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Lecture 9
Binary Choice Models

Abstract: We present parametric and semiparametric estimators of binary
choice models and discuss biases resulting from misspecification.

1. Introduction

The classical binary choice model is given by

y∗i = x′
iβ + ui,

yi = 1{y∗i ≥ 0}

where y∗i is a latent (unobserved) continuous variable, yi is a binary indicator, xi is a
k-vector of regressors, β is a conformable vector of coefficients to be estimated from data,
and ui is unobserved disturbance.

Example 1. Consider the decision of students to walk or take a bus to school. Let
Ui(1) be student’s i utility of taking a bus, and Ui(0) be the utility of walking to class,
and assume that these are the only available choices. Let xi be “distance to class”, and
assume that we can write

Ui(0) = α0 + γ0xi + ε0i ,

Ui(1) = α1 + γ1xi + ε1i

where εji , j = 0, 1, are choice-specific error terms that capture taste variation across dif-
ferent students. Clearly, student i takes a bus if and only if Ui(1)− Ui(0) ≥ 0, so letting
y∗i denote this utility differential, we can write

y∗i = Ui(1)− Ui(0)

= (α1 − α0) + (γ1 − γ0)xi + (ε1i − ε0i )

≡ β0 + β1xi + ui,

with β0, β1 and ui having the obvious definitions. Now, utilities, and therefore y∗i , are not
observed by the economist, but we do observe choices yi given by

yi =
{ 1, if y∗i ≥ 0;

0, otherwise.
1
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Figure 1. The decision to take a bus to class.

Since utility is ordinal, multiplying y∗i with a positive constant σ > 0 would not affect the
observed choice, so given data {yi, xi, i = 1, ..., n}, the best we can hope for is to identify
β/σ, i.e., identify β “up to scale”.

To fix the unidentified scale of the model we will assume that ui ∼ i.i.d F (0, 1), i.e.,
that the error variance is 1. Then the probability of yi = 1 given xi is

Pr(yi = 1|xi) = Pr(y∗i ≥ 0|xi)

= Pr(x′
iβ + ui ≥ 0|xi)

= Pr(ui > −x′
iβ|xi)

= 1− F (−x′
iβ).

Some of the often used distributions, F (·) and corresponding link (quantile) functions,
F−1(·), are given below.
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Error Distribution Link (Quantile) Function
Model p = F(z) z = F−1(p)

Probit Φ(z) =
∫ z

−∞ ϕ(z)dz Φ−1(p)

Logit Λ(z) ≡ ez

1 + ez
Λ−1(p) = log

( p

1− p

)

Cauchy C(z) =
1

2π
tan−1(z) C−1(z) = tan(π(p− 1

2
))

Log-Log G1(z) = 1− e−ez G−1
1 (p) = log(− log(1− p))

C-Log-Log G2(z) = e−ez F−1(p) = − log(− log(p))

In what follows we will also assume that F is symmetric about zero, so that Pr(yi =

1|xi) = F (x′
i) and Pr(yi = 0|xi) = 1−F (x′

iβ). If F is known (and symmetric about zero),
the log-likelihood of a random sample {yi, xi, i = 1, ..., n} is given by

ℓn(b) = n−1

n∑
i=1

yi logF (x′
ib) + (1− yi) log[1− F (x′

ib)]

and the MLE is defined by β̂ = argmax b∈B ℓn(b). Let Fi ≡ F (x′
ib), fi ≡ f(x′

ib), so that
the sample score is

sn(b) ≡
∂ℓn(b)

∂b
= n−1

n∑
i=1

(yi − Fi)fi
Fi(1− Fi)

xi

and the sample Hessian is

Hn(b) ≡
∂2ℓn(b)

∂b∂b′
= −n−1

n∑
i=1

(yi − Fi)
2f 2

i

F 2
i (1− Fi)2

xix
′
i + n−1

n∑
i=1

(yi − Fi)f
′
i

Fi(1− Fi)
xix

′
i

The population log-likelihood is given by

ℓ(b) ≡ E[ℓn(b)] = plim
n→∞

ℓn(b) = Ex[F0 logF + (1− F0)(1− logF )]

where F0 ≡ F (x′β) and F ≡ F (x′b). Differentiating ℓ(b) and rearranging we obtain the
population score

s(b) ≡ ∂ℓ(b)

∂β
= Ex

[
(F0 − F )f

F (1− F )
x

]
,

and it is clear that s(β) = 0. The population Hessian is

H(b) ≡ ∂2ℓ(b)

∂b∂b′
= −Ex

[
(F0f

′ − f 2 − Ff ′)F (1− F )− (F0 − F )f(f − 2Ff ′)

F 2(1− F )2
xx′

]
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and evaluating at b = β we obtain

H(β) = −Ex

[
f 2
0

F0(1− F0)
xx′

]
.

