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LECTURE 5
LEAST SQUARES

1. A Historical Prelude

Isaac Newton’s Theory of Universal Gravitation, introduced in his epoch-making book
Philosophia Naturalis Principia Mathematica, often referred to as simply the Principia, had
many wide-ranging implications about the physical world we live in. Greeted initially with
incredulity and sometimes even downright mockery, the idea that masses mysteriously attract
each other over vast distances of space seemed to many of his contemporaries counter intuitive
and far fetched. Philosophical issues aside, the theory provided a wealth of predictions (about
the motion and the shape of the planets, the tides of the seas, and the dark side of the Moon,
to name just a few) that could be checked against empirical evidence and ultimately verify or
falsify its premises.

One of the implications of Newton’s theory was that, due to gravity, the rotation of the Earth
around its axis would cause the Earth to bulge at the equator and flatten at the poles. More
precisely, Newton proved that a rotating self-gravitating fluid body in equilibrium takes the
form of an oblate ellipsoid of revolution (a spheroid). The exact amount of flattening depends
on the body’s density, its rotational speed, and the balance between the resulting gravitational
and centrifugal forces. If gravity is therefore operational, it is unlikely that the Earth is a
perfect sphere, but it should be an oblate spheroid, much like an orange.

Newton’s theory was not the only theory around purporting to explain the motion of the
celestial spheres. The French mathematician and physicist René Descartes had proposed the
competing Theory of Vortices. According to Descartes’ theory, space is filled with an invisible
substance called the ether, that, much like water, creates vortices that sweep the planets into
their apparent orbits. Now, plastic spherical objects inside a water vortex tend to flatten at
the equator and bulge at the poles, so if the theory of Vortices was correct, the Earth should
be a prolate spheroid, i.e., more like an egg or a lemon instead of an orange.

The two competing theories led to a prolonged controversy, much along nationalistic lines,
between the English and their Continental rivals. Voltaire (1694 – 1778), who happened to be
visiting London when Newton died in 1727, was greatly impressed by the State funeral and the
honors bestowed on the great scientist and, on the subject of the controversy, commented that:
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Figure 1. Frontispiece to Voltaire’s book on Newton’s philosophy. A Muse
reflects Newton’s heavenly insights down to Voltaire.
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A Frenchman arriving in London finds things very different. [...] For us it is the
pressure of the Moon that causes the tides of the sea; for the English it is the sea
that gravitates towards the Moon. [...] In Paris you see the Earth shaped like a
melon, in London it is flattened out on two sides.

The equation of a 3D ellipsoid centred at the origin with semi-axes a, b and c aligned along
the coordinate axes is

x2

a2
+
y2

b2
+
z2

c2
= 1.

Because planets revolve around their north-south axis, physical considerations dictate that
planets are solids of revolution, i.e., solids that can be obtained by revolving a 2D curve around
the z (North-South) axis to obtain a 3D body. This means that for planets a = b, so the
equation becomes

x2 + y2

a2
+
z2

c2
= 1.

If c < a the ellipsoid is called oblate (orange-like), while if c > a the ellipsoid is prolate (lemon-
like). Of course, if c = a we get a perfect sphere. Our interest is in the quantity of polar
flattening or ellipticity f given by

f =
a− c

a
= 1− c

a
.

Letting a = RE be the Earth’s equatorial radius and c = RP be its polar radius, we can write

f = 1− RP

RE
.

The Earth is oblate if f > 0, prolate if f < 0, and spherical if f = 0.
To settle the dispute once and for all, in 1735 the Académie des Sciences Française send

expeditions to Ecuador, Lapland, and South Africa to measure meridians at widely separated
latitudes. Along with the pre-existing measurements from Paris and Rome, the Académie
managed to collect the five data points given in Table 1 (Stigler, 1986).

The length of 1◦ of latitude ℓ at the various locations was measured in toise, a popular
measure of the time. To get a better idea, the table also presents these lengths in kilometers.
A simple inspection of the table makes it apparent that the length of 1◦ of latitude grows as
we move from the equator (θ = 0◦) to the poles (θ = 90◦). At Quito, which is on the equator,
the length of a degree was measured to be 110.551 km, while at Lapland, which is the closest
people of the time could get to the north pole on account of the cold, the length of the degree
was measured to be more than a kilometer longer. Clearly these data favor Newton’s prediction
that the Earth flattens at the poles. There are, however, discrepancies too: at the Cape of
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Figure 2. Location of available measurements on the world map.

Table 1. Data on the length of 1◦ of latitude at various locations.

Latitude Length of 1◦ Length of 1◦

Location θ sin2(θ) ℓ (in toise) ℓ (in km)
Quito, Ecuador 0◦ 0′ 0 56,751 110.551
Cape of Good Hope, S.Africa 33◦ 18′ 0.2987 57,037 111.108
Rome, Italy 42◦ 59′ 0.4648 56,979 110.995
Paris, France 49◦ 23′ 0.5762 57,074 111.180
Lapland, Finland 66◦ 19′ 0.8386 57,422 111.858
Note: 1 toise = 1.948 meters.

Good Hope the length of a degree is longer than that at Rome, despite the fact that Rome has
a larger (north) latitude than the (south) latitude of the Cape of Good Hope. Graphing these
measurements we see that, with the exception of the (Cape of Good Hope - Rome) pair, there
seems to be a consistent tendency for the length to grow as we move away from the equator.
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Figure 3. Graph of ℓ against 3 sin2 θ, along with the least squares line.

For short arcs, the approximation (see Stigler, 1986) (Nievergelt Yves (2001) A tutorial his-
tory of least squares with applications to astronomy and geodesy, in Brezinski C., L. Wuytack,
Numerical Analysis (2001) – Historical Developments in the 20th Century (2001) p.77)

ℓ = β0 + β1(3 sin
2 θ) + higher-order terms,

where ℓ is the length of 1◦ of latitude and θ is the angle of the latitude, was known to be
satisfactory. The parameters β0 and β1 can be interpreted as the length of 1◦ of latitude at the
equator and the excess in length of 1◦ at the poles over its value at the equator, respectively.
Ellipticity is therefore given by f = β1/β0.

These parameters are, of course, “known” today. Table 2 presents the geodetic constants
for the International Hayford Spheroid (IHS). We see that the Earth flattens at the poles with
an average oblate ellipticity of f = 1/297. The length of 1◦ of latitude at the equator is
60 × 1, 842.925 = 110, 576 m, while that at the poles is 60 × 1, 861.666 = 111, 700 m. This
means that the circumference of the Earth around the equator is approximately1 CE = 39, 807

1That the circumference of the earth in km’s is almost a round number (40,000 km) is not a coincidence.
The meter was originally defined as the one ten-millionth (1/10,000,000) of the distance between a pole and the
equator along a great circle over water. Since to go around the earth one has to travel 4 times this distance, the
circumference of the earth is 40 million meters.
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Table 2. Geodetic Constants – Hayford International Spheroid(∗).

a = 6, 378, 388m; c = 6, 356, 912m; f = 1/297

Length of Length of Acceleration
Latitude 1′ of 1′ of of Gravity

Longitude Latitude g

meters meters m/s2

0◦ 1,855.398 1,842.925 9.780 350
15 1,792.580 1,844.170 9.783 800
30 1,608.174 1,847.580 9.793 238
45 1,314.175 1,852.256 9.806 154
60 930.047 1,856.951 9.819 099
75 481.725 1,860.401 9.828 593
90 0 1,861.666 9.832 072

(∗)Abramowitz M., and Stegun, I. A., (1972),
Handbook of Mathematical Tables, New York:
Dover, p.8.

km, while that around the poles is approximately CP = 39, 807× (1− 1/297) = 39, 673 km, a
mere 134 km less than that around the equator.

In Book III of the Principia, Newton himself predicted that

[...] the diameter of the Earth at the equator is to its diameter from pole to pole
as 230 to 229. – Principia, Book III, Proposition XIX, Problem III.

That is, Newton gave f = 1/230. Fitzpatrick (2009, sec. 2.12)2 presents a theoretical model
of rotational flattening that, under simplifying homogeneity assumptions about the rotating
body, predicts f = 1/233. He says that this is (essentially) the model that Newton used to
make his prediction, and comments that “the discrepancy [with the actual f = 1/297 value] is
due to the fact that the Earth is strongly inhomogeneous, being much denser at its core than
in its outer regions”.

In terms of our model, β0 = 110.576 km, while from f we obtain a polar exceedance of
β1 = 110.576/297 = 0.3723 km per 1◦ of latitude. In what follows, we will estimate β0, β1, and
f from the data in Table 1 and see how close the scientists of the time came to discovering the
“truth”.

