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LECTURE 4
JOINT, CONDITIONAL AND MARGINAL

PROBABILITY DISTRIBUTIONS

Abstract: We define joint, conditional and marginal distributions and their moments,
and discuss optimal prediction under square and absolute loss.

1. Introduction

Univariate distributions describe the randomness in a single random variable X. But in
applications we are interested in the interdependence between random variables X and Y , say.
If X is the income of a household and Y is its savings rate (the proportion of its income that
it saves), we are interested in the joint distribution of (X,Y ). Similarly, if X is the price
of a product and Y the quantity demanded of that product, we are interested in their joint
distribution.

Given a pair of random variables (X,Y ) we will consider five different distributions:

(1) the joint distribution of X and Y , denoted by fX,Y (x, y);
(2) the marginal distribution of X, denote by fX(x);
(3) the marginal distribution of Y , denoted by fY (y);
(4) the conditional distribution of X given Y , denote by fX|Y (x|y); and
(5) the conditional distribution of Y given X, denote by fY |X(y|x).

If Y is the variable of interest (e.g. the quantity demanded of a product) and X is an ex-
planatory variable (e.g. price), we will be mostly interested in fY |X(y|x). Given the joint
distribution fX,Y (x, y), we can compute the rest of the distributions by the appropriate av-
eraging (integration), so we are justified in regarding the joint distribution as the “mother”
distribution.

The analysis generalizes easily to a vector of random variables (X1, X2, ..., Xn). In what
follows, we will present the bivariate case first, and consider the general n-tuple case later.
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2. Bivariate Distributions

2.1. The Discrete Case

Let (X,Y ) be a pair of discrete random variables. We define their joint pmf f(x, y) by

fX,Y (x, y) = Pr(X = x, Y = y),

where Pr(X = x, Y = y) is the joint probability of X taking the value x and Y taking the
value y. Clearly, fX,Y (x, y) ≥ 0 and∑

x

∑
y

fX,Y (x, y) = 1,

where the summation is over all possible values of x and y.

Example 1. (The Trinomial distribution). Consider an experiment with 3 possible outcomes
Ω = {A,B,C}, and let p (0 ≤ p ≤ 1) be the probability of outcome A, q (0 ≤ q ≤ 1, p+ q ≤ 1)
be the probability of outcome B, and 1− p− q be the probability of outcome C. Let X be 1 if
outcome A occurs and zero otherwise, and let Y = 1 if outcome B occurs and zero otherwise.
Then the joint probability of x outcomes A and y outcomes B in n independent trials, is given
by

fX,Y (x, y) =
n!

x!y!(n− x− y)!
pxqy(1− p− q)n−x−y,

for x = 0, 1, ..., n, and y = 0, 1, ..., n− x (note the restriction on the support of Y ). This is the
Trinomial(n, p, q) pmf and it is, of course, an extension of the Binomial(n, p) distribution.
That it is a proper pmf follows from the fact that 0 ≤ f(x, y) ≤ 1, and that

n∑
x=0

n−x∑
y=0

n!

x!y!(n− x− y)!
pxqy(1− p− q)n−x−y = 1.

2.2. The Continuous Case

Consider now a pair of continuous random variables (X,Y ) and define their joint pdf as the
function fX,Y (x, y) for which we can write

Pr(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

∫ d

c
fX,Y (x, y)dydx.

Clearly fX,Y (x, y) ≥ 0 and ∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy = 1.
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Figure 1. The Roof distribution

In what follows we will also be making use of the joint cdf FX,Y (x, y) defined by

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dtds.

Example 2. (The Roof distribution). Let (X,Y ) have joint pdf given by

fX,Y (x, y) = x+ y, x ∈ [0, 1], y ∈ [0, 1].

Clearly fX,Y (x, y) ≥ 0 and∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy =

∫ 1

0

∫ 1

0
(x+ y)dydx = 1.
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3. Marginal Distributions

3.1. Discrete Case

Given the joint pmf of X and Y we can recover the marginal or unconditional pmf of X

by summing fX,Y (x, y) over all possible values of Y , and the marginal pmf of Y by summing
fX,Y (x, y) over all possible values of X. More explicitly, given the joint pmf fX,Y (x, y), the
marginals of X, and Y are given by

fX(x) =
∑
y

fX,Y (x, y), and fY (y) =
∑
x

fX,Y (x, y),

where again summation is performed over all possible values. Clearly, fX(x) and fY (y) are
proper pmf’s, since they are both positive, and they sum to 1 since fX,Y (x, y) sums to 1.

