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Preface

Results from computational learning theory are important in many as-
pects of machine learning practice. Understanding the behaviour of
systems that learn to solve information processing problems (like pat-
tern recognition and prediction) is crucial for the design of effective sys-
tems. In recent years, ideas and techniques in computational learning
theory have matured to the point where theoretical advances are now
contributing to machine learning applications, both through increased
understanding and through the development of new practical algorithms.

In this book, we concentrate on statistical and computational ques-
tions associated with the use of rich function classes, such as artificial
neural networks, for pattern recognition and prediction problems. These
issues are of fundamental importance in machine learning, and we have
seen several significant advances in this area in the last decade. The book
focuses on three specific models of learning, although the techniques, re-
sults, and intuitions we obtain from studying these formal models carry
over to many other situations.

The book is aimed at researchers and graduate students in computer
science, engineering, and mathematics. The reader is assumed to have
some familiarity with analysis, probability, calculus, and linear algebra,
to the level of an early undergraduate course. We remind the reader
of most definitions, so it should suffice just to have met the concepts
before.

Most chapters have a ‘Remarks’ section near the end, containing ma-
terial that is somewhat tangential to the main flow of the text. All
chapters finish with a ‘Bibliographical Notes’ section giving pointers to
the literature, both for the material in the chapter and related results.
However these sections are not exhaustive.

It is a pleasure to thank many colleagues and friends for their contri-

xiii
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butions to this book. Thanks, in particular, to Phil Long for carefully
and thoroughly reading the book, and making many helpful suggestions,
and to Ron Meir for making many thoughtful comments on large sections
of the book. Jon Baxter considerably improved the results in Chapter 5,
and made several useful suggestions that improved the presentation of
topics in Chapter 7. Gabor Lugosi suggested significant improvements to
the results in Chapter 4. Thanks also to James Ashton, Shai Ben-David,
Graham Brightwell, Mostefa Golea, Ying Guo, Ralf Herbrich, Wee Sun
Lee, Frederic Maire, Shie Mannor, Llew Mason, Michael Schmitt and
Ben Veal for comments, corrections, and suggestions. It is also a plea-
sure to thank the many collaborators and colleagues who have influenced
the way we think about the topics covered in this book: Andrew Bar-
ron, Jon Baxter, Shai Ben-David, Norman Biggs, Soura Dasgupta, Tom
Downs, Paul Fischer, Marcus Frean, Yoav Freund, Mostefa Golea, Dave
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Maass, Llew Mason, Ron Meir, Eli Posner, Rob Schapire, Bernhard
Scholkopf, John Shawe-Taylor, Alex Smola, and Bob Williamson. We
also thank Roger Astley of Cambridge University Press for his support
and for his efficient handling of this project.

Parts of the book were written while Martin Anthony was visiting the
Australian National University, supported by the Royal Society and the
Australian Telecommunications and Electronics Research Board, and
while Peter Bartlett was visiting the London School of Economics. Mar-
tin Anthony’s research has also been supported by the European Union
(through the ‘Neurocolt’ and ‘Neurocolt 2’ ESPRIT projects) and the
Engineering and Physical Sciences Research Council. Peter Bartlett’s
research has been supported by the Australian Research Council and
the Department of Industry, Science and Tourism. We are grateful to
these funding bodies and to our respective institutions for providing the
opportunities for us to work on this book.

We thank our families, particularly Colleen and Selena, for their help,
encouragement and tolerance over the years.

Martin Anthony and Peter Bartlett
London and Canberra
March 1999.



1

Introduction

1.1 Supervised Learning

This book is about the use of artificial neural networks for supervised
learning problems. Many such problems occur in practical applications
of artificial neural networks. For example, a neural network might be
used as a component of a face recognition system for a security appli-
cation. After seeing a number of images of legitimate users’ faces, the
network needs to determine accurately whether a new image corresponds
to the face of a legitimate user or an imposter. In other applications,
such as the prediction of future price of shares on the stock exchange,
we may require a neural network to model the relationship between a
pattern and a real-valued quantity.

In general, in a supervised learning problem, the learning system must
predict the labels of patterns, where the label might be a class label or
a real number. During training, it receives some partial information
about the true relationship between patterns and their labels in the
form of a number of correctly labelled patterns. For example, in the
face recognition application, the learning system receives a number of
images, each labelled as either a legitimate user or an imposter. Learn-
ing to accurately label patterns from training data in this way has two
major advantages over designing a hard-wired system to solve the same
problem: it can save an enormous amount of design effort, and it can be
used for problems that cannot easily be specified precisely in advance,
perhaps because the environment is changing.