2Fitzpatrick R. (2009) Theoretical Fluid Mechanics, University of Texas at Austin Press.
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2. Linear Models

Based on theoretical considerations, a scientist believes that there is a linear function relating
a scalar quantity y to a k vector of variables x. The function itself is known only up to a finite
set of k parameters β that he wishes to estimate from data. For this purpose, a sample is
obtained, given by

{(y1,x1), (y2,x2), ..., (yn,xn)} = {(yi,xi) : i = 1, ..., n}

where each pair (yi,xi) ∈ R × Rk. In terms of the i-th observation, the linear model is given
by

yi = x′
iβ + ui, i = 1, ..., n,

where yi is the i-th value of the dependent variable, xi = (x1i, x2i, ..., xki)
′ with x1i ≡ 1 is

the k × 1 vector containing the values of the independent variables for the i-th observation in
the sample, and ui is a random disturbance. For notational purposes, it is often convenient to
arrange the observations in matrix form as follows:

y1

y2
...
yn

 =


x11 x12 · · · x1k

x21 x22 · · · x2k
...

... . . . ...
xn1 xn2 · · · xnk




β1

β2
...
βk

+


u1

u2
...
un

 ,
or

yn×1 = Xn×kβk×1 + un×1,

where y is an n×1 vector, X is a n×k matrix, β is a k×1 vector of coefficients to be estimated,
and u is a n× 1 vector of residuals.

In terms of our discussion above, yi = ℓi which, for short arcs, can be sufficiently approxi-
mated by a linear function of xi = (1, 3 sin2 θi)

′. The residual term ui represents the scientist’s
ignorance regarding several “unobserved” components:

(i) First, it incorporates “higher-order” terms of the true functional equation connecting
yi to xi. In terms of our example, the linear equation connecting ℓ to θ is only valid to
a first approximation. The true relation between ℓ and θ is indeed quite complicated,
but we hope that, at least for short-arcs, the linear equation is sufficiently accurate.

(ii) Second, the residual term incorporates deviations between the idealizations of a our
mathematical model and reality. In terms of our example, the mathematical model
employed assumes that the Earth is a perfect smooth spheroid that can be described
by a single ellipticity parameter f ! In reality, of course, the Earth is not a perfect
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spheroid, but has a very complicated surface with bulges and depressions (mount
Everest is 8.85 km above sea level, and the Mariana Trench is 10.91 km below sea
level), as well as, asymmetries (the Earth has more mass on the Northern than on the
Southern Hemisphere, so, to a second degree approximation, it looks like a potato).

(iii) Finally, the residual incorporates observational noise. The observations are noisy due
to the limited precision of our instruments and various other random factors that affect
the measurements.

In what follows we will discuss the Ordinary Least Squares (OLS) estimates of β, emphasizing
three alternative ways of interpreting these estimates.

3. Least Squares as a Solution to an Over-Identified System of Equations

The hypothesized linear model evaluated at the n data points produces a system of n equa-
tions with k unknowns. More specifically, the system can be written as

y1 = x11β1 + x21β2 + · · ·+ xk1βk

y2 = x12β1 + x22β2 + · · ·+ xk2βk

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
yn = x1nβ1 + x2nβ2 + · · ·+ xknβk

 (3.1)

with x1i ≡ 1.
If the equations are linearly independent and n > k (as it is always the case if we are

diligent enough to collect enough data), then the system is over-identified, and has no solution,
i.e., there is no signle k-vector β that can simultaneously satisfy all n equations. We could
throw away the excess equations (data points) so as to make our system exactly identified, but
this would certainly not be an optimal strategy: if the data are noisy then combining all the
available information would definitely be preferable as it would produce less noisy estimates.3

Another idea would be to note that a system like this contains
(
n
k

)
k-equation systems that

each has a unique solution, so perhaps it would be a good idea to compute them all. Figure 3
presents all the

(
5
2

)
= 10 possible lines that go through each pair of points in our application.

However, this doesn’t look like a very good idea either, since it produces too many “solutions”
without reducing the noise in the data.

3This argument, that combining errors tends to reduce the overall error of the estimate, was very difficult to
gain acceptance in the early days of Statistics, since mathematicians generally believe that errors pile up and do
not cancel out. Of course, the point is that systematic errors pile up, but random errors (noise) tend to cancel
each other out.
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The key to solving our problem is to note that the noise in the data would be reduced if we
were to somehow combine the

(
n
k

)
solutions into a single one. This can be done by specifying

a loss function, i.e., a function that quantifies our intention to fit a single equation through
the data in a way that the residuals are “minimal”. We have already seen square and absolute
loss functions. The reason that people favoured the square loss initially is simply because it
is easier to work with: both the square and absolute loss functions are is globally convex, but
the square is also differentiable, a convenient property that the absolute loss doesn’t share (the
absolute loss |u| does not have a derivative at u = 0).

The problem, therefore, is to minimize the squared deviations from the observed y, i.e. solve

min
β∈Rk

S(β) = u′u

= (y −Xβ)′(y −Xβ)

= y′y − y′Xβ − β′X ′y + β′X ′Xβ

= y′y − 2β′X ′y + β′X ′Xβ,
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where the last equality follows from that y′Xβ is a scalar and thus equal to its transpose
β′X ′y. The following Aside reminds us how to differentiate linear and quadratic forms.

Aside. In differentiating linear (a′x,Ax) and quadratic (x′Ax,y′Ax) forms, the following
rules hold (we assume that all vectors and matrices below are conformable and the products
are defined):

(i) ∂a′x

∂x
= a′ and ∂x′a

∂x
= a

(ii) ∂Ax

∂x
= A′ and ∂x′A

∂x
= A

(iii) ∂x′Ax

∂x
= 2x′A [= 2Ax if A is symmetric]

(iv) ∂y′Ax

∂x
= y′A, [assuming A is symmetric]

(v) ∂x′Ax

∂A
= xx′

(vi) ∂y′Ax

∂A
= xy′, [assuming A is symmetric]

Differentiating and setting the derivative equal to zero, we obtain the so called normal
equations

∂S(β̂)

∂β
= −2X ′y + 2X ′Xβ̂ = 0.

Provided that the k × k matrix X ′X is of full rank and can thus be inverted, we solve for β̂

to obtain the OLS coefficients,

β̂ = (X ′X)−1X ′y

=

(
n∑

i=1

xix
′
i

)−1 n∑
i=1

xiyi . (3.2)

This is the solution that the minimization of the square loss function S(β) = u′u produces
for the over-identified system (3.1). Note that M̂xx ≡ X ′X is the sample covariance matrix
of the regressors x, and M̂xy ≡ X ′y is the sample covariance of the regressors x with the
dependent variable y, so

β̂ = M̂−1
xxM̂xy. (3.3)
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In the simple regression model (k = 2, i.e., a model with a single regressor and an intercept),
we have

(X ′X)−1 =
1∑

x2i − (
∑
xi)

2

[ ∑
x2i −

∑
xi

−
∑
xi n

]
.

and the OLS coefficients are

β̂ = (X ′X)−1X ′y

=
1

n
∑
x2i − (

∑
xi)

2

[ ∑
x2i −

∑
xi

−
∑
xi n

][ ∑
yi∑
xiyi

]

=
1

n
∑
x2i − (

∑
xi)

2

[∑
x2i
∑
yi −

∑
xi
∑
xiyi

n
∑
xiyi −

∑
xi
∑
yi

]
.

The slope coefficient β̂1 is

β̂1 =
n
∑
xiyi −

∑
xi
∑
yi

n
∑
x2i − (

∑
xi)

2 =

∑
xiyi − nx̄ȳ∑
x2i − nx̄2

that can be written as

β̂1 =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2
=
Ĉov(yi, xi)

V̂ ar(xi)
, (3.4)

where Ĉov(yi, xi) is the sample covariance of yi and xi, and V̂ ar(xi) is that sample variance of
xi. Equation (3.4) is a special case of the general moment equation (3.3).

The constant β̂0 is

β̂0 =
(nȳ)

∑
x2i − (nx̄)

∑
xiyi

n
∑
x2i − (nx̄)2

=
ȳ
[∑

x2i − (nx̄)
]
+ ȳ(nx̄)2 − (nx̄)

∑
xiyi

n
∑
x2i − (nx̄)2

= ȳ −
∑
xiyi − nx̄ȳ∑
x2i − nx̄2

x̄

= ȳ − β̂1x̄. (3.5)

where ȳ and x̄ are the sample means of the regressand y and the regressor x, respectively.