Theorem 1. Assume that
(i) F has a derivatives f and f ′, and 0 < F (u) < 1 and f(u) > 0 for every u.
(ii) The parameter space B is an open bounded subset of Rk.
(iii) {xi} is uniformly bounded in i and n−1

∑n
i=1 xix

′
i converges in probability to a

finite nonsingular matrix E(xx′).
Then β̂

p→ β0 and
√
n(β̂ − β)

d→ N

(
0, Ex

[ f(x′β)2

F (x′β)[1− F (x′β)]
xx′

]−1
)
.

The MLE β̂ satisfies s(β̂) = 0 and it may be computed by the Newton-Raphson iteration

β̂[i+1] = β̂[i] − [Hn(β̂[i])]
−1sn(β̂[i]).

Alternatively, we could replace Hn(β̂[i]) by it’s asymptotic analogue H(β̂[i]), in which case
the resulting iteration is referred to as the method of scoring. Let W = diag(f 2

i /(Fi(1 −
Fi))) be a n× n matrix, let r = (yi − Fi)/fi be a n× 1 vector of scaled residuals, and let
X be the n× k design matrix. The method of scoring iteration is then given by

β̂[i+1] = β̂[i] + (X ′WX)−1X ′Wr,

where all rhs quantities are evaluated at β̂[i].

2. Interpretation of the Coefficients

In linear regression models the change in E(y∗|x) affected by a small change in xj is
equal to βj, that is, if E(y∗|x) = x′β) then

∂E(y∗|x)
∂xj

= βj, j = 1, ..., k.

In binary response models, however, the conditional expectation E(y|x) of the observed
binary variable y given x is nonlinear in x′β, i.e.,

E(y|x) = 1 · Pr(y = 1|x) + 0 · Pr(y = 0|x) = F (x′β),

so in this model
∂E(y|x)
∂xj

= βjf(x
′β), j = 1, ..., k.

These numbers are often called the partial effects of the model: given and error distribution
F with density f , and a coefficient estimate β̂j, we compute β̂jf(x̄

′β̂) for each j = 1, ..., k,
where x̄ is the vector of sample means of the covariates. The nice thing about these
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quantities is that they are comparable across different models, whereas the β̂j’s themselves
are not since they depend on the specific scale parameter used in each model.

Another way to standardize the coefficient estimates so as to compare them across
different models is to scale them by f(0), the error density evaluated at zero.

Model f(0)

Probit 1/
√
2π

Logit 1/4

Cauchy 1/π

Then, roughly speaking,
1√
2π

β̂
probit
j ≈ 1

4
β̂

logit
j

or
β̂

logit
j ≈ 1.6β̂

probit
j .

Other models can be compared in a similar fashion.

3. Estimation Under Heteroskedasticity

Consider again the latent variable model

y∗i = x′
iβ + ui,

where now ui is heteroskedastic, that is ui = h(xi)υi, with h(xi) is being a skedastic
function and υi ∼ i.i.d. F . If yi = 1{y∗i ≥ 0}, and F is symmetric as it was assumed
above, we have

E(yi|xi) = Pr(yi = 1|xi)

= Pr(u ≥ −x′
iβ)

= Pr
(
υ ≥ − x′

iβ

h(xi)

)
= F

( x′
iβ

h(xi)

)
.

Since h(·) is a skedastic function its range should be strictly positive, so a natural
parametrization is the exponential skedastic function given by

h(xi) = exp(x′
iγ).

Estimation of heteroskedastic probit or logit models is straightforward. All we have to do
is to plug in this new expression into the likelihood. For the exponentially heteroskedastic
model the log-likelihood is given by

ℓn(b, c) = n−1

n∑
i=1

yi logF
( x′

ib

exp(x′
ic)

)
+ (1− yi) log

[
1− F

( x′
ib

exp(x′
ic)

)]
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which we may maximize by numerical methods to obtain β̂ and γ̂.