In designing a learning system for a supervised learning problem, there
are three key questions that must be considered. The first of these con-
cerns approzimation, or representational, properties: we can associate
with a learning system the class of mappings between patterns and labels

1



2 Introduction

that it can produce, but is this class sufficiently powerful to approximate
accurately enough the true relationship between the patterns and their
labels? The second key issue is a statistical one concerning estimation:
since we do not know the true relationship between patterns and their
labels, and instead receive only a finite amount of data about this re-
lationship, how much data suffices to model the relationship with the
desired accuracy? The third key question is concerned with the compu-
tational efficiency of learning algorithms: how can we efficiently make
use of the training data to choose an accurate model of the relationship?
In this book, we concentrate mainly on the estimation question, al-
though we also investigate the issues of computation and, to a lesser
extent, approximation. Many of the results are applicable to a large
family of function classes, but we focus on artificial neural networks.

1.2 Artificial Neural Networks

Artificial neural networks have become popular over the last ten years
for diverse applications from financial prediction to machine vision. Al-
though these networks were originally proposed as simplified models of
biological neural networks, we are concerned here with their application
to supervised learning problems. Consequently, we omit the word ‘arti-
ficial,” and we consider a neural network as nothing more than a certain
type of nonlinear function. In this section we introduce two of the neu-
ral network classes that are discussed later in the book and use them to
illustrate the key issues of approximation, estimation, and computation
described above.

The simple perceptron

First we consider the simple (real-input) perceptron, which computes a.
function from R™ to {0,1}. Networks such as this, whose output is
either 0 or 1, are potentially suitable for pattern classification problems
in which we wish to divide the patterns into two classes, labelled ‘0’ and
‘I’. A simple perceptron computes a function f of the form

f(z) =sgn(w-z-9),

for input vector z € R", where w = (wy,...,w,) € R* and 8 € R are
adjustable parameters, or weights (the particular weight § being known
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N\

\
A f@)=1

f(z)=0

Fig. 1.1. The decision boundary in R? computed by a simple perceptron with
parameters w, 8.

as the threshold). Here, w - = denotes the inner product 2:;1 w;T;, and

sgn(a):{ 1 fa>0

0 otherwise.

Clearly, the decision boundary of this function (that is, the boundary
between the set of points classified as 0 and those classified as 1) is the
affine subspace of R® defined by the equation w - ¢ — 6 = 0. Figure 1.1
shows an example of such a decision boundary. Notice that the vec-
tor w determines the orientation of the boundary, and the ratio 8/||w||

determines its distance from the origin (where |jw|| = (X5, w?)l/ 3.
Suppose we wish to use a simple perceptron for a pattern classification
problem, and that we are given a collection of labelled data ((z,y) pairs)
that we want to use to find good values of the parameters w and 6.
The perceptron algorithm is a suitable method. This algorithm starts
with arbitrary values of the parameters, and cycles through the training
data, updating the parameters whenever the perceptron misclassifies an

example. If the current function f misclassifies the pair (z,y) (with
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Fig. 1.2. The perceptron algorithm updates the parameters to move the deci-
sion boundary towards a misclassified example.

z € R* and y € {0,1}), the algorithm adds n(y — f(z))z to w and
n(f(z) — y) to 8, where 1 is a (prescribed) fixed positive constant. This
update has the effect of moving the decision boundary closer to the
misclassified point = (see Figure 1.2).

As we shall see in Chapter 24, after a finite number of iterations this
algorithm finds values of the parameters that correctly classify all of the
training examples, provided such parameters exist.