Aside. To see exactly how the least squares estimator β̂ combines the
(
n
k

)
k-equation possible

solutions, consider the simple regression model and let h index the
(
n
k

)
pairs, and write

X(h) =

[
1 xi

1 xj

]
, y(h) =

[
yi

yj

]
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where for the simple bivariate model h = (i, j). Then since X(h) is a 2× 2 square matrix and
assuming that it is nonsingular

b(h) = X(h)−1y(h), (3.6)

is the intercept and slope of the line passing through pair h = (i, j). The following theorem
shows that we may now write the least squares estimator as

β̂ =
∑
h

w(h)b(h), (3.7)

where
w(h) =

|X(h)|2∑
h

|X(h)|2
,

and |X(h)| is the determinant of X(h), and h ranges over the
(
n
2

)
tuples. We see that the OLS

estimate is a weighted average of the
(
n
k

)
lines, with weights proportional to |X(h)|2, the square

of the determinant of X(h). The result generalizes directly to the linear regression model with
k regressors.

Theorem 1. (Subrahmanyam (1972))4 The OLS estimator β̂ for the general linear regression
model with k regressors can be written as in (3.6) and (3.7) for k-tuples h = (i1, i2, ..., ik). In
the general case, X(h) is a k × k square matrix, y(h) is a k × 1 vector, and h ranges over all
the possible

(
n
k

)
= O(nk) k-tuples in the sample.

Proof. Since X(h) is k × k square matrix,

|X(h)′X(h)| = |X ′(h)||X(h)| = |X(h)|2.

The key to the proof of Subrahmanyam’s result is a theorem from the theory of determinants5

which states that
|X ′X| =

∑
h

|X(h)|2,

where h ranges over the
(
n
k

)
combinations of n things taken k at a time.

4Hoerl, A. E. and Kennard, R. W. (1980), “M30. A note on least squares estimates”, Communications in
Statistics - Simulation and Computation, 9(3).

Subrahmanyam, M. (1972), “A Property of Simple Least Squares Estimates,” Sankhya, Series B, Indian
Journal of Statistics, 34, 355–356.

Wu, C. F. J. (1986), “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis,” Annals
of Statistics, 14, 1261–1295.

5See page 33, problem 2.6 of C.R. Rao (1973), Linear Statistical Inference and Its Applications, John Wiley
and Sons.
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Let S = X ′X. Denote by Xj the matrix obtained by replacing the j-th column of X by y,
so that Sj = X ′Xj . By Cramer’s rule, the jth LS estimate for the hth k-tuple is given by

bj(h) =
|Sj(h)|
|S(h)|

=
|X(h)′Xj(h)|
|X(h)′X(h)|

=
|X(h)| |Xj(h)|

|X(h)|2
=

|Xj(h)|
|X(h)|

,

since X(h) and Xj(h) are square matrices, so that

|Xj(h)| = bj(h) |X(h)|.

Again by Cramer’s rule, the jth LS estimate β̂j based on all the observations is given by

β̂j =
|Sj |
|S|

=
∑
h

|Sj(h)|
|S|

=
∑
h

|X(h)′Xj(h)|
|S|

=
∑
h

|X(h)||Xj(h)|
|S|

since X(h) and Xj(h) are square matrices

=
∑
h

|X(h)|2∑
h |X(h)|2

bj(h)

=
∑
h

w(h) bj(h).

�

An interesting implication of this result is that the b(h)’s that correspond to k-tuples of
observations that produce singular X(h) matrices, receive zero weight in the LS estimator β̂

using all the n observations.

The OLS fitted values are given by

ŷ = Xβ̂ = X(X ′X)−1X ′y ≡ PXy,

and the OLS residuals by

û = y − ŷ = y − PXy = (I − PX)y ≡ MXy.

It is clear that we can now decompose y into

y = ŷ + û = PXy +MXy.

The matrices PX and MX are called projection matrices and they have special properties.
One way to think about them is to see them as filters that extract different parts out of y:
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Figure 5. The Geometry of Least Squares.

when PX is applied on y it extracts fitted values ŷ from it, while, when MX is applied on
y it extracts residuals û. But to understand these projection matrices better we need to shift
our way of thinking and look at Least Squares from a geometric point of view.

4. Least Squares as an Orthogonal Projection

The vector y belongs to Rn, and if X has rank k < n, the columns of X span a k-dimensional
subspace of Rn. Let S(X) be the (linear) subspace spanned by X

S(X) =
{
Xβ : β ∈ Rk

}
,

and let S⊥(X) be its orthogonal linear subspace. By construction, S(X) has dimension k and
S⊥(X) has dimension n − k, so, taken together, the two subspaces span the entire Rn. This
means that y, which is a vector in Rn, can be written as a linear combination of elements
in S(X) and S⊥(X). According to the standard terminology of linear algebra, S(X) is the
column space of X and S⊥(X) is the null space of X, but for obvious reasons we will refer to
them as the subspace of fitted values and the subspace of residuals, respectively.

Our objective is to find the element Xβ̂ of S(X) that minimizes the distance between y and
S(X). Let u = y−Xβ be the residual vector resulting from approximating y by Xβ,β ∈ Rk.
Our objective can thus be stated as finding the u with the minimum length. Geometrically,
the residual vector with a minimum length û is the vector that is perpendicular to S(X), i.e.

û ⊥ S(X).
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It follows that û ⊥ X also, which implies that û and X are uncorrelated, that is, X ′û = 0,
from which it follows that

X ′û = 0

⇔ X ′(y −X ′β̂) = 0

⇔ X ′Xβ̂ = X ′y

⇔ β̂ = (X ′X)−1X ′y.

We have thus arrived at the OLS solution through a geometrical argument. It is perhaps worth
noting that we would have arrived at the same solution had we chosen to set û orthogonal
to any other element of S(X): û ⊥ Xc, c ∈ Rk, would have given us, c′X ′(y −Xβ̂) = 0 ⇔
c′X ′Xβ̂ = c′X ′y ⇔ β̂ = (X ′X)−1X ′y.

That the OLS solution has this geometrical interpretation should not be very surprising.
Recalling that the Euclidean length of a vector z in Rn is given by

||z|| =

√√√√ n∑
i=1

z2i =
√
z′z.

we see immediately that the minimizer β̂ of the length of the residual vector u is given by

β̂ = argmin
β

||u|| = argmin
β

√
u′u = argmin

β
u′u

which is the same problem as the one we considered in the previous subsection.
The geometric properties of the OLS solution justify us calling PX and MX projection

matrices: PX orthogonally projects y into the “space of fitted values” S(X), and MX orthog-
onally projects y into the “space of residuals” S⊥(X).

A square matrix A is idempotent if “squaring it” leaves it unchanged, i.e., AA = A. Ob-
serving that PX = P ′

X , MX = M ′
X and

PXPX = [X(X ′X)−1X ′][X(X ′X)−1X ′] = X(X ′X)−1X ′ = PX

MXMX = [I − PX ][I − PX ] = I − 2PX + PXPX = I − PX = MX ,

we see that PX andMX are symmetric idempotent matrices (in fact all projection matrices are
idempotent, although not necessarily symmetric – see the section on restricted least squares).
The reason for this peculiar behavior of PX and MX can best be understood geometrically.
When we apply PX to a vector y we project it onto S(X). Now re-applying PX on PXy leaves
the vector PXy unchanged since PXy already belongs to S(X) and the second projection
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does nothing. Likewise, applying MX on y carries y into S⊥(X) but re-applying MX on the
already transformed vector MXy leaves it unchanged.

Another property of the matrices PX and MX is that they are orthogonal to each other,
a fact that is also obvious geometrically. In fact, for any n× 1 vector z, MXz and PXz are
orthogonal, exactly because these matrices project z onto subspaces that are orthogonal to
each other. Algebraically, we have the following trivial result

PXMX = PX [I − PX ] = PX − PXPX = 0,

where 0 is a k × k matrix of zeros.

Aside. Below we list some very useful theorems regarding idempotent matrices that will be
needed in the succeeding sections 6.

THEOREM A. If A is an n×n symmetric matrix of rank k, then a necessary and sufficient
condition that A is idempotent is that each of k of the characteristic roots of A is equal to
unity and the remaining (n − k) characteristic roots are equal to zero, i.e., λ1 = · · · = λk = 1

and λk+1 = · · · = λn = 0.

THEOREM B. If A is an idempotent matrix, then rank A = trace A.

THEOREM C. The only nonsingular idempotent matrix is the identity matrix.

THEOREM D. If A is an n × n idempotent matrix of rank k such that k < n (k = n),
then A is a positive semidefinite matrix (positive definite matrix).

THEOREM E. If A is an idempotent matrix whose ith diagonal element is equal to zero,
then every element in the ith row and ith column of A is equal to zero.