4. Discriminant Analysis

4.1. The normal DA model. Let y denote a binary random variable which takes the
values 0 and 1 and let X be a k×1 vector of related continuous random variables. Denote
by F (y,X) the joint distribution function of (y,X). The standard statistical problem of
classification can be stated as: Given an observation x of attributes X which is generated
by the two probability models indexed by y, namely X|y = 0 and X|y = 1, decide which
population x belongs to.

The standard DA procedure assumes that the conditional distribution of X|y is mul-
tivariate normal with mean µy and common variance Σ. More formally, let FD(X|y)
denote the conditional distribution of X|y and let fD(X|y) be the corresponding density
function. The normal DA requires that

fD(X|y) = (2π)−k/2|Σ|−1/2 exp
[
−1

2
(X − µy)

′Σ−1(X − µy)
]
. (1)

Under these conditions, the solution of the general classification problem takes the
particularly simple form based on the linear discriminant function. To derive this function,
let fX(X) denote the marginal density function of X and let

πy =

∫
fX(X)P (y|X)dX (2)

be the marginal distribution of y or, in DA terminology, be the a priori probability of an
observation x being a member of population y. Letting FL(y|X) denote the conditional
distribution of y|X and applying Bayes’ formula yields

FL(y|X) =
fD(X|y)πy

fX(X)
. (3)

Since
fX(X) =

∑
y

πyfD(X|y),

eq. (3) may be written as

FL(y|X) =
fD(X|y)πy∑
y πyfD(X|y)

=

(
1 +

π0

π1

fD(X|y = 0)

fD(X|y = 1)

)−1

. (4)

Substituting the conditional densities of (1) into (4) and simplifying yields

FL(y = 1|X) = (1 + exp[−(α + β′X)])−1, (5)
α = −1

2
(µ1 − µ0)

′Σ−1(µ1 + µ0) + log(π1/π0), (6)
β = Σ−1(µ1 − µ0). (7)

Eq. (5) demonstartes that the assumptions for normal DA yield a logistic conditional
distribution for y|X. Because the converse is not true, logit analysis is a more robust
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procedure. In fact, as Efron (1975) shows, logit analysis obtains under the general expo-
nential family assumption for FD(X|y), Specifically, let

fD(X|y) = g(θy, η)h(X, η) exp[θ′yX], (8)

where η is an arbitrary nuisance parameter. Note that (1) is a special case of (8). The
conditional density of y|X under (8) is given by

FL(y = 1|X) = (1 + exp[−(α + β′X)])−1, (9)
α = − log[g(θ0, η)/g(θ1, η)] + log(π1/π0), (10)
β = θ1 − θ0. (11)

An observation x belongs to population y = 1 if

FL(y = 1|X = x) ≥ 1
2
, (12)

else it belongs to population y = 0. This is equivalent to requiring that α + β′x ≥ 0 or
that

−1
2
µ′
1Σ

−1µ1 + x′Σ−1µ1 + log π1 ≥ −1
2
µ′
0Σ

−1µ0 + x′Σ−1µ0 + log π0. (13)

In DA applications it is customary to compute for each candindate x the linear discrimi-
nation function

δy(x) = −1
2
µ′
yΣ

−1µy + x′Σ−1µy + log πy. (14)

and classify it to the population y = argmaxy δy(x).

4.2. Estimation of the normal DA model.

5. Bias Under Misspecification

Now consider the situation in which our model is misspecified in that the link function
we have chosen to represent the probability Pr(y = 1|x) is false, either because we have
assumed the wrong error distribution and/or because the error is heteroskedastic and
we have failed to correctly account for it in our estimation. In particular, assume that
Pr(yi = 1|xi) = G(x′

iβ) but we have falsely assumed that Pr(yi = 1|xi) = F (x′
iβ). What

are the properties of the MLE β̂ under such misspecification?
The population log-likelihood in this case can be written as

ℓ∗(b) ≡ E[ℓ∗n(b)] = plim
n→∞

ℓ∗n(b) = Ex

{
G(x′β) logF (x′b) + [1−G(x′β)] log[1− F (x′b)]

}
.