Example 3.(The Trinomial distribution) Consider again the trinomial pmf and assume that we
are interested in the marginal pmf of X. It can be shown that

fX(x) =

n−x∑
y=0

n!

x!y!(n− x− y)!
pxqy(1− p− q)n−x−y

=
n!

x!(n− x)!
px(1− p)n−x,

for x = 0, ..., n, which is, of course, a Binomial(n, p) pmf.

3.2. Continuous Case

In the case where (X,Y ) is a pair of continuous random variables, the marginal pdfs of X
and Y are given by

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy, and fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx.

Example 4. (The Roof Distribution) Consider again the Roof distribution. The marginal pdf
of X is given

fX(x) =

∫ ∞

−∞
(x+ y)dy = x+

1

2
, x ∈ [0, 1].

The marginal pdf of Y is similar.



Joint, Conditional and Marginal Probability Distributions 5

4. Conditional Distributions

4.1. Discrete Case

Assume now that we are interested in the probability of conditional events, i.e., the proba-
bility that Y takes the value y, if X is known to be equal to x. If A is the event Y = y and B

is the event X = x, then the conditional probability of A given B is given by

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

Noting that, in the discrete case, Pr(A ∩B) = fX,Y (x, y) and Pr(B) = fY (y) we can write,

Pr(A|B) =
fX,Y (x, y)

fX(x)
≡ fY |X(y|x),

where fY |X(y|x) is the conditional pmf of Y given X = x. Analogously, the conditional pmf of
X given Y = y is

fX|Y (x|y) ≡
fX,Y (x, y)

fY (y)
.

Example 5. For the trinomial distribution, the conditional distribution of of Y |X is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

(n− x)!

y!(n− x− y)!

(
p2

1− p1

)y ( p3
1− p1

)n−x−y

, y = 0, 1, ..., n− x.

The conditional distribution of X|Y is analogous.

4.2. Continuous Case

The definition of conditional pdf’s in the continuous case is exactly the same, but to show
this we need to work a bit harder,

fY |X(y|x) =
∂

∂y
lim
ε→0

Pr(Y ≤ y|x ≤ X ≤ x+ ε)

=
∂

∂y
lim
ε→0

Pr(Y ≤ y, x ≤ X ≤ x+ ε)

Pr(x < X ≤ x+ ε)

=
∂

∂y
lim
ε→0

FX,Y (x+ ε, y)− FX,Y (x, y)

FX(x+ ε)− FX(x)

=
∂

∂y
lim
ε→0

[FX,Y (x+ ε, y)− FX,Y (x, y)]/ε

[FX(x+ ε)− FX(x)]/ε

=
∂

∂y

∂FX,Y (x, y)/∂x

fX(x)

=
fX,Y (x, y)

fX(x)
,
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provided, of course, that fX(x) 6= 0. The definition of fX|Y (x|y) is completely analogous. That
conditional pdf’s are proper densities follows from the fact that fY |X(y|x) ≥ 0, and∫ ∞

−∞
fY |X(y|x)dy =

1

fX(x)

∫ ∞

−∞
fY,X(y, x)dy =

fX(x)

fX(x)
= 1.

Example 6. For the Roof distribution,

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

x+ y

x+ 1
2

, x ∈ [0, 1].

5. Joint, Marginal, and Conditional Moments

Given a pair of, say continuous, random variables X and Y , we have defined 5 kinds of
distributions: the joint, two conditional, and two marginal distributions. The moments of
these distributions are called joint, conditional and marginal moments, respectively.

Starting from the joint distribution of X and Y , we may define the (r, s)-th joint raw moments
by

mr,s
X,Y = EX,Y (X

rY s) =

∫ ∞

−∞

∫ ∞

−∞
xrysfX,Y (x, y)dydx.

