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Preface

This revised handbook provides a concise summary of the salient
facts and formulas relating to 39 major probability distributions,
together with associated diagrams that allow the shape and other
general properties of each distribution to be readily appreciated.

In the introductory chapters the fundamental concepts of the
subject are introduced with clarity, and the rules governing the
relationships between variates are described. Extensive use is
made of the inverse distribution function and a definition estab-
lishes a variate as a generalized form of a random variable. A
consistent and unambiguous system of nomenclature can thus be
developed. Then follow chapter summaries relating to individual
distributions. '

Students, teachers, and practitioners for whom statistics is
either a primary or secondary discipline will find this book of great
value, both for factual reference and as a guide to the basic
principles of the subject. It fulfills the need for rapid access to
information that must otherwise be gleaned from many scattered
sources.

The first version of this book, written by N. A. J. Hastings and
J. B. Peacock, was published by Butterworths, London, 1975.
Revisions and additions in this version are primarily the work of
Merran Evans, who has increased the number of distributions
from 24 to 39 and added material on variate relationships, estima-
tion, and computing. Merran Evans obtained an M.Sc. in Statistics
from the University of Melbourne in 1977 and a Ph.D. in Econo-
metrics in 1983 from Monash University in Australia. She is now a
senior lecturer in the Department of Econometrics at Monash
University, Clayton, Australia.

Nicholas Hastings studied engineering at Corpus Christi Col-
lege, Cambridge, graduating in 1961. He had eight years service in
the Royal Electrical and Mechanical Engineers, working in Hong
Kong, Germany, and England before turning to an academic
career. He obtained his Ph.D. in Engineering Production from the
University of Birmingham in 1971. Dr. Hastings is the author of
computer software packages, books, and research papers in the

xix



XX PREFACE

fields of production management and reliability analysis. He is
currently Professor of Business Systems at Monash University.

Brian Peacock graduated from Loughborough University in
1968 with a degree in Ergonomics and Cybernetics. He obtained
his Ph.D. in Engineering Production from the University of Birm-
ingham in 1972. He is a registered professional engineer in the
State of Oklahoma. Dr. Peacock’s career up to 1986 involved
teaching in Hong Kong, Australia, Canada, and Oklahoma. He
then joined General Motors as Manager of the Advanced Vehicle
Engineering Human Factors Group. Since 1991 he has been
responsible for the development of the Corporate Manufacturing
Ergonomics Center and Laboratory.

The authors gratefully acknowledge the detailed review of the
contents by Alan Winterbottom and helpful suggestions made by
Mervyn Silvapulle, Ray Watson, Laszl6 Matyas, Keith McLaren,
Jan Podivinsky, and Tom Beer. We would also like to thank Ian
Johns for producing many of the graphs, and Fong Lai, Julie
Harder, and Marina da Costa for their skillful typing.
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1

Introduction

The number of puppies in a litter, the life of a light bulb, and the
time to arrival of the next bus at a stop are all examples of
random variables encountered in everyday life. Random variables
have come to play an important role in nearly every field of study:
in physics, chemistry and engineering, and especially in the biolog-
ical, social, and management sciences. Random variables are
measured and analyzed in terms of their statistical and probabilis-
tic properties, an underlying feature of which is the distribution
function. Although the number of potential distribution models is
very large, in practice a relatively small number have come to
prominence, either because they have desirable mathematical
characteristics or because they relate particularly well to some
slice of reality or both.

This book gives a concise statement of leading facts relating to
39 distributions and includes diagrams so that shapes and other
general properties may be readily appreciated. A consistent sys-
tem of nomenclature is used throughout. We have found ourselves
in need of just such a summary on frequent occasions—as stu-
dents, as teachers, and as practitioners. This book has been
prepared and revised in an attempt to fill the need for rapid
access to information that must otherwise be gleaned from scat-
tered and individually costly sources.

In choosing the material, we have been guided by a utilitarian
outlook. For example, some distributions that are special cases of
more general families are given treatment where this is felt to be
justified by applications. A general discussion of families or sys-
tems of distributions was considered beyond the scope of this
book. In choosing the appropriate symbols and parameters for the
description of each distribution, and especially where different but
interrelated sets of symbols are in use in different fields, we have
tried to strike a balance between the various usages, the need for
a consistent system of nomenclature within the book, and typo-
graphic simplicity. We have given some methods of parameter
estimation where we felt it was appropriate to do so. References
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listed in the Bibliography are not the primary sources but should
be regarded as the first “port of call”.

In addition to listing the properties of individual variates we
have considered relationships between variates. This area is often
obscure to the nonspecialist. We have also made use of the
inverse distribution function, a function that is widely tabulated
and used but rarely explicitly defined. We have particularly sought
to avoid the confusion that can result from using a single symbol
to mean here a function, there a quantile, and elsewhere a variate.



2

Terms and Symbols

2.1. Probability, Random Variable, Variate,
and Random Number

Probabilistic Experiment

A probabilistic experiment is some occurrence such as the tossing
of coins, rolling dice, or observation of rainfall on a particular day
where a complex natural background leads to a chance outcome.

Sample Space

The set of possible outcomes of a probabilistic experiment is
called the sample, event, or possibility space. For example, if two
coins are tossed, the sample space is the set of possible results
HH, HT, TH, and TT, where H indicates a head and T a tail.

Random Variable

A random variable is a function that maps events defined on a
sample space into a set of values. Several different random vari-
ables may be defined in relation to a given experiment. Thus in
the case of tossing two toins the number of heads observed is one
random variable, the number of tails is another, and the number
of double heads is another. The random variable ‘“number of
heads” associates the number 0 with the event TT, the number 1
with the events TH and HT, and the number 2 with the event HH.
Figure 2.1 illustrates this mapping.

Variate

In the discussion of statistical distributions it is convenient to work
in terms of variates. A variate is a generalization of the idea of a

3
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Heads

17 TH HT HH
Sample space
FIGURE 2.1. The random variable ‘‘number of heads."

random variable and has similar probabilistic properties but is
defined without reference to a particular type of probabilistic
experiment. A variate is the set of all random variables that obey
a given probabilistic law. The number of heads and the number of
tails observed in independent coin tossing experiments are ele-
ments of the same variate since the probabilistic factors governing
the numerical part of their outcome are identical.

A multivariate is a vector or a set of elements, each of which is
a variate. A matrix-variate is a matrix or two-dimensional array of
elements, each of which is a variate. In general correlations may
exist between these elements.

Random Number

A random number associated with a given variate is a number
generated at a realization of any random variable that is an
element of that variate.
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2.2. Range, Quantile, Probability Statements and Domain,
and Distribution Function

Range

Let X denote a variate and let R 5 be the set of all (real number)
values that the variate can take. The set R, is the range of X. As
an illustration (illustrations are in terms of random variables)
consider the experiment of tossing two coins and noting the
number of heads. The range of this random variable is the set
{0, 1, 2} heads, since the result may show zero, one, or two heads.
(An alternative common usage of .the term range refers to the
largest minus the smallest of a set of variate values.)

Quantile

For a general variate X let x (a real number) denote a general
element of the range R ,. We refer to x as the quantile of X. In
the coin tossing experiment referred to previously, x € {0, 1, 2}
heads, that is, x is a member of the set {0, 1, 2} heads.

Probability Statement

Let X = x mean “the value realized by the variate X is x.” Let
Pr[ X < x] mean “the probability that the value realized by the
variate X is less than or equal to x.”

Probability Domain

Let a (a real number between 0 and 1) denote probability. Let
R% be the set of all values (of probability) that Pr{ X < x] can
take. For a continuous variate, 8§ is the line segment [0, 1]; for a
discrete variate it will be a subset of that segment. Thus R is the
probability domain of the variate X.

In examples we shall use the symbol X to denote a random
variable. Let X be the number of heads observed when two coins



6 TERMS AND SYMBOLS

are tossed. We then have

PriX<0] =3
PriX<1] =2
Pr[X <2] =1

and hence

Distribution Function

The distribution function F (or more specifically F,) associated

with a variate X maps from the range R, into the probability

domain R % or [0,1] and is such that _
F(x)=Pr[X<x]=a xeRy,ae®Ry (22)

The function F(x) is nondecreasing in x and attains the value
unity at the maximum of x. Figure 2.2 illustrates the distribution

0.75

05}t

Probability o

0.25p+——»

0 1 2
Quantile x

FIGURE 2.2. The distribution function F: x - a or a = F(x) for the random vari-
able, “number of heads."
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\

Probability o

x=G(a)
v

Quantile x

FIGURE 2.3. Distribution function and inverse distribution function for a continuous

variate.

Probability a.

a = F(x)

X

. x=G(a)

-V

0

Quantile x

FIGURE 2.4. Distribution function and inverse distribution function for a discrete

variate.
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function for the number of heads in the experiment of tossing two

coins, Figure 2.3 illustrates a general continuous distribution

function, and Figure 2.4 a general discrete distribution function.
The survival function S(x) is such that

S(x) =Pr[X>x]=1-F(x)

2.3. Inverse Distribution and Survival Function

For a distribution function F, mapping a quantile x into a
probability a, the quantile function or inverse distribution func-
tion G performs the corresponding inverse mapping from « into
x. Thus x € Ry, a € R, the following statements hold:

a = F(x) (2.3a)
x = G(a) (2.3b)
x = G(F(x))
a = F(G(a))

Pr[X <x]=F(x) =a
Pr[X < G(a)] =F(x) =a (2.3¢)

where G(a) is the quantile such that the probability that the
variate takes a value less than or equal to it is a; G(a) is the 100«
percentile.

Figures 2.2, 2.3, and 2.4 illustrate both distribution functions
and inverse distribution functions, the difference lying only in the
choice of independent variable.

For the two-coin tossing experiment the distribution function F
and inverse distribution function G of the number of heads are as
follows:

FO -1 G(1)=-0
F) =3 G(})-1
F2)=1 G(1)=2

AW
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Inverse Survival Function

The inverse survival function Z is a function such that Z(«) is the
quantile, which is exceeded with probability «. This definition
leads to the following equations:

Pr[X > Z(a)] = «

Z(a) = G(1 —a)

x=2Z(a) = Z(S(x))

Inverse survival functions are among the more widely tabulated
functions in statistics. For example, the well-known chi-squared

tables are tables of the quantile x as a function of the probability
level a and a shape parameter and are tables of the chi-squared

inverse survival function.

2.4. Probability Density Function and Probability Function

A probability density function, f(x), is the first derivative coeffi-
cient of a distribution function, F(x), with respect to x (where
this derivative exists).

o) - 40D

Area = Problx, <X s x;) = . :Zﬂx) dx

\ Probability density fix)
o

FIGURE 2.5. Probability density function.
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Probability density flx)

N
0 x =G(a) x

FIGURE 2.6. Probability density function: illustrating the quantile corresponding to
a given probability a; G is the inverse distribution function.

For a given continuous variate X the area under the probability
density curve between two points x,, x, in the range of X is
equal to the probability that an as-yet unrealized random number
of X will lie between x; and x. Figure 2.5 illustrates this. Figure
2.6 illustrates the relationship between the area under a probabil-
ity density curve and the quantile mapped by the inverse distribu-
tion function at the corresponding probability value.

A discrete variate takes discrete values x with finite probabili-
ties f(x). In this case f(x) is the probability function, also called
the probability mass function.

2.5. Other Associated Functions and Quantities

In addition to the functions just described, there are many other
functions and quantities that are associated with a given variate. A
listing is given in Table 2.1 relating to a general variate that may
be either continuous or discrete. The integrals in Table 2.1 are
Stieltjes integrals, which for discrete variates become ordinary
summations, so

fxxu¢(x)f(x)dx corresponds to ZU d(x) f(x)

xX=x;
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TABLE 2.1

Functions and Related Quantities for a General Variate
X denotes a variate, x denotes a quantile, and a denotes probability

Term

Symbol

Description and Notes

1. Distribution function (df) or  F(x)
cumulative distribution

function (cdf)

2. Probability density function  f(x)
(pdf)

3. Probability function (pf) f(x)
(discrete variates)

4. Inverse distribution function G(a)
or quantile function
(of probability a)

5. Survival function S(x)

6. Inverse survival function (of Z(a)

probability a)

F(x) is the probability that the vari-
ate takes a value less than or equal
to x.

F(x)=Pr[X<x]=a
F(x) = f_x f(u) du

A function whose general integral
over the range x; to x; is equal to
the probability that the variate takes
a value in that range.

[xuf(x)dx =Prix, <X <xy]
_ 4(F(x))
f(X) = T—

f(x) is the probability that the variate
takes the value x.

f(x) = Pr[X =x]

G(a) is the quantile such that the
probability that the variate takes a
value less than or equal to it is a.

x = G(a) = G(F(x));
PriX < Gl =a

G(a) is the 100a percentile. The
relation to df and pdf is shown in
Figures 2.3, 2.4, and 2.6.

S(x) is the probability that the variate
takes a value greater than x.

S(x)=Pr[X>x]=1-F(x)

Z(a) is the quantile that is exceeded
by the variate with probability a.

PriX > Z(a)l = «

x = Z(a) = Z(S(x)),
where § is the survival function.

Z(a) = G(1 — a),
where G is the inverse distribution
function.
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TABLE 2.1

TERMS AND SYMBOLS

Functions and Related Quantities for a General Variate

(continued)

Term Symbol

Description and Notes

7. Hazard function (or failure A(x)
rate, hazard rate or force of
mortality)

8. Mills ratio m(x)

9. Cumulative . or integrated H(x)
hazard function

10. Probability generating func-  P(¢)
tion (discrete nonnegative
integer valued variates). Also
called the geometric or z
transform

11. Moment generating function M(t)
(mgf)

12. Laplace transform of the pdf  f*(s)

h(x) is the ratio of the probability
density to the survival function at
quantile x.

h(x) = f(x)/S(x) = f(x)/(1 — F(x))

m(x) = (1 = F(x))/f(x) = 1/h(x)

Integral of the hazard function.
H(x) = /th(u) du

H(x) = —log(1 — F(x))

S§(x) =1 = F(x) = exp(—H(x))
A function of an auxiliary variable ¢
(or z) such that the coefficient of

t* =f(x).
P(t) = Y. t*f(x)

fx) = (X:/Ov)( P (’))

A function of an auxiliary variable ¢
whose general term is of the form

e /r!
M@ = [ expler) fx) dx
M(t) =1+ gyt + ppt2/2!
ATl

For any independent variates 4 and
B whose moment generating func-
tions, M(t) and Mpg(t), exist,

M, 5(t) = M()Mg(t)

A function of the auxiliary variable s
defined by

=0

*(s) = j:o exp(—sx) f(x) dx,

x>0
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TABLE 2.1

Functions and Related Quantities for a General Variate

(continued)

Term

Symbol

Description and Notes

13. Characteristic function

14. Cumulant generating func-
tion

15. rth cumulant

16. rth moment about the ori-
gin

17. Mean (first moment about u
the origin)

18. rth (central) moment about
the mean

19. Variance (second moment
about the mean, u,)

20. Standard deviation

C(t)

K(t)

K,

Ky

A function of the auxiliary variable ¢
and the imaginary quantity i (iZ=
— 1), which exists and is unique to a
given pdf

+ oo
c@t) = [ exp(ite) f(x) dx

If C(¢) is expanded in powers of ¢
and if u/, exists, then the general
term is W/, (it)"/r!

For any independent variates 4

and B,

Cu45(t) = C(6)Ch(1)
K(t) = log C(¢)
[sometimes defined as log M(t)]
K, . 5(t) = K (t) + Kg(t)
if A and B are independent

The coefficient of (ir)"/r! in the ex-
pansion of K(t).

W= [ o
. (dM(D)
i (S8,

— (- 2C®
—( l)( ar” ):=0

w= [ a0 dr = i,
+ o0
u, = f_ (x — p)f(x) dx

+oo
o= [ (x—wf(x)dx
— o
=y =y — 4l
The positive square root of the vari-
ance.
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TABLE 2.1

Functions and Related Quantities for a General Variate

(continued)

Term Symbol Description and Notes

21. Mean deviation [*3x — plf(x)dx. The mean abso-
lute value of the deviation from the
mean.

22. Mode A quantile for which the pdf or pfis a
local maximum.

23. Median m The quantile that is exceeded with
probability 1/2. m = G(1/2).

24. Quartiles The upper and lower quartiles are
exceeded with probabilities 1/4 and
3/4, corresponding to G(1/4) and
G(3/4), respectively.

25. Percentiles G(a) is the 100a percentile.

26. Standardized rth moment n, The rth moment about the mean

about the mean scaled so that the standard deviation
is unity.
el r My
= [ (5E) e =L
27. Coeficient of skewness 73 \/ﬂl =15 =3 /0> = py/u>?
28. Coefficient of kurtosis N4 By =m4=p4/0 4= Ha/ #22

Coefficient of excess or excess kurto-
sis = B, — 3. B, < 3 is platykurtosis,
B, > 3 is leptokurtosis.

29. Coefficient of variation Standard deviation/mean = o/u.
+0o0
30. Information content (or en- 1 I=— f f(x)log,(f(x)) dx
tropy) -

31. rth factorial moment about i, Z f(x) - x(x—1x—2)
the origin (discrete nonnega- x=0
tive variates) ce(x =141

: (@M)

l"'(r) = dtr

32. rth factorial moment about  u, Y f(x) (x—p)x—-p—-1)---
the mean (discrete nonnega- x=0
tive variate) (x—p-r+1)
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TABLE 2.2

General Relationships between Moments

Moments about the origin

Central moments about
mean

Hence,

Moments and cumulants

r

r .
“”r = Z (l )#’—i(.“",l)l7 P’IO =1
i=0
r
r N\
Mr, = Z (i)”,r—i(_p'l)l7 MKy = 0’ Ko = 1
i=0
2
2% MK

=K,
’ 3
w3 =y = 3uouy + 214
2 4
=Wy — 4y + 6pHpy — 3

I'I'Ir = Z (: : ]1.)”'Ir~iKi

i=1

TABLE 2.3

Samples

Term Symbol Description and Notes
Sample data Xx;  x; is an observed value of a random

Sample size

variable.

n The number of observations

in a sample.
1 n
Sample mean X n Z X;
i=1
n
: . ; 2 1 £)2
Sample variance (unadjusted for bias) s 1 Z (x; = %)
i=1

Sample variance (unbiased)

(727) K-

i=1

Table 2.2 gives some general relationships between moments,
and Table 2.3 gives our notation for values, mean, and variance

for samples.
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General Variate Relationships

3.1. Introduction

This chapter is concerned with general relationships between
variates and with the ideas and notation needed to describe them.
Some definitions are given, and the relationships between variates
under one-to-one transformations are developed. Location, scale,
and shape parameters are then introduced, and the relationships
between functions associated with variates that differ only in
regard to location and scale are listed. The relationship of a
general variate to the rectangular variate is derived, and finally
the notation and concepts involved in dealing with variates that
are related by many-to-one functions and by functionals are
discussed.

Following the notation introduced in Chapter 2 we denote a
general variate by X, its range by R,, its quantile by x, and a
realization or random number of X by x,.

3.2. Function of a Variate

Let ¢ be a function mapping from R, into a set we shall call
R, x-
b(X)

Definition 3.2a. Function of a Variate
The term ¢(X) is a variate such that if x, is a random number of
X, then ¢(x,) is a random number of ¢(X).

Thus a function of a variate is itself a variate whose value at
any realization is obtained by applying the appropriate transfor-
mation to the value realized by the original variate. For example,
if X is the number of heads obtained when three coins are tossed,
then X3 is the cube of the number of heads obtained. (Here, as in
Chapter 2, we use the symbol X for both a variate and a random
variable that is an element of that variate.)

The probabilistic relationship between X and ¢(X) will de-
pend on whether more than one number in R, maps into the

16
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same ¢(x) in R #xy- That is to say, it is important to consider
whether ¢ is or is not a one-to-one function over the range
considered. This point is taken up in Section 3.3.

A definition similar to 3.2a applies in the case of a function of
several variates; we shall detail the case of a function of two
variates. Let X, Y be variates with ranges R,, R, and let ¢ be a
functional mapping from the Cartesian product of #, and %,
into (all or part of) the real line.

Definition 3.2b. Function of Two Variates

The term ¢(X,Y) is a variate such that if x,, x, are random
numbers of X and Y, respectively, then ¢(xy, x,) is a random
number of Y(X,Y).

