on such tasks. However, 
their performance is very poor when tiny irrelevant changes 
are made to images. These findings allegedly demonstrate 
the limitations of such networks (e.g., Heaven, 2019).

Consider such findings from the perspective of deep 
neural networks trained to use any predictive features of 
images to classify them accurately. Some of these features 
are nonsensical or imperceptible to humans. However, 
humans create the categories used on image-classification 
tasks and so what is learned by deep neural networks is 
entirely appropriate given their lack of relevant knowl-
edge about those categories. Similarly, humans decide the 
subsequent image changes should be labelled “adversarial 
examples” making it no surprise that deep neural networks 
perform poorly in those circumstances (Ilyas et al., 2019).

In one study (Utrera et al., 2020), adversarial examples 
were (or were not) presented during initial training on an 
image-classification task. Subsequent performance on differ-
ent sets of images was much higher when adversarial examples 
had been used during training., indicating that adversarial 
examples can sometimes enhance AI performance.

Anthropocentrism leads to a more widespread den-
igration of AI’s achievements than discussed so far. The 
emphasis in most research comparing humans and AI has 
been on accuracy rather than speed. This is often disad-
vantageous to AI systems which often achieve high levels 
of performance much faster than humans. For example, 
AI systems are typically inferior to humans with respect 
to performance accuracy on most language tasks (see 
Chapter 4). However, AI systems often outperform on 
humans with respect to the speed of language processing. 
Examples include language translation and answering gen-
eral knowledge questions (e.g., on the quiz show Jeopardy!; 
see Chapter 2).

In the real world, there are many situations where speed 
is essential (e.g., detecting enemy faces in a war, speed chess, 
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diagnosing a critically ill patient, and deciding whether 
someone is carrying a gun). In such situations, AI systems 
might well prove superior to humans.

Anthropofabulation

When anthropocentrism is combined with an exagger-
ated assessment of human cognitive abilities, we have what 
Buckner (2013) called “anthropofabulation.” Buckner 
(2020) discussed several examples of anthropofabulation, 
and we will consider a few.

A claimed advantage of humans over deep neural net-
works is that our image classification (unlike that of deep 
neural networks) is typically unaffected by adversarial 
examples. However, we could equally well claim such 
findings indicate that human perceptual sensitivity is less 
than that of neural networks because we are unrespon-
sive to the tiny image changes contained within adversarial 
examples (Buckner, 2020).

Human visual processing typically involves bottom-up 
or feedforward processing and top-down or recurrent 
processing whereas deep neural networks primarily rely 
on feedforward processing. Most research comparing the 
effects of adversarial examples in humans and neural net-
work has involved tasks where humans can use feedfor-
ward and recurrent processing. Such tasks may convey an 
unfair advantage to humans. Suppose we presented visual 
images very briefly so humans could use only feedfor-
ward processing. In those conditions, adversarial examples 
impaired human image classification (Elsayed et al., 2018).

Another criticism of AI systems is that they often engage 
in “reward hacking:” they learn to increase task rewards 
using strategies outside the spirit of the rules. For exam-
ple, a soccer robot rewarded every time it touched the ball 
learned to touch it numerous times in quick succession 
with very small vibratory movements. An AI agent called 
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Eurisko accumulated numerous points in a video game by 
falsely taking credit for other agents’ successes.

Reward hacking on video games is often regarded as 
an inferior form of learning because the strategies associ-
ated with it are contrary to the intentions of the humans 
who designed the games. In fact, reward hacking involves 
ingenious ways of succeeding on a game or task when 
the rules are insufficiently explicit. Thus, being dismiss-
ive of reward hacking by AI systems is a prime example 
of anthropofabulation. Ironically, humans playing video 
games often use exploits (strategies taking advantage of 
bugs or glitches) closely resembling the reward hacking 
of AI systems. However, human “cheating” is perceived 
much more positively than AI “cheating” (Buckner, 2020).

Ehsan et al. (2018) provided more evidence of anthropo-
fabulation. People watched videos of three robots (two 
of which are relevant here) using deep neural networks 
playing the video game Frogger identically. One robot 
provided human-like (but inaccurate) explanations of its 
behaviour whereas the other robot provided the most caus-
ally accurate explanations. Almost 40% of those watching 
the videos thought the human-like explanations were the 
most satisfactory compared to only 1% who regarded the 
AI-like explanations as the best.

The human-like explanations provided by one of the 
robots were basically rationalisations (inaccurate but plau-
sible post hoc accounts). In contrast, the AI-like explana-
tions were reasonably accurate but were rejected by most 
humans.

Underestimating human strengths

Anthropocentrim and anthrofabulation lead us to underes-
timate the processing ability of AI systems while overesti-
mating that of humans. However, there is also a real danger 
of underestimating human intelligence. Most comparisons 
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between human and AI intelligence have involved narrow 
cognitive tasks (e.g., categorising objects, chess playing, 
and medical diagnosis): the emphasis has been on “cold” 
cognition (information processing lacking emotional 
involvement). This traditional approach can be contrasted 
with a broader approach including not only emotional fac-
tors but also motives and social factors. Such an approach 
focuses on “hot” cognition.

Human superiority to AI systems is greater with hot 
cognition than cold cognition. This is unsurprising since 
nearly all AI systems are programmed to perform tasks 
involving cold cognition (Cuzzolin et al., 2020). Much 
research on hot cognition in humans has focused on emo-
tional intelligence: “the extent and manner in which indi-
viduals experience and utilise affect-laden information of 
an intrapersonal (e.g., managing one’s own emotions) and 
interpersonal (e.g., managing others’ emotions) nature” 
(van der Linden et al., 2017, p. 37). Theory of mind (the 
ability to infer others’ beliefs and emotions) is an important 
aspect of emotional intelligence.