Similarly, the (r, s)-th joint cental moments are defined by

µr,s
X,Y = EX,Y [(X − µX)r(Y − µY )

s] =

∫ ∞

−∞

∫ ∞

−∞
(x− µX)r(y − µY )

sfX,Y (x, y)dydx.

A particularly important joint central moment is the covariance of X and Y , given by

C(X,Y ) ≡ σXY = µ1,1
X,Y .

The marginal moments are special cases of the joint moments: setting s = 0 in the expressions
above, we obtain the raw and central marginal moments of X, while setting r = 0 we obtain
the raw and central marginal moments of Y . For example, µX = µ1,0

X,Y , and µY = µ0,1
X,Y . An

often used measure of (linear) association between X,Y is the correlation coefficient given by

ρX,Y =
C(X,Y )√

V (X)
√
V (Y )

=
σX,Y

σXσY
.

We can finally define the raw and central moments of the conditional distributions. The r-th
conditional raw moment of Y |X is given by

mr
Y |X = EY |X(Y r) =

∫ ∞

−∞
yrfY |X(y|x)dy,
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while the r-th conditional central moment of Y |X is given by

µr
Y |X = EY |X [(Y − µY |X)r] =

∫ ∞

−∞
(y − µY |X)rfY |X(y|x)dy,

where µY |X = m1
Y |X is the conditional mean of Y given X = x (the conditional mean is the

mean of the conditional distribution at X = x).

Theorem 1. (Law of Iterated Expectations). Given a pair of random variables (X,Y ), and a
functional Z = h(X,Y )

(i) EY (Y ) = EX [EY |X(Y |X)];

(ii) EX,Y (Z) = EX [EY |X(Z|X)].

Proof: We only show (i), (ii) can be verified analogously.

EX [EY |X(Y |X)] =

∫ ∞

−∞
µY |XfX(x)dx

=

∫ ∞

−∞

[ ∫ ∞

−∞
yfY |X(y|X)dy

]
fX(x)dx

=

∫ ∞

−∞

[ ∫ ∞

−∞
y
fX,Y (x, y)

fX(x)
dy

]
fX(x)dx

=

∫ ∞

−∞
y
[ ∫ ∞

−∞
fX,Y (x, y)dx

]
dy

=

∫ ∞

−∞
yfY (y)dy

= EY (Y ).

The law of iterated expectations, also known as the law of total expectation, or the tower rule
of expectations, is often a source of confusion, mainly because of the sloppy way that it is often
stated and proved. For example, we often see part (i) of the above theorem stated as

E(Y ) = E(E(Y |X)).

The confusion comes from not stating explicitly with respect to which distribution the expec-
tations are taken over. Recall there are 5 distributions here: (1) the joint distribution fX,Y , (2)
the distribution of X given Y , fX|Y , (3) the distribution of Y given X, fY |X , (4) the marginal
distribution of X, fX , and (5) the marginal distribution of Y , fY .

Now let us see how to make sense of the last equation. The lhs, E(Y ), is the expectation of a
random variable and thus a number (not a function). We should write the left hand side (lhs) as
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EY (Y ) to remind us that we integrate y with respect to (wrt) the measure dFY (y) = fY (y) dy.
The inner expectation on the right hand side (rhs) E(Y |X) is taken wrt the conditional distri-
bution of Y given X, fY |X dy, and as a result it is a (measurable) function of X (not a number),
say g(X). Thus instead of E(Y |X) = g(X) we should have written EY |X(Y |X) = g(X). You
may object that up to now things were obvious and we shouldn’t worry too much about this,
but see what happens now. The last (outer) expectation on the rhs, namely E(g), is where the
confusion is often created. With regard to which distribution should we take this expectation?
The answer is that, since g is a function of X, we take the expectation wrt to the marginal
of X, fX dx, i.e. we should write EX(g(X)). This is also a number (not a function), which
matches the lhs which is a number. Taking everything together, we have

EY (Y ) = EX(EY |X(Y |X)).

Compare this to the confusing statement above.
Now we can see the importance of the theorem too. Note what this “law” says: It says that

EY (Y ) = EX [g(X)] if and only if g(X) = EY |X(Y |X).