3.3. One-to-One Transformations and Inverses
Let ¢ be a function mapping from the real line into the real line.

Definition 3.3. One-to-One Function

The function ¢ is one to one if there are no two numbers x,, x,
in the domain of ¢ such that ¢(x,) = ¢(x,), x; # x,. This is also
known as a bijective function.

A sufficient condition for a real function to be one to one is
that it be increasing in x. As an example ¢(x) = exp(x) is a
one-to-one function, but ¢(x) = x? is not (unless x is confined to
all negative or all positive values, say) since x; = 2 and x, = —2
give ¢(x;) = ¢(x,) = 4. Figures 3.1 and 3.2 illustrate this.

A function that is not one to one is a many-to-one function. See
also Section 3.8.

Inverse of a One-to-One Function

The inverse of a one-to-one function ¢ is a one-to-one function
-1
¢~ where

o7 (d(x)) =x,  $(67'(¥)) =V (33)

and x and y are real numbers (Bernstein’s Theorem).
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o(x)
$(x) = exp (x)
¢ (xz)
o (xq)
x X2 x

FIGURE 3.1. A one-to-one function.

¢(x)
o(x) = x2

¢ (x1) =0 (x2)

x X2 x

FIGURE 3.2. A many-to-one function.

3.4. Variate Relationships under One-to-One Transformation
Probability Statements

Definitions 3.2a and 3.3 imply that if X is a variate and ¢ is a
one-to-one function, then ¢(X) is a variate with the property
Pr[ X < x] = Pr[¢(X) < ¢(x)]

3.4
x € Ry; (x) € Ry, (3.42)
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Distribution Function

In terms of the distribution function Fy(x) for variate X at
quantile x, equation (3.4a) is equivalent to the statement

Fy(x) =F¢(x)(d’(x)) (3.4b)

To illustrate equations (3.4a) and (3.4b) consider the experi-
ment of tossing three coins and the random variables “number of
heads,” denoted by X and “cube of the number of heads,”
denoted by X>. The probability statements and distribution func-
tions at quantiles 2 heads and 8 (heads)? are

PrX<2]=Pr[X><8]=3%

Fy(2) = Fyu(8) = 1 (3.4¢)

Inverse Distribution Function

The inverse distribution function (introduced in Section 2.3) for a
variate X at probability level a is Gy(a). For a one-to-one
function ¢ we now establish the relationship between the inverse
distribution functions of the variates X and ¢(X).

Theorem 3.4a

¢((_;x(a)) = G¢(X)(a)

Proof: Equations (2.3¢) and (3.4b) imply that if
Gy(a) =x then G¢(X)(a) = ¢(x)

which implies that the theorem is true.

We illustrate this theorem by extending the example of equa-
tion (3.4c). Considering the inverse distribution function, we have

Gy(3) =21 Gp(3)=8=2°=(Gx(3))’
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Equivalence of Variates

For any two variates X and Y, the statement X ~ Y, read “X is
distributed as Y,” means that the distribution functions of X and
Y are identical. All other associated functions, sets, and probabil-
ity statements of X and Y are therefore also identical.

“Is distributed as” is an equivalence relation, so that

1. X~X
2. X ~Y implies Y ~ X
3. X~Yand Y ~ Z implies X ~ Z

The symbol = means “is approximately distributed as.”

Inverse Function of a Variate

Theorem 3.4b
If X and Y are variates and ¢ is an increasing one-to-one function,
then Y ~ $(X) implies ¢~ (Y) ~ X.

Proof:
Y~ ¢(X) implies Pr[Y < x] = Pr[¢(X) < x]
(by the equivalence of variates, above)
=Pr[X < ¢7'(x)]
[from equations (3.3) and (3.4a)]
Pr{Y <x] = Pr[o~'(Y) < ¢7'(x)]
[from equations (3.3) and (3.4a)]

These last two equations together with the equivalence of variates
(above) imply that Theorem 3.4b is true.

3.5. Parameters, Variate and Function Notation
Every variate has an associated distribution function. Some groups

of variates have distribution functions that differ from one another
only in the values of certain parameters. A generalized dis-
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tribution function in which the parameters appear as symbols
correspond to a family of variates (not to be confused with a
distribution family). Examples are the variate families of the
normal, lognormal, beta, gamma, and exponential distributions.
The detailed choice of the parameters that appear in a distribu-
tion function is to some extent arbitrary. However, we regard
three types of parameter as “basic” in the sense that they always
have a certain physical or geometrical meaning. These are the
location, scale, and shape parameters the descriptions of which
are as follows:

Location Parameter, a. The abscissa of a location point
(usually the lower or midpoint) of the range of the variate.

Scale Parameter, b. A parameter that determines the scale
of measurement of the quantile, x.

Shape Parameter, c. A parameter that determines the shape
(in a sense distinct from location and scale) of the distribu-
tion function (and other functions) within a family of shapes
associated with a specified type of variate.

The symbols a, b, ¢ will be used to denote location, scale, and
shape parameters in general, but other symbols may be used in
cases where firm conventions are established. Thus for the normal
distribution the mean, u, is a location parameter (the locating
point is the midpoint of the range) and the standard deviation, o,
is a scale parameter. The normal distribution does not have a
shape parameter. Some distributions (e.g., the beta) have two
shape parameters, which we denote by v and w.

Variate and Function Notation

A variate X with parameters a, b,c is denoted in full by X:
a,b,c. Some or all of the parameters may be omitted if the
context permits.

The distribution function for a variate X: c is Fy(x: c). If the
variate name is implied by the context, we write F(x: ¢). Similar
usages apply to other functions. The inverse distribution function
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for a variate X: a,b,c at probability level a is denoted Gy(a:
a,b,c).

3.6. Transformation of Location and Scale

Let X: 0,1 denote a variate with location parameter a = 0 and
scale parameter b = 1. (This is often referred to as the standard
variate.) A variate that differs from X: 0,1 only in regard to
location and scale is denoted X: a, b and is defined by
X:a,b~a+b(X:0,1) (3.6a)

The location and scale transformation function is the one-to-one
function
d(x)=a +bx
and its inverse is
¢~ (x) =(x—a)/b
The following equations relating to variates that differ only in
relation to location and scale parameters then hold:

X:a,b~a+b(X:0,1)

(by definition) (3.6a)
X:0,1~[(X:a,b) —a]/b

[by Theorem 3.4b and equation (3.6a)]

Pr[(X:a,b) <x] =Pr[(X:0,1) < (x—a)/b] (3.6b)

[by equation (3.4a)]

Fy(x:a,b) = Fy{[(x — a)/b]: 0,1}
[equivalent to equation (3.6b)]
Gy(a:a,b) =a + b(Gx(a:0,1))
(by Theorem 3.4a)
These and other interrelationships between functions associ-
ated with variates that differ only in regard to location and scale

parameters are summarized in Table 3.1. The functions them-
selves are defined in Table 2.1.
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TABLE 3.1
Relationships between Functions for Variates That Differ
Only by Location and Scale Parameter a, b.

Variate relationship X:a,b~a+b(X:0,1)

Probability statement Prl(X:a,b) <x]=Pil(X:0,1) < (x — a)/b]

Function relationships
Distribution function F(x:a,b) = F{(x —a)/b). 0,1)
Probability density function f(x:a,b) = Q/b)f((x —a)/b):0,1)
Inverse distribution function G(a: a,b) =a + bG(a: 0,1)
Survival function S(x: a,b) = S((x — a)/b):0,1)
Inverse survival function Z(a: a,b) =a + bZ(a:0,1)
Hazard function h(x: a,b) = A/b)h((x — a)/b): 0,1)
Cumulative hazard function H(x:a,b) = H{(x — a)/b).0,1)
Moment generating function M(t: a, b) = exp(at)M(bt: 0,1)
Laplace transform f*(s: a, b) = exp(—as)f*(bs: 0,1)
Characteristic function C(t: a, b) = expliat)C(bt: 0,1)
Cumulant function K(t: a,b) = iat + K(bt:0,1)

3.7. Transformation from the Rectangular Variate

The following transformation is often useful for obtaining random
numbers of a variate X from random numbers of the unit rectan-
gular variate R. The latter has distribution function Fgp(x) = x,
0 < x < 1, and inverse distribution function Ggla) = a, 0 < a <
1. The inverse distribution function of a general variate X is
denoted Gy(a), a € R%. Here Gy(a) is a one-to-one function.

Theorem 3.7a
X ~ Gx(R) for continuous variates.

Proof:
Prl[R<a]l=a,0<ax<1
(property of R)
~ Pr{G(R) < Gy(a)]

[by equation (3.4a)]
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Hence, by these two equations and (2.3¢c),

Gy(R) ~X

For discrete variates, the corresponding expression is
X ~ Gx[f(R)], where f(a) = Min{plp > a, p € R§}

Thus every variate is related to the unit rectangular variate via its
inverse distribution function, although, of course, this function
will not always have a simple algebraic form.

3.8. Many-to-One Transformations

In Sections 3.3 through 3.7 we considered the relationships be-
tween variates that were linked by a one-to-one function. Now we
consider many-to-one functions, which are defined as follows. Let
¢ be a function mapping from the real line into the real line.

Definition 3.8
The function ¢ is many to one if there are at least two numbers
Xy, X, in the domain of ¢ such that ¢(x,) = ¢(x,), x; # x,.

The many-to-one function ¢(x) = x? is illustrated in Figure
3.2.

In Section 3.2 we defined, for a general variate X with range
R, and for a function ¢, a variate ¢(X) with range R, ,. Here
¢(X) has the property that if x, is a random number of X, then
¢(xy) is a random number of ¢(X). Let r, be a subset of R, x,
and 7, be the subset of R y, which ¢ maps into r,. The definition
of ¢(X) implies that

Pr[X € r,] = Pr[¢(X) € 1,]

This equation enables relationships between X and ¢(X) and
their associated functions to be established. If ¢ is many-to-one,
the relationships will depend on the detailed form of ¢.
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Example

As an example we consider the relationships between the variates
X and X? for the case where R , is the real line. We know that ¢:
x > x? is a many-to-one function. In fact it is a two-to-one
function in that +x and —x both map into x2. Hence the
probability that an as-yet unrealized random number of X2 will
be greater than x? will be equal to the probability that an as-yet
unrealized random number of X will be either greater than +x or

less than —x.

Pr[X?>x?] =Pr[X > +x] + Pr[X < —x]  (3.8a)

Symmetrical Distributions

Let us now consider a variate X whose probability density func-
tion is symmetrical about the origin. We shall derive a relationship
between the distribution function of the variates X and X2 under
the condition that X is symmetrical. An application of this result
appears in the relationship between the F (variance ratio) and
Student’s ¢ variates.

Theorem 3.8
Let X be a variate whose probability density function is symmetrical
about the origin.

1. The distribution functions Fy(x) and Fy:(x?) for the variates X
and X? at quantiles x and x?, respectively, are related by

Fy(x) = 3[1 + Fy2(x?)]
or
Fy2(x?) = 2Fy(x) — 1

2. The inverse survival functions Zy(3a) and Zya) for the vari-
ates X and X? at probability levels 1a and a, respectively, are
related by

[Zy(3a)]? = Zy2(a)
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Proof: 1. For a variate X with symmetrical pdf about the origin
we have

Pr{X > x] = Pr[X < —x]
This and equation (3.8a) imply
Pr[X? > x?] = 2Pr[ X > x] (3.8b)

Introducing the distribution function Fy(x) we have, from the
definition [equation (2.2)]

1 — Fy(x) =Pr[X > x]
.This and equation (3.8b) imply
1 - Fa(x?) = 2[1 = Fy(x)]
Rearrangement of this equation gives
Fy(x) = 3[1 + Fya(x?)] (3.8¢)
2. Let Fy(x) = a. Equation (3.8c) implies
1+ Fya(x?)] =«
which can be arranged as
Fy2(x?) =2a -1
This and equations (2.3a) and (2.3b) imply
Gy(a) =x and Gy:(2a — 1) =x?
which implies
[Gx(@)]” = Gx2(2a ~ 1) (3.8d)

From the definition of the inverse survival function Z (Table 2.1,
item 6), we have G(a) = Z(1 — ). Hence from equation (3.8d)

[Zy(1 - @)]” = Zy2(2(1 — a))
[Zy(a)]” = Zy2(2a)

[Zx(@/2)]” = Zy:(a)
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3.9. Functions of Several Variates

If X and Y are variates with ranges R, and R, and ¢ is a
functional mapping from the Cartesian product of f, and R,
into the real line, then (X, Y) is a variate such that if x, and x,
are random numbers of X and Y, respectively, then y(x,, x,) is a
random number of (X, Y).

The relationships between the associated functions of X and Y
on the one hand and of (X, Y) on the other are not generally
straightforward and must be derived by analysis of the variates in
question. One important general result is where the function is a
summation, say Z = X + Y. In this case practical results may often
be obtained by using a property of the characteristic function
Cx(¢) of a variate X, namely, Cy, ,(¢) = Cx(¢)Cy(2), that is, the
characteristic function of the sum of two independent variates is
the product of the characteristic functions of the individual vari-
ates.

We are often interested in the sum (or other functions) of two
or more variates that are independently and identically dis-
tributed. Thus consider the case Z ~ X + Y where X ~ Y. In this
case we write

Z~X, +X,

Note that X, + X, is not the same as 2X,, even though X; ~ X,.
The term X, + X, is a variate for which a random number can be
obtained by choosing a random number of X and then another
independent random number of X and then adding the two. The
term 2 X, is a variate for which a random number can be obtained
by choosing a single random number of X and multiplying it by
two.

If there are n such variates of the form X: a, b to be summed,

n
Z~ Y (X:a,b),
i=1

When the variates to be summed differ in their parameters, we
write

n
Z~ Z (X:a;,b)
i=1
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Bernoulli Distribution

A Bernoulli trial is a probabilistic experiment that can have one
of two outcomes, success (x = 1) or failure (x = 0) and in which
the probability of success is p. We refer to p as the Bernoulli
probability parameter.

Variate B: 1, p.
[The general binomial variate is B: n, p, involving n trials.]
Range x € {0, 1}
Parameter p, the Bernoulli probability parameter, 0 < p < 1

Distribution function FO=1-p, F1) =1
Probability function fO=1-p;f(D)=p
Characteristic function 1 + plexp(it) — 1]

rth moment about the origin )/

Mean p

Variance p(1 —p)

4.1. Random Number Generation

R is a unit rectangular variate and B: 1, p is a Bernoulli
variate.

R < p implies B: 1, p takes value 1; R > p implies B: 1, p
takes value 0.

4.2. Curtailed Bernoulli Trial Sequences

The binomial, geometric, Pascal, and negative binomial variates
are based on sequences of independent Bernoulli trials, which are

28
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curtailed in various ways, for example, after » trials or x suc-
cesses. We shall use the following terminology:

p = Bernoulli probability parameter (probability of success
at a single trial).

n = number of trials
number of successes
number of failures

X
y

]

Binomial variate, B: n, p = number of successes in # trials.
Geometric variate, G: p = number of failures before the
first success.

Negative binomial variate, NB: x, p = number of failures
before the xth success.

Pascal variate is the integer version of the negative binomial
variate.

Alternative forms of the geometric and Pascal variates include
the number of trials up to and including the xth success.

These variates are interrelated in various ways, specified under
the relevant chapter headings.

4.3. Urn Sampling Scheme

The selection of items from an urn, with a finite population N of
which Np are of the desired type or attribute and N(1 — p) are
not, is the basis of the Polya family of distributions.

A Bernoulli variate corresponds to selecting one item (n = 1)
with probability p of success in choosing the desired type. For a
sample consisting of n independent selections of items, with
replacement, the binomial variate B: n, p is the number x of
desired items chosen  or successes, and the negative binomial
variate, NB: x, p is the number of failures before the xth success.
As the number of trials or selections » tends to infinity, p tends to
zero and np tends to a constant A, the binomial variate tends to
the Poisson variate P: A with parameter A = np.

If sample selection is without replacement, successive selec-
tions are not independent, and the number of successes x in n
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trials is a hypergeometric variate H: N, x, n. If two items of the
type corresponding to that selected are replaced each time, thus
introducing “contagion,” the number of successes x in # trials is
then a negative hypergeometric variate, with parameters N, x,
and n.

4.4. Note

The following properties can be used as a guide in choosing
between the binomial, negative binomial, and Poisson distribution
models:

Binomial variance < mean
Negative binomial variance > mean
Poisson variance = mean
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Beta Distribution

Variate B: v, w
Range0 <x <1

Shape parameters v > 0, @ > 0

This beta distribution (of the first kind) is U shaped if v < 1,
w < 1 and J shaped if (v — 1w — 1) < 0, and is otherwise uni-

modal.

Distribution function

Probability density function

rth moment about the origin

Mean
Variance

Mode

Coeflicient of skewness

Coefficient of kurtosis

Often called the incomplete
beta function. (See Pearson
(1968))

1 - x)" /By, w)
where B(v, w) is the beta
function with arguments v, o,
given by

B(v, ) = flu"_l(l — ) ldu
0

r—1 .
(v +1i)
l-l:!, (v +w+i)
_ By +r,m)
~ B(v,0)
v/(v + @)
Va)/[(v + w)z(v +w+ 1)]
v-D/(v +0 —2),
v>1l,w>1
2Aw —v)(v + o + 1)7?
(v + o + 2)(vw)"?

v +toXv+o+ D@+ DR —v)
vo(v +ow + 2)(v + o + 3)
v(v — w)
v+

31
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1/2

Coefficient of variation S —

v(v +w + 1)
Probability density function if (v +o— 1)x"" (1 -x)*""
v and w are integers (v — Dli(w - 1)!
Probability density function if
rangeis a <x <b vl el
Here a is a location param- (x=a) (b .,x+)¢.,—1
eter and b — a a scale param- B(v,w)(b —a)
eter

5.1. Notes on Beta and Gamma Functions

The beta function with arguments v, w is denoted B(v, w);
v,w > 0.

The gamma function with argument ¢ is denoted I'(c);
c>0.

The di-gamma function with argument c is denoted ¥(c);
c>0.

Definitions
Beta function:

B(v,w) = [w™(1 - u)* " du
0
Gamma function:
T'(c) = fwexp(—u)u"ldu
0

Di-gamma function:

#e) = geliog ()] = HRETLME
Interrelationships
B(v,w) = EF((—];)E-(_::)) = B(w,v)
I(c)=(c—-DI'(c—-1)
B(v + 1,0) = 7+—B(v, )
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Special Values
If v, w, and ¢ are integers

Br,w)=(v-Dl(o-D!/(v+o —-1)!
I'(c) = (c-1)!

B(1,1) = 1, B(1/2,1/2) ==
r)=1,r(1) =1,r(1/2) =772

Alternative Expressions

B(v,w) =2/

0
_ /‘” ye~tdy
0

2
/2 6in2~1 6 cos2*~1 9 do

v+tw

(1+y)

5.2. Variate Relationships

For range a < x < b, the beta variate with parameters v and o

33

is

related to the beta variate with the same shape parameters but

with the range 0 <x < 1 (8: v, w) by
b(B:v,w) + a[l - (B: V,w)]

1. The beta variates B: v,w and B: w,v exhibit symmetry, see
Figures 5.1 and 5.2. In terms of probability statements and the

distribution functions, we have
Pr[(B: v, w) ij =1-Pr[(B: w,v) < (1 —x)]
=Pr[(B: w,v) > (1 —x)]
=F(x:v,0) =1-F((1-x): 0,v)

2. The beta variate B: 1/2,1/2 is an arc sin variate (Figures 5.2

and 5.3).

3. The beta variate B: 1,1 is a rectangular variate (Figures 5.2 and

5.3).
4. The beta variate B: v,1 is a power function variate.

. The beta variate with shape parameters i,n — i + 1, denoted
B: i,n —i+ 1, and the binomial variate with Bernoulli trial
parameter n and Bernoulli probability parameter p, denoted
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25

v=2w=4 v=4 0=2

15 20

Probability density
1.0

0.5

0.0

0.0 0.5 10
Quantile x

FIGURE 5.1. Probability density function for the beta variate B: v, w.