It is instructive to consider the key issues of approximation, estima-
tion, and computation for the simple perceptron. Although we shall not
study its approximation capabilities in this book, we mention that the
representational capabilities of the simple perceptron are rather limited.
This is demonstrated, for instance, by the fact that for binary input vari-
ables (z € {0,1}"), the class of functions computed by the perceptron
forms a tiny fraction of the total number of boolean functions. Results in
the first two parts of this book provide answers to the estimation ques-
tion for classes of functions such as simple perceptrons. It might not
suffice simply to find parameter values that give correct classifications
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for all of the training examples, since we would also like the perceptron
to perform well on subsequent (as yet unseen) data. We are led to the
problem of generalization, in which we ask how the performance on the
training data relates to subsequent performance. In the next chapter,
we describe some assumptions about the process generating the train-
ing data (and subsequent patterns), which will allow us to pose such
questions more precisely. In the last part of the book, we study the
computation question for a number of neural network function classes.
Whenever it is possible, the perceptron algorithm is guaranteed to find,
in a finite number of iterations, parameters that correctly classify all of
the training examples. However, it is desirable that the number of iter-
ations required does not grow too rapidly as a function of the problem
complexity (measured by the input dimension and the training set size).
Additionally, if there are no parameter values that classify all of the
training set correctly, we should like a learning algorithm to find a func-
tion that minimizes the number of mistakes made on the training data.
In general the perceptron algorithm will not converge to such a function.
Indeed, as we shall see, it is known that no algorithm can efficiently solve
this problem (given standard complexity theoretic assumptions).

The two-layer real-output sigmoid network

As a second example, we now consider the two-layer real-output sigmoid
network. This network computes a function f from R” to R of the form
k
f(z)= Zwia (vi - T + vi0) + wo,
i=1
where = € R™ is the input vector, w; € R ({ = 0,...,k) are the output
weights, v; € R® and v;0 (¢ = 0,...,k) are the input weights, and
o : R = R, the activation function, is the standard sigmoid function,
given by
1

l1+e o’
This function is illustrated in Figure 1.3. Each of the functions

o(a) = (1.1)

T+ o (v T +vip)

can be thought of as a smoothed version of the function computed by
a simple perceptron. Thus, the two-layer sigmoid network computes
an affine combination of these ‘squashed’ affine functions. It should be
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o(a)
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.71
os}
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04

Fig. 1.3. The graph of the function ¢(-) defined in Equation (1.1).

noted that the output of this network is a real number, and is not simply
either 0 or 1 as for the simple perceptron. To use a network of this kind
for a supervised learning problem, a learning algorithm would receive
a set of labelled examples ((x,y) pairs, with z € R" and y € R) and
attempt to find parameters that minimize some measure of the error of
the network output over the training data. One popular technique is
to start with small initial values for the parameters and use a ‘gradient
descent’ procedure to adjust the parameters in such a way as to locally
minimize the sum over the training examples (z;,y;) of the squared
errors (f(z;) — v:)%. In general, however, this approach leads only to a
local minimum of the squared error.

We can consider the key issues of approximation, estimation, and
computation for this network also. The approximation question has a
more positive answer in this case. It is known that two-layer sigmoid
networks are ‘universal approximators’, in the sense that, given any
continuous function f defined on some compact subset S of R*, and
any desired accuracy e, there is a two-layer sigmoid network computing
a function that is within € of f at each point of S. Of course, even
though such a network exists, a limited amount of training data might
not provide enough information to specify it accurately. How much
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data will suffice depends on the complexity of the function f (or more
precisely on the complexity—number of computation units and size of
parameters—of a network that accurately approximates f). Results in
Part 3 address these questions, and Part 4 considers the computational
complexity of finding a suitable network.

General neural networks

Quite generally, a neural network N may be regarded as a machine
capable of taking on a number of ‘states’, each of which represents a
function computable by the machine. These functions map from an
input space X (the set of all possible patterns) to an output space Y. For
neural networks, inputs are typically encoded as vectors of real numbers
(so X C R"™ for some n), and these real numbers often lie in a bounded
range. In Part 1, we consider binary output networks for classification
problems, so, there, we have Y = {0,1}. In Parts 2 and 3 we consider
networks with real outputs.

Formalizing mathematically, we may regard a neural network as being
characterized by a set §2 of states, a set X of inputs, a set Y of outputs,
and a parameterized function F : @ x X — Y. For any w € 2, the
function represented by state w is h,, : X = Y given by

hy(z) = F(w, z).

The function F describes the functionality of the network: when the
network is in state w it computes the function h,. The set of functions
computable by N is {h, : w € Q}, and this is denoted by Hy. As
a concrete example of this, consider the simple perceptron. Here, a
typical state is w = (wy,ws, ..., wn,8), and the function it represents is

ho(z) = F(w,z)

= F((w,ws,...,wn,0),(z1,22,...,Z5))
n

= sgn ijmj—e
j=1

1.3 Outline of the Book

The first three parts of the book define three supervised learning prob-
lems and study how the accuracy of a model depends on the amount



8 Introduction

of training data and the model complexity. Results are generally of the
form

error < (estimate of error) + (complexity penalty) ,

where the complexity penalty increases with some measure of the com-
plexity of the class of models used by the learning system, and decreases
as the amount of data increases. How ‘complexity’ is defined here de-
pends both on the definition of error and on how the error is estimated.
The three different learning problems are distinguished by the types
of labels that must be predicted and by how the network outputs are
interpreted.