This is a very special property of conditional expectations that is NOT shared by other measures
of location in general. For example, if M denotes the median, in general

MY (Y ) 6= MX [MY |X(Y |X)] 6= MX [EY |X(Y |X)], ...

and all the other perturbations of E and M , unless all distributions involved are symmetric,
in which case, their means and medians coincide.

We finally consider another theorem that is also of fundamental importance.

Theorem 2. (Analysis of Variance). Given a pair of random variables (X,Y ),

σ2
Y = VX(µY |X) + EX(σ2

Y |X).

Proof: Easy to verify directly.

This theorem says that the total variation of Y , σ2
Y , can be decomposed into the variation

explained by X, VX(µY |X), and a residual variation that cannot be explained by X, EX(σ2
Y |X).

We will discuss this is in great detail when we discuss the notion of the regression of Y on X.
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6. Best Prediction Under Square Loss

As we have already seen the unconditional mean µY is the best predictor of Y in terms of
square loss, i.e.,

µY = argmin
c∈R

EY (Y − c)2 =

∫ ∞

−∞
(y − c)2fY (y)dy.

It is not very difficult to imagine that the conditional mean µY |X should have a similar property
in terms of conditional square loss. Indeed, the conditional mean is the best predictor of Y |X
under square loss, i.e.,

µY |X = argmin
h:R 7→R

EY |X(Y − h(X))2 =

∫ ∞

−∞
(y − h(x))2fY |X(y|x)dy,

where the minimization is carried out over all real functions h : R 7→ R. This is an important
optimality property that justifies the preoccupation of econometricians with the estimation of
conditional mean functions.

Example 7.(The Trinomial Distribution) For the trinomial distribution, the CEF of Y|X is
given by

µY |X =

n−x∑
y=0

y
(n− x)!

y!(n− x− y)!

(
p2

1− p1

)y ( p3
1− p1

)n−x−y

= (n− x)

(
p2

1− p1

)
,

which is linear in x.

Example 8.(The Roof Distribution) For the Roof distribution,

µY |X =

∫ 1

0
y
x+ y

x+ 1
2

dy =
3x+ 2

6x+ 3
, 0 ≤ x ≤ 1.

Now let ε = Y − µY |X , and note that for this random variable, EY |X(ε|X) = 0, and
VY |X(ε|X) = σ2

Y |X . It follows that we can decompose Y as

Y = µY |X + ε, E(ε|X) = 0.

This is called a conditional expectation regression model, and since Y can always be decomposed
like that, the regression model is always meaningful. The “catch” is that, in order for it to be
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well-specified, we need to know the true functional form of µY |X . For example, for the Roof
distribution we have

Y =
3X + 2

6X + 3
+ ε, E(ε|X) = 0.

In applied work, however, the true conditional mean function is almost always unknown, and
it is common to assume a simple linear functional form for it.

7. Best Linear Prediction Under Square Loss

Assume now that the true conditional mean function is unknown to us and that we are
venturing to assume a linear form for it, i.e., we assume that µY |X = ℓµY |X ≡ α+ βX, where
ℓ stands for “linear”, and α, β are real constants. Under this assumption our regression model
is given by

Y = α+ βX + ε, E(ε|X) = 0.

This is a linear conditional expectation regression model, and ℓµY |X is called a linear (condi-
tional) predictor. The next theorem derives α and β that yield the best linear predictor (BLP)
under square loss.

Theorem 3. Given a pair of random variables X and Y ,

(α∗ = µY − β∗µX , β∗ =
σXY

σ2
X

) = argmin
a,b∈R2

EY |X(Y − a− bX)2.

Proof: Let ε = Y − (a+ bX), so the objective can be written as EY |X(ε2). Differentiating and
setting the derivatives equal to zero we obtain,

∂EY |X(ε2)

∂a
= EY |X

(∂ε2
∂a

)
= 2EY |X

(
ε
∂ε

∂a

)
= −2EY |X(ε) = 0

∂EY |X(ε2)

∂b
= EY |X

(∂ε2
∂b

)
= 2EY |X

(
ε
∂ε

∂b

)
= −2EY |X(Xε) = 0.