B: n, p, are related by the following equivalent statements:
Pr[(B:i,n—i+ 1) <p] =Pr[(B:n,p) =]
Fg(p:i,n—i+1)=1—Fg(i—1:n,p)

Here n and i are positive integers, 0 < p < 1.
Equivalently, putting v =i, w =n —i+ land x =p

Fg(x:v,w)=1-Fg(v - L:iv+w—-1x)
=Fg(o—1l:v+w—1,1-x)

Probability density

v=02w=1

(=) - )
0.0 0.5 1.0

Quantile x

FIGURE 5.2. Probability density function for the beta variate B: v, w for additional
values of the parameters.
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o
-
\)
0.
2 o7
- xo Q?—"
7 2 2
K 3 N
8 o
2 %
3wl N
8©
[
a.
o . ,
00 05 1.0
Quantile x

FIGURE 5.3. Distribution function for the beta variate B: v, .

6. The beta variate with shape parameters w /2, v/2, denoted B:

w/2, v/2, and the F variate with degrees of freedom v, w,
denoted F: v, w, are related by

Pr[(B: w/2,v/2) < [0/(® + vx)]] = Pr[(F: v, ®) > x]

Hence the inverse distribution function Gg(e: /2, v/2) of the
beta variate B: w/2,v/2 and the inverse survival function
Z(a: v, w) of the F variate F: v, w are related by

(w/v){[l/GB(a: w/2,v/2)] - 1} =Zp(a:v,w)
=Gp(l - a:v,w)

where a denotes probability.

. The independent gamma variates with unit scale parameter
and shape parameter v, denoted y: 1,v, and with shape
parameter w, denoted y: 1, w, respectively, are related to the
beta variate B: v, w by

B:v,o~ (v:1,v)/[(v: 1,v) + (y: 1, w)]
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8. As v and w tend to infinity, such that the ratio v/w remains
constant, the B: v, w variate tends to the standard normal
variate N: 0, 1.

9. The variate B: v, w corresponds to the one-dimensional Dirich-
let variate with » = ¢,, o = ¢,. The Dirichlet distribution is the
multivariate generalization of the beta distribution.

5.3. Parameter Estimation

Parameter Estimator Method

v #Hx(1 —x)/s%] -1} Matching moments
(1 —xf[x(1 — x)/s*] — 1} Matching moments

The maximum-likelihood estimators ¥ and & are the solutions of
the simultaneous equations

v(P) —¢Y(P+d) =n""! i log x;
=1

i=

™M=

¥(8) — (P + ) =n"!

i

log(1 —x;)
1

. 5.4. Random Number Generation

If v and w are integers, then random numbers of the beta variate
B: v,o can be computed from random numbers of the unit
rectangular variate R using the relationship with the gamma
variates y: 1, v and y: 1, w as follows:

14
y:1,v~ —log [ [R,;
i=1

y:l,w~ —log [1R;
i=1

y:1,v
v, w ~
P (L) + (v L, @)
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5.5. Inverted Beta Distribution

The beta variate of the second kind, also known as the inverted
beta or beta prime variate with parameters » and w, denoted IB:
v, w, is related to the B: v, w variate by
IB:v,o~ (B:v,0)/[1 - (B:v,0)]

and to independent standard gamma variates by

IB:v,o~ (y:1,v)/(v:1,w)
The inverted beta variate with shape parameters v/2, w/2 is
related to the F: v, w variate by '

B:v/2,w/2 ~ (v/w)F:v,w.
The pdf is x*~1/[B(v, 0)X1 + x)**¢],(x > 0).

5.6. Noncentral Beta Distribution

The noncentral beta variate B: v, w, 6 is related to the indepen-
dent noncentral chi-square variate y?: v, 8 and the central chi-
square variate y%: w by
x%:v,8
(x*:v,8) + (x*: )

~B:v,w,d

5.7. Beta Binomial Distribution

If the parameter p of a binomial variate B: n, p is itself a beta
variate B: v, w, the resulting variate is a beta binomial variate with
probability function

e 2ggzes

with mean nv/(v + ) and variance
nve(n + v + w)/[(v + w)z(l + v+ w)]

This is also called the binomial beta or compound binomial
distribution. For integer v and w, this corresponds to the negative
hypergeometric distribution. For » = w = 1, it corresponds to the
discrete rectangular distribution. A multivariate extension of this
is the Dirichlet multinomial distribution.



6

Binomial Distribution

Variate B: n, p
Quantile x, number of successes
Range 0 < x < n, x an integer

The binomial variate B: n, p is the number of successes in
n-independent Bernoulli trials where the probability of success at

each trial is p and the probability of failure is ¢ = 1 — p.

Parameters

Distribution function

Probability function

Moment generating function
Probability generating function
Characteristic function

Moments about the origin
Mean
Second
Third

Moments about the mean
Variance
Third
Fourth

Mode

Coefficient of skewness

38

n, the Bernoulli trial parame-
ter, n a positive integer

p, the Bernoulli probability
parameter, 0 <p < 1

Y
i=0(
(’xl)pan—x
[pexp(t) + q1"
(pt + )"
[pexp(it) + ql"

n

o

np

np(np + q)

np[(n — 1)(n — 2)p?
+3p(n—1) + 1]

npq
npq(q — p)
np[1 + 3pg(n — 2)]

pln+1D—-1<x<pn+1)
(g = p)/(npg)'/?
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. . 6 1
Coefficient of kurtosis 3 - n + 0
Factorial moments about the
mean

Second - npq
Third —2npq(1 + p)
Coeflicient of variation (q/np)'/?

6.1. Variate Relationships

1. For the distribution functions of the binomial variates B: n, p

Probability

and B: n,1 —p
Fg(x:n,p) =1—Fg(n—-x—-1;n,1—p)

The binomial variate B: n, p can be approximated by the
normal variate with mean np and standard deviation (npg)'/?,
provided npg > 5 and 0.1 < p < 0.9 or if min(np, ng) > 10.
For npg > 25 this approximation holds for any p.

The binomial variate B: n, p can be approximated by the
Poisson variate with mean np provided p < 0.1 and np < 10.
The binomial variate B: n, p with quantile x and the beta
variate with shape parameters, x,n — x + 1 and quantile p

5} n=10 5k n=10
0 p=0.1 05 p=05
0.4 2 0.4f
o
0.3} 8 0.3}
[
0.2} Q@ 0.2
0.1} 0.1} | | I
l. M 1.
012345678910 012345678910
Quantile x, successes Quantile x, successes

FIGURE 6.1. Probability function for the binomial variate B: n, p.
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Probability o

BINOMIAL DISTRIBUTION

l-Or o°° 1.0 o00°
0.8} 8 o8t °
£

0.6 n=10 § 0.6} ° n=10
0.4f p=01 & 04 o P05
0.2} 0.2 °

e PR I

0123465 012345678910

Quantile x, successes Quantile x, successes

FIGURE 6.2. Distribution function for the binomial variate B: n, p.

are related by

Pr[(B:n,p) =x] =Pr[(B: x,n —x + 1) < p]

. The binomial variate B: n,p with quantile x and the F

f

variate with degrees of freedom 2(x + 1),2(n — x), denoted
F: 2(x + 1),2(n — x), are related by

Pr[(B:n,p) <x] =1—Pr[(F:2(x + 1),2(n — x))
<p(n—x)/[(1 +x)(1 -p)]]

‘The sum of k-independent binomial variates B: n;, p; i =
1,..., k, is the binomial variate B: n', p where

k
Y (B:n;,p) ~B:n',p where n' =

i=1

k
Z”i.
i=1

. The Bernoulli variate corresponds to the binomial variate with

n = 1. The sum of n-independent Bernoulli variates B: 1, p is
the binomial variate B: n, p.

. The hypergeometric variate H: N, X, n tends to the binomial

variate B: n, p as N and X tend to infinity and X/N tends
to p.

The binomial variate B: n, p and the negative binomial vari-
ate NB: x, p (with integer x, which is the Pascal variate) are
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related by
Pr[(B: n,p) <x] = Pr[(NB: x,p) = (n — x)]
Fyg(n —x:x,p) =1~ Fg(x — 1:n, p)

10. The multinomial variate is a multivariate generalization of the
binomial variate, where the trials have more than two distinct

outcomes.

6.2. Parameter Estimation

Parameter Estimator Method / Properties

Bernoulli probability, p x/n Minimum variance unbiased

6.3. Random Number Generation

1. Rejection technique: Select n unit rectangular random num-
bers. The number of these that are less than p is a random
number of the binomial variate B: n, p.

2. Geometric distribution method: If p is small, a faster method
may be to add together x geometric random numbers until
their sum exceeds n — x. The number of such geometric ran-
dom numbers is a binomial random number.
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Cauchy Distribution

C:a,b
Range —o <x <

Location parameter a, the median

Scale parameter b > 0

Probability density function

Distribution function

Characteristic function

Inverse distribution function
(of probability a)

Moments
Cumulants
Mode
Median

7.1. Note

expliat — |t|b]

o s bfunsfe - 3]

Do not exist
Do not exist
a

a

The Cauchy distribution is unimodal and symmetric, with much
heavier tails than the normal. The probability density function is
symmetric about a, with upper and lower quartiles, a + b.

7.2. Variate Relationships

The Cauchy variate C: a,b is related to the standard Cauchy

variate C: 0,1 by

C:a,b~a+b(C:0,1)

42
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1.

0.7

Probability
density

1 2 3 4
Quantile x

FIGURE 7.1. Cauchy probability density function.

The ratio of two independent unit normal variates N,, N, is the
standard Cauchy variate C: 0, 1.

(N,/N,) ~ C:0,1

The standard Cauchy variate is a special case of the Student’s ¢
variate with one degree of freedom, ¢: 1.
The sum of n-independent Cauchy variates C: a;, b; with
location parameters a;,i = 1,...,n and scale parameters b,
i=1,...,n is a Cauchy variate C: a, b with parameters the
sum of those of the individual variates

n n n

Y (C:a;,b)~C:a,b where a= Y a;, b= ) b

i=1 i=1 i=1
The mean of n-independent Cauchy variates C: a, b is the

Cauchy C: a, b variate. Hence the distribution is “stable” and
infinitely divisible.
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4. The reciprocal of a Cauchy variate C: a, b is a Cauchy variate
C: a',b’, where a', b’ are given by

1/(C:a,b) ~C:a',b'
where a' =a/(a®+ b?), b =b/(a’>+ b?)
7.3. Random Number Generation

The standard Cauchy variate C: 0,1 is generated from the unit
rectangular variate R by

C:0,1~ cot(7R) = tan[7(R - 3)]

7.4. Generalized Form

Shape parameter m > 0, normalizing constant k.

- . . x—a\]
Probability density function k[l + ( 5 ) ] , m>1

where k = I'(m)/
[bT(A/2T(m — D]

Mean a
Median a
Mode a

1.,(r412— 1)F( _ r; 1)
rth moment about the mean ,

1 1
oz )r(m-7)
r even, r<2m-1
0, r odd

For m = 1, this variate corresponds to the Cauchy variate C: a, b.
For a = 0, this variate corresponds to a Student’s ¢ variate
with (2m — 1) degrees of freedom, multiplied by b(2m — 1)~ /2,
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Chi-squared Distribution

Variate y?2: v
Range 0 <x <

Shape parameter v, degrees of freedom

Probability density function

Moment generating function
Laplace transform of the pdf
Characteristic function
Cumulant generating function

rth cumulant

rth moment about the origin

Mean
Variance
Mode
Median

Coeflicient of skewness
Coefficient of kurtosis

Coefficient of variation

x¥=2/2exp(—x/2)
2"°T(v/2)

with T'(v/2) the gamma func-

tion with argument v /2

a-20""%t<i
A+29)7"% s> —3
(1 —2it)/?
(—v/2log( — 2it)
277 (r—=DLr>1

r—1

Z’E) [i+ (v/2)]
_ 2'T(r+ v/2)
I'(v/2)
2v

v—2,v>2

v — 2 (approximately for
large v)

93/2,,-1/2
3+ 12/v
Q/v)\/?

45
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8.1.

1.

CHI-SQUARED DISTRIBUTION
Variate Relationships

The chi-squared variate with v degrees of freedom is equal to
the gamma variate with scale parameter 2 and shape parame-
ter v/2, or equivalently is twice the gamma variate with scale
parameter 1 and shape parameter v /2.

xiv~y:2,v/2
~2(y:1,v/2)

Properties .of the gamma variate apply to the chi-squared
variate y2: v. The chi-squared variate y2: 2 is the exponential
variate E: 2.

The independent chi-squared variates with v and w degrees
of freedom, denoted % v and x2: o, respectively, are
related to the F variate with degrees of freedom v, o,

Probability density
0.10 0.15 0.20

0.05

S0 5 10 15 20 25 30 35
Quantile x

FIGURE 8.1. Probability density function for the chi-squared variate x?: v.



VARIATE RELATIONSHIPS 47

10

Probability a
02 03 04 05 06 07 08 09

00 0.1

0 5 10 15 20 25 30 35
Quantile x

FIGURE 8.2. Distribution function for the chi-squared variate xZ: v.

denoted F: v, w, by

(x%:v)/v
(x*: w)/o

F:v,o~

3. As w tends to infinity, » times the F variate F: v, o tends to
the chi-squared variate x2: v.

x> v=v(F:v,0) as w—>»

4. The chi-squared variate y?: v is related to the Student’s ¢
variate with v degrees of freedom, denoted ¢: v, and the
independent unit normal variate N: 0,1 by

N:0,1

T e ]
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CHI-SQUARED DISTRIBUTION

. The chi-squared variate x?: v is related to the Poisson variate

with mean x/2, denoted P: x/2, by
Pr{(x%:v) > x| = Pr[(P: x/2) < ((v/2) - 1)]

Equivalent statements in terms of the distribution function F
and inverse distribution function G are

1= Fa(x:v) = Fp([(v/2) — 1]: x/2)
G((1—a):v)=x < Gpla:x/2)=(v/2) - 1

0 <x < «; v/2 a positive integer; 0 < a@ < 1; a denotes prob-
ability.

. The chi-squared variate y?: v is equal to the sum of the

squares of v-independent unit normal variates, N: 0, 1.

2
Y Y N:p;,,0,) — u;

xz:y~Z(N:O,1),~2~Z{( o__) }
i=1

i=1 i

. The sum of independent chi-squared variates is also a chi-

squared variate:

™M=

n
(x*:v;) ~x*:v, where v= Y v
1 i=1

i

. The chi-squared variate y?: v for v large can be approxi-

mated by transformations of the normal variate.
2
Xev = i@y -1+ (N:0,1)]

X2 v = w[1 = 2/(9) + [2/(9)]A(N: 0, 1)]’

The first approximation of Fisher is less accurate than the
second of Wilson—Hilferty.

. Given n normal variates N: u, o, the sum of the squares of

their deviations from their mean is the variate o?y%: n — 1.
Define variates %, s2 as follows:
. 1« 1 ¢ . _12
x~—Z(N Ky 0)is s? ;[Z[N'l""a)i"x]

n i=1 i=1

Then ns?/o? ~x% n — 1.
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10. Consider a set of n,-independent normal variates N: u,, o,
and a set of n,-independent normal variates N: u,, o (note
same o) and define variates X, X,, 57, s7 as follows:

_ 1 & - .17

X1~EIZ(N5M1a0')i§ S1~n_lz'[(N:“’1’a-)i—x1]
i=1 i=1

1 n, 1 2 2

J—Cz~n*22(1vtl"«2,0')j§ S%NH_ZZ[(N:MZ’U)f—)-CZ]
i=1 /=t

Then

(nys7 + nys3) /o ~x*in +ny, =2

8.2. Random Number Generation

For independent N: 0,1 variates
x2:v~ Y (N:0, 1),2
i=1

See also gamma distribution.

8.3. Chi Distribution

The positive square root of a chi—square variate, x%: v, has a chi
distribution with shape parameter v, the degrees of freedom. The
probability density function is

x*"lexp(—x2/2)/[2°/*7'T(v/2)]
and the rth central moment about the origin is
27T [(v +r) /2]T(v/2)

and the mode is Vv — 1, v > 1.
This chi-variate, y: v, corresponds to the Rayleigh variate for
v = 2 and the Maxwell variate with unit scale parameter for

v=3. Also, [N: 0,1} ~ x: 1.
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Chi-squared (Noncentral) Distribution

Also known as the generalized Rayleigh, Rayleigh—Rice, or Rice

distribution.

Variate x2: v, 8
Range 0 <x < o

Shape parameters v > 0, the degrees of freedom and 6 > 0,

the noncentrality parameter

Probability density

Moment generating function

Characteristic function

Cumulant generating function

rth cumulant

rth moment about the origin

Mean

Moments about the mean
Variance
Third
Fourth

Coefficient of skewness

50

exp| — 3(x + 8)]

2u/2
o xv/2Hi=1gi
E r 2 +j)2%j!
i—o T'(v/2 +))29)!

(1 = 28)7" % expldt /(1 — 21)],
t<1/2

(1 — 2it)~*? expl it /(1 — 2it)]

—1v log(1 — 2ir)
+8it /(1 — 2it)
27" (r — DI(v + rd)

21+ 5) 2 (7))

j=0
(i +3)

v+

2y + 26)
8(v + 38)
48(v + 48) + 4(v + 26)?
8/2(v + 38)
(v + 28)°"?
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+ 12(v + 406)

Coefficient of kurtosis 3
(v + 26)

[2(v + 28)]"?

Coefficient of variation
v+06

9.1. Variate Relationships

1. Given v-independent standard normal variates N: 0,1, then
the noncentral chi-squared variate corresponds to

v, 8~ L [(N:0,1);+8]° ~ ¥ (N:5,,1)°,

i=1 i=1

where & = ) &}
i=1

Probability density
0.10 0.15 0.20

0.05

0 5 10 15 20 25
Quantile x

FIGURE 9.1. Probability density function for the (noncentral) chi-squared variate
2.
X< v,6.
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. The sum of n-independent noncentral chi-squared variates x?:
v;,8;,i = 1,...,n, is a noncentral chi-squared variate, xiv,é.
n . n n
xiv, 8~ Y (XZ: V,-,8,-), where v= Y. v,8= 38

i=1 : i=1 i=1

. The noncentral chi-squared variate x?: »,8 with zero non-

centrality parameter § = 0 is the (central) chi-squared variate

xZv.

. The standardized noncentral chi-squared variate y2: v, 8 tends

to the standard normal variate N: 0, 1, either when v tends to

infinity as 8 remains fixed or when & tends to infinity as v

remains fixed. -

. The noncentral chi-squared variate x2: v,8 (for v even) is

related to two independent Poisson parameters with parame-

ters v/2 and 8/2, denoted P: v/2 and P: 8 /2, respectively, by

Pr[(x2:v,8) <x| = Pr[[(P:v/2) — (P:8/2)] = v/2]

. The independent noncentral chi-squared variate y2: v, 8 and
central chi-squared variate y2: w are related to the noncentral
F variate, F: v, w, 8 by

(x%v,8)/v

F:v,w,6 ~
(x*: w)/w
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Dirichlet Distribution

The standard or Type I Dirichlet, a multivariate generalization of

the beta distribution.

Vector quantile with elements x,,..., x;
Range x;, > 0, Z¥_, x; < 1
Parameters ¢; > 0,i=1,...,k and ¢,

Probability density function

For individual elements (with ¢ = ¥¥*_,c,)

Mean c;/c
Variance clc —¢)/lc*c + 1]
Covariance —¢;cillc(c + 1)

10.1. Variate Relationshipé

1. The elements X,, i = 1,...,k, of the Dirichlet multivariate
vector are related to independent standard gamma variates

with shape parameters c;, i = 0,..., k by

v:1,c;

.é](?’: l’cj))

X ~

i

, i=1,...

and independent chi-squared variates with shape parameters

53
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L i=1,...,k

éo(f"23 2v;)

2. For k = 1, the Dirichlet univariate is the beta variate B8: v, w
with parameters v = ¢; and o = ¢,. The Dirichlet variate can
be regarded as a multivariate generalization of the beta variate.

3. The marginal distribution of X, is the standard beta distribu-
tion with parameters

v=oc

k
and o = Z ¢ — ¢
j=0
4. The Dirichlet variate with parameters np; is an approximation
to the multinomial variate, for np; not too small for every i.

10.2. Dirichlet Multinomial Distribution

The Dirichlet multinomial distribution is the multivariate general-
ization of the beta binomial distribution. It is also known as the
compound multinomial distribution and, for integer parameters,
the multivariate negative hypergeometric distribution.