There are two forms of emotional intelligence. Trait 
emotional intelligence concerns an individual’s percep-
tion of their own social and emotional skills. Individuals 
with high trait emotional intelligence have warm and pos-
itive personalities – extraverted, agreeable, conscientious, 
and open to experience but low on neuroticism (van der 
Linden et al., 2017). In contrast, ability emotional intel-
ligence concerns an individual’s ability to perceive and 
influence their own emotions and those of other people.

Trait and ability emotional intelligence predict impor-
tant real-world outcomes. Individuals high in trait emo-
tional intelligence are happier than low scorers (Ye et al., 
2019) and have greater relationship satisfaction (Malouff 
et al., 2014). Evidence that high trait emotional intelligence 
causes greater relationship satisfaction was reported by 
Parker et al. (2021). Trait and ability emotional intelligence 
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both correlate moderately positively with job performance 
(O’Boyle et al., 2011) and predict academic performance 
(MacCann et al., 2020).

In sum, human intelligence is extremely broad in scope. 
Humans adapting successfully to their environment possess 
high levels of emotional intelligence (or hot cognition) plus 
high levels of “traditional” or cold intelligence.

Many experts (e.g., Braga & Logan, 2017) argue AI 
systems are incapable of experiencing emotion and con-
clude such systems lack emotional intelligence or theory 
of mind. In fact, the issue is more nuanced. For example, 
Rabinowitz et al. (2018) constructed a deep neural net-
work predicting agents’ mental states from limited infor-
mation about their behaviour. It performed well on a task 
assessing theory of mind. However, the neural network 
required 32 million samples to display some evidence of 
theory of mind ( Jara-Ettinger, 2019). This is equivalent to 
175,000 learning trials each day for a period of six months –  
hugely more than the amount of time young children 
devote to acquiring theory of mind.

Our theory of mind leads us to predict that highly intel-
ligent individuals often form more complex beliefs than 
less intelligent ones and that forgetful individuals have 
simpler beliefs than those with better memories (Burger & 
Jara-Ettinger, 2020). In contrast, Rabinowitz et al.’s (2018) 
deep neural network did not accommodate individual dif-
ferences and so was much more limited.

Conclusions

Jeffrey (2015, p. 369) asked the question to which this entire 
chapter has been devoted: “Can we do better than 3.5 billion 
years of evolution did with us?” She concluded (as do we) 
that the answer is a resounding, “No!” suggesting it would 
“an immense act of hubris” (p. 366) to believe it is possible 
to achieve (or surpass) human intelligence in an AI system.



268  And the winner is?

The human tendency to engage in anthropocentrism and 
anthropofabulation means comparisons between humans 
and AI are sometimes biased in our favour because the 
playing field is not level. However we do not regard this 
as a serious obstacle to concluding that humans have vastly 
greater and hugely more wide-ranging cognitive abilities 
than AI. This conclusion is strengthened by evidence that 
we also engage in anthropomorphism, which leads us to be 
unduly impressed by the performance of AI.
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We have seen that human intelligence is demonstrably 
superior to AI intelligence in generality and flexibility. 
However, many AI experts argue that AI will triumph 
in the not-too-distant future, an issue we address in this 
chapter. We also consider whether AI’s future influence 
will be beneficial or catastrophically destructive.

The final issue discussed in this chapter has attracted less 
attention than the preceding issues. Can humans fight back 
by exploiting their currently greater intelligence than AI 
to good effect? Alternatively, can they harness future rapid 
increases in the sophistication of AI by somehow combin-
ing the strengths of AI and human intelligence?

How will AI develop?

As the great baseball player Yogi Berra argued, “‘It’s tough 
to make predictions, especially about the future.” That is 
certainly true when predicting how AI will develop in the 
future. There is fierce controversy, even among experts. 
Below we consider the views of those believing AI will 
rapidly outstrip human intelligence and totally transform 
society and those who believe the development of AI will 
be relatively slow and so will only have a mildly transform-
ative effect.

Chapter 8

The future

https://doi.org/10.4324/9781003162698-8
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Massive transforming changes

Many experts argue AI systems will develop rapidly in 
the future as a consequence of hardware and/or software 
developments. We will start with hardware developments. 
In 1965, Gordon Moore (co-founder of Intel) observed 
that the number of transistors in an integrated circuit had 
doubled every two years (although he was less explicit 
about this than generally supposed). He proposed Moore’s 
law, according to which this rapid doubling would con-
tinue into the future. That prediction was accurate. It also 
turned out that Moore’s law was at least approximately 
applicable to many other aspects of AI. For example, the 
capacity of the world’s computers doubled every 18 months 
between 1986 and 2007.

However, what Moore (1965) proposed was not really a 
“law” in the sense of a theoretically based scientific prin-
ciple. Indeed, it is already becoming obsolete. According 
to Moore (2015, p. 38), “We won’t have the rate of pro-
gress that we’ve had over the last few decades. I think that’s 
inevitable with any technology ….  I see Moore’s law dying 
here in the next decade.”

Hardware developments have indisputably increased 
processing speed in AI systems. However, most such devel-
opments lead only to quantitative changes in processing. In 
contrast, potential software developments involving algo-
rithms (well-defined procedures used by computers to 
solve problems) might produce qualitative and transforma-
tional changes that would put humans in the intellectual 
shade.

Some support for the above viewpoint comes from 
the recent history of AI. For example, there has been a 
rapid shift from an emphasis on Good Old-Fashioned AI 
(GOFAI) to deep learning (Chapter 1). This has produced 
rapid and dramatic improvements in the performance of 
AI systems in several domains (Chapter 2). Indeed, the 
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great majority of AI’s most impressive achievements have 
involved deep neural networks.

Since the human brain provides an incredibly success-
ful example of general intelligence, it might in principle 
be possible to enhance the general intelligence of AI by 
developing AI systems that mimic brain functioning. This 
goal could be achieved in two different ways: biological and 
psychological. Thus, we could construct AI systems copying 
either the biology of the human brain or its cognitive pro-
cesses and structures.