From these first order conditions we get EY |X(ε) = 0 and EY |X(Xε) = 0, which together are
equivalent to EY |X(ε) = 0 and C(X, ε) ≡ σXε = 0. Substituting for ε we have

σXε = 0 ⇒ σX(Y−α∗−β∗X) = 0 ⇒ σXY = β∗σ2
X ⇒ β∗ = σXY /σ

2
X ,

and
µε = 0 ⇒ µY−α∗−β∗X = 0 ⇒ µY = α∗ + β∗µX ⇒ α∗ = µY − β∗µX .

The optimal intercept and slope coefficients are seen to be the familiar Least Squares (LS)
solutions. If the true CEF is linear in X, the BLP and the CEF coincide. But if the CEF is
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nonlinear in X, then the BLP is the best linear approximation to the CEF on the support of X.
In fact we can quantify the accuracy of the approximation by computing the relative efficiency
ratio

RE =
EY,X

[(
Y − ℓµY |X

)2]
EY,X

[(
Y − µY |X

)2] ≥ 1,

that measures the relative variance of the residuals of the BLP and the CEF. Since the expec-
tations are taken w.r.t. to the joint distribution of X and Y , the denomenator is simply the
unconditional variance of Y , σ2

Y .

x

E
(Y

|X
),

 B
LP

(Y
|X

0.0 0.2 0.4 0.6 0.8 1.0

0.
54

0.
56

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

Example 9. The CEF for the Roof distribution is nonlinear in X, so the CEF and the BLP
are not the same. Using Theorem 3, we find that the BLP is given by

ℓµY |X =
7

11
− 1

11
X =

7−X

11
0 ≤ X ≤ 1,
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which is indeed different from the CEF

µY |X =
2 + 3X

3 + 6X
, 0 ≤ X ≤ 1.

Plotting the two functions, however, we see that ℓµY |X is quite informative about µY |X , as it
is the best linear approximation to it on the support of X.

8. Best Prediction Under Absolute Loss

The mean is not the only interesting measure of location (or cental tendency). Other mea-
sures commonly used are the median and the rest of the quantiles. Like the mean, these
measures are also “optimal” under appropriate (and reasonable) loss functions.

The median QY (.5) of a (continuous) random variable Y is the value for which

Pr[Y ≤ QY (.5)] ≡ FY (QY (.5)) = 0.5,

or
QY (.5) = F−1(0.5).

Other quantiles are defined similarly, with the τ -th quantile QY (τ) of Y defined by

Pr[Y ≤ QY (τ)] ≡ FY (QY (τ)) = τ, τ ∈ (0, 1),

or,
QY (τ) = F−1(τ), τ ∈ (0, 1).

The function QY (τ) yields the quantiles of Y , and is called the quantile function of Y . Like
the mean, the median is also a best predictor: it is best under absolute loss.

Theorem 4. The median QY (.5) is the best predictor of Y under absolute loss, i.e.,

QY (.5) = argmin
c∈R

EY |Y − c| =
∫ ∞

−∞
|y − c|fY (y)dy.

Similarly, the conditional median QY |X(.5) is the best predictor of Y |X under absolute loss,
i.e.,

QY |X(.5) = argmin
h:R 7→R

EY |X |Y − h(X)| =
∫ ∞

−∞
|y − h(x)|fY |X(y)dy.

Proof: Fix x and let FY |X be the conditional d.f. of Y |X. By definition, the median of FY |X

is the real number
m = min c : FY |X(−∞, c] ≥ 1/2

where FY |X(−∞, c] is the probability that Y is in the interval (−∞, c].
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To prove that the median is a best predictor under absolute loss, compare the expected loss
at m with that at any c < m. We find∫

|y − c|dFY |X −
∫

|y −m|dFY |X =

∫
[|y − c| − |y −m|]dFY |X

=

∫
(−∞,c]

(c−m)dFY |X +

∫
(c,m)

[2y − (c+m)]dFY |X +

∫
[m,∞)

(m− c)dFY |X

≥ (c−m)FY |X(−∞, c] + (c−m)FY |X(c,m) + (m− c)FY |X [m,∞)

= −(m− c)FY |X(−∞,m) + (m− c)FY |X [m,∞)

= (m− c){FY |X [m,∞)− FY |X(−∞,m)}.