6These theorems are from Graybill, F.A, and Marsaglia G. (1957) – Idempotent Matrices and Quadratic
Forms in the General Linear Hypothesis, Annals of Mathematical Statistics, vol. 28, pp. 678-686)
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Recalling that y = ŷ + û, we can decompose the sum of squares of y, ||y||2, as

y′y = (ŷ + û)′(ŷ + û)

= (PXy +MXy)′(PXy +MXy)

= y′PXy + y′MXy

= ||PXy||2 + ||MXy||2.

where ||z|| again denotes the Euclidean length of the vector z. This is nothing more than
Pythagoras’ theorem: it terms of Figure 5, the square of the hypotenuse equals the sum of
squares of the sides of the triangle traced by y, PXy and MXy. This decomposition gives us
the uncentered-R2

R2
u =

||PXy||2

||y||2
= 1− ||MXy||2

||y||2
.

It is clear that R2
u is a unit-free number that takes values between 0 and 1. It is also simple to

see that it too has a simple geometric interpretation: it is the square of the cosine of the angle
between the vectors y and PXy, i.e.,

R2
u = cos2 φ.

Unfortunately, however, R2
u is not entirely satisfactory in that it measures as “fit”, both the

effect of the intercept as well as the rest of the x’s in X. In applications, we are interested in
a measure of fit that tells us how much of the total variation of y is explained by the variable
regressors, not the intercept. Recall that if we regress y on an intercept alone, that is, if we
regress y on 1, where 1 = (1, 1, ..., 1)′ is a n× 1 vector of ones, we will obtain the mean of y,

(1′1)−11′y = 1′y/n = ȳ.

The centered-R2 is defined as the sum of squares of y explained by X once we remove the effect
of the intercept by de-meaning y. To de-mean y, we project it onto the space spanned by 1,
and obtain the residual M1y. The centered R2 used in applications is then given by

R2 = 1− ||MXy||2

||M1y||2

where

M1 = I − 1(1′1)−11′ = I − 11′

n

and

M1y =
[
I − 11′

n

]
y = y − ȳ.
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It is easy to check that R2 may be written as

R2 = 1− û′û

(y − ȳ)′(y − ȳ)

=
(ŷ − ȳ)′(ŷ − ȳ)

(y − ȳ)′(y − ȳ)

=

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ȳ)2
,

and that
0 ≤ R2 ≤ 1.

In what follows we will call ||PXy||2 the Regression Sum of Squares (SSR), ||MXy||2 the Error
Sum of Squares (SSE), and ||M1y||2 the Total Sum of Squares (SST). With this terminology,
R2 may be written as

R2 =
SSR
SST = 1− SSE

SST .

This popular regression statistic owes its name to the fact that it is equal to the square of
the sample correlation between y and ŷ = Xβ̂, i.e., letting

ρ̂ = Ĉorr(y, ŷ) =
Ĉov(y, ŷ)√
V̂ ar(y)V̂ ar(ŷ)

,

we have R2 = ρ̂2. It follows that in the simple k = 1 regression model, R2 is equal to the
square of the sample correlation coefficient between y and the single regressor x.

5. Least Squares as a Conditional Expectation

Consider again the model
y = Xβ + u

and now assume that E(u|X) = 0 and that V (u|X) = σ2uIn. It follows directly that

E(y|X) = Xβ, and V (y|X) = σ2uIn.

This is a linear conditional expectation regression model with a spherical (homoskedastic) error,
of the form we have already encountered. As argued before, the OLS coefficients produce the
optimal predictor of E(y|X) (see Theorem 3, Lecture 4). In fact, the assumption E(u|X) =

0 implies the uncorreletness condition E(X ′u) = 0, which in turn implies the “in-sample”
orthogonality condition X ′u = 0, from which the OLS coefficients can be derived immediately
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as we have already seen. To see that E(u|X) = 0 implies E(X ′u) = 0, observe that the first
condition says that u is mean-independent of X, while the second condition says that u and X

are uncorrelated, and since mean-independence implies uncorrelateness, E(u|X) = 0 implies
E(X ′u) = 0.

The significance of interpreting least squares as a conditional expectation derives from that,
in doing so, we are recasting the problem is statistical terms. As we have already seen the
least squares solution has a rich mathematical (algebraic and geometric) structure, but the
mathematical model alone cannot answer certain questions, like how “good” of an estimate
of the true β is β̂? We thus presume that there is a true parameter vector β, that β̂ is an
estimator of it, and we are interested in the statistical properties of this estimator. This is, of
course, the statistical point of view.

We make the following assumptions:

(I) y = Xβ + u

(II) E(u|X) = 0

(III) E(u′u|X) = σ2uIn

(IV ) X is a nonstochastic matrix of rank k

(V ) u ∼ N(0, σ2In).

Assumption (I) says that the function relating y to X is linear and that X contains exactly
the necessary variables to explain y, without excluding any relevant or including any irrelevant
ones. Assumptions (II) and (III) say that the residual error, once the effect of the regressors
on the dependent variables has been accounted for, has mean zero and constant variance σ2In.
Assumption (IV) says that the n×k regressor matrix X is fixed, i.e., non-random (for example,
the design matrix of an experiment) and has full rank k, so that (X ′X) is invertible. The full
rank condition means that none of the regressors is a linear function of the other regressors.
Assumptions (I)-(IV) are called weak. Finally, assumption (IV) is a strong assumption that
specifies the entire distribution and not just the mean and variance of the error term u. It says
that u it is normally distributed with mean and variance as in (II) and (III). This assumption
is necessary in order to be able to do inference in small samples, but as the sample size n grows,
it can be dropped on account of the Central Limit Theorem (CLT) that makes this assumption
unnecessary, at least asymptotically.
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We say that θ̂ is an unbiased estimator of the parameter θ, if E(θ̂) = θ. That, under our
assumptions, β̂ is unbiased for β follows immediately,

E(β̂|X) = E[(X ′X)−1X ′y|X]

= E[(X ′X)−1X ′(Xβ + u)|X]

= (X ′X)−1X ′Xβ + (X ′X)−1X ′E(u|X)

= β.

The variance of β̂ is also easy to derive,

V (β̂|X) = E[(β̂ − β)(β̂ − β)′|X]

= E[(X ′X)−1X ′uu′X(X ′X)−1|X]

= (X ′X)−1X ′E[uu′|X]X(X ′X)−1

= (X ′X)−1X ′σ2uInX(X ′X)−1

= σ2u(X
′X)−1.

An estimator of the error variance σ2u may be obtained by the sample variance of the regression
residuals û,

σ̂2u =
û′û

n
=

1

n

n∑
i=1

û2i .

But this a biased estimator of σ2u, since

E(nσ̂2u|X) = E(û′û|X)

= E(u′MXu|X)

= E(trace(u′MXu)|X) [because u′MXu is a scalar]
= E(trace(MXuu′)|X) [by a property of the trace]
= trace[E(MXuu′|X)] [because the trace is a linear operator]
= trace[MXE(uu′|X)]

= trace[MXσ
2
uIn]

= σ2u(n− k). [because trace MX = rank MX = n− k].

Therefore,
E(σ̂2u) =

(n− k

n

)
σ2u

and we see that σ̂2u is a biased estimator of σ2u. An unbiased estimator is thus given by

s2u =
û′û

n− k
=

1

n− k

n∑
i=1

û2i ,
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where we divide the sum of squared residuals not by the sample size n, but by the degrees of
freedom n− k.

We are now in a position to state a well-known optimality result for OLS, the so called
Gauss-Markov theorem.

Theorem 2. (Gauss-Markov). Under Assumption (I)-(IV), the OLS estimator β̂ is the Best
Linear (in y) Unbiased Estimator (BLUE) of β, i.e., if β̃ is another linear unbiased estimator
of β, then V (β̃)− V (β̂) is a positive semidefinite matrix.

Proof. Since β̃ is a linear function of y, we can write as

β̃ = Ay = (X ′X)−1X ′y +Cy

where C = A− (X ′X)−1X ′. Substituting Xβ + u for y we obtain

β̃ = [(X ′X)−1X ′ +C](Xβ + u)

= β +CXβ + (X ′X)−1X ′u+Cu.

For β̃ to be unbiased, we must have CX = 0. Imposing this condition yields

β̃ = β + (X ′X)−1X ′u+Cu.

The variance of β̃ is now given by

V (β̃|X) = E[(β̃ − β)(β̃ − β)′|X]

= E
[
(X ′X)−1X ′uu′X(X ′X)−1 + (X ′X)−1X ′uu′C ′

+Cuu′X(X ′X)−1 +Cuu′C ′
∣∣∣X]

= σ2u

{
(X ′X)−1 + (X ′X)−1X ′C ′ +CX(X ′X)−1 +CC ′

}
.