In Part 1, we study the binary classification problem, in which we
want to predict a binary-valued quantity using a class of binary-valued
functions. The correct measure of complexity in this context is a com-
binatorial quantity known as the Vapnik-Chervonenkis dimension. Es-
timates of this dimension for simple perceptrons and networks of per-
ceptrons have been known for some time. Part 1 reviews these results,
and presents some more recent results, including estimates for the more
commonly used sigmoid networks. In all cases, the complexity of a neu-
ral network is closely related to its size, as measured by the number of
parameters in the network.

In Part 2, we study the real classification problem, in which we again
want to predict a binary-valued quantity, but by using a class of real-
valued functions. Learning algorithms that can be used for classes of
real-valued functions are quite different from those used for binary-
valued classes, and this leads to some anomalies between experimental
experience and the VC theory described in Part 1. Part 2 presents some
recent advances in the area of large margin classifiers, which are clas-
sifiers based on real-valued functions whose output is interpreted as a
measure of the confidence in a classification. In this case, the correct
measure of complexity is a scale-sensitive version of the VC-dimension
known as the fat-shattering dimension. We shall see that this analysis
can lead to more precise estimates of the misclassification probability
(that is, better answers to the estimation question), and that the size
of a neural network is not always the most appropriate measure of its
complexity, particularly if the parameters are constrained to be small.

In Part 3, we study the real prediction problem. Here, the problem is
to predict a real-valued quantity (using a class of real-valued functions).
Once again, the fat-shattering dimension emerges as the correct measure
of complexity. This part also features some recent results on the use of
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convex function classes for real prediction problems. For instance, these
results suggest that for a simple function class, using the convex hull of
the class (that is, forming a two-layer neural network of functions from
the class, with a constraint on the output weights) has considerable
benefits and little cost, in terms of the rate at which the error decreases.

Part 4 concerns the algorithmics of supervised learning, considering
the computational limitations on learning with neural networks and in-
vestigating the performance of particular learning algorithms (the per-
ceptron algorithm and two constructive algorithms for two-layer net-
works).

1.4 Bibliographical Notes

There are many good introductory books on the topic of artificial neural
networks; see, for example, (Hertz, Krogh and Palmer, 1991; Haykin,
1994; Bishop, 1995; Ripley, 1996; Anderson and Rosenfeld, 1988). There
are also a number of books on the estimation questions associated with
general learning systems, and many of these include a chapter on neural
networks. See, for example, the books by Anthony and Biggs (1992),
Kearns and Vazirani (1995), Natarajan (1991a), Vidyasagar (1997), and
Vapnik (1982; 1995).

The notion of segmenting the analysis of learning systems into the key
questions of approximation, estimation and computation is popular in
learning theory research (see, for instance, (Barron, 1994)).

The simple perceptron and perceptron learning algorithm were first
discussed by Rosenblatt (1958). The notion of adjusting the strengths of
connections in biological neurons on the basis of correlations between in-
puts and outputs was earlier articulated by Hebb (1949) who, in trying
to explain how a network of living brain cells could adapt to differ-
ent stimuli, suggested that connections that were used frequently would
gradually become stronger, while those that were not used would fade
away. A classic work concerning the power (and limitations) of sim-
ple perceptrons is the book by Minsky and Papert (1969). Around the
time of the publication of this book, interest in artificial neural networks
waned, but was restored in the early 1980’s, as computational resources
became more abundant (and with the popularization of the observation
that gradient computations in a multi-layer sigmoid network could share
intermediate calculations). See, for example, (Rumelhart, Hinton and
Williams, 1986a; Rumelhart, Hinton and Williams, 1986b). Since this
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time, there have been many international conferences concentrating on
neural networks research.

The ‘universal approximation’ property of neural networks has been
proved under many different conditions and in many different ways; see
(Cybenko, 1989; Hornik, Stinchcombe and White, 1990; Leshno, Lin,
Pinkus and Schocken, 1993; Mhaskar, 1993).
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Pattern Classification with Binary-Output
Neural Networks






2
The Pattern Classification Problem

2.1 The Learning Problem
Introduction

In this section we describe the basic model of learning we use in this
part of the book. This model is applicable to neural networks with one
output unit that computes either the value 0 or 1; that is, it concerns the
types of neural network used for binary classification problems. Later
in the book we develop more general models of learning applicable to
many other types of neural network, such as those with a real-valued
output.