By the definition of the median, FY |X(−∞, c] < 1/2 for all c < m. Hence, FY |X(−∞,m) ≤ 1/2,
so

(m− c){FY |X [m,∞)− FY |X(−∞,m)} ≥ 0.

Now compare the expected loss at m with that at any c > m.∫
|y − c|dFY |X −

∫
|y −m|dFY |X =

∫
[|y − c| − |y −m|]dFY |X

=

∫
(−∞,m]

(c−m)dFY |X +

∫
(m,c)

[(c+m)− 2y]dFY |X +

∫
[c,∞)

(m− c)dFY |X

≥ (c−m)FY |X(−∞,m] + (m− c)FY |X(m, c) + (m− c)FY |X [c,∞)

= (c−m)FY |X(−∞,m) + (c−m)FY |X [m,∞)

= (c−m){FY |X(−∞,m)− FY |X [m,∞)}.

By the definition of the median, FY |X(c,∞) ≤ 1/2 for all c > m. Hence, FY |X(m,∞) ≤ 1/2,
so

(c−m){FY |X(−∞,m)− FY |X [m,∞)} ≥ 0.

Pulling the two results for c > m and c < m together, we conclude that the expected loss is
minimized at the median.

The rest of the quantiles may also be shown to be optimal predictors under asymmetric
absolute loss. The idea here is that if over-prediction is more costly than under-prediction, a
quantile below the median would be optimal, while in the opposite scenario, the optimal quantile
would be above the median. To formalize this thought, define the asymmetric absolute loss
function

ρτ (u) = (τ − I{u < 0})u.
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This function generalizes the absolute loss function |u|, which, ignoring the multiplicative con-
stant, is a special case for τ = .5,

ρ.5(u) = (.5− I{u < 0})u =
1

2
|u|.

The following theorem generalizes Theorem 4, and can be proven in a similar way.

Theorem 5. The τ -th quantile QY (τ) is the best predictor of Y under asymmetric absolute
loss, i.e.,

QY (τ) = argmin
c∈R

EY ρτ (Y − c) =

∫ ∞

−∞
ρτ (y − c)fY (y)dy.

Similarly, the τ -th conditional quantile QY |X(τ) is the best predictor of Y |X under asymmetric
absolute loss, i.e.,

QY |X(τ) = argmin
h:R 7→R

EY |X ρτ (Y − h(X)) =

∫ ∞

−∞
ρτ (y − h(x))fY |X(y)dy.

Now let ε = Y − QY |X(τ) be the deviations of Y from its τ -th conditional quantile, and
observe that the τ -th conditional quantile of this variable is zero, i.e., Qε|X(τ) = 0. Given
τ ∈ (0, 1), we may now decompose Y as

Y = QY |X(τ) + ε, Qε|X(τ) = 0.

This is called a quantile regression model. The median regression model is a very important
special case, which, in a slightly simplified notation, may be written as,

Y = Med(Y |X) + ε, Med(ε|X) = 0.

As with mean regression, the true functional form of QY |X(τ) is often unknown in applica-
tions. If we assume the linear form QY |X(τ) = ℓQY |X(τ) ≡ α(τ) + β(τ)X, we obtain a linear
quantile regression model given by

Y = α(τ) + β(τ)X + ε, Qε|X(τ) = 0.

It is interesting to note that the regression parameters α(τ) and β(τ) are free to vary across
τ . This means that X is free to affect different conditional quantiles of Y in different ways,
providing a very rich model that yields many interesting empirical results. We will return to
this at a later point where we will discuss quantile regression in more detail.
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9. Mean vs. Median Regressions

The mean and median regressions of Y on X both express the “central tendency” of Y on
X. It is important, however, to recognize that these two regression functions generally do not
coincide. For example, one could be a linear function of X and the other not.

Example 10. Let X be a Bernoulli (dummy) random variable. The mean and median regres-
sions of Y on X can be written as the linear functions

E(Y |X) = E(Y |X = 0) + [E(Y |X = 1)− E(Y |X = 0)]X

and
Med(Y |X) = Med(Y |X = 0) + [Med(Y |X = 1)− Med(Y |X = 0)]X.