Imposing again the condition CX = 0, we obtain

V (β̃|X) = σ2u

{
(X ′X)−1 +CC ′

}
.

Thus,

V (β̂|X)− V (β̃|X) = σ2uCC ′,

which is a positive semidefinite matrix. �
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It is worth noting that the spherical assumption V (u|X) = σ2uIn is crucial for the validity
of the Gauss-Markov theorem. If we instead had a non-spherical (heteroskedastic and/or
autocorrelated) error with V (u|X) = Ω, the variance of β̃ would be

(X ′X)−1X ′ΩX(X ′X)−1 + (X ′X)−1X ′ΩC ′ +CΩX(X ′X)−1 +CΩC ′,

and we would not be able to draw any conclusion about the relative efficiency of β̂ and β̃.
We will see later that in this non-spherical error case, another estimator is BLUE, namely the
Generalized Least Squares (GLS) estimator.

This often quoted optimality property of the OLS estimator, namely that it is BLUE, should
not, however, be overvalued. It only says that OLS is best (has lowest variance) among a very
restricted class of estimators, namely estimators that are linear(!) in y. There is really no
reason to impose the linearity condition other than to make the OLS estimator “optimal”. As
we shall see later, relaxing this arbitrary and unnecessary linearity assumption makes OLS just
another estimator among many. The LAD estimator, for example, that we will also study later,
is not linear in y, but may be shown to be unbiased and have superior performance (smaller
variance) than the OLS estimator under error distributions with thick tails. Therefore, we
should always remember that there is no BUE, and that the Gauss-Markov Theorem only says
that OLS is BLUE, not BUE!

6. Residual Regression and the Frisch-Waugh-Lovell Theorem.

Partition X = (X1, X2) and

β =

(
β1

β2

)
,

and rewrite the regression model as

y = X1β1 +X2β2 + u.

Observe that the OLS estimator β̂ = (β̂1
′
, β̂2

′
)′ can be obtained by regressing y on X =

(X1, X2), so we can write
y = X1β̂1 +X2β̂2 + û.

The OLS coefficient vector β̂ can be written as

β̂ = (X ′X)−1X ′y =

(
X1

′X1 X1
′X2

X2
′X1 X2

′X2

)−1(
X1

′y

X2
′y

)
.

To proceed we need the following lemma on partition matrices.
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Lemma 1. (Inverse of Partition Matrices). Suppose that a positive definite matrix Q is
partitioned as

Q =

(
A B

C D

)
,

where the diagonal blocks A and D are square matrices. Then

Q−1 =

(
A B

C D

)−1

=

(
E−1 −E−1BD−1

−D−1CE−1 F−1

)
,

where
E−1 = A−1 +A−1BF−1CA−1 = (A−BD−1C)−1,

F−1 = D−1 +D−1CE−1BD−1 = (D −CA−1B)−1.

Using Lemma 1, we have (
X1

′X1 X1
′X2

X2
′X1 X2

′X2

)−1

=

(
(X1

′M2X1)
−1 −(X1

′M2X1)
−1X1

′X2(X2
′X2)

−1

−(X1
′M2X1)

−1X1
′X2(X2

′X2)
−1 (X2

′M1X2)
−1

)
where

M1 = In −X1(X
′
1X1)

−1X ′
1

M2 = In −X2(X
′
2X2)

−1X ′
2.

Thus,(
β̂1

β̂2

)
=

(
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

)−1(
X ′

1y

X ′
2y

)

=

(
(X ′

1M2X1)
−1 −(X ′

1M2X1)
−1X ′

1X2(X
′
2X2)

−1

−(X ′
1M2X1)

−1X ′
1X2(X

′
2X2)

−1 (X ′
2M1X2)

−1

)(
X ′

1y

X ′
2y

)

=

(
(X ′

1M2X1)
−1X ′

1M2y

(X ′
2M1X2)

−1X ′
2M1y

)
.

We have proven the following “lovel(l)y” theorem.

Theorem 3. (Frisch-Waugh-Lovell Theorem). In the linear regression model

y = X1β1 +X2β2 + u,
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the OLS estimator for β1 and the OLS residuals û may be computed by either the full OLS
regression of y on X = (X1,X2) or via the following procedure:

(i) Regress y on X2 and obtain residuals ỹ1 = M2y;
(ii) Regress X1 on X2 and obtain residuals X̃1 = M2X1;

(iii) Regress ỹ1 on X̃1 to obtain β̂1 and residuals û, i.e.,

β̂1 = (X1
′M2X1)

−1X ′
1M2y

and
û = M2y −M2X1(X1

′M2X1)
−1M2yX1

′M2y.

Also, a completely analogous procedure yields

β̂2 = (X2
′M1X2)

−1X2
′M1y.

This theorem was initially advocated as a computational device that can break up large
least squares problems into smaller ones, but today its value is mainly theoretical. There is,
however, a nice application of this theorem in ploting y against a multivariate X. Such plots
give valuable information about the functional relation between y and the x′s and the potential
adequacy of a linear fit. When X is multidimensional, however, such plots become impossible.
Using Theorem 2, we can isolate the influence of each of the regressors on y. Assume, for
example, that there are 3 regressors (excluding the intercept). Then, we can (a) regress y on
x2 and x3 (without an intercept) and obtain residuals ỹ1, (b) regress x1 on x2 and x3 (without
an intercept) and obtain residuals x̃1, and (c) plot ỹ1 against x̃1. Repeating for the other
2 regressors, we obtain a set of 3 plots, one for each regressor, called partial residual plots.
However, although useful, such plots should be used with caution since for constructing the
plot of ỹ1 against x̃1 for example, we used the assumption that x2 and x3 enter linearly, which
may not be true.

7. Restricted Least Squares.

Consider the restricted regression model

y = Xβ + u

such that Rβ = r

where R is q × k matrix and r is a q × 1 vector. The Lagrangian of the problem is given by

S(β) = (y −Xβ)′(y −Xβ)− 2λ(Rβ − r)
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where λ is a q × 1 vector of Langrange multipliers. The F.O.C. yield

∂S(β̂R)

∂β
= −2X ′y + 2(X ′X)β̂R − 2R′λ̂ = 0

∂S(β̂R)

∂λ
= −2(Rβ̂R − r) = 0.

The first equation yields

β̂R = (X ′X)−1X ′y + (X ′X)−1R′λ̂

= β̂ + (X ′X)−1R′λ̂.

Premultiplying with R, we obtain

Rβ̂R = Rβ̂ +R(X ′X)−1R′λ̂.

By the restriction, the left hand side of this equation is equal to r, and solving for λ̂ we obtain

λ̂ =
[
R(X ′X)−1R′

]−1
(r −Rβ̂).

Substituting into the β̂R equation above we finally obtain

β̂R = β̂ − (X ′X)−1R′
[
R(X ′X)−1R′

]−1
(Rβ̂ − r).

If, by some miracle, the unrestricted OLS estimates β̂ should happen to satisfy the restriction
exactly in the sample, i.e., if Rβ̂ = r, the second term in the above expression vanishes and
β̂R = β̂. More realistically, when the discrepancy between Rβ̂ and r is small (i.e., when the
data more or less agree with the restriction), the two estimates β̂ and β̂R will be close, but
when the discrepancy between Rβ̂ and r is large (i.e., when the restriction puts a strain on
the data), β̂ and β̂R will deviate considerably.

8. The Neoclassical Regression Model.

Consider again the linear regression model

y = Xβ + u

and recall the assumptions we have made so far,

(i) X is of full rank, i.e. rank(X) = k;
(ii) E(u|X) = 0; and
(iii) V (u|X) = σ2uI.
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Under these assumptions we were able to show that the OLS coefficients β̂ are unbiased and
BLUE. But we are not content yet. We would like to be able to construct confidence intervals
for the population parameter β, and we would also like to be able to test hypotheses regarding
β. This would require knowledge of the distribution of β̂, but all we have gotten so far out of
our assumptions are the mean and variance of this distribution. We clearly need some extra
structure. In the future, we will explore the behavior of β̂ as the sample size n grows large,
and we will show that the current assumptions will be enough to determine the asymptotic
distribution of β̂ under random sampling. For now, however, we will assume that n is fixed and
small, and impose a new assumption that will determine the distribution of β̂ at any sample
size:

(iv) u|X ∼ N(0, σ2uIk).

This new assumption is very strong: it says that, not only is the mean and variance of u|X
are as given above, but also the conditional distribution of u given X is normal! This model
with the extra assumption (iv) is called the neoclassical regression model.