It can be shown that since F and G do not coincide, the maximizer of this misspecified
likelihood is not equal to β, but it is equal to some other vector β∗. The following theorem
gives the result.
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Theorem 2. Under misspecification of the link function the MLE β̂ converges in proba-
bility to β∗, the minimizer of ℓ∗(b), i.e., as n → ∞,

β̂ = argmax
b

ℓ∗n(b)
p→ β∗ = argmax

b
ℓ∗(b).

Furthermore, β∗ = β, the true parameter vector if and only if x is jointly distributed
according to an elliptical distribution (for example multivariate normal). Otherwise β∗ ̸=
β, and the QMLE β̂ is inconsistent.

Theorem 2 says that unless a very peculiar condition on the x’s is satisfied, the quasi
MLE (QMLE) β̂ will be inconsistent for β. Consistency of β̂ can only be guaranteed if
the x’s are multivariate normal, or multivariate t, or jointly distributed according to an
elliptical distribution. This is interesting only in so far as it reminds us of the special place
that normality holds in statistics, but it of no practical consequence in actual applications.
In economic applications the x’s are often strictly positive (income, consumption), skewed,
counts (like years of schooling) and even dummy variables (like gender), making the
elliptical distribution assumption completely unrealistic.

The inconsistency of the MLE in the binary model under misspecification of the error
distribution stands in stark contrast to the continuous case in which violations of the
normality assumption did not lead to inconsistency of the OLS estimator. The question
that arises then is: how big could the bias due to misspecification be? The following
simulations show that the bias could indeed be of the same order as the coefficient we try
to estimate.

To compute the bias under misspecification we consider logit estimation under 9 data
generating processes (DGP’s). Let the model be given by

y = 1{β1x1 + β2x2 + u ≥ 0}

where x1 ∼ N(0, 1), and x2 ∼ χ2
4 normalized to have mean zero and variance 1. The first 6

designs consider the effects of misspecification in homoskedastic models. The distributions
of u considered are:

(1) Logistic independent of x.
(2) Standard normal independent of x.
(3) Uniform on [−1, 1] independent of x.
(4) Student-t with 2 degrees of freedom independent of x.
(5) Chi-squared with 4 degrees of freedom normalized to have median 0 independent

of x.
(6) A 50-50 mixture of normal distributions N(−3, 1) and N(3, 1) independent of x.

The last 3 designs consider the effects of unaccounted heteroskedasticity in otherwise
correctly specified models. In particular u = h(x)v, where v has the logistic distribution
independent of x, and h(x) is of the following form:
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(7) h(x) = 1 + γ|x1 + x2|.
(8) h(x) = 1 + exp[γ(x1 + x2)].
(9) h(x) = 1 + γ(x1 + x2)

2.
All designs but design (1) are misspecified. Note that x is not elliptically distributed so

we will avoid the case of trivial consistency under misspecification described in Theorem
2. Table 1 reports β∗

2/β
∗
1 for the different designs. It also presents two measures of

discrepancy between F and G, the mean absolute distance

MAD = Ex|F (−x′β∗)−G(−x′β)|

and the sup (maximum) distance

SUP = sup
x

|F (−x′β∗)−G(−x′β)|.

Figure 1 graphs the various link functions corresponding to the designs considered. We see
that there is no bias from assuming a logit link when the true link is normal or uniform.
The bias however, becomes significant as we move to fat tailed, skewed and bimodal
distributions. The bias resulting from unaccounted heteroskedasticity is also very severe
especially for strongly heteroskedastic designs. Looking at the MAD and SUP measures
of discrepancy between the assumed and true models, we see that the bias is highest
when these measure of discrepancy are high, and it is lowest or non-existent when these
discrepancies are small.

6. Diagnostic for the Logit Link Function

Using the Box-Cox transformation, Pregibon (1980) proposed the following generaliza-
tions of the logit link function

g(p;α, δ) =
pα−δ − 1

α− δ
− (1− p)α+δ − 1

α + δ
.