The definition of learning we use is formally described using the lan-
guage of probability theory. For the moment, however, we move towards
the definition in a fairly non-technical manner, providing some informal
motivation for the technical definitions that will follow.

In very general terms, in a supervised learning environment, neural
network ‘learning’ is the adjustment of the network’s state in response to
data generated by the environment. We assume this data is generated by
some random mechanism, which is, for many applications, reasonable.
The method by which the state of the network is adjusted in response to
the data constitutes a learning algorithm. That is, a learning algorithm
describes how to change the state in response to training data. We
assume that the ‘learner’} knows little about the process generating
the data. This is a reasonable assumption for many applications of
neural networks: if it is known that the data is generated according to a
particular type of statistical process, then in practice it might be better
to take advantage of this information by using a more restricted class of
functions rather than a neural network.

t The ‘learner’ in this context is simply the learning algorithm.

13
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Towards a formal framework

In our learning framework, the learner receives a sequence of training
data, consisting of ordered pairs of the form (z,y), where z is an input
to the neural network (z € X) and y is an output (y € Y). We call
such pairs labelled examples. In this part of the book, and in Part 2,
we consider classification problems, in which Y = {0,1}. It is helpful
to think of the label y as the ‘correct output’ of the network on input
(although this interpretation is not entirely valid, as we shall see below).
We assume that each such pair is chosen, independently of the others,
according to a fixed probability distribution on the set Z = X x Y.
This probability distribution reflects the relative frequency of different
patterns in the environment of the learner, and the probability that
the patterns will be labelled in a particular way. Note that we do not
necessarily regard there to be some ‘correct’ classification function ¢ :
X - {0,1}: for a given z € X, both (z,0) and (z, 1) may have a positive
probability of being presented to the learner, so neither 0 nor 1 is the
‘correct’ label. Even when there is some correct classification function f :
X — {0,1} (that is, f is such that the probability of the set {(z, f(z)) :
z € X} is one), we do not assume that the neural network is capable
of computing the function f. This is a very general model of training
data generation and it can model, among other things, a classification
problem in which some inputs are ambiguous, or in which there is some
‘noise’ corrupting the patterns or labels. The aim of successful learning
is that, after training on a large enough sequence of labelled examples,
the neural network computes a function that matches, almost as closely
as it can, the process generating the data; that is, we hope that the
classification of subsequent examples is close to the best performance
that the network can possibly manage.

It is clear that we have to make the above notions mathematically
precise. We first discuss the formal expression of the statement that
the training data is randomly generated. We assume that there is some
probability distribution P defined on Z. The probability distribution
P is fixed for a given learning problem, but it is unknown. The infor-
mation presented to the neural network during training consists only of
a sequence of labelled examples, each of the form (z,y). Formally, for
some positive integer m, the network is given during training a training
sample

z= ((31,:‘/1), ($2,y2), ceey (zm’ym)) = (zl’z2v” . vzm) €Z™.

The labelled examples 2; = (z;,y;) are drawn independently, according
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to the probability distribution P. In other words, a random training
sample of length m is an element of Z™ distributed according to the
product probability distribution P™.

We now turn our attention to measuring how well a given function
computed by the network ‘approximates’ the process generating the
data. Let us denote the set of all functions the network can compute by
H rather than Hy (to keep the notation simple, but also because the
model of learning to be defined can apply to learning systems other than
neural networks). Given a function h € H, the error of h with respect to
P (called simply the error of h when P is clear) is defined as follows:{

erp(h) = P{(z,y) € Z : h(z) # y} .

This is the probability, for (z,y) drawn randomly according to P, that
h is ‘wrong’ in the sense that h(z) # y. The error of h is a measure of
how accurately h approximates the relationship between patterns and
labels generated by P. A related quantity is the sample error of h on
the sample z (sometimes called the observed error), defined to be

éru(h) = - [{i: 1< § Smand hz) £ 4}l

the proportion of labelled examples (z;,;) in the training sample 2 on
which h is ‘wrong’. The sample error is a useful quantity, since it can
easily be determined from the training data and it provides a simple
estimate of the true error erp(h).