Assumption (iv) yields immediately that y|X ∼ N(Xβ, σ2uIk), and since the OLS vector β̂
is a linear function of y we have

β̂|X ∼ N(β, σ2u(X
′X)−1).

This is really nice, the only difficulty being that σ2u is unknown. We could replace it, of course,
with ŝ2u but as we will see presently, this would change the (small sample) distribution of β̂.

9. Normal and related Distributions.

9.1. The Multivariate Normal Distribution - A Romance of Many Dimensions.

For an amusing account of how R3 would be perceived by creatures living in R2, read Flatland:
A Romance of Many Dimensions, by Edwin A. Abbott. This novel, published in 1884, may
help you imagine a physical space of four or more dimensions.

The density of a (k × 1), MVNk(µ,Σ) random vector X is given by

f(x) =
1

(2π)k/2|Σ|1/2
exp

(
−(x− µ)′Σ−1(x− µ)

2

)
.

The bivariate normal BV N(µ1, µ2, ρ, σ1, σ2) is given by

f(x1, x2) =
1

2π
√
σ21σ

2
2(1− ρ2)

exp

(
−z21 + 2ρz1z2 − z22

2(1− ρ2)

)
.
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Figure 6. The German 10-Deutsche Mark banknote, discontinued in 1993,
featuring Carl Friedrich Gauss and the normal distribution.
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Figure 7. The standard bivariate normal distribution.

where z1 = (x1−µ1)/σ1 and z2 = (x2−µ2)/σ2. The following lemma describes how to construct
samples from a bivariate normal distribution.
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Lemma 2. Let U1, U2 be independent N(0, 1) variables, and let ρ be any constant such that
|ρ| < 1. Then the random variables

Z1 = U1, Z2 = ρU1 +
√
(1− ρ2)U2

follow a standard joint bivariate normal distribution with correlation ρ, i.e.,

(Z1, Z2) ∼ BV N

((
0

0

)
,

(
1 ρ

ρ 1

))
.

Furthermore, for constants µ1, µ2, σ1 > 0, σ2 > 0, the variables

X1 = µ1 + σ1Z1, X2 = µ2 + σ2Z2

follow a joint bivariate normal distribution, i.e., (X1, X2) ∼ BV N(µ,Σ), where µ = (µ1, µ2)
′

and

Σ =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
.

It is important to note here that asserting joint normality of X and Y is a much stronger
statement than claiming that X and Y are marginally normal. As the following examples show,
two variables may be marginally normal but jointly non-normal.

Example 1. To see that joint normality implies marginal normality, but the reverse is not
generally true, take X ∼ N(0, 1), and recall that, by the probability transformation, Φ(X) ∼
U [0, 1]. Now define the transformation T by

T (x) =

{
x, 0 ≤ x ≤ 1

2
3
2 − x, 1

2 < x ≤ 1.

Then V = T (U) is U [0, 1] and therefore Y = Φ−1(V ) = Φ−1(T (Φ(X)) is also N(0, 1) (note that
this construction guarantees that X and Y are not independent). Both X and Y are marginally
standard normal, but there are many ways to argue that they are not jointly normal. For
example, the variable W = (X + Y )/

√
2 cannot be standard normal (as it should be if X and

Y were jointly normal) because it can not achieve some positive values, as a standard normal
should be able to.

Example 2. Consider the joint pdf

f(x, y) = 2I{xy > 0}ϕ(x)ϕ(y),
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Figure 8. A non-normal bivariate distribution with standard normal marginals.

where ϕ() is the standard normal pdf (see Figure 8). The marginal pdf of X is

fx(x) =

∫ ∞

−∞
f(x, y)dy = 2ϕ(x)

∫ ∞

−∞
I{xy > 0}ϕ(y)dy.

For x > 0, I{xy > 0}ϕ(y) = ϕ(y) for y > 0, and I{xy > 0}ϕ(y) = 0 for y ≤ 0. So for x > 0,∫ ∞

−∞
I{xy > 0}ϕ(y)dy =

∫ ∞

0
ϕ(y)dy = 1

2 .

Similarly for x ≤ 0. So fx(x) = 2ϕ(x)12 = ϕ(x), that is X ∼ N(0, 1). By symmetry Y ∼ N(0, 1)

also, so both marginals are standard normal. But the joint distribution is not bivariate normal.
Also, the CEF is not linear and the conditional pdf’s are not normal either (Show this as an
exercise).

The following important theorem characterizes multivariate normality.

Theorem 4. Let X be a k-dimensional random vector. Then X ∼ MVNk(µ,Σ) if and only
if for each t ∈ Rk, t′X ∼ N(t′µ, t′Σt).

In words, the theorem says that a random vector is jointly normal if and only if any linear
combination of its components is also normal.
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Figure 9. The geometry of the Multivariate Normal Distribution.

Theorem 5. (Cramer’s Theorem) If the sum of two independent random variables is nor-
mally distributed, then each of the summands is also normally distributed.

9.2. The Geometry of the Multivariate Normal Distribution.

The geometry of the multivariate normal distribution can be investigated by considering the
orientation and shape of the prediction ellipse as depicted in the following diagram:

The (1− a)× 100% prediction ellipse above is centered on the population means µ1 and µ2.
The ellipse has axes pointing in the directions of the eigenvectors e1, e2, ..., ep. Here, in this
diagram for the bivariate normal, the longest axis of the ellipse points in the direction of the
first eigenvector e1 and the shorter axis is perpendicular to the first, pointing in the direction
of the second eigenvector e2. The corresponding half-lengths of the axes are

lj =
√
λjχ2

p,α

The plot above shows the lengths of these axes within the ellipse.
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The volume (or area if p = 1) of the hyper-ellipse is equal to

2πp/2

pΓ
(p
2

)(χ2
p,α)

p/2|Σ|1/2.

Note that the area is proportional to the square-root of the generalized variance given by the
square root of the determinant of the variance-covariance matrix, |Σ|1/2. To compute the
gamma function Γ(x) in this expression note that, for p even,

Γ
(p
2

)
=
(p
2
− 1
)
!

while for p odd,

Γ
(p
2

)
=

1× 3× 5× · · · × (p− 2)×
√
π

2(p−1)/2
.

9.3. The Chi-Square Distribution.

The pdf of a non-central chi-square random variable X with n > 0 degrees of freedom and
non-centrality parameter δ ≥ 0, denoted by χ2

n(δ), is given by

f(y; δ) =
exp[−1

2(y + δ)]

2n/2

∞∑
j=0

yn/2+j−1δj

Γ(n/2 + j)22jj!
, y ≥ 0.

For δ = 0 we obtain the pdf of the central chi-square distribution, denoted by χ2
n,

f(y) =
y

n
2
−1e−

y
2

Γ(n2 ) 2
n
2

, y ≥ 0.

Lemma 3. If X ∼MVNk(µ,Σ), then

X ′Σ−1X ∼ χ2
k(δ)

with noncentrality parameter δ = µ′Σ−1µ. Also,

(X − µ)′Σ−1(X − µ) ∼ χ2
k,

i.e., a central chi-squared distribution with k degrees of freedom.
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9.4. The F distribution.

The positive random variable Y with pdf

f(y) =
Γ[12(n+ k)](n/k)n/2x(n−2)/2

Γ(n/2)Γ(k/2)[1 + (n/k)x](n+k)/2
, y ≥ 0,

is said to follow the F distribution with degrees of freedom.

Lemma 4. If Y1 ∼ χ2
n1

, Y2 ∼ χ2
n2

, and Y1 and Y2 are independent, then

F =
Y1/n1
Y2/n2

∼ Fn1,n2 .

9.5. The Student’s t distribution.

The random variable X with pdf

f(x) =
Γ[(n+ 1)/2]

(πn)1/2Γ(n/2)[1 + (x2/n)](n+1)/2
, x ∈ R

where n is a positive integer, is said to follow the tn distribution.

Lemma 5. If Z ∼ N(0, 1), and Y ∼ χ2
n, independent then,

T =
Z√
Y/n

∼ tn.

Observe that

T 2 =
Z2/1

Y/n
= F1,n.

The t1 distribution is the Cauchy. The tn distribution has n− 1 moments.

10. Confidence Regions.

Let R be a q×k matrix and consider the q×1 vectors Rβ and Rβ̂ of population restrictions
and sample estimates. Using the normality of β̂ we obtain

Rβ̂ ∼ N(Rβ, σ2uR(X ′X)−1R′).