Note that
lim

α,δ→0
g(p;α, δ) = log p− log(1− p) ≡ logit(p),

so the logit link is a special case for α, δ → 0. The parameters δ and α control the
skewness and the fatness of the tails, respectively: δ = 0 implies a symmetric link, while
α = 0 implies logistic tails. Expanding g(p;α, δ) around α = δ = 0 we obtain

g(p;α, δ) = logit(p) + αgα(p) + δgδ(p),

where
gα(p) =

∂g(p;α, δ)

∂α
=

1

2

[
log2(p)− log2(1− p)

]
,

and
gδ(p) =

∂g(p;α, δ)

∂δ
= −1

2

[
log2(p) + log2(1− p)

]
.
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Table 1. Asymptotic bias of a binary logit model under alternative forms
of misspecification.

Model Description Distribution β∗
2/β

∗
1 MAD SUP

(1) Logistic L(0, π2/3) 1.00 0.00 0.00
(2) Normal N(0, 1) 1.00 0.01 0.01
(3) Uniform U [−1, 1] 1.00 0.03 0.07
(4) Fat-tailed t(2) 0.99 0.01 0.03
(5) Skewed χ2(4) 1.09 0.02 0.11
(6) Bimodal .5N(−3, 1), .5N(3, 1) 1.34 0.04 0.27

(7a) Absolute Value γ = 0.2 0.97 0.02 0.05
(8a) Exponential γ = 0.2 0.89 0.04 0.32
(9a) Quadratic γ = 0.2 0.85 0.05 0.42

(7b) Absolute Value γ = 0.4 0.94 0.03 0.12
(8b) Exponential γ = 0.4 0.78 0.09 0.49
(9b) Quadratic γ = 0.4 0.80 0.05 0.45

(7c) Absolute Value γ = 0.8 0.89 0.03 0.23
(8c) Exponential γ = 0.8 0.68 0.14 0.50
(9c) Quadratic γ = 0.8 0.76 0.05 0.43

This suggests the following LM-type test for checking the adequacy of the logit link
function:

(i) Estimate a logit model and obtain fitted probabilities p̂i = Λ(x′
iβ̂).

(ii) Compute gα(p̂i) and gδ(p̂i).
(iii) Re-estimate the model adding gα(p̂i) and gδ(p̂i) as regressors.
(iv) Reject the logit link if the new regressors are significant.

Example 2.
Mortality of Adult Beetles after 5 hours Exposure to Gaseous Carbon Disulphide (Bliss,

1935). Assume that
Pr(y = 1|x) = F (x; θ) = Ψ (β(x− µ)) .

> summary(mod.glm)

Call:
glm(formula = sf ~ ldose, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5941 -0.3944 0.8329 1.2592 1.5940
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Figure 2. Link Functions Used in the Simulations.

Coefficients:
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Table 2. Mortality of Adult Beetles after 5 hours Exposure to Gaseous
Carbon Disulphide (Bliss, 1935)

Log Number Number Logit
dosage exposed killed fit
1.6907 59 6 3.45
1.7242 60 13 9.84
1.7552 62 18 22.45
1.7842 56 28 33.89
1.8113 63 52 50.10
1.8369 59 53 53.29
1.8610 62 61 59.22
1.8839 60 60 58.74

Estimate Std. Error z value Pr(>|z|)
(Intercept) -60.717 5.181 -11.72 <2e-16 ***
ldose 34.270 2.912 11.77 <2e-16 ***
---

Null deviance: 284.202 on 7 degrees of freedom
Residual deviance: 11.232 on 6 degrees of freedom
AIC: 41.43

Number of Fisher Scoring iterations: 4

In this model, the 50% response dose (termed the ED5O) is equal to µ. Here

µ̂ = −(−60.171/34.270) = 1.772 CS2mg/litre.

7. Semiparametric Estimation

The large biases due to misspecification have motivated a lot of research in estimators
that remain consistent under weaker than parametric assumptions. Perhaps the most
famous of these semiparametric estimators of the binary choice model is the maximum
score estimator.

Let y = 1 if y∗ ≥ 0 and y = −1 if y∗ < 0, and define the sample score function by

Sn(b) = n−1

n∑
i=1

yi sgn(x
′
ib)
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Figure 3. Probability of mortality as a function of log-dosage, observed
and logit-fit, vertical line at ED50 = 1.772 CS2 mg/litre.

Let B = {b ∈ Rk : ||b|| = 1} be the unit ball in Rk. The maximum score estimator is the
maximizer of the sample score function oven the unit ball B i.e.,

β̂MS = argmax
β∈B

Sn(b).