It is to be hoped that, after training, the error of the function com-
puted by the network is close to the minimum value it can be. In other
words, if h is the function computed by the network after training (that
is, h is the hypothesis returned by the learning algorithm), then we
should like to have erp(h) close to the quantity

optp(H) = ;g,f, erp(g).

This quantity can be thought of as the approzimation error of the class
H, since it describes how accurately the best function in H can ap-
proximate the relationship between « and y that is determined by the
probability distribution P. (Note that we take an infimum rather than
simply a minimum here because the set of values that erp ranges over

1 The functions in H have to be measurable, and they also have to satisfy some
additional, fairly weak, measurability conditions for the subsequent quantities to
be well-defined. These conditions are satisfied by all function classes discussed in
this book.
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may be infinite.) More precisely, a positive real number ¢ is prescribed
in advance, and the aim is to produce h € H such that

erp(h) < optp(H) + €.

We say that such an h is e-good (for P). The number ¢ (which we may
take to belong to the interval (0,1) of positive numbers less than 1),
is known as the accuracy parameter. Given the probabilistic manner
in which the training sample is generated, it is possible that a large
‘unrepresentative’ training sample will be presented that will mislead a
learning algorithm. It cannot, therefore, be guaranteed that the hypoth-
esis will always be e-good. Nevertheless, we can at least hope to ensure
that it will be e-good with high probability—specifically, with probabil-
ity at least 1 — §, where 4, again prescribed in advance, is a confidence
parameter. (Again, we may assume that § € (0,1).)

Formal definition of learning

We are now in a position to say what we mean by a learning algorithm.

Informally, a learning algorithm takes random training samples and
acts on these to produce a hypothesis h € H that, provided the sample
is large enough, is, with probability at least 1 — J, e-good for P. Fur-
thermore, it can do this for each choice of € and § and regardless of the
distribution P. We have the following formal definition.

Definition 2.1 Suppose that H is a class of functions that map from a
set X to {0,1}. A learning algorithm L for H is a function

o0
L:|Jz"-H
m=1

from the set of all training samples to H, with the following property:

e given any ¢ € (0,1),

e given any d € (0,1),
there is an integer mo(e,d) such that if m > mo(e, 8) then,

o for any probability distribution P on Z = X x {0,1},

if z i3 @ training sample of length m, drawn randomly according to the
product probability distribution P™, then, with probability at least 1 -4,
the hypothesis L(z) output by L is such that

erp(L(z)) < optp(H) +¢.
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More compactly, for m > my(e, 8),
P™ {erp(L(z)) < optp(H) +€} >1-4.
We say that H is learnable if there is a learning algorithm for H.

Equivalently, a function L is a learning algorithm if there is a function
€o('m, 8) such that, for all m, 4, and P, with probability at least 1 — ¢
over z € Z™ chosen according to P™,

erp(L(2)) < optp(H) + €o(m, 6),

and for all § € (0,1), €o(m,d) approaches zero as m tends to infinity.
We refer to €p(m,d) as an estimation error bound for the algorithm L.
In analysing learning algorithms, we often present results either in the
form of sample complexity bounds (by providing a suitable my(e, )
or estimation error bounds. It is usually straightforward to transform
between the two.

For a neural network N, we sometimes refer to a learning algorithm
for Hy more simply as a learning algorithm for N.

There are some aspects of Definition 2.1 that are worth stressing.
Note that the learning algorithm L must ‘succeed’ for all choices of the
accuracy and confidence parameters ¢ and 4. Naturally, the quantity
mo(€,d), known as a sufficient sample size for (¢,0)-learning H by L,
is allowed to vary with € and 4. This is to be expected since decreas-
ing the value of either € or § makes the learning problem more difficult
(and hence we should be prepared to use a larger sample). Note, how-
ever, that mg(¢,d) depends in no way on P; that is, a sufficient sample
size can be given that will work for any fixed distribution P. This is
desirable because P is unknown; it is not given as an input to the learn-
ing problem in the way that ¢ and § are. We could have defined the
learning problem so that the sample size is allowed to vary with the
distribution. However, if the sample complexity depends on the proba-
bility distribution, we would need to have some information about the
distribution in order to get sample size bounds. Many simple pattern
classification techniques (such as certain nearest neighbour algorithms
and kernel methods) are known to give predictions that are asymptoti-
cally optimal, in the sense that for any probability distribution, the error
approaches that of the best deterministic classifier (the ‘Bayes optimal’),
as the amount of training data increases. On the other hand, the rate at
which the error converges can be made arbitrarily slow by suitable choice
of the probability distribution. This is one of the main motivations for
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considering classes like neural networks. We shall see that, because these
classes are not too complex, we can prove estimation error convergence
rates that apply to every probability distribution.