The slope parameters of the two regression functions are [E(Y |X = 1) − E(Y |X = 0)] and
[Med(Y |X = 1)− Med(Y |X = 0)], respectively. It is clear that these differences of means and
medians need not be the same, or even have the same sign.

It follows that prediction under square and absolute loss can yield very different conclusions
about the “central tendency” of Y as a function of X. There is, however, a special situation in
which the two functions coincide. This happens when FY |x is symmetric for all x ∈ support(X),
i.e., when the family of conditional cf’s {FY |x, x ∈ support(X)} are symmetric. This is a very
restrictive assumption, but if it happens to be true, the mean and the median regressions
do coincide. In terms of our example above, this would happen if FY |0 and FY |1 are both
symmetric, for example normal.

10. Independence

A pair of random variables X and Y are stochastically independent if and only if their joint
density is equal to the product of their marginals, i.e.

fX,Y (x, y) = fX(x)fY (y).

When this happens

fY |X =
fX,Y (x, y)

fX(x)
=

fX(x)fY (y)

fX(x)
= fY (y),

and similarly, fX|Y (x|y) = fX(x). It is clear that stochastic independence is a symmetric
relation. However, it is not transitive, i.e., it is possible for a set of r.v.’s to be pairwise
independent but dependend if taken all together.
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Example 11.(Berstein). Let X1, X2, X3 have the joint p.d.f.

f123(x1, x2, x3) = 1
4 , (x1, x2, x3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)},

= 0 otherwise.

The joint p.d.f. of Xi and Xj , i 6= j, is

fij(x1, x2, x3) = 1
4 , (xi, xj) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)},

= 0 otherwise,

whereas the marginal p.d.f. of Xi is

The random variable Y is said to be mean independent of X if

µY |X = µY .

Unlike stochastic independence, mean independence is not a symmetric relation: if Y is mean
independent of X, then X may or may not be mean independent of Y . It is easy to see that
stochastic independence implies mean independence, since under stochastic independence,

µY |X =

∫
yfY |X(y|x)dy =

∫
yfY (y)dy = µY .

The reverse, however, is true only in special cases, so stochastic independence is a stronger
condition than mean independence. Furthermore, mean independence implies zero correlation,
but, again, the reverse is not always true. To see this, note that under mean independence,

C(X,Y ) = C[X,µY |X ] = C[X,µY ] = 0,

since µY is a constant (show that C(X,Y ) = C[X,µY |X ] as an exercise). Uncorrelatedness,
however, does not imply mean independence since C[X,µY |X ] = 0 can happen even if µY |X 6=
µY . Summarizing,

stochastic independence ⇒ mean independence ⇒ uncorrelatedness,

but the reverse implications may be false.
In a similar fashion, two random variables are said to be τ -quantile independent if

QY |X(τ) = QY (τ), and QX|Y (τ) = QX(τ).

Again, stochastic independence implies quantile independence

QY |X(τ) ≡ F−1
Y |X(τ) = F−1

Y (τ) ≡ QY (τ),
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but the reverse is not always true. Note that when X and Y are stochastically independent,
then they are also τ -quantile independent for all τ ∈ (0, 1), but it is possible that, for two
quantiles τ1 and τ2, X and Y are τ1-quantile independent but τ2-quantile dependent.

When a 12th century youth fell in love he did not take three paces
backward, gaze in to her eyes, and tell her she was too beautiful to
live. He said he would step outside and see about it. And if, when he
got out, he met a man and broke his head – the others man’s head,
I mean – then that proved that his – the first fellow’s – girl was a
pretty girl. But if the other fellow broke his head – not his own, you
know, but the other fellow’s – the other fellow to the second fellow,
that is, because of course the other fellow would only be the other
fellow to him, not the first fellow who – well, if he broke his head,
then his girl – not the other fellow’s, but the fellow who was the – –
Look here, if x broke y’s head, then x’s girl was a pretty girl, but if
y broke x’s head, then x’s girl wasn’t a pretty girl, but y’s girl was.

— Jerome K. Jerome
Idle Thoughts of an Idle Man, 1889, pp.58-59