Sandberg (2013) indicated how the brain’s biology might 
be copied: “The basic idea is to take a particular brain, scan 
its structure in detail, and construct a software model of it 
that is so faithful to the original that, when run on appro-
priate hardware, it will behave in essentially the same way 
as the original brain” (p. 251).

The above approach would be phenomenally hard to 
implement. An old joke capturing part of the problem 
concerns a brain surgeon who opens up a patient’s brain 
and says, “Oh, there are no thoughts in here! I can’t see 
a single thought!” More generally, there is the staggering 
complexity of the human brain. For example, it contains 
100 billion neurons, each having an average of 7,000 syn-
aptic connections to other neurons. Artificial emulation of 
the whole brain is most unlikely to happen any time soon. 
Indeed, it may well never happen.

A more promising approach involves modelling the 
human brain’s key cognitive processes and structures. This 
could be done by developing cognitive architectures focus-
ing on those aspects of human cognition of general impor-
tance over time and across different task domains. More 
precisely, cognitive architectures provide an overarching 
theory of the structure and key mechanisms of the mind 
which could then be instantiated in AI systems.

Turing (1950) advocated a simpler variant of the above 
approach: “Instead of trying to produce a program to 
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simulate the adult mind, why not rather try to produce 
one, which simulates the child’s?” The main problem is 
that there is increasing evidence that children’s cognitive 
abilities are much greater than used to be believed.

In recent years, there has been a proliferation of cog-
nitive architectures – it was estimated in 2017 that 300 
cognitive architectures had already been proposed. Laird 
et al. (2017) produced a standard model of the mind based 
on commonalities among major cognitive architectures 
(see Figure 8.1). It has five major components: (1) declara-
tive long-term memory (memory for information that can 
be consciously recalled), (2) procedural memory (memory 
for information such as motor skills that is not consciously 
accessible), (3) perception (including all sense modalities 
such as vision and audition), (4) motor (involved in the con-
trol of action), and (5) working memory (described below).

The single most important component is working mem-
ory. It is a very general mechanism that receives information 

Figure 8.1  �The standard model of the human cognitive architecture. 

Source: Based on Laird et al. (2017).
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from the two memory components and from perception. 
It then combines and processes this information to solve 
problems and guide action, with its outputs influencing all 
the other components. Working memory can also provide 
brief storage of various kinds of information (e.g., about 
goals and  intermediate states during problem solution).

Working memory is of crucial importance to any cogni-
tive architecture because it co-ordinates and integrates the 
functioning of all the other components. Its importance 
is also indicated by the finding that individual differences 
in working memory capacity are strongly related to fluid 
intelligence (the ability to solve novel problems).

Cognitive architectures show considerable promise. 
However, those produced so far share several limitations. 
First, unlike humans, they typically show little (or no) cre-
ativity in their processing. Second, human conflict reso-
lution and problem solving are often strongly influenced 
by emotions or ‘gut feelings’. However, it is rare for the 
processing within cognitive architectures to be affected 
by emotion. Third, much of human thinking involves 
meta-cognition (awareness and understanding of one’s own 
cognitive processes). This self-reflective aspect of human 
thinking involving conscious awareness is totally absent 
from cognitive architectures. Fourth, the functioning of 
human working memory is incredibly complex. No cogni-
tive architecture is even close to capturing that complexity.

Vernor Vinge (pronounced Vin-jee; see Figure 8.2) is 
very optimistic about the development of AI. In the 19909s, 
he popularised the notion of a singularity (the emergence 
of a new AI intelligence that rapidly upgrades itself ) pro-
ducing what Vinge (1993) called “an intellectual runaway.” 
This intelligence is known as “superintelligence.” In other 
words, it is a form of intelligence considerably superior to 
that of even the cleverest human beings.

What would this singularity mean for us? Vinge (1993), 
never one to understate matters, argued it would mean AI 
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becoming dominant over humans. He said it was unlikely 
to occur before 2005 or after 2030, so the clock is ticking.

Vinge expanded on his definition of a “singularity” in 
an interview with Kevin Kelly (1995): “All sorts of apoca-
lyptic visions are floating around, but mine is very narrow. 
It just says that if we ever succeed in making machines as 
smart as humans, then it’s only a small leap to imagine that 
we would soon thereafter make … machines that are even 
smarter than any human … That’s the end of the human 

Figure 8.2  Vernor Vinge.
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era — the closest analogy would be the rise of the human 
race within the animal kingdom. The reason for calling 
this a “singularity” is that things are completely unknow-
able beyond that point.”

Many AI experts are thinking along similar lines. Grace 
et al. (2018, p. 731) provided experts at an AI conference in 
2015 with the following definition: “‘High-level machine 
intelligence’ (HLMI) is achieved when unaided machines 
can accomplish every task better and more cheaply than 
human workers.” On average, the experts predicted there 
was a 50% chance of HLMI occurring within 45 years and a 
10% chance of it occurring within nine years (i.e., by 2024). 
Asian experts expected it would happen in 30 years, whereas 
American experts predicted it would happen in 2089.

The experts then predicted when there would be full 
automation of labour (i.e., all jobs can be carried out better 
and more cheaply by AI systems). The experts predicted 
a 50% probability of full automation of labour in 2137 
(77 years after the predicted arrival of high-level machine 
intelligence).

Gruetzemacher et al. (2020) provided a more up-to-date 
assessment of the likely impact of developments within AI 
on the labour market by asking several questions of those 
attending three AI conferences in 2018. On average, they 
believed 22% of paid work tasks currently performed by 
humans could be done equally well with existing AI. They 
predicted this figure would rise to 40% within the next 
five years and 60% in ten years. More worryingly, they 
predicted on average that 90% of human work tasks could 
be performed by AI in 25 years and 99% in 50 years. There 
was the greatest optimism that AI would rapidly replace 
human workers among those attending the conference 
whose work focus was on the most advanced AI topics.