Learnability may appear difficult to achieve, particularly in view of
the ‘distribution-independence’ (that is, the need for a sufficient sample
size that is independent of P). However, we show in this chapter that if
the class H consists of a finite number of functions then H is learnable,
and in subsequent chapters we establish the learnability of many other
classes.

It is of central importance to determine whether a given set H of
functions is learnable and, if so, to design a learning algorithm for H.
One measure of the efficiency of a learning algorithm is the minimum
sample size mq(e,d) sufficient for learning to the levels of accuracy and
confidence prescribed by ¢ and §. We define the sample complezity
function my(e,d) of L as the smallest integer that can be taken to be
mp(€,d) in Definition 2.1; that is,

mpr(e,6) = min{m :mis a sufficient sample size
for (e,d)-learning H by L}.

Similarly, we define the estimation error e (m,d) of L to be the smallest
possible estimation error bound. It is also useful to define the inherent
sample complexity mpy/(e,8) of the learning problem for H:

mp(e,0) = I'flLiIl my (e, 6),

where the minimum is taken over all learning algorithms for H. The
inherent sample complexity my(e,d) provides an absolute lower bound
on the size of sample needed to (e, §)-learn H, no matter what learning
algorithm is being used. The inherent estimation error ez (m, §) may be
defined similarly.

Notice that these definitions allow us to separate the problems of
approximation and estimation introduced in Chapter 1. The approxi-
mation error is measured by optp(H), and a quantitative answer to the
estimation question is provided by ex(m,d) (and my/(e,9)).

Although we have used the term ‘algorithm’, we have not been at
all specific about the computational or algorithmic aspects of learning.
Later in the book, we investigate the important issue of the computa-
tional complezity of learning. For the moment, we simply regard a learn-
ing algorithm as a function and concentrate on quantifying the sample
complezity of learning.
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2.2 Learning Finite Function Classes

In this section we show that there are particularly simple learning algo-
rithms for finite classes of functions. These algorithms use the sample
error as an estimate for the true error and choose as output hypothesis
a function in the class with minimal sample error. This works since the
sample errors converge in a certain manner to the true errors, as the
sample length is increased.

For many neural networks N, the class Hy of functions computable
by the network is finite. For example, any neural network with a binary
output defined on a finite input set (such as a neural network accepting
only binary-valued inputs) will compute a finite number of functions.
Furthermore, neural networks defined on real inputs but having weights
that can take only a finite number of values also have finite Hy.

A ‘uniform convergence’ result, and learning using sample
error

The aim of learning is to produce a function h in H that has near-
minimal error erp(h). Given that the true errors of the functions in H
are unknown, it seems natural to use the sample errors as estimates.
We might believe that if a function has small sample error then it has
small true error. In this vein, suppose that an algorithm L chooses L(z)
having minimal sample error on z; that is,

ér,(L(2)) = Eg}r} ér,(h).

In the remainder of this section we show that such an L is a learning
algorithm whenever H is finite.

The following result will be useful. It shows that, given any h € H
and given a large enough random sample, the sample error of h is close
to the true error of h. This is unsurprising, as it is just a ‘Law of Large
Numbers’ result from probability theory, telling us how rapidly the tails
of a binomial distribution approach zero. (If we toss a coin a number
of times, this theorem describes the rate at which the relative frequency
of heads approaches the probability of a head. In this analogy, the
probability of a head is erp(h), and the relative frequency of heads is
érz(h).)

Theorem 2.2 Suppose that h is a function from a set X to {0,1}. Then
P™ {6t (k) — exp(B)| 2 €} < 2exp(~2¢*m),
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erp(h)  €r:(h)

L(z) h* H

Fig. 2.1. If every h in function class H has erp(h) close to €r;(h), minimizing
ér,(h) will approximately minimize erp(h).

for any probability distribution P, any €, and any positive integer m.