Therefore, the centered and normalized quadratic form

(Rβ̂ −Rβ)′[σ2uR(X ′X)−1R′]−1(Rβ̂ −Rβ) ∼ χ2
q ,
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is a χ2 random variable with q degrees of freedom. It also follows that, if σ2u is known, a
100(1− α)% confidence region (CR) for Rβ is given by

(Rβ̂ −Rβ)′[σ2uR(X ′X)−1R′]−1(Rβ̂ −Rβ) < χ2
q,α

where χ2
q,α is the number for which Pr(χ2

q < χ2
q,α) = 1− α.

In actual application, however, σ2u is unknown and has to be replaced by ŝ2u. Since

û′û

σ2u
=

(n− k)ŝ2u
σ2u

∼ χ2
n−k,

it follows that
(Rβ̂ −Rβ)′[R(X ′X)−1R′]−1(Rβ̂ −Rβ)/q

û′û/(n− k)
∼ Fq,n−k

since the ratio of two χ2 random variables normalized by their respective degrees of freedom is
distributed as F . Thus, in the case where σ2u is unknown, a 100(1− α)% confidence region for
Rβ is given by

(Rβ̂ −Rβ)′[R(X ′X)−1R′]−1(Rβ̂ −Rβ)/q

û′û/(n− k)
≤ Fq,n−k,α (∗)

where Fq,n−k,α is the number for which Pr(Fq,n−k ≤ Fq,n−k,α) = 1− α.
Various special cases now follow immediately. If R is 1 × k, i.e. q = 1, then θ = Rβ is a

scalar, and the 100× (1−α)% confidence region reduces to a 100× (1−α)% confidence interval
(CI) given by

(θ̂ − θ)2

σ̂2θ
∼ F1,n−k,α

where σ̂2θ = ŝ2u[R(X ′X)−1R′]−1. From Lemma 5, we have that F1,n = t2n, so

θ̂ − θ

σθ̂
∼ tn−k,α

which yields the familiar 100× (1− α)% CI for θ:

θ̂ − tn−k,α/2 σ̂θ < θ < θ̂ + tn−k,α/2 σ̂θ.

An 95%, say, confidence interval for a parameter θ can be likened to a person that tells the
truth 95% of the time, but we do not know whether a particular statement he makes is true or
not. Likewise, an 95% confidence interval is calculated such that it includes the true value of
the estimated parameter 95% of the time. We do not know, however, if the interval we have is
one of those that are correct or not. Put differently, if the random experiment is repeated 100
times, in 95 of them our CI will contain the true parameter θ0, and in 5 of them it will not.
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11. Hypothesis Testing.

Now assume that we wish to test the hypothesis

H0 : Rβ = r

There are three ways of doing that, but for now we will only discuss two. The first is to use
the results in the previous section to infer that under the null,

(Rβ̂ − r)′[σ2uR(X ′X)−1R′]−1(Rβ̂ − r) ∼ χ2
q

where Rβ has been replaced by r, the value of Rβ under the null. Again, if σ2u is unknown,
which is always the case i applications, we should instead use

F1 =
(Rβ̂ − r)′[R(X′X)−1R′]−1(Rβ̂ − r)/q

û′û/(n− k)
∼ Fq,n−k.

which can also be written as

F1 = (Rβ̂ − r)′[s2uR(X′X)−1R′]−1(Rβ̂ − r)/q ∼ Fq,n−k.

We will call this is a Wald-type test.
The second way we can go about testing H0 is to compare the residuals of the unrestricted

model to the residuals of the model restricted so as the null is satisfied. Recall our discussion of
Restricted LS, and let û be the residuals of the unrestricted model, and ûR be the residuals of the
restricted model. Now observe that, under our assumptions, û′û ∼ χ2

n−k, while û′RûR ∼ χ2
n−k−q,

so (û′RûR − û′û) ∼ χ2
q and

F2 =
(û′

RûR − û′û)/q

û′û/(n− k)
∼ Fq,n−k.

We will call this an LR-type test.

Example 3. The hypothesis most frequently tested in applications is the “garbage regression”
hypothesis

H0 : β2 = β3 = · · · = βk = 0.

Under this hypothesis, all the slope coefficients in the regression are zero (the intercept β1 is
excluded from the list). If it is accepted, none of the regressors is important in explaining y, so
the entire regression should be thrown into the garbage bin. The F statistic for this hypothesis
is given by

F =
n− k

k − 1
· R2

1−R2
∼ Fk−1,n−k.
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The hypothesis is accepted when R2, and thus F also, is close to 0, and rejected when R2, and
thus F also, is far from 0.

12. Empirical Application: Estimating the Ellipticity of the Earth

Using the data of the Academie des Sciences, we estimate by least squares the regression
model

ℓ = β0 + β1(3 sin
2 θ) + u.

According to the Earth parameters in Table 2, the “true” equation is

ℓ = 110.576 + 0.3723 (3 sin2 θ)

so that,

f = 0.3723/110.576 = 1/297 ;

CE = 110.576× 360 = 39, 807 km.

The OLS estimates (along with their s.e.’s in parentheses below them) are

ℓ̂ = 110.525 + 0.4697 (3 sin2 θ), R2 = 0.8773

(0.158) (0.1014) σ̂u = 0.1903

so that,

f̂ = 0.4697/110.525 = 1/235 ;

ĈE = 110.525× 360 = 39, 789 km.

The variance-covariance matrix for β̂ is given by

V (β̂) = σ̂2u(X
′X)−1 =

(
0.02481 −0.01344

−0.01344 0.01028

)
Given the smallness of the sample size, the only way to perform inference is to assume

that the neoclassical (normal and spherical errors) model applies. Figure 3 presents individual
95% CI’s for β0 and β1, as well as, a joint 95% confidence region for the two parameters. This
confidence region is obtained from equation (*) of Section 5.2 with R = I, n = 5, and k = q = 2,
and is given by the set of values for which the quadratic form

1

2

(
110.525− β0

0.4697− β1

)′(
0.02481 −0.01344

−0.01344 0.01028

)−1(
110.525− β0

0.4697− β1

)
is less than or equal to the critical F1−α,2,n−k = F.95.2,3 = 9.552 value.
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Figure 10. The 95% joint confidence region for β0 and β1 along with the
marginal 95% CI’s. The marginal 95% CI for β0 is [110.023, 111.026], while
that for β1 is [0.1470, 0.7924]. The now known true parameter values of (β0 =

110.576, β1 = 0.3723) are also shown as point ×.

In order to obtain a confidence interval for ψ = 1/f we resort to a trick: we divide both
sides by β̂0 and estimate the OLS regression

ℓ

β̂0
= 1 +

1

ψ
(3 sin2 θ) +

u

β̂0
.

Note that this regression has the same R2 as the original regression and the t-statistic for 1/ψ
is the same as the t-statistic for β1. We get 1/ψ̂ = .0042498 with an s.e. of .0009174, so, using
the t.975,3 = 3.182 critical value, we obtain the 95% CI for 1/ψ as [.001330, .007169]. Upon
inverting we get ψ̂ = 235.3 as above, and the 95% CI for ψ is given by

CInaive(ψ; .95) = [139.48, 751.77].



Least Squares 37

This CI for ψ treats β0 as known and equal to the estimated value without uncertainty, i.e.,
it does not take into account the variability in β̂0. Since, in our application, β0 is estimated
very accurately (i.e., it’s s.e. is very small relative to its magnitude) this omission should not
matter a lot. In any case, the correct 95% CI should be wider than this naive CI, so the latter
can be thought of as a lower bound to the former.

To obtain the correct CI we use Fieller’s theorem7. The following aside presents the method
as it is adopted to the general linear model by Zerbe (1978)8.

Aside. (Fieller’s Theorem) Let
ψ = Kβ/Lβ,

where K and L are 1× k vectors of known constants, be the ratio of two linear combinations
of a k × 1 parameter vector β. If an estimator β̂ is distributed as β̂ ∼ N(β,Σ), we have that,
for a

√
n-estimator Σ̂ of Σ,

T =
Kβ̂ − ψLβ̂[

KΣ̂K ′ − 2ψKΣ̂L′ + ψ2LΣ̂L′
]1/2 ∼ tn−k.

Letting t = t1−α/2,n−k be the critical value from the tn−k distribution, we have

1− α = Pr{−t ≤ T ≤ t} = Pr{T 2 − t2 ≤ 0} = Pr{aψ2 + bψ + c ≤ 0},

where,

a = (Lβ̂)2 − t2LΣ̂L′,

b = 2
[
t2KΣ̂L′ − (Kβ̂)(Lβ̂)

]
,

c = (Kβ̂)2 − t2KΣ̂K ′.