It arises if the parameters p;, i = 1,..., k of the multinomial
distribution follow a Dirichlet distribution. It has probability func-
tion

k
n!I’(Z:cj) Koyt e
= I1 Jc. ., Yx;=n, x,20

ko)i=1 6 =1
= P
n + Z c;
j=1

r

The mean of the individual elements x; is nc;/c, where ¢ =
Zj;lcj, and the variances and covariances correspond to those of
a multinomial distribution with p; = c¢;/c. The marginal distribu-
tion of X, is a beta binomial. :
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Erlang Distribution

The Erlang variate is a gamma variate with shape parameter ¢ an
integer. The diagrams, notes on parameter estimation, and variate
relationships for the gamma variate apply to the Erlang variate.

Variate y: b, ¢
Range 0 <x < o

Scale parameter b > 0. Alternative parameter A = 1/b
Shape parameter ¢ > 0, ¢ an integer for the Erlang distribu-

tion

Distribution function

Probability density function

Survival function

Hazard functions

Moment generating function
Laplace transform of the pdf
Characteristic function
Cumulant generating function

rth cumulant
rth moment about the origin

Mean

- [eof )| T

c

0

(XZ'b)

(x/b)""" exp(~x/b)

b(c — 1)!

exp(_g)[jg (/)

(x/b)”“
1)| Z (x/b)
A-b)"ct<1/b
1+ bs)~°¢
(1 -ibt)
—c log(1 — ibt)
(r — Db’
r—1
b I+
i=0
bc

|
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56 ERLANG DISTRIBUTION

Variance b%c

Mode blc —1,c =1
Coefficient of skewness 2¢7172
Coefficient of kurtosis 3+6/c

Coeflicient of variation c~1/?

11.1. Variate Relationships

1. If ¢ = 1, the Erlang reduces to the exponential distribution.

2. The Erlang variate with scale parameter b and shape parame-
ter ¢, denoted y: b,c, is equal to the sum of c-independent
exponential variates with mean b, denoted E: b.

c
y:b,c~ Y (E:b);, capositive integer
i=1

3. For other properties see the gamma distribution.

11.2. Parameter Estimation

See gamma distribution.

11.3. Random Number Generation
c
y:b,c~ —b log[ l—[Ri]
i=1

where R; are independent rectangular unit variates.
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Error Distribution

Also known as the exponential power distribution or the general
error distribution.

Range —o <x <

Location parameter —» < g < o, the mean

Scale parameter b > 0

Shape parameter ¢ > 0. Alternative parameter A = 2 /¢

exp[ —|x - a|2/°/2b]

[61722¢72*1T(1 + ¢ /2)]

Probability density function

Mean a
Median a
Mode a
br2rc/2 F((r + 1)6/2) ,
rth moment about the mean I'(c/2)
r even
0 r odd
: . 2¢b?T (3c/2)
Variance ——F—(é—/Z—)-—
‘o ’ 2¢/ 2bI‘(c)
Mean deviation _I‘—(_E72_)_
Coefficient of skewness 0
Coeflicient of kurtosis I'(5¢/2)T( C/z 2)
[T(3¢/2)]

12.1. Note

Distributions are symmetric, and for ¢ > 1 are leptokurtic and for
¢ < 1 are platykurtic.

57



58 ERROR DISTRIBUTION

0.6

Probability
density

-3 2

Quantile x

FIGURE 12.1. Probability density function for the error variate.

12.2. Variate Relationships

1. The error variate with a =0, b =c = 1 corresponds to a
standard normal variate N: 0, 1

2. The error variate with a = 0, b
Laplace variate.

3. As ¢ tends to zero, the error variate tends to a rectangular
variate with range (a — b,a + b).

=1/2, ¢ = 2 corresponds to a
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Exponential Distribution

Also known as the negative exponential distribution.

Variate E: b
Range 0 <x < +

Scale parameter b > 0, the mean
Alternative parameter A, the hazard function (hazard rate),

A=1/b
Distribution function

Probability function

Inverse distribution function
(of probability a)

Survival function

Inverse survival function
(of probability a)

Hazard function

Cumulative hazard function
Moment generating function
Laplace transform of the Qdf
Characteristic function
Cumulant generating function
rth cumulant

rth moment about the origin
Mean

Variance

Mean deviation

1 — exp(—x/b)

(1/b) exp(—x/b)
= rexp(—Ax)

blogll/(1 — a)]
= —blog(l — a)

exp(—x/b)
b log(1/a)

1/b = A

x/b

1/Q = bt),t < 1/b
1/(0 + bs),s > —1/b
1/(1 — ibt)

—log(1 — ibt)
(r=DW,r>1

rib”

b

b2

2b /e, where e is the base of
natural logarithms
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60 EXPONENTIAL DISTRIBUTION

Mode 0

Median blog2

Coeflicient of skewness 2

Coefficient of kurtosis 9

Coefficient of variation 1

Information content log,(eb)
S

Probability density
10 15

05

0.0

Quantile x

FIGURE 13.1. Probability density function for the exponential variate E: b.

10

05}

Probability a

0.0

Quantile x

FIGURE 13.2. Distribution function for the exponential variate E: b.
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Cumulative
hazard

Mean

FIGURE 13.3. Cumulative hazard function for the exponential variate E: b.

13.1. Note

The exponential distribution is the only continuous distribution
with, and is characterized by, a “lack of memory.” An exponential
distribution truncated from below has the same distribution with
the same parameter b. The geometric distribution is its discrete
analogue. The hazard rate is constant.

13.2. Variate Relationships
(E:b)/b ~E:1, the unit exponential variate

1. The exponential variate E: b is a special case of the gamma
variable y: b, ¢ corresponding to shape parameter ¢ = 1.

E:b~y:b,1
2. The exponential variate E: b is a special case of the Weibull
variate W: b, ¢ corresponding to shape parameter ¢ = 1.
E:b~W:b,1
E: 1 is related to Weibull variate W: b, ¢ by
b(E: 1)V ~W:b,c
3. The exponential variate E: b is related to the unit rectangular
variate R by
E:b~ —blogR

4. The sum of c-independent exponential variates, E: b, is the
Erlang (gamma) variate y: b, ¢, with integer parameter c.

Y (E:b); ~y:b,c

i=1



62 EXPONENTIAL DISTRIBUTION

5. The difference of the two independent exponential variates,
(E: b), and (E: b),, is the Laplace variate with parameters 0,
b, denoted L: 0, b.

L:0,b~(E:b), — (E:b),

If L: a, b is the Laplace variate, E: b ~ |(L: a, b) — al.

6. The exponential variate E: b is related to the standard power
function variate with shape parameter c, here denoted X: c,
for ¢ = 1/b.

X:c~exp[—E:b] forc=1/b

and the Pareto variate with shape parameter ¢, here denoted
X: a,c, for c =1/b, by

X:a,c~aexp[E:b] forc=1/b

7. The exponential variate E: b is related to the Gumbel extreme
value variate, V: a, b by

Via,b~a —log[E: D]

8. Let Y be a random variate with a continuous distribution
function F,. Then the standard exponential variate E: 1 corre-
sponds to E: 1 ~ —log[1 — Fyl.

13.3. Parameter Estimation

Parameter Estimator Method / Properties

b X Unbiased, maximum likelihood

13.4. Random Number Generation

Random numbers of the exponential variate E: b can be gener-
ated from random numbers of the unit rectangular variate R
using the relationship

E:b~ —blogR
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Exponential Family

Variate can be discrete or continuous and uni- or multidi-
mensional.

Parameter 8 can be uni- or multidimensional.

The exponential family is characterized by having a pdf or pf
of the form

exp{ A(0) - B(x) + C(x) + D(6)}

14.1. Members of the Exponential Family

These include the univariate Bernoulli, binomial, Poisson, geo-
metric, gamma, normal, inverse Gaussian, logarithmic, Rayleigh,
and von Mises distributions. Multivariate distributions include the
multinomial, multivariate normal, Dirichlet, and Wishart.

14.2. Univariate One-Parameter Exponential Family

The natural exponential family has B(x) = x, with A(@) the
natural or canonical parameter. For 4(8) = 6:

Probability (density) function expl8x + C(x) + D(8)]
Characteristic function ° exp{ D(8) — D(@ + it)]
Cumulant generating function D(9) — D@8 + it)

d?’
rth cumulant - WD(H)

Particular cases are:
Binomial B: n, p for 6 = p,
A(6) =log[6/(1 — 6)] = log(p/q),

C(x) =Iog(;l), D(6) =nlog(1—86) =nlogq
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64 EXPONENTIAL FAMILY

Gamma y: b, c, for § = 1/b = A scale parameter,
A(8) = -1,  C(x) =log[x*"'/T(c)], D(8) =clogh
Inverse Gaussian I: u, A, for 0 = pu,
A(0) = 1/u?,  C(x) = —3[log(2mx3/A) + A/x],
D(8) = —(-2m)""*
Negative binomial NB: x, p, for 6 = p,
+y—1
A(0) = log[p/(1 -p)], C(y) = Iog(x g )
D(6) = (x —y)logp
Normal N: u, 1, for § = u,
A(8) =p, C(x)=—3i[x*+log2mw], D(8) = —ip
Poisson P: A, for 6 = A,
A(0) = log A, C(x) = —log(x!), D(6) = —A.

Families of distributions obtained by sampling from one-parame-
ter exponential families are themselves one-parameter exponen-
tial families.

14.3. Estimation
The shared important properties of exponential families enable

estimation by likelihood methods, using computer programs such
as GLIM and GENSTAT.
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Extreme Value (Gumbel) Distribution

We consider the distribution of the largest extreme. Reversal of
the sign of x gives the distribution of the smallest extreme. This is
the Type I, the most common of three extreme value distributions,

known as the Gumbel distribution.

Variate V: a, b
Range —o <x < 4

Location parameter a, the mode

Scale parameter b > 0
Distribution function

Probability density function

Inverse distribution function
(of probability )

Inverse survival function
(of probability )

Hazard function

Moment generating function
Characteristic function

Mean

Variance

Coefficient of skewness
Coefficient of kurtosis
Mode

Median

exp{ —exp[ —(x — a) /b]}
(1/b) expl—(x — a)/b]

X exp{—exp[ - (x — a) /b]}
a — bloglogl1/al

a — bloglog[l/(1 — a)]

exp[—(x — a)/b]
blexp{exp[ —(x — a)/b]} — 1]

exp(at)T(1 — bt),t < 1/b
exp(iat)I'(1 — ibt)
a — bI'(1)

I''(1) = —0.57721 is the first
derivative of the gamma func-
tion I'(n) with respect to n at
n=1

b%7?/6
1.139547
5.4

a
a — bloglog2
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66 EXTREME VALUE (GUMBEL) DISTRIBUTION

0.5

Probability
density

a-3b a-2b a-b a a+tb a+2b a+3b a+4db
Quantile x

FIGURE 15.1. Probability density function for the extreme value variate V: a, b
(largest extreme).

15.1. Note

Extreme value variates correspond to the limit, as n tends to
infinity, of the maximum value of n-independent random variates
with the same continuous distribution. Logarithmic transforma-
tions of extreme value variates of Type II (Fréchet) and Type III
(Weibull) corresponds to Type I Gumbel variates.

10

Probability
a

0.5

0.368

0.0

a-3b a-2b a-b a a+b a+2b a+3b a+4b
Quantile x

FIGURE 15.2. Distribution function for the extreme value variate V: a, b (largest
extreme).
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5»—
4_
B\ 3
©
5
T 2&_
1_
] ] 0 ] | ] ]
a-2b a-b a a+b a+2b a+3b a+4b
Quantile x '

FIGURE 15.3. Hazard function for the extreme value variate V: a, b (largest
extreme).

15.2. Variate Relationships

((V:a,b) —a)/b~V:0,1,the standard Gumbel extreme value variate

1.

The Gumbel extreme value variate V: a, b is related to the
exponential variate E: b by

V:a,b=a — log[E: b]

. Let (E: b),, i ,n be independent exponential variates

with shape parameter b For large n,
(E:b)n+a-biogimy = Via,b form=1,2,...

. The standard extreme value variate ¥: 0,1 is related to the

Weibull variate W: b, ¢ by
—clog[(W: b,c)/b] ~V:0,1

The extreme value distribution is also known as the “log-
Weibull” distribution and is an approximation to the Weibull
distribution for large c.

. The difference of the two independent extreme value variates

(V: a, b), and (V: a, b), is the logistic variate with parameters
0 and b, here denoted X: 0, b,

X:0,b~(V:a,b),— (V:a,b),



68 EXTREME VALUE (GUMBEL) DISTRIBUTION

5. The standard extreme value variate, V: 0,1 is related to the
Pareto variate, here denoted X: a, c, by

X:a,c~afl —exp[—exp(—V: 0,1)]}"*

and the standard power function variate, here denoted X: 0, ¢
by
X:0,c ~ exp{—exp[ —(V:0,1) /c]}

15.3. Parameter Estimation

By the method of maximum likelihood, the estimators a, b are the
solutions of the simultaneous equations

15.4. Random Number Generation

Let R denote a unit rectangular variate. Random numbers of the
extreme value variate V: a, b can be generated using the relation-
ship

V:a,b ~a — blog(—log R)
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F (Variance Ratio) or Fisher-Snedecor
Distribution

Variate F: v, w
Range 0 <x < »

Shape parameters »,w, positive integers, referred to as
degrees of freedom

Probability density T[i(v + 0)](v/0)?x=272
function F(%V)F(%w)[l + (V/w)x](u+m)/2
rth moment about (‘”/")rr(%l” + ’?F(%“’ -r)
the origin IL'(zv)T(z0)
w > 2r
Mean ——‘-"——, 0> 2
w—2

2w2(v +w—2)

Variance B . w >4
v(w—2)(w —4)
w(v —2)
Mode o+ 2) v>2
Coeficient (vt 2)[8(‘” - 4)]1/2
of skewness W20 — 6) (v + @ — 2)1/21
w>6
12[(w — 2)*(w — 4)
Coefficient 34 +v(v + o - 2)(50 - 22)]
of kurtosis v(w—6)(w—8)(v+w-—2)’
w>8
1/2
Coefficient 2(v + w — 2)
. .. —_—— w>4
of variation v(w —4) ’
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70 F (VARIANCE RATIO) OR FISHER —~ SNEDECOR DISTRIBUTION

Probability density
00 02 04 06 08 10 12 14

Quantile x

FIGURE 16.1. Probability density function for the F variate F, v, w.

16.1. Variate Relationships

1. The quantile of the variate F: v, w at probability level 1 — «
is the reciprocal of the quantile of the variate F: w,v at
probability level . That is

Gr(l—a:v,w) =1/Gg(a: w,v)

where Gp(a: v, ») is the inverse distribution function of F:
v,  at probability level a.

o .
—

08

0.6

Probability o
04

0.2

0.0

0 1 2 3 4
Quantile x

FIGURE 16.2. Distribution function for the F variate F: v, w.
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2.

The variate F: v, w is related to the independent chi-squared
variates x2: v and y* w by
(x*: v)/v

F:v,w~
(x*: o)/

. As the degrees of freedom v and w increase, the F: v, w

variate tends to normality.

. The variate F: v, w tends to the chi-squared variate y2: v as

o tends to infinity:
Fiv,o=(1/v)(x*:v) as o - f

. The quantile of the variate F: 1, w at probability level a is

equal to the square of the quantile of the Student’s ¢ variate
t: w at probability level 2(1 + a). That is

Gr(a:1l,0) = [G,(%(l + a): w)]2

where G is the inverse distribution function. In terms of the
inverse survival function the relationship is

Zp(a:l, @) = [Z,(%a: w)]2

. The variate F: v,w and the beta variate B: w/2,v/2 are
related by
Pr[(F:v,0) >x] = Pr[(B: ©/2,v/2) < w/(w + vx)]

=Sp(x:v,w)
=F([o/(o +vx)]:0/2,v/2)

where § is the survival function and F is the distribution
function. Hence the inverse survival function Z.(a: v, ) of
the variate F: v, w and the inverse distribution function Gﬁ(a:
w/2,v/2) of the beta variate B: w/2,v/2 are related by

Ze(a:v,0) = Ge((1 —a):v,w)
= (a/n){[1/Gy(a: w/2,0/2)] - 1)

where a denotes probability.

. The variate F: v, w and the inverted beta variate I8: v /2, w /2

are related by

F:v,o~ (w/v)(IB:v/2,0/2)



72 F (VARIANCE RATIO) OR FISHER - SNEDECOR DISTRIBUTION

8. Consider two sets of independent normal variates (N: .y, 0y);;
i=1,.. ,n1 and (N: p,,0,);; j = 1,...,n,. Define variates
%, X,, 5%, 52 as follows:

ny

ny
X, = Z(N3 R, 01),/1y X, ~ Z(NZ K2y 02) /1,
j=1

i=1

7y
_ 12
57 ~ p [(N3 K1 01); —xl] /hy
i=1

n;
_ 12
55~ ) [(N5 K25 03); _—xZ] /h,y
j=1

Then

n,s? n,s3
F:ng,
2 - Doy /("2 o]

9. The variate F: v, is related to the binomial variate with
Bernoulli trial parameter 3(w + » — 2) and Bernoulli proba-
bility parameter p by

wp
Pr{(F:v,0) < ———
(Fiv0) < 555 |
=1-Pr[(B: H(w +v—2),p) <3v-2)]
where @ + v is an even integer.

10. The ratio of two independent Laplace variates, with parame-
ters 0 and b, denoted (L: 0,b),, i = 1,2 is related to the F:
2,2 variate by

I(L : 0’ b )1 l

F:2,2 ~
|(L.0’b)2|
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F (Noncentral) Distribution

Variate F: v, w, 6
Range 0 <x < =

Shape parameters v, w, positive integers are the degrees of
freedom, and 6 > 0 the noncentrality parameter

Probability density k exp(—8/2)v"/*w*/2x /2
function B(v/2, w/2)(w + vx)**?

o J
) (v5x)/2
wherek—l-i-jg1 P
(ro)(vtow+2)(v+w+2j—-2)
v +2) (v +2j-2)

rth moment about (2)'F((V/2) +r)F((w/2) — 1)

the origin v T(w/2)
" (r)({6v)’ v .
x,-=o(i)(7)/F(7 +i)
w(v +.8)
Mean v(—w—'T)’ w>2
Variance 2(2)2[ (V + 5)2 + (V2+ 25)((0 - 2) ’
v (@ 2)(w - 4)
w>4
Mean deviation 2[(V T (2V il 26)(:‘;2— 2)] ’
[(v + 8)*(w - 9)]
w>2
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F (NONCENTRAL) DISTRIBUTION

0.8

0.6

Probability density
04

0.2

0.0

Quantile x

FIGURE 17.1. Probability density function for the (noncentral) F variate F: v, w, 8.

17.1. Variate Relationships

1.

The noncentral F variate F: v, w, § is related to the indepen-
dent noncentral chi-squared variate y2: v, 8 and central chi-
squared variate y2: w by

(x*:v,8)/v

F:v,w,6 ~
(x*: w)/w

. The noncentral F variate F: v, w,d tends to the (central) F

variate F: v, w as § tends to zero.

. If the negative binomial variate NB: w/2, p, and the Poisson

variate P: 8 /2 are independent, then they are related to the
noncentral F variate F: v, w, 8 (for v even) by

Pr[(F:v,®,8) <pw/v]
= Pr[[(NB: w/2,p) — (P:8/2)] = v/2]



18

Gamma Distribution

The case where the shape parameter c is an integer is the Erlang

distribution.

Variate y: b, ¢
Range 0 <x < o

Scale parameter b > 0. Alternative parameter A, A = 1/b

Shape parameter ¢ > 0

Distribution function

Probability density function

Moment generating function
Laplace transform of the pdf
Characteristic function
Cumulant generating function
rth cumulant

rth moment about the origin
Mean

Variance

Mode

Coeflicient of skewness
Coefficient of kurtosis

Coefficient of variation

For ¢ an integer see Erlang
distribution.

(x/b)*~exp(—x/b)]/bT(c)
where I'(¢) is the gamma
function with argument c,
(see Section 5.1).

1 -b)ct<1/b
A +bs)y s> -1/b
(1 —ibt)c
—clog(1 — ibt)

(r — Dleb”

b'T(c +r)/T(c)
bc

b%c
b(c-1D,c=1
20172

3+6/c

c-12

75



76 GAMMA DISTRIBUTION

18.1. Variate Relationships
(y:b,c)/b~vy:1,c the standard gamma variate

1. If E: b is an exponential variate with mean b, then
y:b,1~E:b

2. If the shape parameter ¢ is an integer, the gamma variate
v: 1, ¢ is also referred to as the Erlang variate.
3. If the shape parameter c is such that 2¢ is an integer, then
y:1,¢c ~ 3(x*: 2c)

where x?2: 2c is a chi-squared variate with 2¢ degrees of
freedom.

o
—
c=05
2
(72}
5
-]
2 un| c=1
F o
8
[<]
o
c=2
c=5
o
o A J
0 2 4 6 8 10

Quantile x

FIGURE 18.1. Probability density function for the gamma variate vy: 1, c.
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<
—

Probability o
05

0.0

0 2 4. 6 8 10
Quantile x

FIGURE 18.2. Distribution function for the gamma variate y: 1, c.