All the above predictions were made before the arrival 
of COVID-19. Its long-term impact on the role of AI in 
the workplace is currently unclear. However, the dangers 
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to workers posed by the virus at the time of writing suggest 
the rate of increase of automation in the workplace is likely 
to accelerate.

So far we have focused on those AI experts confident 
that the world as we know it is going fairly shortly to be 
totally transformed by AI. We turn now to the view of AI 
experts who are far more sceptical about the probable rate 
of change.

Minor, non-transforming changes

Vinge’s (1993) notion of the imminent arrival of the singu-
larity involves making some dubious assumptions. Of most 
importance, he argued that increasingly intelligent robots will 
eventually design other robots that are even cleverer than they 
are. As we are about to see, that is highly implausible,

The ability required to exhibit apparently intelligent 
behaviour is radically different from the ability to design 
robots exhibiting even more intelligent behaviour. That 
would require robots to develop an understanding of their 
own intelligence and how it works, and then to exploit 
that understanding. As Aleksander (2017, p. 2) pointed out, 
“There is no guarantee that designing ever more compe-
tent AI algorithms will ever lead to the design of an AI 
designer as required by the singularity sequence.”

One of the most trenchant critics of superintelligence is 
the American philosopher John Searle. Of central impor-
tance to his position is the distinction between observer- 
independent intelligence and observer-relative intelli-
gence. As the term implies, “observer-independent intel-
ligence” refers to genuine, indisputable intelligence whose 
existence owes nothing to what anyone else thinks. In 
contrast, “observer-relative intelligence” owes its existence 
entirely to the attitudes or beliefs of others.

According to John Searle (2014, p. 3), “If we ask, 
‘How much real, observer-independent intelligence do 
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computers have, whether ‘intelligent’ or ‘superintelli-
gent’?’, the answer is zero, absolutely nothing. The intel-
ligence is entirely observer-relative. And what goes for 
intelligence goes for thinking, remembering, deciding, 
desiring, reasoning, motivation, learning, and information 
processing, not to mention playing chess and answering 
the factual questions posed on Jeopardy!” In other words, 
even though a computer can produce apparently intelli-
gent behaviour, there is no underlying intelligence within 
it causing this behaviour.

Searle’s (2014) central argument has widespread appli-
cation. For example, most AI systems appear to exhibit 
goal-directed behaviour because their processing is 
designed to solve some problem or complete some task. 
However, the goals pursued by AI systems are programmed 
into them by humans. Thus, they are merely doing what 
they have been instructed to do because they have no abil-
ity to ignore their programmers’ intentions and pursue 
their own goals. That is why robots and other AI systems 
cannot be held morally responsible for their actions (see 
Chapter 5).

There are other ways AI systems lack fundamental aspects 
of human intelligence. Chalmers (2010): “Language is nec-
essary for knowing what one knows as one talks to one-
self. But computers have no need or desire to communicate 
with others and hence never created language and without 
language one cannot talk to oneself and hence computers 
will never be conscious.”

Conclusions

A theme running through this book is that all current AI 
systems are substantially inferior in intelligence to humans. 
Their inferiority is especially marked with respect to 
several crucial aspects of intelligence: they lack general 
intelligence, they lack the flexibility associated with the 
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possession of full consciousness, and their language abilities 
are limited. In addition, the great majority of AI systems 
have very little ability to generalise their learning to novel 
stimuli or to tasks differing from the one on which they 
were trained.

Braga and Logan (2017) provided a comprehensive enu-
meration of the important characteristics possessed by 
humans but not by AI systems. According to them, “The 
list includes curiosity, imagination, intuition, emotions, 
passion, desires, pleasure, aesthetics, joy, purpose, objectives, 
goals, telos [ultimate purpose], values, morality, experience, 
wisdom, judgement, and even humour” (p. 1). Of crucial 
importance, no AI system developed so far has been self- 
motivated in the sense of setting its own goals. There is not 
the slightest reason for believing that situation will change 
very much in the future. AI systems lacking self-motivation 
will never achieve dominance over humans.

It could well be argued that these conclusions represent 
a clear case of anthropocentrism. In other words, they are 
based on the questionable assumption that human cogni-
tion is the touchstone against which the performance of 
AI systems should be judged (see Chapter 7). The problem 
with this line of argument is that we do not have a coher-
ent conceptualisation of superior intelligence other than 
the one provided by humans. Until that is achieved, it is 
hard to evaluate AI’s achievements other than by compar-
ing them against those of humans.

What effects will AI developments 
have on society?

We have seen that experts differ considerably in their pre-
dictions concerning the nature and speed of future devel-
opments of AI. Here we turn to the related issue of whether 
likely changes in AI will broadly speaking have beneficial 
or profoundly negative effects on human lives and society.
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Apocalypse soon?

There has been a dramatic increase in media focus on 
expert predictions of future doom and gloom as com-
puters “take over” from humans. For example, Stephen 
Hawking, the British scientist, argued that, “The develop-
ment of full artificial intelligence could spell the end of the 
human race” and Elon Musk claimed, “AI is potentially 
more dangerous than nukes.” However, Musk has a well-
known liking for hyperbole.

Finally, Grace et al. (2018) in a study discussed earlier 
asked AI experts whether high-level machine intelligence 
would have a positive or negative impact on humanity. 
Views were decidedly mixed. At one extreme, 20% pre-
dicted the impact would be extremely good, whereas 5% 
predicted it would be extremely bad (e.g., human extinc-
tion). Overall, three times as many experts predicted the 
impact of high-level machine intelligence would be good 
rather than bad.

Second, we need to predict the uses to which AI systems 
will put their ever-increasing “intelligence” in future. Will 
AI systems still remain useful tools used by humans for our 
purposes? Alternatively, will they develop and implement 
goals of their own (e.g., establishing dominance over the 
human race)? If they become massively more intelligent 
than humans, we could be in serious trouble. As Nathan, 
the builder of a killer robot in the movie Ex Machina says, 
“One day the AIs are going to look back on us the same 
way we look at fossil skeletons on the plan of Africa. An 
upright ape living in dust with crude language and tools, 
all set for extinction.”