The last expression says that the interval containing the required 1−α probability is character-
ized by the values for which the binomial aψ2+ bψ+ c is negative. If a is positive, the function
is convex and takes negative values. If, furthemore, the discriminant b2 − 4ac is positive, the
binomial has 2 distinct real roots that define the required CI. Thus, the 100(1− α)% CI for ψ
is given by [

−b−
√
b2 − 4ac

2a
,
−b+

√
b2 − 4ac

2a

]
,

7Fieller, E.C. (1944), “A Fundamental Formula in the Statistics of Biology Assay and Some Applications”,
Quartely Journal of Pharmacy and Pharmacology, 17, 117-123.

8Zerbe, G.O., (1978), “On Fieller’s Theorem and the General Linear Model”, The American Statistician, 32,
103-105.
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Figure 11. The Fieller binomial aψ2 + bψ + c (thin line) that, when negative,
defines the Fieller 95% CI for ψ (bold line). The point estimate ψ̂ = 235.3 is also shown.

provided that a > 0 and b2 − 4ac > 0. For the pathological a < 0 and/or b2 − 4ac < 0 cases,
as well as, for a nice geometrical interpretation of Fieller’s theorem, see Luxburg and Franz
(2009)9.

In our application, ψ = β0/β1, and β̂ is the OLS coefficient that, under the normal and
spherical errors assumption, is distributed as N(β, σ2u(X

′X)−1). Letting K = (1, 0) and L =

(0, 1) we can write ψ = Kβ/Lβ as required. Thus, using t = t.975,3 = 3.182, we compute

a = 0.1165 > 0, b = −104.1, c = 12, 215.4

and b2 − 4ac = 5, 144.7 > 0.

9Luxburg, von U. and Franz, V.H., (2009), “A geometric approach to confidence sets for ratios: Fieller’s
theorem, generalizations and bootstrap”, Statistica Sinica, 19, 1095-1117.
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and the Fieller (correct) 95% CI for ψ is given by

CIFieller(ψ, .95) = [138.95, 754.66].

As expected, since β0 is estimated quite accurately here, this correct CI for ψ (that takes
into account the variability in both β̂0 and β̂1) is only marginally wider than the naive CI we
computed above. Note that both CI’s are assymetric around the point estimate ψ̂ = 235.3

(see Figure 9), with the longer tail towards large ψ’s that correspond to a less oblate and more
spherical earth.

Compared to the now known quantities, the estimates obtained by the French Academy of
Sciences were indeed quite accurate. When published in the mid 1700’s, these estimates lent
considerable support to Newton’s Theory of Gravitation. Ether, however, didn’t go away, but
was to play a crucial role in the development of the Special Theory of Relativity by Einstein,
in the beginning of the 20th century. But that’s another story.

13. The distribution of a truncated normal random variables

Consider two random variables X and Y that are jointly normally distributed with means
µx and µy, variances σ2x and σ2y , and correlation ρ. Their joint p.d.f. is given by

f∗(x, y) =
1

2πσxσy
√
1− ρ2

×

exp

{
− 1

2(1− ρ2)

[(
x− µx
σx

)2

− 2ρ

(
x− µx
σx

)(
y − µy
σy

)
+

(
y − µy
σy

)2
]}

,

−∞ < x < ∞,−∞ < y < ∞.

Assume now that while we observe all values of X, we only observe Y if it is above a point
a and below a point b, i.e., assume that Y is truncated from below at a and from above at b.
Then the p.d.f. of X and the truncated Y is given by

fX,Y (x, y) =
f∗(x, y)

Φ

(
b− µy
σy

)
− Φ

(
a− µy
σy

) , −∞ < x < ∞, a < y < b.

and 0 otherwise.
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Direct integration gives the marginal density of X as

fX(x) =

1

σx
ϕ

(
x− µx
σx

)Φ

b− µy
σy

− ρ
x− µx
σx√

1− ρ2

− Φ


a− µy
σy

− ρ
x− µx
σx√

1− ρ2




Φ

(
b− µy
σy

)
− Φ

(
a− µy
σy

) ,

−∞ < x < ∞.

Defining α = (a− µy)/σy and β = (b− µy)/σy, we can write this density as

fX(x) =
1

σx
g

(
x− µx
σx

)
, −∞ < x < ∞,

where

g(u) =

ϕ(u)

[
Φ

(
β − ρu√
1− ρ2

)
− Φ

(
α− ρu√
1− ρ2

)]
Φ(β)− Φ(α)

.

For a = µy and b = ∞, we have α = 0 and β = ∞ and this becomes

g(u) = 2ϕ(u)Φ(λu),

where λ = ρ/
√
1− ρ2.

14. The distribution of the ratio of two normal variables

Let X and Y be two independent standard normal random variables and let

W =
X + a

Y + b
, a ≥ 0, b ≥ 0 (14.1)

be the ratio of the shifted random variables X + a and Y + b, where a and b are non-negative
constants.
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We wish to express the distribution of W in terms of functions associated with measures of
regions distribution function:

L(h, k, ρ) = Pr[ξ > h, η > k]

where ξ and η are standard normal with covariance ρ, and the V function of Nicholson:

V (h, q) =

∫ h

0

∫ qx/h

0
ϕ(x)ϕ(y)dydx,

where ϕ is the standard normal density. We have

P [W < t] =P [X + a < t(Y + b), Y + b > 0] + P [X + a > t(Y + b), Y + b < 0]

=P [−X + tY > a− bt, Y > −b] + P [X − tY > −a+ bt, Y > b]

=L

(
a− bt√
1 + t2

,−b , t√
1 + t2

)
+ L

(
−a+ bt√
1 + t2

, b ,
t√

1 + t2

)
,

since V ar(−X + tY ) = V (X − tY ) = 1 + t2, Cov(−X + tY, Y ) = Cov(X − tY, Y ) = t, and
Corr(−X + tY, Y ) = Corr(X − tY, Y ) = t/

√
1 + t2. Then using the elementary properties of

the L and V functions,

L(−h,−k, ρ) = L(h, k, ρ) +

∫ h

0
ϕ(x)dx+

∫ k

0
ϕ(x)dx

L(−h,−k, ρ) + L(h, k, ρ) = 2V

(
h,

k − ρh√
1− ρ2

)
+ 2V

(
k,

h− ρk√
1− ρ2

)

+
1

2
+

sin−1 ρ

π
,

we have several representations of F (t) = P [W < t]:

F (t) = L

(
a− bt√
1 + t2

, −b , t√
1 + t2

)
+ L

(
bt− a√
1 + t2

, b ,
t√

1 + t2

)
, (14.2)

F (t) =

∫ (bt−a)/
√
1+t2

0
ϕ(x)dx+

∫ b

0
ϕ(x)dx+ 2L

(
bt− a√
1 + t2

, b ,
t√

1 + t2

)
, (14.3)

F (t) =
1

2
+

1

π
tan−1 t+ 2V

(
bt− a√
1 + t2

,
b+ at√
1 + t2

)
− 2V (b, a). (14.4)

Representation (4) appears best for numerical purposes, unless b is large, say b > 3, since
we have good methods for providing values of V . This last reference by D. B. Owen, also gives
tables and formulas for the function

T (h, λ) = (2π)−1 tan−1 λ− V (h, λh),

which for some purposes is more convenient than the V function.
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Figure 12. The density of (X + a)/(Y + b) for various values of a and b. Here
a = upper number/3 and b = lower number/8.

15. Model Selection

The F-statistic for testing the joint significance of the complete set of regressors is

F =
ESS/(k − 1)

RSE/(n− k)
=

R2/(k − 1)

(1−R2)/(n− k)
∼ F(k−1),n−k.

There are 3 popular model selection criteria:
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1. Maximize Adjusted R2

R̄2(k) = 1− RSS/(n− k)

TSS/(n− 1)
.

2. Minimize Akaike Criterion

AIC(k) = log
û′û

n
+

2k

n
.

3. Minimize Schwarz criterion

BIC(k) = log
û′û

n
+
k

n
log n.

THE
NORMAL

LAW OF ERROR
STANDS OUT IN THE

EXPERIENCE OF MANKIND
AS ONE OF THE BROADEST

GENERALIZATIONS OF NATURAL
PHILOSOPHY � IT SERVES AS THE

GUIDING INSTRUMENT IN RESEARCHES
IN THE PHYSICAL AND SOCIAL SCIENCES AND

IN MEDICINE AGRICULTURE AND ENGINEERING �
IT IS AN INDISPENSABLE TOOL FOR THE ANALYSIS AND THE

INTERPRETATION THE BASIC DATA OBTAINED BY OBSERVATION AND EXPERIMENT

— W. J. Youden

Everyone believes in the Gaussian law of errors, the exper-
imenters because they think it is a mathematical theorem,
the mathematicians because they think it is an experimental
fact.

— Henri Poincaré