4. The sum of n-independent gamma variates with shape parame-

ters c; is a gamma variate with shape parameter ¢ = ¥!_,c;.
n

n
Y (v:b,c;) ~y:b,c, where c= Y. c;
i=1 i=1

5. The independent standard gamma variates with shape parame-
ters ¢, and c, are related to the beta variate with shape

parameters c,, c,, denoted B: c,, ¢,, by
(riLe)/l(v:le) + (v: L, e)] ~Bicyyc

18.2. Parameter Estimation
Parameter Estimator Method

Scale parameter, b 52 /X Matching moments
Shape parameter, ¢ (x/5)? Matching moments
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Hazard
o

Quantile x

FIGURE 18.3. Hazard function for the gamma variate y: 1, c.

Maximum-likelihood estimators b and ¢é are solutions of the
simultaneous equations [see Section 5.1 for (c)].

S

=x/é



NORMAL GAMMA DISTRIBUTION 79

18.3. Random Number Generation

Variates vy: b, ¢ for the case where c is an integer (equivalent to
the Erlang variate) can be computed using

y:b,c~ —blog(nR,—) = Y —blogR,

i=1 i=1

where the R; are independent unit rectangular variates.

18.4. Inverted Gamma Distribution

The variate 1/(y: b,c) is the inverted gamma variate and has
probability distribution function (with quantile y)

exp(—A/y)A(1/y)t!
I'(c)

Its mean is A /(¢ — 1) for ¢ > 1 and variance is

Az/[(c - 1)%c - 2)] for ¢ > 2.

18.5. Normal Gamma Distribution

For a normal N: u, o variate, the normal gamma prior density for
(u, o) is obtained by specifying a normal density for the condi-
tional prior of u given o, and an inverted gamma density for the
marginal prior of o, and is’

_ T exp{—— " (u - )2}
(277)]/20_ 20_2 M Mo
XL(_Z)M; oo - 25

r(v/z) 2 o”t! p 202
where 7, u,, v, and s? are the parameters of the prior distribu-
tion. In particular

E(ulo) = E(p) = pg,  variance (plo) = o?/7
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This is often used as a tractable conjugate prior distribution in
Bayesian analysis.

18.6. Generalized Gamma Distribution

Variate y: a,b,c, k

Range x >a > 0

Location parameter a > 0. Scale parameter b > 0
Shape parameters ¢ > 0 and k > 0

Probability density k(x — a)“! exol ( x—a )"

function b T(c) P b
rth moment , B

about a b'T(c +r/k)/T(c), ¢> —r/k
Mean a+bl'(c +1/k)/T(c), ¢> —1/k
Variance b*T(c + 2/k)/T(c)

—[I(c + 1/k)/T (),
c> —-2/k

Mode a+blc—1/k)*% c>1/k

Variate Relationships

1. Special cases of the generalized gamma variate y: a, b, ¢, k are
the

Gamma variate y: b,c with k =1,a =0

Exponential variate E: b with c=k=1,a =10

Weibull variate W: b,k withc=1,a =0

Chi-squared variate y>: v witha =0,b=2,c=v/2, k=1

2. The generalized and standard gamma variates are related by

. _ 1/k
(y.a,b,bc,k) a ~yilc
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3. The generalized gamma variate y: a, b, ¢, k tends to the log-
normal variate L: m,o when k tends to zero, ¢ tends to
infinity, and b tends to infinity such that k2c tends to 1/0?
and bc'/* tends to m.

4. The generalized gamma variate y: 0, b, c, k with a = 0 tends
to the power function variate with parameters b and p when ¢
tends to zero and k tends to infinity such that ck tends to p,
and tends to the Pareto variate with parameters b and p when
¢ tends to zero and k tends to minus infinity such that ck

tends to —p.
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Geometric Distribution

Variate G: p
Quantile n, number of trials
Range n > 0, n an integer

Given a sequence of independent Bernoulli trials, where the
probability of success at each trial is p, the geometric variate G: p
is the number of trials or failures before the first success. Let

qg=1-p.

Parameter p, the Bernoulli probability parameter, 0 < p < 1.

Distribution function
Probability function

Inverse distribution function
(of probability a)

Inverse survival function
(of probability a)

Moment generating function
Probability generating function
Characteristic function

Mean

Moments about mean
Variance
Third
Fourth

Mode
Coefficient of skewness
Coeflicient of kurtosis

Coefficient of variation
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[log(1 — a)/log(g@)] — 1
[log(a) /log(q)] — 1

p/l1 — gexp(?)], t < —log(q)
p/(1 — qt)

p/[1 — g exp(it)]

a/p

a/p?
q(1 + ¢)p?
9q%/p*) + (a/p?)

0
a+q)/q'?
9 +p?/q

-1/2
q/
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19.1. Note

1. The geometric distribution is a discrete analogue of the contin-
uous exponential distribution and only these are characterizied
by a “lack of memory.”

2. An alternative form of the geometric distribution involves the
number of trials up to and including the first success. This has
probability function pg”~!, mean 1/p, and probability generat-
ing function pt/(1 — gt). The geometric distribution is also
sometimes called the Pascal distribution.

19.2. Variate Relationships

1. The geometric variate is a special case of the negative binomial
variate NB: x, p with x = 1.

G:p~NB:1,p

2. The sum of x-independent geometric variates is the ncgative
binomial variate

X

Y (G:p),~NB: x,p

i=1

05y 05

1

p=025 p=05
0.4} 0.41
) 2
4 03} 4 03t
3 3
] <
a 0.21 a 0.2t
0.1} l I 0.1}
Jl I | Y I | BN
012345678910 0123456
Quantile n, number of trails Quantile n, number of trails

FIGURE 19.1. Probability function for the geometric variate G: p.
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19.3. Random Number Generation

Random numbers of the geometric variate G: p can be generated
from random numbers of the unit rectangular variate R using the
relationship
G: p ~ [log(R) /log(1 — p)] — 1
rounded up to the next larger integer
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Hypergeometric Distribution

Variate H: N, X, n

Quantile x, number of successes
Range max[0,n — N + X] < x < min[ X, n]

Suppose that from a population of N elements of which X are
successes (i.e., possess a certain attribute) we draw a sample of n
items without replacement. The number of successes in such a
sample is a hypergeometric variate H: N, X, n. '

Parameters

Probability function
(probability
of exactly
X successes)

Mean

Moments about
the mean

Variance

Third

Fourth

N, the number of elements in the
population

X, the number of successes in the
population

n, sample size

=/

nX/N

(nX/N)(1 = X/N)(N — n)
T (N-D)

(nX/N)(1 - X/N)
(1= 2X/N)(N — n){N — 2n)
(N-1)(N-2)

(nX/N)(1 - X/N)(N —n)
(N-1)(N-2)(N-3)

X{N(N + 1) — 6n(N —n)
+BX/NX1 - X/N)
X[n(N = n)(N + 6) — 2N?])

85
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Coefficient
of skewness

Coeflicient
of kurtosis

Coefficient
of variation

20.1. Note

HYPERGEOMETRIC DISTRIBUTION

(N —2X)(N - 1)""*(N - 2n)

[nX(N = X)(N = n)]'"*(N - 2)

[ N?(N - 1) }

n(N — 2)(N = 3)(N —n)
X[N(N+ 1) — 6N(N — n)

X(N - X)
L 3n(N - n)z(N +6) 6]
N

{((N = X)(N = n)/nX(N - 1)}

Successive values of the probability function, f(x) are related by

f(x+1) =f(x)(n—x)(X=x)[[(x + )(N—n—X +x +1)]

f(0) =(N=X){(N=n)!/[(N-X—n)IN!]

20.2. Variate Relationships

1. The hypergeometric variate H: N, X, n can be approximated
by the binomial variate with Bernoulli probability parameter
p = X/N and Bernoulli trial parameter n, denoted B: n, p,
provided n/N < 0.1, and N is large. That is, when the sample
size is relatively small, the effect of nonreplacement is slight.

2. The hypergeometric variate H: N, X, n tends to the Poisson
variate P: A as X, N, and r all tend to infinity for X/N small
and nX/N tending to A. For large n, but x/N not too small, it
tends to a normal variate.
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20.3. Parameter Estimation

Parameter Estimator Method / Properties
N max integer < nX/x Maximum likelihood
X max integer < (N + 1)x/n  Maximum likelihood
X Nx/n Minimum variance,
unbiased

20.4. Random Number Generation

To generate random numbers of the hypergeometric variate H:
N, X, n, select n-independent, unit rectangular random numbers
R,i=1,...,n If R, <p, record a success, where

py=X/N
P =[(N=i+Dp —d]J(N=-i), iz2
where
d,=0 ifR,>p,
d; =1 if R, <p;

20.5. Negative Hypergeometric Distribution

If two items of the corresponding type are replaced at each
selection (see Section 4.3), the number of successes in a sample of
n items is the negative hypergeometric variate with parameters
N, X, n. The probability function is

(X+x—1KN—X+n—x—wﬂN+n—1)

X n—x n

- ()XY
x n—x n
The mean is nX/N and the variance is (nX/N)X1 — X/NXN +

n)/(N + 1). This variate corresponds to the beta binomial or
binomial beta variate with integral parameters v = X, o = N — X.
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The negative hypergeometric variate with parameters N, X, n
tends to the binomial variate, B: n, p as N and X tend to infinity
and X/N to p, and to the negative binomial variate, NB: x, p, as
N and n tend to infinity and N/(N + n) to p.

20.6. Generalized Hypergeometric (Series) Distribution

A generalization, with parameters N, X, n taking any real values,
forms an extensive class, which includes many well-known discrete
distributions and which has attractive features. [See Kotz and
Johnson (1983), 3,330].
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Inverse Gaussian (Wald) Distribution

Variate I: u, A
Range x > 0

Location parameter u > 0, the mean

Scale parameter A > 0

Probability density function

Moment generating function

Characteristic function

rth cumulant

Cumulant generating function

rth moment about
the origin

Mean

Variance
Mode

Coeflicient of skewness
Coefficient of kurtosis

Coefficient of variation

27x3 2u’x
2.1 1/2
i{1—(1—2"”) ”
" A
' 2.\ 1/2
{1_( _2,th) }]
A

1:3-5- - (2r = 3u2 -1\,
r>2

2. 172
A{1—(1+2-——"“’) }
“ A

r—1 . i

, (r=1+)! (p

Migoi!(r—l—i)!(b\)’
r>2

B

exp

exp

T >

m
w/A
(o )’/2 3w

1+ =5
l 4x°

® 2A

(/N2
3+ 15u/A
(p/N"?
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25

15 2.0

Probability density
1.0

0.5

0.0

0.0 0.5 10 1.5 20 25 3.0
Quantile x

FIGURE 21.1. Probability density function for the inverse Gaussian variate I: ., A.
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21.1. Variate Relationships

1. The standard inverse Gaussian variate I: u, A is related to the
chi-squared variate with one degree of freedom, y?: 1 by

X2 1~ A[(L: g, A) = u]?/[ (1 g, )]

2. The standard Wald variate is a special case of the inverse
Gaussian variate I: w, A, for p = 1.

3. The standard inverse Gaussian variate I: w, A tends to the
standard normal variate N: 0,1 as A tends to infinity.

21.2. Parameter Estimation

Parameter Estimator Method / Properties
m b Maximum likelihood
A n / [ Yoxil = (%) —l] Maximum likelihood

i=1

A (n - 1)/[ ix;l _ ()—C)—l] Minimum variance,
i=1

unbiased
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Laplace Distribution

Often known as the double-exponential distribution.

Variate L: a,b
Range —o <x < ®

Location parameter —o < a < o, the mean

Scale parameter b > 0

Distribution function

Probability density
function

Moment generating
function

Characteristic function

rth cumulant

Mean
Median
Mode

rth moment about the
mean, yu,

Variance
Coefficient of skewness

Coefficient of kurtosis

Coefficient of variation
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%exp[—(a;x)], x<a

1—%exp[—(x;a)],x_>_a

1 (_lx—al
2b P b

exp(at) i < b~

1—b%t?’

exp(iat)

1+ b%?
2(r = 1", reven
0, r odd

a

a

a

r'b", reven
0, r odd

2b?
0
6

()
a
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Q
=
[%2]
=
[
©
P
.E o
©
Qo
<}
a
o
© 2 -1 0 1 2
Quantile x

FIGURE 22.1. Probability density function for the Laplace variate.

22.1. Variate Relationships
1. The Laplace variate L: a,b is related to the independent
exponential variates E: b and E: 1 by
E:b ~|(L:a,b) — al
E:1~|(L:a,b) —al|/b
2. The Laplace variate L: 0,b is related to two independent
exponential variates E: b by
L:0,b~(E:b),—(E:b),

3. Two independent Laplace variates, with parameter a = 0, are
related to the F variate with parameters v = w = 2, F: 2,2, by

F:2,2 ~|(L:0,b),/(L:0,b),|

22.2. Parameter Estimation

Parameter Estimator Method / Properties

a median Maximum likelihood

n
b —'11— Y Ix; —al Maximum likelihood

i=1
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Probability a

0.0

-2 -1 0 1 2
Quantile x

FIGURE 22.2. Distribution function for the Laplace variate.

22.3. Random Number Generation

The standard Laplace variate L: 0, 1 is related to the independent
unit rectangular variates R,, R, by

L:0,1 ~log(R,/R,)
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Logarithmic Series Distribution

Range x > 1, an integer
Shape parameter 0 < ¢ < 1.

For simplicity, also let k = —1/log(1 — ¢).

Probability function

Probability generating
function

Moment generating
function

Characteristic function

Moments about the origin
Mean

Second
Third
Fourth

Moments about the mean
Variance

Third

Fourth

Coeflicient of skewness

Coefflicient of kurtosis

kc* /x

log(1 — ct)/log(1 — ¢)

log[1 — c exp(¢)]/log(1 — ¢)

logl1 — c exp(it)]/log(1 — ¢)

ke/(1 —¢)

kc/(1 — ¢)?

ke(1 + ¢)/(1 — ¢)?

ke(1 + 4¢c + ¢?)/(1 - ¢)*

ke(1 — ke)/(1 — ¢)?
ke(1 + ¢ — 3kc + 2k?c?)/
a-cy
ke[l + dc + ¢ — 4ke(1 + )
+6k%c? — 3k3c?]
(1-¢)
(1 +¢) — 3ke + 2k?c?
(ke)'*(1 - ke)*”?

1+ 4c+c? — dke(1 +¢)
+6k%c? — 3k3c3
ke(1 — ke)®

95
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FIGURE 23.1. Probability function for the logarithmic series variate.

23.1. Variate Relationships

1. The logarithmic series variate with parameter ¢ corresponds to
the power series distribution variate with parameter ¢ and
series function —log(1 — c).

2. The limit toward zero of a zero truncated (i.e., excluding
x = 0) negative binomial variate with parameters x and p =
1 — ¢ is a logarithmic series variate with parameter c.
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23.2. Parameter Estimation

The maximum-likelihood and matching moments estimators ¢
satisfy the equation

A

—(1-=2¢&)log(1 - ¢)

Other asymptotically unbiased estimators of c¢ are
1 proportion of | /_
x’sequalto 1 *

1= (n7! fo)/)?

X =
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Logistic Distribution

Range —o <x < o

Location parameter a, the mean

Scale parameter b > 0

Alternative parameter k = b /3!/2, the standard deviation

Distribution function v 1 — {1 + expl(x — a)/b]} !
={1+ exp[—(x — a)/b]} !
= 3{1 + tanh[$(x - a) /bl}

exp[ - (x — a) /b]

b{1 + exp[ - (x — a) /b])’
___exp[(x —a)/b]

b{1 + exp[(x — a)/b]}2
_ sech?[(x — a) /2b]

Probability density function

4b

Inverse distribution function a + blogla/(1 — a)]

(of probability a)
Survival function {1 + expl(x — a)/b]}"!
Inverse survival function a + blogl(1 — a)/al

(of probability «)
Hazard function {b{1 + exp[ —(x — a) /b] }}_]
Cumulative hazard function log{1 + expl(x — a)/b]}
Moment generating function explat) T(1 — b)T'(1 + bt)

= arbt exp(at)/sin(bt)

Characteristic function exp(iat) wbit /sin(bit)
Mean a
Variance m2b%/3

98
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Mode

Median

Coeflicient of skewness
Coefficient of kurtosis

Coeflicient of variation

24.1. Note

99

a
0

4.2
wb/(3/%q)

1. The logistic distribution is the limiting distribution, as n tends
to infinity, of the average of the largest to smallest sample
values, of random samples of size n from an exponential-type

distribution.

. The standard logistic variate, here denoted X: 0, 1 with param-

eters a = 0, b = 1, has a distribution function F, and proba-
bility density function f, with the properties

fx=Fx(1-Fy)
x = log[ Fy/(1 = Fy)]

Probability
density

Quantile x

FIGURE 24.1. Probability density function for the logistic variate.
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Probability
a

0.0

-4 -3 -2 -1 0 1 2 3 4
Quantile x

FIGURE 24.2. Distribution function for the logistic variate.

24.2. Variate Relationships

The standard logistic variate, here denoted X: 0,1, is related to
the logistic variate, denoted X: a, b by

X:0,1~[(X:a,b) —a]/b

1. The standard logistic variate X: 0,1 is related to the standard
exponential variate E: 1 by

X:0,1 ~ —loglexp(—E:1)/(1 + exp(—E: 1))]
For two independent standard exponential variates E: 1, then
X:0,1 ~ —log[(E:1),/(E:1),]

2. The standard logistic variate X: 0, 1 is the limiting form of the
weighted sum of n-independent standard Gumbel extreme
value variates V: 0,1 as n tends to infinity

n
X:0,1= ) (V:0,1),/i, n-ow
i=1

3. Two independent standard Gumbel extreme value variates, V:
a, b, are related to the logistic variate X: 0, b, by

X:0,b~(V:a,b), = (V:a,b),
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4. The Pareto variate, here denoted Y: a,c is related to the
standard logistic variate X: 0,1 by
X:0,1~ —log{[(Y:a,c)/a]® — 1}

5. The standard power function variate, here denoted Y: 1,c, is
related to the standard logistic variate X: 0,1 by

X:0,1 ~ —log{(Y: 1,e) “ - 1}

24.3. Parameter Estimation

The maximum-likelihood estimators 4 and b of the location and
scale parameters are the solutions of the simultaneous equations.

n Ay 1
X;—a _2
Z{”e""[ b }} B

i=1

ié(xi_d)l— exp[(xi—d)/gl B

= T =nhn
b 1+ exp[(xi - d)/b]

24.4. Random Number Generation

. Let R denote a unit rectangular variate. Random numbers of the
logistic variate X: a, b can be generated using the relation

X:a,b~a+blog[R/(1-R)]
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Lognormal Distribution

Variate L: m,o or L: u,o

Range 0 <x < o

Scale parameter m > 0, the median

Alternative parameter w, the mean of log L.

m and u are related by m = exp u, u = log m.

Shape parameter o > 0, the standard deviation of log L.

For compactness the substitution o = exp(c?) is used in
several formulas.

Probability density function ;1/2
xo(27)
~ [log(x/m)]”
>< ——
exp{ 20?
I S
xo(2m)'?
X exp —(log x = p)° 'u)z
207
rth moment about the origin m” exp(3r20?)
= exp(ru + 3r%c?)
Mean mexp(302)
Variance m?w(w — 1)
Mode m/w
Median m R
Coefficient of skewness (w + 2w — D2
Coefficient of kurtosis w*+ 203+ 30?3
Coefficient of variation (0w — D2

102
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0.8r
=0.6
2 ost °
(]
hel
2
§ 04F m=1
[<]
o L
0z o=1
0 1 2 3
Quantile x

FIGURE 25.1. Probability density function for the lognormal variate L: m, o .