However, we cannot be entirely complacent about a 
future apocalypse involving AI systems. The greatest 
danger will come from humans. Humans acting with 
malicious intent could program or re-program robots 
and other AI systems to kill millions of people and cause 
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mass destruction. The crucial point is that apocalypse 
would be caused by humans using AI systems as weap-
ons and not by those AI systems themselves.

How should humans respond?

If there is any validity to the notion that AI will become 
much cleverer than humans at some point over the next 
100 years, it is extremely important for humans to decide 
how to respond. Below we consider various possibilities 
designed to enhance the intelligence of the human brain.

Non-invasive brain stimulation

Suppose we make the overarching assumption that humans 
often fail to use the brain’s processing resources optimally 
when performing cognitive and other complex tasks. If so, 
it might be possible to enhance human intelligence and 
cognitive performance by using non-invasive brain stim-
ulation to increase (or decrease) the neural excitability of 
key brain areas. This is one of several “brain-boosting” 
techniques receiving considerable media attention in 
recent years.

Much evidence demonstrates that our performance of 
many tasks does not fully reflect our cognitive abilities. 
Two ways this happens are as follows: (1) task-irrelevant 
processing and/or (2) sub-optimal task-relevant process-
ing. Task-irrelevant processing can be triggered by external 
stimuli (i.e., distraction) or by internal thoughts (e.g., wor-
ries and personal concerns). The term “mind-wandering” 
refers to shifts of attention away from the current task to 
one’s internal thoughts (Robison et al., 2020).

Konishi and Smallwood (2016) reviewed research on 
mind-wandering. They found people’s conscious thoughts 
wander away from their current activity between 25% and 
50% of the time. Mind-wandering sometimes occurs even 
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more of the time. For example, drivers on their daily com-
mute engage in mind-wandering 60% of the time (Burdett 
et al., 2018; see Chapter 6).

One of the most-used techniques designed to enhance 
human cognition is transcranial direct current stimula-
tion (tDCS), where a very weak electrical current is passed 
through a given brain area (often for several minutes) (see 
Figure 8.3). Anodal tDCS increases the neuronal excit-
ability of the chosen brain area and often enhances per-
formance; in contrast, cathodal tDCS reduces neural 
excitability, and often impairs performance.

Figure 8.3  �Administration of anodal transcranial direct current 
stimulation (tCDS). (a) tDCS equipment, (b) anodal 
electrodes, (c) cathodal electrodes, (d) head strap, and 
(e) rubber band.
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Transcranial direct current stimulation (tDCS) has been 
used to reduce the frequency of mind-wandering during 
performance of tedious and monotonous tasks. Mind-
wandering is strongly associated with the default mode 
network (Raichle, 2015). This brain network is active “by 
default” when an individual is not actively involved in per-
forming a task but rather is processing internal thoughts 
(e.g., remembering the past). It consists of brain areas 
including the medial prefrontal cortex, posterior cingulate 
cortex/precuneus and bilateral inferior parietal lobe.

Coulborn et al. (2020) reviewed the findings from sev-
eral studies using tDCS to alter mind-wandering. Overall, 
the effects were small and inconsistent. In their own study, 
Coulborn et al. found neither anodal nor cathodal tDCS 
had any effect on mind-wandering.

Working memory (used for the processing and brief 
storage of information) is extensively used during the 
performance of numerous cognitive tasks including prob-
lem solving and reasoning (Baddeley, 2012). In view of 
the general importance of working memory, it is arguable 
that human intelligence could be improved if tDCS were 
used to enhance its functioning. Relevant research was dis-
cussed by Papazova et al. (2020). They reported tDCS has 
typically had non-significant effects on working memory 
(including in Papazova et al.’s own study).

So far we have considered only the effects of non-invasive  
brain stimulation on healthy individuals whose cogni-
tive abilities and intelligence are in the normal range. 
Suppose we focused on individuals under-performing 
cognitively because of some mental disorder or physical 
disease (e.g., stroke). It seems likely we could reduce the 
under-performance of such individuals. Papazova et al. 
(2020) discussed research showing beneficial effects of 
tDCS on working memory in depressed individuals and 
schizophrenics with impaired working-memory function. 
However, Sloan et al. (2021) found in a meta-analytic 
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review that non-invasive brain stimulation had no effect 
on schizophrenics’ working memory performance.

Approximately 70–90% of stroke patients have some cog-
nitive impairment, and up to 50% have multiple cognitive 
impairments. Van Lieshout et al. (2019) reviewed research 
concerned with the effects of non-invasive brain stimula-
tion on cognitive abilities in stroke patients. Most studies 
reported beneficial effects of brain stimulation which were 
generally still observable several months later. These bene-
ficial effects have been found with respect to visual percep-
tion, attention, working memory, and memory.

Finally, we consider the effects of non-invasive brain 
stimulation on individuals exhibiting highly superior cog-
nitive functioning. Krause et al. (2019) studied G.M., a 
46-year-old German man who was the world champion at 
mental calculation. Non-invasive brain stimulation applied 
to dorsolateral prefrontal cortex (an area heavily involved 
in most complex cognitive activities) had no effect on his 
performance of an exceptionally difficult arithmetic task. 
The same non-invasive brain stimulation actually impaired 
the performance of highly competent mathematicians on 
a complex multiplication task. However, previous research 
(discussed by Krause et al., 2019) had shown that non-invasive 
brain stimulation often enhances the mathematical perfor-
mance of individuals with average mathematical ability.

In sum, deficient cognitive functioning in clinical 
patients can sometimes be enhanced somewhat by tDCS. 
Since these patients’ typical cognitive performance is below 
their pre-clinical performance, what is typically happening 
is that non-invasive brain stimulation is partially successful 
in reversing the adverse effects of their clinical condition.