This estimator has a very intuitive interpretation: find b that maximizes the matches
between the observed sign of y∗i and the resulting sign of the index x′

ib.
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Theorem 3. If Med(u|x) = 0 then the maximum score estimator β̂MS is consistent for
β. However, it converges at the very slow n1/3 (cube root) rate to a very complicated
non-normal distribution.

From Theorem 3 we see that the maximum score estimator is a median regression
estimator for the binary choice model. Judging from the simplicity of the idea of MS
estimation it is perhaps surprising to find that the asymptotics of this estimator are so
complicated. In fact the proof that this estimator converges at a cube-root rate and the
derivation of its asymptotic distribution requires the most advanced methods available
today – empirical process methods. These methods have been called the “nuclear weapons
of statistics”, and I will discuss them in Econ 721.

8. Empirical Application: Titanic

On April 15, 1912, the RMS Titanic sank on its maiden voyage from Southampton,
England, to New York City. It was carrying 2,201 passengers and crew, of which 711
survived and 1,490 drowned. The table below classifies the passengers according to a) the
CLASS they were travelling, b) their GENDER, and c) their AGE.

Table 3. Dataset

Child Adult
Survived Drowned Survived Drowned

Class Male Female Male Female Male Female Male Female
1st 5 1 0 0 57 140 118 4

2nd 11 13 0 0 14 80 154 13
3rd 13 14 35 17 75 76 387 89

Crew 0 0 0 0 192 20 670 3

We are interested in testing the hypothesis that all passengers had the same probability
of survival, against the alternative that at least one of the variables CLASS, GENDER
and AGE were important in determining the survival probability of a passenger.

We consider a logit model, so that

log

(
p

1− p

)
= x′β.

For a dummy (0/1) variable xj, we have

log

(
p

1− p

)∣∣∣∣
xj=1

− log

(
p

1− p

)∣∣∣∣
xj=0

= βj

i.e., βj is the change in the log-odds induced by changing the value of the dummy vari-
able xj from 0 to 1. It follows that, for dummy variables, the odds ratio is simply eβj .
Simmilarly, the relative risk among two different types of passengers j and j′ is given by
eβj−βj′ .
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Figure 4. .

We estimate saturated models (i.e., full set of dummies) without an intercept. Equiva-
lent results can be obtained by excluding a dummy category and including an intercept,
but their interpretation would be relative to the category we chose to exclude and thus
more complicated.

Table 4. Logit Model 1

Variable Coefficient Std. Error Odds Ratio Std. Error
Child 1.062 .277 2.8908 .705

Female 2.420 .136 11.247 1.579
1st Class -0.376 .126 0.6864 .093

2nd Class -1.394 .129 0.2480 .039
3rd Class -2.154 .144 0.1160 .015

Crew -1.234 .080 0.2912 .023

Table 3 reports the estimation results of a simple model without interactions, both in
terms of slopes β and in terms of log-odds eβ. We see that women’s odds of survival
were about 11 times those for men, and that the children’s odds of survival were 3 times
those of adults. Also, 1st class passengers were 0.6864/0.2480 = 2.77 times more likely
to survive than 2nd class passengers, 0.6864/0.1160 = 5.92 times more likely to survive



16 Lecture 9

than 3nd class passengers, and 0.6864/0.2912 = 2.36 times more likely to survive than
the crew members. Interestingly enough, crew members were about as likely to survive
as 2nd class passengers, and 0.2912/0.1160 = 2.51 times more likely to survive than 3nd
class passengers! Apparently, the crew members did their best to survive (the captain
Edward Smith did, however, “go down with the ship”, as the expression goes).

Table 5. Fitted Probabilities of Survival – Logit Model 1

Child Adult
Class Male Female Male Female

1st 0.6649 0.9571 0.4070 0.8853
2nd 0.4176 0.8897 0.1987 0.7361
3rd 0.2512 0.7904 0.1040 0.5661

Crew – – 0.2255 0.7661

Table 6. Fitted Probabilities of Survival – Logit Model 2

Child Adult
Class Male Female Male Female

1st 0.7005 0.9768 0.3343 0.9724
2nd 0.3950 0.8935 0.1229 0.8751
3rd 0.4407 0.4970 0.1447 0.4521

Crew – – 0.2227 0.8696
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Is it right I ask, is it even prudence,
To bore thyself and bore the students?

— Question put by Mephistopheles to Faust