25.1. Variate Relationships

1. The lognormal variate with median m and with o denoting the
standard deviation of log L is expressed by L: m, o. [Alterna-
tively, if u, the mean of log L, is used as a parameter, the
lognormal variate is expressed by L: w,o.] The lognormal
variate is related to the normal variate with mean u and
standard deviation o, denoted N: u, o, by the following:

L:m,o ~exp(N:u,0) ~exp[pu + o(N:0,1)]
~mexp(oN:0,1)
log(L:m,0) ~ (N:p,0) ~p +a(N:0,1)
Pr[(L: u,0) <x] = Pr[(exp(N: n,0)) <x]
= Pr[(N:p,0) < log x]
= Pr[(N:0,1) < log((x — n)/0)]

2. For small o, the normal variate approximates the lognormal
variate.
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10r

Probability o
o
N

Quantile x

FIGURE 25.2. Distribution function for the lognormal variate L: m, o.

Hazard

Quantile x

FIGURE 25.3. Hazard function for the lognormal variate L: m, o.
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3. Transformations of the following form, for a and b constant, of
the lognormal variate L: i, o are also lognormal

exp(a)(L: w,0)’ ~L:a+by,bo
4. For two independent lognormal variates, L: u,, o, and L:
Mo Op,
(L:py,00) X (Lip,y,05) ~Lip, + py, 00 + 0y
(L:py,00)/(Lipy,05) ~Lipy — py, 00 + 0y

5. The geometric mean of the n-independent lognormal variates
L: u, o is also a lognormal variate

n 1/n
(]__[(LZ[.L,O')i) ~L:/'l'aa/n

i=1

25.2. Parameter Estimation

The following estimators are derived by transformation to the
normal distribution.

Parameter Estimator
Median, m m=expf
n
Mean of log(L), u 2 =0/n) Y logx,

i=1

Variance of log(L), 0% 6% =[1/(n — 1)] i [log (x, — @)

=1

25.3. Random Number Generation

The relationship of the lognormal variate L: m, o to the unit
normal variate N: 0,1 gives

L:m,oc ~mexp(oN:0,1)
~ exp[u + o(N:0,1)]
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Multinomial Distribution

The -multinomial variate is a multidimensional generalization of
the binomial. Consider a trial that can result in only one of &
possible distinct outcomes, labeled A;, i = 1,..., k. Outcome A4;
occurs with probability p;. The multinomial distribution relates to
a set of n-independent trials of this type. The multinomial multi-
variate is M = [M,] where M, is the variate “number of times
event A; occurs,” i =1,...,k. The quantile is a vector x =
[x,,...,x.]. For the multinomial variate, x, is the quantile of M,
and is the number of times event A; occurs in the n trials.

Multivariate M: n, p,,..., Dy

Range x; > 0, ©¥_,x;, = n, x; an integer

Parameters n, and p; (i=1,...,k), where 0 <p; <1,

Zf'c=lpi =1
The joint probability function f(x,,..., x,) is the probability that
each event A4; occurs x; times, i = 1,..., k, in the n trials, and is
given by

k
Probability function ! TT(pfi/x)

i=1

k
Probability generating function ( Y pit,-)
i=1

k
Zpi eXp(ti)]

i=1

Moment generating function

Cumulant generating function nlog

k
Y b exp(iti)}

i=1

Individual elements, M;

Mean np;
Variance np(1 — p,)
Covariance —np;p;, i#]

106
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Third cumulant np,(1 — p X1 — 2p),i=j=k
—np;p(1 = 2p)i=j+#k
2np; p;py. i, J, k all distinct

Fourth cumulant np(1 — pI1 — 6p,(1 — p)l,

i=j=k=1

—”Pipl[l - 6Pi(1 - Pi)],
i=j=k+1

_npipk[l —2p;—2p; + 6p, 0],
i=j#k=1

2np;p, p(1 — 3p)),
i=jrk*l

—.6npipjpkpl’ i; j’ ka l
all distinct

26.1. Variate Relationships

1. If k=2 and p, = p, the multinomial variate corresponds to
the binomial variate B: n, p. The marginal distribution of each
M; is the binomial distribution with parameters n, p,.

26.2. Parameter Estimation

For individual elements °

Parameter Estimator Method / Properties

D; x;/n Maximum likelihood
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Multivariate Normal (Multinormal)

Distribution

A multivariate extension of the normal distribution.

Multivariate MN: p, X

Quantile x = [x,,..., x,] a k X 1 vector
Range —o <x;, <o, fori=1,...,k
Location parameter, the £ X 1 mean vector,

. P

s ], with —o0 < p; < o

Parameter X, the k X k positive definite variance-covari-

ance matrix, with elements 3;; = o,

Probability density function

Characteristic function
Moment generating function
Cumulant generating function
Mean

Variance-covariance

Moments about the mean
Third
Fourth

rth cumulant

For'individual elements MN,
Probability density function

Mean
Variance
Covariance

108

fx) = (277-)_(1/2)k[21—1/2
X expl[ — %(X - M)’E—l
X(x — p)]

exp(— 2t Et)exp(it'n)
explp't + Jt'Et]
-3t + it

n

p

0

0;i0y; + 030 + 0,0

Oforr>2

Qm)~ V23,172
Xexpl— 3(x; — p )37

X(x; = p)l
M
3 =0/
3, =0
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27.1. Variate Relationships

1. A fixed linear transformation of a multivariate normal variate is
also a multivariate normal variate. For a a constant j X 1
vector and B a j X k fixed matrix, the resulting variate is of
dimension j X 1

a+B(MN:p,X) ~(MN:a+ Bp,BXB)

2. The multinormal variate with £ = 1 corresponds to the normal
variate N: u, o, where p = p, and 0% = 3.

3. The sample mean of variates with any joint distribution with
finite mean and variance tends to the multivariate normal form.
This is the simplest form of the multivariate central limit
theorem.

27.2. Parameter Estimation

For individual elements
Parameter Estimator Method / Properties

7y =) x, Maximum likelihood

3 Y (x,; — %)Xx,; — %) Maximum likelihood

t=1
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Negative Binomial Distribution

Variate NB: x, p
Quantile y

Range 0 <y < =, y an integer

Parameters 0 <x < 0,0 <p <l,g=1-p

The Pascal variate is the number of failures before the xth
success in a sequence of Bernoulli trials where the probability of
success at each trial is p and the probability of failure is g = 1 — p.
This generalizes to the negative binomial variate for noninteger x.

Distribution function (Pascal)

Probability function (Pascal)

Probability function

Moment generating function
Probability generating function
Characteristic function

Cumulant generating function
b

Cumulants
First
Second
Third
Fourth

110

> x+i—1 ;
Z( _1 )p*q’

=1\ ¥
(integer x only)

x+y-—-1

2
x—1

(integer x only)

'(x+y) , N
T(x)y! 74

p*(1 —qgexpt)™™*
px(l _ qt)—x
p*[1 — g exp(it)] ™~

x log(p) — x log[1 — q exp(it)]

xq/p

xq/p*

xq(1 + q)/p°
xq(6g + p?)/p*
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Mean xq/p
Moments about the mean
Variance xq/p*
Third xq/(1 + q)/p?
Fourth (xq/p*)3xq + 6 + p?)
Coefficient of skewness 1 + g)xgq)~1/?
Coefficient of kurtosis 3+ 6/x +p?/(xq)
Coefficient of variation (xq)~ 172
Factorial moment generating
function aQ-q'/p)*
rth factorial moment about
the origin (q/p)(x+r—1)
28.1. Note

The Pascal variate is a special case of the negative binomial
variate with integer values only. An alternative form of the Pascal
variate involves trials up to and including the xth success.

28.2. Variate Relationships

1. The sum of k-independent negative binomial variates NB: x;,
p; i =1,..., k is a negative binomial variate NB: x', p, where

k k
Y. (NB: x;,p) ~NB: x',p, where x' = ) x,
i=1 : i=1
2. The geometric variate G: p is a special case of the negative

binomial variate with x = 1.
G:p~NB:1,p
3. The sum of x-independent geometric variates G: p is a nega-
tive binomial variate.

Z (G:p);~NB: x,p
i=1
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Quantile y, number of failures

FIGURE 28.1. Probability function for the negative binomial variate NB: x, p.
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4. The negative binomial variate corresponds to the power series
variate with parameter ¢ = 1 — p, and probability function
1-o=

5. As x tends to infinity and p tends to 1 with x(1 — p) = A held
fixed, the negative binomial variate tends to the Poisson vari-
ate, P: A.

6. The binomial variate B: n, p and negative binomial variate
NB: x, p are related by

Pr[(B:n,p) <x] =Pr[(NB: x,p) > (n —x)]

28.3. Parameter Estimation
Parameter Estimator Method / Properties

D (x—1/(y+x—1)  Unbiased
D x/(y +x) Maximum likelihood

28.4. Random Number Generation

1. Rejection technigue: Select a sequence of unit rectangular ran-
dom numbers, recording the numbers of those that are greater
than and less than p. When the number less than p first
reaches x, the number greater than p is a negative binomial
random number, for x and y integer valued.

2. Geometric distribution method. If p is small, a faster method
may be to add x geometric random numbers, as

X
NB: x,p ~ Z (G: p);

i=1
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Normal (Gaussian) Distribution

Variate N: u, o
Range —o <x < ®

Location parameter u, the mean
Scale parameter o > 0, the standard deviation

Probability density function

Moment generating function
Characteristic function
Cumulant generating function

rth cumulant

Mean

rth moment about the mean

Variance

Mean deviation
Mode

Median

Standardized rth moment
, about the mean

Coefficient of skewness
Coefficient of kurtosis

Information content

114

2
X — )

—(
0(217)1/2 exp[ 202

exp(ut + 10t?)

exp(iut — 30%t%)

iwt — 30%t?

Ky = MKy Ko =027 K, = 0’
r>2

n
n, =0, rodd
b, = o2 (r/2)1])
=(r—=1)(r-3)...

...3+1-0’, reven

0_2

o2/m)/?

n,=0, rodd
m, =rt/{272[(r/2)]},

r €ven

log,[o(2me)'/?]
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o
N
—

Probability density

N
w

-3 -2 -1 0 1
Quantile x

FIGURE 29.1. Probability density function for the standard normal variate N: 0, 1.

29.1. Variate Relationships

The standard normal variate N: 0,1 and the normal variate N:
u, o are related by

N:0,1 ~ [(N:p,0) —ul/o

.LetN,i=1,...,n be independent normal variates with means

p,; and variances ;. Then L7_,c;N,; is normally distributed
with mean L7 ,c;u; and variance L7 c?o?, where the c;,
i =1,...,n are constant weighting factors.

The sum of n-independent normal variates, N: u,o, is a
normal variate with mean nu and standard deviation on'/?:

Z (N:u,0); ~N:nu,on'/?

i=1

. Any fixed linear transformation of a normal variate is also a

normal variate. For constants a and b,
a+b(N:u,0) ~N:a+ u,bo

. The sum of the squares of v-independent unit normal variates,

N: 0,1, is a chi-squared variate with v degrees of freedom,
2. .
X

Y (N:0,1); ~x2:v

i=1
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NORMAL (GAUSSIAN) DISTRIBUTION
10
-
205}
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o
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Quantile x

FIGURE 29.2. Distribution function for the standard normal variate N: 0, 1.

L
3_
52
(1]
I
] -
n il - 1 1 J
-3 -2 -1 0 1 2 3
Quantile x

FIGURE 29.3. Hazard function for the standard normal variate N: 0, 1.
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and for 8, i = 1,...,v,and 8 = LV_,87,

i [(N:0,1) + 5] ~ 2 (N:8,1)° ~x%:v,8

i=1 i=1

where x2: v, § is the noncentral chi-square variate with param-
eters v, 6.

The normal variate N: u, o and the lognormal variate L: u, o
are related by

L:p,0~exp(N:p,o)

. The ratio of two independent N: 0,1 variates is the standard

Cauchy variate with parameters 0 and 1, here denoted X: 0, 1,
X:0,1 ~(N:0,1),/(N:0,1),

The standardized forms of the following variates tend to the
standard normal variate N: 0, 1:

Binomial B: n, p as n tends to infinity

Beta B: v,w as v and o tend to infinity such that v/w is
constant

Chi-square y2: v as v tends to infinity

Noncentral chi-square y2: v, 8 as & tends to infinity, such that
v remains constant, and also as v tends to infinity such that &
remains constant

Gamma vy: b, ¢ as ¢ tends to infinity

Inverse Gaussian I: u, A as A tends to infinity

Lognormal L: u,o as o tends to zero

Poisson P: A as A tends to infinity

Student’s ¢: v as v tends to infinity

The sample mean of n-independent and identically distributed
random variates, each with mean u and variance o2, tends to
be normally distributed with mean w and variance o2/n, as n
tends to infinity.

If n-independent variates have finite means and variances,
then the standardized form of their sample mean tends to be
normally distributed, as » tends to infinity. These follow from
the central limit theorem.
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29.2. Parameter Estimation

Parameter  Estimator  Method / Properties

n X Unbiased, maximum likelihood
o? ns?/(n — 1) Unbiased
a? 52 Maximum likelihood

29.3. Random Number Generation

Let R, and R, denote independent unit rectangular variates.
Then two independent standard normal variates are generated by

y — 2log R, sin(27R,)
v — 2log R, cos(27R,)
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Pareto Distribution

Range a <x < »
Location parameter a > 0
Shape parameter ¢ > 0

Distribution function 1—-(a/x)
Probability density function ca®/x°+!
Inverse distribution function a(l — @)~ 1/¢
(of probability «)

Survival function (a/x)F
Inverse survival function aa” /¢

(of probability a)

Hazard function c/x

Cumulative hazard function clog(x/a)

rth moment about the mean ca’"/(c—r),c>r

Mean ca/(c —1),c>1

Variance ca’/l(c = DHc - 2], ¢ >2
Mode ' a

Median 21/<q

Coefficient of variation [clc = D172, ¢>2

30.1. Note

This is a Pareto distribution of the first of three kinds. Stable
Pareto distributions have 0 < ¢ < 2.

119
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20

Probability density
o

0.2

Quantile x

FIGURE 30.1. Probability density function for the Pareto variate.

30.2. Variate Relationships

1. The Pareto variate, here denoted X: a,c, is related to the
following variates:

The exponential variate E: b with parameter b = 1/c:
log[(X: a,c)/a] ~E:1/c
The power function variate Y: b, ¢ with parameter b = 1/a:

[X: a,c]_1 ~Y:1/a,c
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Probability a.

1 L
3 [A 5
Quantile x

FIGURE 30.2. Distribution function for the Pareto variate.

The standard logistic variate, here denoted Y: 0, 1:
—log{[(X:a,c)/a]" — 1} ~¥:0,1

2. n-independent Pareto variates, X: a, ¢, are related to a stan-
dard gamma variate with shape parameter », y: 1, n, and to a
chi-squared variate with 2n degrees of freedom by

2a i log[(X: a,c);/c]

i=1

n
=2alog [T(X:a,¢);/c" ~y:1,n ~x?:2n
i=1
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30.3. Parameter Estimation

Parameter Estimator Method / Properties
n
1/c (1/n) Y log(x,/@)  Maximum likelihood
i=1
a min x; Maximum likelihood

30.4. Random Number Generation

1. The Pareto variate X: a,c is related to the unit rectangular
variate R by

X:a,c~a(l-R)™"*
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Poisson Distribution

Variate P: A
Range 0 < x < o, x integer
Parameter the mean, A > 0

Distribution function

Probability function
Moment generating function
Probability generating function

Characteristic function

Cumulant generating function

rth cumulant

Moments about the origin
Mean
Second
Third
Fourth

rth moment about the mean

Moments about the mean
Variance
Third
Fourth
Fifth
Sixth

i Nexp(—A)/i!
i=0

A exp(—A)/x!

exp{Alexp(¢) — 1]}

exp[A(t — D]

exp{Alexp(it) — 1]}

Mexp(it) — 1] = A Y. (it)! /j!

=1

A
A+ A2

M + 1)% + A]

AR +6A%2+70 + 1)

r—2 r—1
i=0

r>1pu,=1

A
A

A1 + 3))

A1 + 101)

A1 + 251 + 15A%)

123
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Mode The mode occurs when x is
the largest integer less than
A. For A an integer the values
x=Aand x = A — 1 are tie

modes.

Coefficient of skewness AT
Coeflicient of kurtosis 3+1/A
Coeflicient of variation AT12
Factorial moments about
the mean

Second A

Third —2A

Fourth AN +2)
31.1. Note

Successive values of the probability function f(x), for x =
0,1,2,..., are related by

f(x+1) =rf(x)/(x+1)
f(0) = exp(~A)

31.2. Variate Relationships

1. The sum of a finite number of independent Poisson variates, P:
Ay, Pi Ay, ..., P A, is a Poisson variate with mean equal to the
sum of the means of the separate variates:

(P:A) +(P:Ay) + - +(P:A) ~(PiAy+ A+ - A)
2. The Poisson variate P: A is the limiting form of the binomial

variate B: n, p, as n tends to infinity, and p tends to zero such
that np tends to A. '

fim [(g)pxu —p)""‘} = A exp( =) /x!

n—sw np—A



VARIATE RELATIONSHIPS 125

s 0.5[ 8 0.5F
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FIGURE 31.1. Probability function for the Poisson variate P: A.
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FIGURE 31.2. Distribution function for the Poisson variate P: A.
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3. For large values of A the Poisson variate P: A may be approxi-
mated by the normal variate with mean A and variance A.

4. The probability that the Poisson variate P: A is less than or
equal to x is equal to the probability that the chi-squared
variate with 2(1 + x) degrees of freedom, denoted x2: 2(1 + x),
is greater than 2A.

Pr[(P: A) <x] =Pr[(x®:2(1 +x)) > 2]

5. The hypergeometric variate H: N, X,n tends to a Poisson
variate P: A as X, N and n all tend to infinity, for X/N
tending to zero, and nX/N tending to A.

6. The Poisson variate P: A is the power series variate with
parameter A and series function exp(A).

31.3. Parameter Estimation

Parameter Estimator Method / Properties

A X Maximum likelihood
Minimum variance unbiased

31.4. Random Number Generation

Calculate the distribution function F(x) for x =0,1,2,...,N
where N is an arbitrary cutoff number. Choose random numbers
of the unit rectangular variate R. If F(x) < R < F(x + 1), then
the corresponding Poisson random number is x.
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Power Function Distribution

Range 0 <x <b

Shape parameter c, scale parameter b > 0

Distribution function
Probability density function

Inverse distribution function
(of probability )

Hazard function
Cumulative hazard function
rth moment about the origin

Mean

Variance

Mode
Median

Coefficient of skewness

Coefficient of kurtosis

Coefficient of variation

32.1. Variate Relationships

(x/b)*
cx<~/b¢

bal/c

ex°=1 /(b — x°)
—log[l — (x/b)‘]
bc/(c +r)

bc/(c +1)

bc/[(c +2)(c + 1)
bforc>1,0forc<1
b/2'¢

2(1 —c)(2+¢)"?
3+ c)c!”?

3(c + 2)[2(c + 1)* + c(c — 5)]
[c(c + 3)(c + D]

1/lc(c + 2172

1. The power function variate with scale parameter b and shape
parameter ¢, here denoted X: b,c, is related to the power

128
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30r,
c=05 c=3
2 2.0
2
[
©
2
S b=1
[
o 1.0
I |
0 0.5 10
Quantile x

FIGURE 32.1. Probability density function for the power function variate.

function variate X: 1/b, c by

[X:b,c]—1 ~X: 5C

2. The standard power function variate, denoted X: 1,c, is a
special case of the beta variate, B: v, w, with v = ¢, w = 1.

"X:1,c~B:c,1

3. The standard power function, denoted X: 1, c, is related to the
following variates:
The exponential variate E: b with shape parameter b = 1/c:

—log[X:1,c] ~E:1/c

The Pareto variate with location parameter zero and shape
parameter ¢, here denoted Y: 0, c:

[X:1,¢] ' ~Y:0,c
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Probability o

L

0 0.5 1.0
Quantile x

FIGURE 32.2. Distribution function for the power function variate.