However, there is vanishingly little evidence that tDCS 
can enhance intellectual capacity in healthy individuals. 
Why is that the case? The main reason for these latter dis-
appointing findings is that applying electrical current to 
a small brain region is a crude technique for enhancing 
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something as complex and sophisticated as brain func-
tioning. Most cognitive tasks involve the use of several 
brain networks, each consisting of several strongly inter-
connected brain areas. As a consequence, increasing or 
decreasing neural excitability in a small brain area has 
major (largely unpredictable) consequences for numerous 
other brain areas.

Neurofeedback

As we have seen, tDCS has relatively small and inconsist-
ent effects on cognitive processes and performance. There 
is a dearth of evidence concerning any long-term conse-
quences of prior exposure to tDCS. However, long-term 
effects are probably even smaller than immediate ones. In 
principle, it would appear that a superior way of achieving 
long-term effects would be to use a technique encouraging 
individuals to learn how to alter their brain functioning 
to enhance their cognitive performance. Neurofeedback is 
such a technique (see Figure 8.4).

What happens with neurofeedback is that the researcher 
initially has theoretical reasons for targeting a given brain 
area. After that, participants are provided with real-time 
displays of their current brain activity in the selected 
brain area while performing a task. They are instructed 
to attempt to increase (or decrease) their brain activity. 
Thus, the goal of neurofeedback is for individuals to learn 
to self-regulate key aspects of their own brain function.

How neurofeedback works can be seen in the following 
concrete example. Eysenck et al. (2007) proposed atten-
tional control theory, according to which high anxiety is 
associated with impaired attentional control. Morgenroth 
et al. (2020) argued that functional connectivity between 
the dorsolateral prefrontal cortex and anterior cingulate 
cortex is of central importance in efficient attentional con-
trol. Accordingly, they instructed high-anxious individuals 
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to increase this functional connectivity under neurofeed-
back conditions. As predicted, neurofeedback increased 
that functional connectivity and also reduced participants’ 
anxiety level.

Neurofeedback research has been reasonably successful in 
increasing cognitive functions in individuals with clinical 
conditions associated with impaired functioning. For exam-
ple, children with attention-deficit/hyperactivity disorder 
(ADHD) have problems with maintaining attention on cog-
nitive tasks. Neurofeedback enhanced sustained attention, 
working memory, and academic performance in several 
studies on ADHD children (e.g., Shereena et al., 2019).

Findings with healthy individuals have mostly been dis-
appointing. Staufenbiel et al. (2014) found neurofeedback 
had the predicted effects on brain activity in older indi-
viduals. However, it had non-significant effects on cog-
nitive performance and intelligence. Gordon et al. (2020) 

Figure 8.4  �Real-time data displayed on a computer screen during 
feedback training.
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obtained only very limited evidence that neurofeedback 
had any enhancement effect on working memory in 
healthy young adults.

Research on neurofeedback is at an early stage of devel-
opment and the mechanisms by which it has its effects are 
largely unknown (Hampson et al., 2020). Most research has 
focused on the treatment of various clinical conditions and 
has contributed little to enhancing the cognitive perfor-
mance of healthy individuals. High levels of cognitive per-
formance and intelligence depend on integrated processing 
activities across several brain regions. As a consequence, 
using neurofeedback to increase or decrease activity in a 
single region will not necessarily have much impact on 
cognitive performance.

There is another reason why neurofeedback (and non- 
invasive brain stimulation) have so far had very limited 
effects. The human brain took literally billions of years of 
evolutionary development to reach its current excellence. It 
seems improbable in that context that increasing or decreas-
ing brain activity in one small brain region will ever pro-
duce large enhancement effects on human cognition.

How to make human brains much  
more effective?

Non-invasive brain stimulation and neurofeedback may 
prove to be useful ways of enhancing human cognition 
and intelligence. However, there are unlikely to be enor-
mous game changers. If we adopt a futuristic perspective, 
there are three ways human intelligence might conceiv-
ably be enhanced substantially. First, suppose we could 
devise technology allowing two (or more) human brains to 
communicate with each other directly rather than through 
speech. This would involve setting up a brain-to-brain 
interface, with the networked brains being potentially 
smarter than any of the individual brains.



The future  287

Second, there are brain-machine interfaces. These inter-
faces come in many different forms, but here we will focus 
on cyborgs. The term cyborg (a combination of cybernetic 
and organism) was first proposed by Clynes and Kline 
(1960). It refers to a living being with added mechanical 
or electronic parts to enhance its functioning. The over-
arching assumption is that combining the strengths of the 
human brain and AI can produce cognitive performance 
greatly in excess of either on its own.

Third, there is genetic engineering based on biotechnol-
ogy. This approach involves manipulating an organism’s 
genes directly to produce substantial changes in humans or 
other animals. The natural selection process in evolution 
is very effective but is typically very slow. In principle, 
genetic engineering could produce dramatic changes in 
humans over a relatively short period of time. We are not 
talking science fiction – genetic engineering was first used 
with humans several year ago (Almeida & Diogo, 2020).

Brain-to-brain interfaces

Several years ago, the feasibility of the above approach was 
demonstrated by Pais-Vieira et al. (2015). They inserted 
multi-electrode arrays into the brains of four rats, with the 
electrical brain activity of each rat being sent to the brains 
of the other three rats. The tasks used included pattern 
discrimination, image processing, storage and retrieval of 
tactile information, and weather forecasting. Pais-Vieira 
et al. discovered the performance of the interconnected rat 
brains was always equal (or superior to) that of single rats.

Jiang et al. (2019) used a similar approach in humans. 
They used a game where one person (the Receiver) decided 
whether to rotate a block to fit with blocks already present. 
They developed BrainNet (see Figure 8.5), which allowed 
two Senders to assist the Receiver’s performance. Even 
though the Receiver could not see the blocks already present, 
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performance accuracy was 81%, proving that the Senders’ 
brain signals strongly influenced the Receiver’s decisions.