The standard logistic variate, here denoted Y: 0, 1:
—log{(X: 1,e) ‘- 1} ~Y:0,1
The standard Weibull variate, with shape parameter k:
[—log(X: l,c)c]l/k ~W:1,k
The standard Gumbel extreme value variate, V: 0, 1:
—log[—clog(X:1,¢c)] ~V:0,1
4. The power function variate with shape parameter ¢ = 1, de-
noted X: b, 1, corresponds to the rectangular variate R: 0, b.
5. Two independent standard power function variates, denoted

X: 1, c, are related to the standard Laplace variate, L: 0,1 by

—clog[(X:1,¢),/(X:1,¢),] ~L:0,1
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32.2. Parameter Estimation

Parameter Estimator Method / Properties
—1
n
c [n“ Y log xj] Maximum likelihood
j=1
c x/(1—-Xx) Matching moments

32.3. Random Number Generation

The power function random variate X: b, ¢ can be obtained from
the unit rectangular variate R by

X:b,c~b(R)
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Power Series (Discrete) Distribution

Range of x is a countable set of integers for generalized power
series distributions.

Parameter ¢ > 0
Coefficient function a, > 0, series function A(c) = Ja,c*

Probability function a,c*/A(c)
Probability generating function A(et) /A(c)
Moment generating function Alc exp(8)]/A(c)
Mean, u, c%[log A(c)]
d2
Variance, u, wy + czﬁ[log A(e)]
c
du,
rth moment about the mean Cge Mok, 1T > 2
. d ¢ dA(c)
First cumulant, «, ¢ 7 llog A(c)] = A(c) de
rth cumulant, «, C e Kr1
33.1. Note

Power series distributions (PSD) can be extended to the multivari-
ate case. Factorial series distributions are the analogue of power
series distributions, for a discrete parameter c. [See Kotz and
Johnson (1986), 7, 130]

Generalized hypergeometric (series) distributions are a subclass
of power series distributions.

132
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33.2. Variate Relationships

1.

The binomial variate B: n, p is a PSD variate with parameter
¢ =p/(1 —p) and series function A(c)=0 +c)"=(1 —
p)"

. The Poisson variate P: A is a PSD variate with parameter

¢ = A and series function A(c) = exp(c) and is uniquely char-
acterized by having equal mean and variance for any c.

. The negative binomial variate NB: x, p is a PSD variate with

parameter ¢ = 1 — p and series function A(c) = (1 —¢c)™* =

—X

p*

. The logarithmic series variate is a PSD variate with parameter

¢ and series function A(c) = —log(1 — ¢).

33.3. Parameter Estimation

The estimator ¢ of the shape parameter, obtained by the methods
of maximum likelihood or matching moments, is the solution of
the equation

¢ dlA(9)]
A(%)  de

%= 22 [1og A(8)] =
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Rayleigh Distribution

Range 0 <x <
Scale parameter b > 0

Distribution function

Probability density function

Inverse distribution function
(of probability a)

Hazard function

rth moment about the origin
Mean
Variance

Coeflicient of skewness

Coefficient of kurtosis

Coefficient of variation
Mode
Median

34.1. Variate Relationships

1 — exp[ —x?/(2b%)]
(x/b%exp| —x%/(2b%)]
[—2b?log(1 — @)]'/?

x/b?

QV2b) (r/29I(r/2)

b(m/2)1/?

Q = m/2)b>

2(m —3)7'/?

—_—_—— = 63
(4 —m)>?

a2

G2=3m) _ 325
-

[47 — 1]'/2

b

b(log 4)'/?

1. The Rayleigh variate corresponds to the Weibull variate with

shape parameter ¢ = 2, W: b, 2.

2. The Rayleigh variate with parameter b = 1 corresponds to the
chi variate with 2 degrees of freedom, yx: 2.

3. The square of a Rayleigh variate with parameter b corresponds
to an exponential variate with parameter 1/(2b2).

134
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o~ =
X b=2
Q :
o 1 2 3 4 5 6

Quantile x

FIGURE 34.1. Probability density function for the Rayleigh variate.

4. The Rayleigh variate with parameter b = o, here denoted
X: o, is related to independent normal variates N: 0, o by

X:o~[(N:0,0)} + (N:0,0)]"”

5. A generalization of the Rayleigh variate, related to the sum of
v independent N: 0, o variates, has pdf

2x" " "exp(—x?/2b?)

2
(26%)"*T(v/2)

o
8 b=05
2
o u{ b=1
g° -
E =

QS . N -

o

0 1 2 3 4 5
Quantile x

FIGURE 34.2. Distribution function for the Rayleigh variate.
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with rth moment about the origin

(22b) T((r + v) /2)
[(v/2)

For b = 1, this corresponds to the chi variate x: v.

34.2. Parameter Estimation

Parameter Estimator Method / Properties
n
Y x}
b L Maximum likelihood

2n
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Rectangular (Uniform) Continuous

Distribution

Variate R: a, b.

Where we write R without specifying parameters, we imply the
standard or unit rectangular variate R: 0, 1.

Range a <x <b

Location parameter a, the lower limit of the range
Parameter b, the upper limit of the range

Distribution function
Probability density function

Inverse distribution function
(of probability a)

Inverse survival function
(of probability a)

Hazard function
Cumulative hazard function
Moment generating function

Characteristic function

rth moment about the origin

Mean

rth moment about the mean

Variance

(x—a)/(b—a)
1/(b —a)
a+alb—a)

b—alb—a)

1/(b — x)
—logl(b — x) /(b — a)]

[exp(bt) — exp(at)]l/[t(b — a)]

[exp(ibt) — expliat)]l/
[it(b — a)]

prl — gr+l
(b—a)(r+1)
(a +b)/2

0, rodd

(b= a) /2] /(r + 1),

r even

(b — a)*/12

137
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Mean deviation (b—a)/4

Median (a+b)/2

Coefficient of skewness 0

Coefficient of kurtosis 9/5

Coefficient of variation (b —a)/I(b + a)3'/?]
Information content log, b

35.1. Variate Relationships

1. Let X be any variate and Gy be the inverse distribution
function of X, that is,
Pr[X < Gy(a)] =a, O0<axl
Variate X is related to the unit rectangular variate R by
X ~ Gx(R)
For X any variate with a continuous density function fy,

Fy(X) ~R:0,1

Probability
density
o
|
|

e e — — — n— a—

0

a Quantile x

FIGURE 35.1. Probability density function for the rectangular variate R: a, b.
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Probability a

0
a Quantile x b

FIGURE 35.2. Distribution function for the rectangular variate R: a, b.

2. The distribution function of the sum of n-independent unit
rectangular variates R;,, i = 1,...,n is

i (—1)i(’?)(x— N'/nl, 0<x<n
i=0 t

3. The unit parameter beta variate B: 1,1 and the power function
variate, here denoted X: 1,1, correspond to a unit rectangular

variate R.
4. The mean of two independent unit rectangular variates is a
standard symmetrical triangular variate.

35.2. Parameter Estimation

Parameter Estimator Method

Lower limit, a X —3V% Matching moments
Upper limit, b ¥+ 3% Matching moments
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Hazard

1

0.5 1.0
Quantile x '

FIGURE 35.3. Hazard function for the unit rectangular variate R: 0, 1.

35.3. Random Number Generation

Algorithms to generate pseudo-random numbers, which closely
approximate independent standard unit rectangular variates, R:
0, 1, are a standard feature in statistical software.
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Rectangular (Uniform) Discrete Distribution

Variate D: 0, n

Range 0 < x < n, x an integer taking values 0,1,2,...,n

Distribution function
Probability function

Inverse distribution function
(of probability «)

Survival function

Inverse survival function
(of probability a)

Hazard function
Probability generating function

Characteristic function

Moments about the origin
Mean
Second
Third

Variance

Coefficient of skewness
Coefficient of kurtosis

Coefficient of variation

36.1. General Form

x+1D/(n+1)
1/(n+ 1)

a(n+1) -1
(n—-x)/(n+1
n—oaln+1)
1/(n —x)
A - " Y/In + DA = 1))
{1 —explit(n + 1)]}/

{1 = exp(i)(n + 1)}

n/2
n(2n + 1)/6
n*(n + 1)/4

n(n + 2)/12
0

3 4
-]
[(n + 2)/3n]'/?

Let a < x < a + nh, such that any point of the sample space is
equally likely. The term a is a location parameter and 4, the size

141
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Prohability density

-

L
0 n
Quantile x :

FIGURE 36.1. Probability function for the discrete rectangular variate D: 0, n.

Quantile x

FIGURE 36.2. Distribution function for the discrete rectangular variate D: 0, n.

of the increments, is a scale parameter. The probability function is
still 1/(n + 1). The mean is a + nh/2, and the rth moments are
those of the standard form D: 0,1 multiplied by A".

As n tends to infinity and 4 tends to zero with nh = b — a, the
discrete rectangular variate D: a,a + nh tends to the continuous
rectangular variate R: a, b

36.2. Parameter Estimation

Parameter Estimator Method / Properties

Location parameter, a X —nh/2 Matching moments

1,2
Increments, h {125?/[n(n + 2)]}  Matching moments
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Student’s t Distribution

Variate ¢: v
Range —o <x < w

Shape parameter v, degrees of freedom, v a positive integer

Distribution function

Probability density function

Mean

rth moment about the mean

le/Z

%+ tan_'(—f—z) + —
v/ v+x

=32 a

X J

=0 (1+ xz/v)j,
v odd

L X
Pow +x2)?
=272 p
X -ﬁ,
5
14
v even
where a; = [2j/(2j + 1)]aj_1,
a, =1
b =[2j — 1/2jlb;_,
by =1
{Tl(v + 1)/2])
(v+1)/2

() ’Tw/2)[1 + (x2/v)]
0,v>1

w,=0, r odd
135 (r— 12
O YU R
(v=r)

r even, v>r
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144 STUDENT'S ¢ DISTRIBUTION
Variance v/(v —2),v>2
Mean deviation v12T3(v — DI/
[TT%F(%V)]

Mode 0
Coefficient of skewness 0,v>3

~ (but always symmetrical)
Coefficient of kurtosis 3w -2)/(v—4),v>4

37.1. Variate Relationships

. The Student’s ¢ variate with v degrees of freedom, ¢: v, is

related to the independent chi-squared variate x?: v, the F
variate F: 1, v, and the unit normal variate N: 0,1 by

(£:v)* ~ (x*:1)/[(x* v)/v]
~F:1,v
~ (N:0,1)%/[(x%: v) /7]

t:v~(N:0, 1)/[(x2: V)/v]l/2

0

Probability °
density v =100

-3 -2 -1 0 1 2 3
Quantile x

FIGURE 37.1. Probability density function for Student's t variate, t: v.
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Q
Probability
a
L
o
=
o
-3 -2 -1 0 1 2 3

Quantile x

FIGURE 37.2. Distribution function for Student's t variate, t: v.

Equivalently, in terms of a probability statement
Pr[(t:v) <x] = 3{1 + Pr[(F:1,v) <x?]}

In terms of the inverse survival function of ¢: v at probability
level ja, denoted Z,(3a: »), and the survival function of the F
variate F: 1,v at probability level a, denoted Z.(a: 1,v), the
last equation is equivalent to

[Z,(%a: v)]2 =Zp(a:1,v)

2. As v tends to infinity, the variate ¢: v tends to the unit normal
variate N: 0, 1. The approximation is reasonable for » > 30.

t:v=N:0,1; v > 30
3. Consider independent normal variates N: u, o. Define variates

%, s2 as follows

f~(%)i§(N:p,,(r)i, sz~(;1[)i=21[(N:H’o-)i_)_C]2
Then

X —u
s/(n—1)"

t:n—1~
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4. Consider a set of n;-independent normal variates N: u, o,
and a set of n,-independent normal variates N: u,, 0. Define
variates X, X,, 52, s5 as follows:

_ 1) ¢ S (1) &
A~ () S B~ (5] E (Vo)
j=1

i=1

f () E -

i=1
) 1) & _ 12
2~ () (W r00), - 5]
j=1
Then
(¥ — %) — (#1 — 12)
n,s? + nys2 )"’ 1,1 172
ng+n,—2 n, n,

t:n, +n,—2~

5. The t: 1 variate corresponds to the standard Cauchy variate.
6. The t: v variate is related to two independent F: v, v variates
by
(VI/Z/Z)[(Fﬁ v,v)/”? — (F: V,V)z_l/z] ~ty
7. Two independent chi-squared variates, x?: v are related to the
t: v variate by

(v/2)

(i) = )]

[(x*:v)i(x?:w))]

37.2. Random Number Generation

From independent N: 0,1 and x?: v variates
N:0,1

t:v~ ——,—(Xz: V)/V

or from a set of v + 1 independent N: 0,1 variates
(N: 0, 1)V—+-l

i (N:0,1); /v

i=1

t:v~
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Student’s t (Noncentral) Distribution

Variate t: v, 6
Range —oo <x <

Shape parameters v a positive integer, the degrees of free-
dom and —o < § < o, the noncentrality parameter

v/2 2
—-6°/2
Probability density function ) exp[ /( ]+ D3
T(v/2)m' /(v +x2)" "

8 ZF(V+1+1)(%)1
i/2
X(ijz)

. (v/2)"*T((» = 1)/2)
rth moment about the origin T'(v/2)

v>r

8(v/2)*T((» - 1)/2)
Mean (v/2) ,

v>1
Variance (—V%z—)(l +62) 2
2 I'(v/2) ’

v>2
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148 STUDENT'S t (NONCENTRAL) DISTRIBUTION

0.6

Probability
density

-2 -1 (o] 1 2 3 4 5 6 7
Quantile x

FIGURE 38.1. Probability density function for the (noncentral) Student’s ¢ variate t:
v, 8.

38.1. Variate Relationships

1. The noncentral ¢ variate, ¢: v, § is related to the independent
chi-squared variate, x?: v, and normal variate, N: 0, 1, (or N:
5,1) by

(N:0,1) +6 N:95,1
[(x2:o)w]” [(xP:v) /9]

2. The noncentral ¢ variate ¢: v, is the same as the (central)
Student’s ¢ variate ¢: v for 6 = 0.

3. The noncentral ¢ variate, ¢: v, §, is related to the noncentral
beta variate, B8: 1, v, 8> with parameters 1, v, and 8, by

B:1,v,8% ~ (t:v,8)"/[v + (:v,8)]

t:v,6 ~ 3
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Triangular Distribution

Rangea <x <b

Parameters: Shape parameter ¢, the mode.
Location parameter a, the lower limit
Parameter b, the upper limit.

(x —a)’
(b-a)(c—a)’
ifa<x<c
. (b-x)’

(b—a)(b—-c)’
fe<x<b
2(x —a)/[(b— a)(c —a)],

ifa<x<c

2(b —x)/[(b = a)(b-o)],

Distribution function
1

Probability density function

ifc<x<b
Mean (a+b+c)/3
. a’+ b*+c*—ab —ac — bc
Variance
18
Mode c

39.1. Variate Relationships

1. The standard triangular variate corresponding to a = 0, b = 1,
has median y/c/2 for c <3 and 1 — /(1 —¢)/2 forc > 3.

2. The standard symmetrical triangular variate is a special case of
the triangular variate with a =0, b =1, ¢ = % It has even
moments about the mean w, = [2"7'(r + 1)(r + 2)]7! and odd
moments zero. The skewness coefficient is zero and kurtosis
12/5.

149



150 TRIANGULAR DISTRIBUTION

I~

- "

[Te]

wl

N
BN N\
2 ) > Ny
2 1 / ,0
3 2 AR
P y

P ! < /,o)
£ 5
3
Q0
[
a
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o

Q

S )

a b
Quantile x

FIGURE 39.1. Probability density function for the triangular variate.

39.2. Random Number Generation

The standard symmetrical triangular variate is generated from
independent unit rectangular variates R,, R, by

(R, +Ry)/2
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von Mises Distribution

Range 0 < x < 21, where x is a circular random variate
Scale parameter b > 0 is the concentration parameter
Location parameter 0 < a < 2 is the mean direction

Distribution function 27 (b)) {x]o( b)

+2 ) [1(b)

j=0

X [sin j(x — a)]/j}

where

(b))
1(6) = (7) E:O iT(t+i+1)

is the modified Bessel
function of the first kind
of order ¢, and for order

t=0
b = T be/[zzf(iz)z]
i=0

Probability density function explb cos(x — a)l/[2m1,(b)]
Characteristic function [1,(b)/I,(D))cos(at) + isin(at)]
rth trigonometric moments { [Ir( b) /1o( b)] cos(ar)
about the origin [[r(b)/[o(b)] sin(ar)
Mean direction a
Mode a
Circular variance 1 —1,(b)/I,(b)
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0.6

Probability
density

-180-150-120 -90 -60 -30 O 30 60 90 120 150 180
Quantile x

FIGURE 40.1. Probability density function for the von Mises variate.

40.1. Note

The von Mises distribution can be regarded as the circular ana-
logue of the normal distribution on the line. The distribution is
unimodal, symmetric about a, and is infinitely divisible. The
minimum value occurs at a + 7 [whichever is in range (0,2)],
and the ratio of maximum to minimum values of the pdf is
exp(2b).

40.2. Variate Relationships

1. For b = 0, the von Mises variate reduces to the rectangular
variate R: a,b with a = —, b = 7 with pdf 1/Q2w).

2. For large b, the von Mises variate tends to the normal variate
N: n,o with u =0, o = 1/b.
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3. For independent normal variates, with means sin(a) and cos(a),
respectively, let their corresponding polar coordinates be R
and 6. The conditional distribution of 8, given R = 1, is the
von Mises distribution with parameters a, b.

40.3. Parameter Estimation

Parameter  Estimator Method / Properties
a tan ! [ Y. sinx; cos xi] Maximum likelihood
i= i=1
LOV/I(b) o ((n
(a measure of - ( Y cos x ,.) Maximum likelihood
precision) i=

i=1
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Weibull Distribution

Variate W: b, c

Range 0 <x < o

Scale parameter b > 0 is the characteristic life
Shape parameter ¢ > 0

Distribution function 1- exp[ —(x /b)c]

Probability density function (cx~'/bexp| — (x/b)°]

Inverse distribution function b{log[1/(1 — )}}!/¢

(of probability )

Survival function exp[ —(x/b) C]

Inverse survival function b [log( 1/a) Y C]

(of probability «)

Hazard function cx<~1/be

Cumulative hazard function (x/b)*

rth moment about the mean b'Tl(c + r)/c]

Mean bT[(c + 1/c]

Variance b(T[(c + 2)/c] R
—{Tl(c + D/el})

Mode b(1-1/¢)"%, ¢=

0, c<1
Median b(log 2)!/?

Coefficient of variation

[ T[(c +2)/c]

S -
{Tl(c + 1)/c])
Factorial moment t'’TA +t/c)
generating function
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L
12 ¢=30
1.0

Probabitity
density

o

I

—

0.2

c=05
0 1.0 2.0 3.0
Quantile x

FIGURE 41.1. Probability density function for the Weibull variate W: 1, c.

c¢=3.0 —

: 1.0F c=10
3 c=05
a 06
e
a 0.4 b=1

0.2

0 1.0 2.0 3.0

Quantile x

FIGURE 41.2. Distribution function for the Weibull variate W: 1, c.

41.1. Note
The characteristic life b has the property that

Pr[(W:b,c) <b] =1 —exp(—1) = 0.632 foreveryc
Thus b is approximately the 63rd percentile.

41.2. Variate Relationships
W: b,c, ~b(W: 1, c), standard Weibull variate

1. The Weibull variate W: b, ¢ with shape parameter ¢ = 1 is the
exponential variate E: b with mean b,

W:b,1 ~E:b
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The Weibull variate W: b, ¢ is related to E: b by (W: b,c)° ~
E:b

2. The Weibull variate W: b,2 is the Rayleigh variate, and the
Weibull variate W: b, c is also known as the truncated Rayleigh
variate.

3. The Weibull variate W: b, ¢ is related to the standard extreme
value variate V: 0,1 by

—clog[(W:b,c)/b] ~V:0,1

41.3. Parameter Estimation

By the method of maximum likelihood the estimators, l;, ¢, of the
shape and scale parameters are the solution of the simultaneous

equations:
. 1 n R 1/¢
b= [(3)2 ]
i=1
A n
c = = K 7
(1/b) ¥ x{logx, — ) logx;
i=1 i=1
_
1.6}
14} c=3
1.2} =
o b=1 eo1
s 1.0
I 0.8
0.6}
0.4} ¢=05
0.2}
0 ) 2.0 30
Quantile x

FIGURE 41.3. Hazard function for the Weibull variate W: 1, c.
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3
2
1 Mean
Standard deviation
0 .
0 1 2 3 4 5 6

Shape parameter ¢

FIGURE 41.4. Weibull W: 1,c mean and standard deviation as a function of the
shape parameter c.

41.4. Random Number Generation

Random numbers of the Weibull variate W: b, ¢ can be generated
from those of the unit rectangular variate R using the relationship

W:b,c~b(-logR)"
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Wishart (Central) Distribution

Matrix variate: WC: k,n, X

Formed from n-independent multinormal variates MN: p, ¥

by

WC:k,n,E~ ), (MN:p;,2 — n,)(MN: n;, 2 — p,)’

i=1

Matrix quantile X a k X k positive semidefinite matrix, with

elements X;;

Parameters k, n > k, X, where

k is the dimension of the n-associated multinormal multi-

variates

n is the degrees of freedom, n > k
Y is the k X k variance-covariance matrix of the associ-

ated multinormal multivariates, with elements %, = o;;

Distribution function

Probability density function

Characteristic function

Moment generating function

rth moment about origin

Mean

Individual elements

158

ij
L[k + 1)/2)XI"/% 1Fy(n/2;
(k +1)/2; —3271X)
T [i(n + k + 1)]22"?
where | F, is a hypergeometric
function of matrix argument

exp(— 1 tr T-IX)X |/ k=D
n n/2
/{5 )2z}
I, — 2i2T|™"/?
where T is a symmetric k£ X k

matrix such that £~! — 2T is
positive definite

I, —23T1|™"/?
122|'T,(3n + r)/T,(Gn)
nX

E(X;)) = noy;
cov(X,;, X,,)
= nlo;, 05, + 0;,0;,)
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42.1. Note

The Wishart variate is a k-dimensional generalization of the
chi-squared variate, which is the sum of squared normal variates.
It performs a corresponding role for multivariate normal problems
as the chi-squared does for the univariate normal.

42.2. Variate Relationships

1. The Wishart k& X k matrix variate WC: k,n,X is related
to n-independent multinormal multivariates of dimension k,
MN: p, X, by

n
WC:k,n, X~ Y (MN:p,X—p;)(MN:p;, 2 —p,)
i=1

2. The sum of mutually independent Wishart varies WC: k, n;, =
is also a Wishart variate with parameters k, Ln;, 2.

Y (WC:k,n;,2) ~WC:k,Y,n;,=
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Computing References

Inverse of Random
Chapter Density Distribution Distribution Number
Variate Function Function Function Generation
4. Bernoulli EXECUSTAT EXECUSTAT EXECUSTAT
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
5. Beta EXECUSTAT EXECUSTAT EXECUSTAT EXECUSTAT
GAUSS
IMSL IMSL IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
SYSTAT SYSTAT SYSTAT
A.S. 63,109 A.S. 64,109
6. Binomial EXECUSTAT EXECUSTAT EXECUSTAT
IMSL IMSL IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
7. Cauchy ISML
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
8. Chi-Square EXECUSTAT EXECUSTAT EXECUSTAT EXECUSTAT
GAUSS
IMSL IMSL IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
SYSTAT SYSTAT SYSTAT
A.S. 239 A.S. 91
9. Chi-Square GAUSS
(Noncentral) IMSL
11. Erlang EXECUSTAT EXECUSTAT EXECUSTAT
(See also @RISK @RISK @RISK
Gamma)
13. Exponential EXECUSTAT EXECUSTAT EXECUSTAT
IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
SYSTAT SYSTAT SYSTAT
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Inverse of Random
Chapter Density Distribution Distribution Number
Variate Function Function Function Generation
15. Extreme EXECUSTAT EXECUSTAT EXECUSTAT
Value MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
(Gumbel)
16. F (Variance- EXECUSTAT EXECUSTAT EXECUSTAT EXECUSTAT
Ratio) GAUSS
IMSL IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
SYSTAT SYSTAT SYSTAT
17. F GAUSS
(Noncentral)
18. Gamma EXECUSTAT EXECUSTAT EXECUSTAT
GAUSS
IMSL IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
SYSTAT SYSTAT SYSTAT
A.S. 32,147,239
19. Geometric EXECUSTAT EXECUSTAT EXECUSTAT
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
@RISK @RISK @RISK
20. Hyper- IMSL IMSL IMSL
geometric MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
@RISK @RISK @RISK
A.S. 59 AS. 152
22. Laplace EXECUSTAT EXECUSTAT EXECUSTAT
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
) MINITAB '‘MINITAB MINITAB MINITAB
24. Logistic EXECUSTAT EXECUSTAT EXECUSTAT
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
25. Lognormal EXECUSTAT EXECUSTAT EXECUSTAT
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
- IMSL
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
26. MULTINOMIAL IMSL
27. MULTIVARIATE GAUSS
Normal (k =2,3)
IMSL (k = 2) IMSL
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Inverse of Random
Distribution Distribution number
Variate Density function  Function Function Generation
28. Negative EXECUSTAT EXECUSTAT EXECUSTAT
Binomial IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
@RISK @RISK @RISK
29. Normal EXECUSTAT EXECUSTAT EXECUSTAT EXECUSTAT
GAUSS GAUSS GAUSS
IMSL IMSL IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
SYSTAT SYSTAT SYSTAT
A.S. 2,66 A.S. 24,70,111,241
30. Pareto EXECUSTAT EXECUSTAT EXECUSTAT
@RISK @RISK @RISK
31. Poisson EXECUSTAT EXECUSTAT EXECUSTAT
IMSL IMSL IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
@RISK
35. Rectangular/ EXECUSTAT EXECUSTAT EXECUSTAT
Uniform ) GAUSS
(Continuous) IMSL
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
SYSTAT SYSTAT SYSTAT
36. Rectangular/ EXECUSTAT EXECUSTAT EXECUSTAT
Uniform IMSL
(Discrete) MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
37. Student’s ¢ EXECUSTAT EXECUSTAT EXECUSTAT EXECUSTAT
GAUSS
IMSL IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
SYSTAT SYSTAT SYSTAT
A.S. 3,27
38. Student’s ¢ GAUSS
(Noncentral) IMSL
39. Triangular IMSL
@RISK @RISK @RISK
40. von Mises IMSL

A.S. 86
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Inverse of Random
Chapter Density Distribution Distribution Number
Variate Function Function Function Generation
40. Weibull EXECUSTAT EXECUSTAT EXECUSTAT
IMSL
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA
MINITAB MINITAB MINITAB MINITAB
@RISK @RISK @RISK
41. Wishart A.S. 53

Computing References

APPLIED STATISTICS (A.S.), Journal of the Royal Statistical
Society, with published algorithm number.

EXECUSTAT® from STATGRAPHICSR PWS-KENT.

GAUSS System Version 2.2, Aptech Systems, Washington, U.S.A.

GENSTAT, Numerical Algorithms Group, Oxford, U.K.

GLIM, Numerical Algorithms Group, Oxford, UK.

IMSL—Version 1.1, IMSL, Houston, TX, U.S.A.

MATHEMATICA—Version 2.0, Wolfran. Research Inc., Cham-
paign, IL, U.S.A.

MINITAB™ —Version 8, Minitab, Inc., State College, PA, U.S.A.
@RISK—Release 1.02, Risk Analysis and Simulation Add-In for
Microsoft Excel, Palisade Corporation, Newfield, NY, U.S.A.

SYSTAT: The System for Statistics. Evanston, IL, U.S.A.
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Statistical Tables

TABLE 44.1
Normal Distribution Function — F(x)
x .00 .01 .02 .03 04 .05 .06 .07 .08 .09
0 | .s000 | .5040 .5080 5120 | .s160 | 5199 | 5239 5279 | 5319 | .5359
1 5398 | .5438 .5478 5517 5557 | 5596 | .5636 5675 sS4 | 5753
2 5793 .5832 .5871 5910 .5948 5987 .6026 .6064 .6103 6141
3 | 6119 | .6217 6255 .6293 6331 | 6368 | .6406 6443 | 6480 | .6517
4 .6554 .6591 .6628 .6664 .6700 6736 6772 .6808 .6844 6879
5 | 6915 | 6950 | .6985 7019 7054 | 7088 | 7123 757 | 9 | 7224
6 | 7257 | 1291 7324 7357 7389 | 7422 | 7454 7486 | 7517 | 7549
N 7580 7611 .7642 .7673 7704 1734 7764 7794 .7823 .7852
8 | .7881 7910 | .7939 7967 | .7995 | .8023 | .8051 8078 | .8106 | .8133
9 | 8159 | 818 | .8212 .8238 8264 | 8289 | .8315 8340 | 8365 | .8389
1.0 | 8413 | .8438 | .846l 8485 .8508 | .8531 | .8554 8577 | 8599 | 8621
1.1 8643 | .8665 8686 .8708 8729 | 8749 | .8770 879 | .8810 | .8830
1.2 | 8849 | .8869 | .8838 8907 8925 | 8944 | .8962 8980 | .8997 | .9015
1.3 | 9032 | .9049 | .9066 .9082 9099 | o115 | .9131 9147 9162 | 7
14 | 9192 | .9207 9222 9236 9251 9265 | .9279 9292 9306 | .9319
1.5 19332 .9345 .9357 .9370 .9382 9394 .9406 9418 .9429 9441
1.6 | 9452 | .9463 9474 | 9484 | 9495 | 9505 | .9515 19525 9535 | .9545
1.7 | 9554 | .956¢4 | .9573 9582 | 9591 | 9599 | .9608 9616 | 9625 | .9633
1.8 | .9641 9649 | .9656 19664 9671 9678 | .9686 9693 9699 | .9706
19 | 913 | 9719 | 9726 9732 9738 | 9744 | .9750 9756 | 9761 9767
20 | 9772 | 97178 | 9783 .9788 9793 | 9798 | .9803 9808 | 9812 | .9817
2.1 19821 9826 | .9830 9834 9838 | 9842 | .9846 9850 | .9854 | .9857
22 | .9861 9864 | .9868 9871 9875 | .9878 | .9881 9834 | .9887 | .9890
23 9893 | .9896 | .9898 .9901 9904 | 9906 | .9909 9911 9913 | 9916
2. 9918 | 9920 | .9922 19925 8927 | 9929 | .9931 9932 | 9934 | .9936
2.5 9938 19940 9941 .9943 .9945 9946 .9948 .9949 9951 19952
26 | 9953 | .9955 | .9956 9957 9959 | .9960 | .9961 9962 | .9963 | .9964
27 | 995 | .9966 | .9967 9968 999 | 9970 | .9971 9972 9973 | 9974
2.8 .9974 .9975 .9976 9977 9977 9978 9979 9979 19980 9981
29 | .9981 9982 | .9982 .9983 9984 | 9984 | .9985 9985 9986 | .9986
3.0 | .9987 | .9987 | .9987 .9988 .9988 | .9989 | .9989 9989 | .9990 | .999%
3.1 9990 | .9991 9991 19991 9992 | 9992 | .9992 19992 19993 19993
32 9993 | 9993 .9994 .9994 9994 | 9994 | .9994 19995 9995 9995
33 19995 .9995 19995 19996 .9996 9996 9996 .9996 19996 .9997
34 | 9997 | 9997 | .9997 .9997 9997 | 9997 | .9997 9997 | .9997 | .99%8
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TABLE 44.2
Percentiles of the Chi-squared Distribution = G(1 — «)
l-a
0-990 0-975 0.950 0.900 0-100 0.050 0-025 0.010
v
1 157088.10-* | 982069.10-* [ 393214.10-*| 0-016790| 2-70554 3-84146 5-02389 6-63490
2 0-0201007 0-0506358 0-102587 0-210720| 4-60517 5-99147 7-37776 9-21034
3 0-114832 0-215795 0-361846 0-584375| 6-25139 7-81473 9-:34840 11-3449
4 0-297110 0-484419 0-710721 1-063623| 7-77944 9-48773 11-1433 13-2767
5 0-554300 0-831211 1-145476 1-61031 9-23635 11-0705 12-8325 16-0863
6 0-872085 1-237347 1-63539 2:20413 | 10-6446 12-5916 14-4494 16-8119
7 1-239043 1-68987 2:16735 2-83311 | 12-0170 14-0671 16-0128 18-4753
8 1-646482 217973 2-73264 3-48954 | 13-3616 15-5073 17-5346 20-0902
9 2-087912 2-70039 332511 4-16816 | 14-6837 16-9190 19-0228 21-6660
10 2-55821 3-24697 3-94030 4-86518 | 15-9871 18-3070 20-4831 23-2093
11 3-05347 3-81575 4-57481 5-57179 | 17-2750 19-6751 21-9200 24-7250
12 3-57056 4-40379 5-22603 6-30380 | 18-5494 21-0261 23-3367 26-2170
13 4-10691 5-00874 5-89186 7-04160 | 19-8119 223621 24-7356 27-6833
14 466043 5-62872 6-57063 7-78953 | 21.0642 23-6348 26-1190 29-1413
15 5-22935 6-26214 7-26094 8:-54676 | 22-3072 24-9938 27-4884 30-5779
16 5-81221 6-90766 7-96164 9-31223 | 23-5418 26-2062 28-5454 31-9999
17 6-40776 7-56418 8-67176 10-0852 24-7690 27-5871 30-1910 33:4087
18 7-01491 8-23075 9-39046 10-8649 25-9894 28-8693 31-5264 34-8053
19 7-63273 8-90655 10-1170 11-6509 27-2036 30-1435 32:8523 36-1908
20 8-26040 9-59083 10-8508 12:4426 28-4120 31-4104 34-1696 37-5362
21 8-89720 10-28293 11-5913 13-2398 296151 32:6705 35-4789 38-9321
22 9-54249 10-9823 12-3380 14:0415 30-8133 33-9244 36-7807 40-2894
23 10-19567 11-6885 13-0905 14-8479 32-0069 35-1725 38:0757 41-6334
24 10-8564 12-4011 13-8484 15-6587 33-1963 36-4151 39:3641 42-9798
25 11-5240 13-1197 14-6114 16-4734 34-3816 37-6325 40-6465 44-3141
26 12-1981 13-8439 15-3791 17-2919 355631 38-3852 41-9232 45-6417
27 12-83786 14-5733 16-1513 18-1138 36-7412 40-1133 431044 46-9630
28 13-5648 15-3079 16-9279 18-9392 37-9159 41-3372 44:4607 48-2782
29 14-2563 16-0471 17-7083 197677 39-0875 42-5569 45-7222 49-5879
30 14-9535 16-7908 18-4926 20-5992 40-2560 46-9792 50-8922
40 22-1643 24-4331 26-5093 29-0505 51-5050 59-3417 63-6907
50 29-7067 32:3574 34-7642 37-6886 63-1671 71-4202 76-1539
60 37-4848 40-4817 43-1879 46-4589 74-3970 79-0819 83-2976 88:3794
70 45-4418 48:7576 51-7393 55-3290 85-5271 90-5312 95-0231 100-425
80 53-5400 57-1532 60-3915 64-2778 96-5732 101-879 106-629 112-329
90 §1-7341 85-6456 69-1260 73-2912 | 107-565 113145 118-136 124116
100 70-0648 74-2219 17-9295 82-3581 118-498 124:342 129-561 135807

Reproduced with permission of the Biometrika Trustees from Pearson and Hartley

(1966).
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TABLE 44.4
Percentiles of the Student’s t Distribution

(1=-a)=0-4/ 0-25 01 0-05 0-025 0-01 0-005 0-0025 0-001 0-0005

Y |(1-2a)=0-8] 0-5 0-2 0-1 0-05 0-02 0-01 0-005 0-002 0-001

1 0-325 1-000 3078 6314 | 12-708 | 31-821 | 63-657 127-32 318-31 636-62
2 -289 0-818 1-886 2-920 4-303 6-965 9-925 14-089 22-326 31-598
3 277 765 1-638 2-353 3-182 4-541 5-841 7-463 10-213 12-924
4 271 <741 1-533 2:132 2:776 37147 4-604 5-698 7173 8-610
5 0-267 0727 1-476 2-015 2:571 3:385 4-032 4773 5-893 6-869
6 -265 ‘718 1-440 1-943 2-447 3-143 3-707 4-317 5-208 5-959
7 263 711 1-415 1-895 2-365 2998 3-499 4-029 4-786 6-408
8 262 706 1-397 1-860 2-306 2-896 3-356 3-833 4-501 6041
9 261 703 1-383 1-833 2:262 2-821 3-250 3-690 4-297 4781
10 0-260 0-700 1-372 1-812 2-228 2:-764 3-169 3-581 4-144 4-587
11 260 697 1-363 1-796 2-201 2-718 3-106 3-497 4-025 4-437
12 259 695 1-356 1-782 2-179 2-681 3-055 3-428 3-930 4-318
13 259 694 1-350 1-771 2-160 2-650 3-012 3372 3-852 4-221
14 258 692 1-345 1-761 2-145 2-624 2-977 3-326 3-787 4140
15 0-258 0-691 1-341 1-753 2-131 2-602 2-947 3-286 3-733 4073
16 258 690 1-337 1-746 2-120 2-683 2-921 3-252 3-686 4015
17 257 689 1-333 1-740 2-110 2-667 2-898 3-222 3-646 3-966
18 257 688 1-330 1-734 2-101 2-552 2-878 3-197 3-610 3-022
19 257 688 1-328 1-729 2-093 2-539 2-861 3174 3-579 3-883
20 0-257 0-687 1-325 1-725 2:086 2-628 2-845 3153 3-562 3-850
21 257 686 1-323 1-721 2-080 2-5618 2-831 3135 3-527 3-819
22 256 686 1-321 1717 2:074 2-508 2-819 3119 3:505 3-792
23 256 685 1-319 1-714 2-069 2-600 2-807 3-104 3-485 3-767
24 256 685 1-318 1-711 2-064 2-492 2:797 3-091 3-467 3-746
25 0-256 0-684 1-316 1-708 2-060 2-485 2-787 3-078 3-450 3725
26 256 684 1-315 1-706 2-056 2-479 2-779 3067 3-435 3-707
27 256 684 1-314 1-703 2-052 2-473 2771 3-057 3-421 3-600
28 256 -683 1-313 1-701 2-048 2-467 2-763 3-047 3-408 3674
29 256 683 1-311 1-699 2-045 2-462 2-756 3-038 3-396 3-659
30 0-256 0-683 1-310 1-697 2:042 2-457 2-760 3-030 3-385 3-646
40 -255 681 1-303 1-684 2-021 2423 2:704 2971 3-307 3-551
60 -254 679 1-2906 1-671 2000 2-390 2-660 2916 3-232 3-460
120 254 877 1-289 1-658 1-980 2-358 2-617 2-860 3-160 3-373
© 253 674 1-282 1-645 1-960 2-326 2:576 2-807 3-090 3-291

1 — a is the upper-tail area of the distribution for v degrees of freedom, appropriate for
use in a single-tail test. For a two-tail test, 1 — 2a must be used.

Reproduced with permission of the Biometrika Trustees from Pearson and Hartley
(1966).
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TABLE 44.5
Partial Expectations for the Standard Normal Distribution

Partial expectation P(x) = f m(u —x)f(u) du
X

When x < —3.0, use —x as an approximation for the partial expectation

x P(x) x P(x) x P(x)
-2.9 2.9005 -0.9 1.0004 1.1 0.0686
-2.8 2.8008 -0.8 0.9202 1.2 ~ 0.0561
-2.7 2.7011 -0.7 0.8429 1.3 0.0455
-2.6 2.6015 -0.6 0.7687 1.4 0.0367
-2.5 2.5020 -0.5 0.6987 1.5 0.0293
—-2.4 2.4027 -0.4 0.6304 1.6 0.0232
-2.3 2.3037 -0.3 0.5668 1.7 0.0183
-2.2 2.2049 -0.2 0.5069 1.8 0.0143
-2.1 2.1065 -0.1 0.4509 1.9 0.0111
-2.0 2.0085 0.0 0.3989 2.0 0.0085
-1.9 1.9111 0.1 0.3509 2.1 0.0065
-1.8 1.8143 0.2 0.3069 2.2 0.0049
-1.7 1.7183 0.3 0.2668 2.3 0.0037
-1.6 1.6232 0.4 0.2304 2.4 0.0027
-1.5 1.5293 0.5 0.1978 2.5 0.0020
-1.4 1.4367 0.6 0.1687 2.6 0.0015
-1.3 1.3455 0.7 0.1429 2.7 0.0011
-1.2 1.2561 0.8 0.1202 2.8 0.0008
-1.1 1.1686 0.9 0.1004 2.9 0.0005
-1.0 1.0833 1.0 0.0833 3.0 0.0004
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