There is massive long-term potential in the BrainNet 
connecting human brains set up by Jiang et al. (2019). It 
opens up the prospect of producing what might be called 
a “biological computer.” However, their study was limited 
in several ways. EEG provides very imprecise informa-
tion concerning which brain areas are more or less active 
during task performance. One solution would be to com-
bine EEG with functional magnetic resonance imaging 
(fMRI), which indicates activity levels in different areas 
very clearly. Another limitation is that the information the 
Receiver obtained via transcranial magnetic stimulation 
was delivered to the occipital area (concerned with visual 
perception). More complex cognitive information could be 
delivered if transcranial magnetic stimulation were applied 
to higher brain areas (e.g., the prefrontal cortex).

Finally, the task used by Jiang et al. (2019) required only 
a simple binary decision (i.e., rotate the block vs do not 

Figure 8.5  �Architecture of BrainNet. EEG records the brain sig-
nals of the two senders using a brain-computer interface 
(BCI). Then transcranial magnetic stimulation (TMS) 
sends the relevant information directly to the receiv-
er’s brain via a computer-brain interface (CBI) based on 
TMS. After processing the senders’ inputs, the receiver 
produces an action using a BCI. The senders see the 
outcome of this action, and can then convey new infor-
mation to the receiver. 

Source: From Jiang et al. (2019).
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rotate the block). It will be important in future research to 
develop brain-brain interfaces that can cope with consid-
erably more complex tasks.

The prospect of major developments in brain-to-brain 
interfaces could prove very valuable in several ways. 
For example, patients with locked-in syndrome find it 
extremely difficult to communicate with other people. In 
future, such patients may be able to communicate directly 
using this technology. However, the use of brain-to-brain 
interfaces raises ethical issues relating to privacy and agency 
(Hildt, 2019). These issues are best addressed by ensuring 
that all those involved provide free and informed consent 
and by allowing them to control the kinds of information 
they are willing to communicate and to receive.

Brain-machine interfaces: cyborgs

Cyborgs that may come readily to mind include fictional 
characters, such as Darth Vader in Star Wars, the Borgs in 
Star Trek, or the Terminator. However, there are numerous 
much more mundane examples of cyborgs. For example, 
patients with cardiac pacemakers and deaf humans with 
cochlear implants fit most definitions of cyborgs.

There has been some progress in the development 
of animal cyborgs controlled by humans. For example, 
Dutta (2019) inserted lightweight micro-electrodes into 
the antenna lobes of a Madagascar hissing cockroach (see 
Figure 8.6). The cockroach turned to the right when its 
left antenna lobe was stimulated and to the left when stim-
ulation was applied to its right antenna lobe. However, 
these effects reduced over time because the information 
provided by the stimulation was often inconsistent with 
visual information provided by the environment.

In principle, animal cyborgs could be extremely useful 
for many different purposes. For example, consider poten-
tial military uses. Cyborg sharks armed with bombs could 
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be controlled so they pursue, catch and destroy enemy 
ships. Note, however, that progress has been disappoint-
ingly slow: only approximately 50% of research studies 
have achieved the goal of controlling the movements of 
animal cyborgs (Dutta, 2019).

The cyborgs of most relevance to this book are those 
where humans have technological implants inside their 
brain to increase their functional intelligence. That may 
sound like science fiction. However, the fact that the 
human cerebral cortex has considerable plasticity and 
adaptability offers some hope that such cyborgs could be 
produced (Clark, 2003).

Considerable progress has already been made. For exam-
ple, there are numerous cases in which brain-machine inter-
faces have been established. For example, consider the case 
of Zac Vawter, whose leg was amputated above the knee in 
2009. He was provided with a leg prosthetic that moved in 

Figure 8.6  �A Madagascar hissing cockroach with an inserted micro-
circuit interfaced to both antenna lobes and the thorax. 

Source: From Dutta (2019).
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response to brain signals using a targeted muscle re-innerva-
tion. As a result, Zac Vawter managed to climb up all 2,100 
steps of Chicago’s Willis Tower in just over 53 minutes.

According to Elon Musk, “We’re already cyborgs … 
Your phone and your computer are extensions of you, but 
the interface is through finger movements or speech, which 
are very slow” (quoted in Ricker, 2016) How can the speed 
of communication between the brain and an external 
device be greatly increased? In Musk’s opinion, this could 
be done by inserting a “neural lace” lace consisting of a set 
of electrodes into the brain through the skull using a tiny 
needle. In principle, this neural lace would monitor brain 
function and would permit bi-directional communication 
between the brain and a computer or other device.

Musk argued in 2016 that a system such as that described 
in the previous paragraph would be in place within four or 
five years. That time period has elapsed with no sign of the 
magic neural lace.

Finally, we need to consider ethical issues raised by the 
increasing number of cyborgs. Of key importance here 
is the motivation for inserting technological devices in 
human beings. There seem to be far great moral problems 
with creating cyborgs to produce “superhumans” than 
with creating them to overcome the impairments caused 
by handicaps or diseases (Pelegrin-Borondo et al., 2020).

Genetic engineering

Today’s humans are living proof that Darwinian evolution 
is often very effective at producing species extremely well 
adapted to their environment. However, evolution is typi-
cally very slow. Various attempts have been made to speed 
up the evolutionary process in humans, the most notorious 
of which was the eugenics movement started by Sir Francis 
Galton and others in the late nineteenth century. The basic 
idea was that individuals with allegedly desirable heritable 
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characteristics should have more children than those lacking 
such characteristics. That led inexorably to the abominations 
of Nazi Germany and the total discrediting of that approach.

One of the most famous examples of genetic engineering 
was a genetically modified rabbit called Alba. The Brazilian 
bio-artist Edouardo Kac collaborated with scientists at the 
National Institute of Agronomic Research in France. Alba 
was created by implanting the green fluorescent gene (GFP) 
gene from a green fluorescent jellyfish into the embryo of 
a white rabbit. She appeared white with pink eyes under 
normal lighting conditions. However, a photograph of Alba 
seen around the world showed her glowing a bright shade of 
green when exposed to ultraviolet light.

Edouardo Kac triumphantly identified himself as the first 
transgenic artist. However, there is a twist in the tale. Louis-
Marie Houdebine, the French scientist who genetically engi-
neered Alba, said the photograph was a fake. He accepted that 
Alba’s eyes and ears would appear blue under ultraviolet light. 
However, the fur would not appear green because it is dead 
tissue that cannot express the gene. Houdebine’s position is 
supported by the molecular biologist Reinhard Nestelbacher. 
He carried out similar research using mice with the green flu-
orescent protein (GFP) gene. He found no evidence the GFP 
gene was expressed in the hair of the mice.

In spite of well-informed scepticism about Alba, effective 
genetic engineering is possible and has enormous potential. 
We turn now to ways genetic engineering can be applied 
to humans. Gene editing can be used to insert, delete, or 
replace specific genetic material. In 2018, for example, sev-
eral base pairs of the CCR5 gene were deleted to protect 
twin baby girls from the possible transmission of HIV from 
their HIV-positive father. Several moral concerns have been 
raised, partly but not entirely because the risk of transmission 
of HIV was apparently negligible (Bionews.org.uk, 2018).

Genetic engineering in humans takes many forms. There 
is a crucial distinction between genetic therapy (designed 
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to reverse genetically caused impairments) and genetic 
enhancement (designed to increase human capacities above 
those presently attainable) (Almeida & Diogo, 2020). The 
National Academies of Sciences and Medicine (2017) 
reported much more public support for the former (e.g., dis-
ease curing) than the latter (e.g., improving children’s intel-
ligence in the womb). However, the dividing line between 
genetic therapy and genetic enhancement is blurred.

There are very serious ethical issues with respect to 
genetic enhancement, and the National Academies of 
Sciences and Medicine (2017) strongly recommended that 
no clinical trials in this area be permitted for the foreseea-
ble future. One major concern is that there would probably 
be no consensus as to which forms of genetic enhancement 
are desirable or undesirable. In addition, society might 
become less accepting of those who intelligence had not 
been genetically enhanced. Finally, it would be very divi-
sive if only wealthy individuals were able to enhance their 
family’s intelligence or other capacities.

There are strong moral objections to using genetic engi-
neering to produce “super-intelligent” humans and con-
cerns about humans “playing at being God.” Nevertheless, 
we can consider whether such engineering would be fea-
sible if regarded as morally acceptable. A promising start 
is that we know from twin studies that genetic factors 
account for approximately 60% of individual differences 
in intelligence in adolescence and adulthood (Malanchini 
et al., 2020).

Genetic factors have direct and indirect influences on an 
individual’s intelligence. There are indirect influences 
because individuals’ choice of environment is partly deter-
mined by genetic factors – those with more genetic abil-
ity are more likely than those with less ability to choose 
cognitively demanding activities (e.g., reading numerous 
books, going to university, and having an intellectually 
demanding career).
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Most people greatly underestimate the complexities 
involved in enhancing human intelligence via genetic 
engineering. For example, 75% of Americans mistakenly 
believe many forms of human behaviour are controlled by 
single genes (Christensen et al., 2010). In fact, an impor-
tant “law” of behavioural genetics is that, “a typical human 
behavioural trait is associated with very many genetic vari-
ants, each of which accounts for a very small percentage of 
the behavioural variability” (Chabris et al., 2015, p. 304).

There are at least 1,016 different genes involved in human 
intelligence (Savage et al., 2018). It would be extraordinarily 
difficult to manipulate or alter several hundred genes. Even 
if that ever proved possible, most alterations would have 
only trivial effects on intelligence. Another issue is that an 
altered gene might well interact in complex (and counter-
productive) ways with other genes involved in intelligence.

Conclusions

It is not difficult to find experts who are totally convinced 
that brain-to-brain interfaces, brain-machines interfaces, 
and genetic engineering will totally transform human 
cognitive abilities and intelligence. We do not agree with 
them. We believe strongly that the human brain is so com-
plex and so well engineered that it will prove incredibly 
difficult to improve significantly on its functioning in any 
of those ways over the nest 20–30 years. However, would 
be presumptuous to speculate dogmatically about what 
might happen over a longer time scale.

Marriage of AI and humans

A central theme of this book is that the strengths (and lim-
itations) of human intelligence and AI are very different. 
For example, human intelligence is flexible, commonsen-
sical, imprecise, empathic, and sometimes creative but slow 
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and prone to error. In contrast, AI processing is consistent, 
fast and efficient. At the risk of oversimplification, we can 
argue that AI excels at reckoning or calculation whereas 
humans excel at judgement (Smith, 2019).

The above differences between humans and AI suggest 
there could be huge advantages in combining and integrat-
ing their respective strengths. Already there is excellent 
co-operation between AI systems and humans in areas, 
such as medical decision making (Chapter 2), and indus-
trial activities, such as car production (Chapter 5). Perhaps 
the best example of collaboration between humans and AI 
is our use of the internet. Humans make 3.5 billion Google 
searches per day or 1.2 trillion every year. It is estimated 
that Google stores somewhere between 10 and 15 Exabytes 
of data. In comparison, the total number of words spoken 
by all humans throughout our entire history corresponds 
to only approximately 5 Exabytes of data!

The ultimate goal is to create hybrid intelligence: this is 
a form of intelligence that combines human and AI intelli-
gence to produce performance that is superior to either on 
their own (Dellermann et al., 2019). A key aspect of hybrid 
intelligence is bi-directional learning: AI systems “learn” 
from us and we learn from them. For example, human 
experts have learned much from AlphaGo Zero’s outstand-
ing performance at the game of Go (Silver et al., 2017).

In sum, the major focus of this book has been on com-
paring and contrasting the cognitive performance of 
humans and AI. The optimistic point of view (and one to 
which we subscribe) is that the future will involve progress 
based on humans + AI rather than humans vs AI.
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