Proof The theorem is a restatement of Hoeffding’s inequality (Inequal-
ity (1.16) in Appendix 1). To see this, let X3, Xs,...,X;, be a se-
quence of m {0,1}-valued random variables, where X; is 1 on z; =
(zs,9:) € Z if and only if h(z;) # yi;. Then the sample error of h on z
is (1/m) (X1 + X2+ -+ - + Xp,), and the expectation of each X; equals
P{h(z) # y}, which is erp(h). O

We wish to show that any algorithm L that minimizes sample error
on z is a learning algorithm when H is finite. Theorem 2.2 shows that
for any particular h € H, the sample error and error of h are close with
high probability. But this is not quite sufficient to ensure that L learns.
Rather, since L examines the sample error of every h € H and chooses
the one that gives minimal sample error, we would like the sample error
of every h € H to be close to its true error. Figure 2.1 illustrates why, if
this is so, then minimizing ér,(h) will approximately minimize erp(h).
The following result is of the required type.
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Theorem 2.3 Suppose that H is a finite set of functions from a set X
to {0,1}. Then

P™ {Iglea%c |ér, (k) — erp(h)| > e} < 2|H| exp(—2¢°m),
for any probability distribution P, any €, and any positive integer m.

Proof We use Theorem 2.2, as follows.

m 33 —
P {Izleal){(lerz(h) erp(h)IZe}

= pm (U {z€ Z™ :|ér,(h) —erp(h)| > e})

heH
< Y P™{fer.(h) —erp(h)| > €}
heH
< |H| (2exp(—2€6°m)),

as required. (The first inequality—that the probability of a union of
events is no more than the sum of their probabilities—is known as the
union bound.) O

Theorem 2.3 is an example of a uniform convergence result; it shows
that the sample errors converge (in probability) to the true errors, uni-
formly over H, as m tends to infinity. We apply this theorem to obtain
our first learnability result.

Theorem 2.4 Suppose that H is a finite set of functions from a set
X to {0,1}. Let L : ;.., Z™ — H be such that for any m and any
z€Z™,

ér,(L(2)) = hmelII} ér,(h).

Then L is a learning algorithm for H, with estimation error

eL(m,6) < (m (2'5'))1/2,

and sample complexity

mpg(e,0) < < (2|fl)

Proof We must show that erp(L(2)) is not much bigger than optp(H) =
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infreprerp(h). Since H is finite, this infimum is attained; that is, there
is h* € H such that erp(h*) = optp(H). Theorem 2.3 states that

pm {r}fleaf.){c |ér2(h) — erp(h)| > e} < 2|H|exp (—2¢°m),
and this is no more than § if
1. (2H\\Y?
2 (@ (%))
In this case, with probability at least 1 — ¢, for every h € H,

erp(h) — e < ér,(h) < erp(h) + ¢,

and so,

erp(L(z))

IA

ér,(L(2)) +¢
min €r, (h) + €

ér,(h*) +¢
(erp(h*) +¢€) +¢
optp(H) + 2e.

A IA

Hence, with probability at least 1 — 4§, L returns a function h with
1/2
erp(h) < optp(H) + (%ln (.2|6i|)) .

Solving for m gives the sample complexity bound. O

2.3 Applications to Perceptrons
We have already mentioned that for many neural networks N the class
Hp of computable functions is finite. We now give two specific examples,
both of which are types of perceptron. The perceptron was introduced
in Section 1.2. Recall that, for an input ¢ € R®, the parameterized
function describing the mapping computed by a perceptron is

F(wax) = F((wl’w%'°-vwnso)’(x1)m2a“-1xn))

n
sgn (Z wW;T; — 0) .
j=1

In order to ensure that the function class is finite, we now consider
perceptrons in which there are restrictions on the allowable values of the
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weights and threshold. First, we consider what we call the binary-weight
perceptron, where each non-threshold weight can be only 0 or 1, and the
threshold @ can only be an integer in the range 0 to n (where n, as usual,
is the number of inputs). Since there are 2 choices for each of the n non-
threshold weights and n + 1 choices for the threshold, the total number
of states is (n + 1)2". Hence, for this network N, |Hy| < (n + 1)2%,
using the fact that the number of functions computable by a neural
network is bounded by the number of states. Secondly, we consider the
k-bit perceptron, in which the states are those for which the weights and
threshold are expressible in binary as integers of length k (where one
of the bits encodes the sign of the weight or threshold). There are 2*
possibilities for each weight and threshold and so, for this network N,
|HN'| < (2k)n+1 = 9k(nt+1)

We may apply Theorem 2.4 directly. (We state only sample complex-
ity bounds in the following result, but estimation error bounds follow
immmediately.)

Theorem 2.5 Let N be the binary-weight perceptron on n inputs, and
let Z =R" x {0,1}. Suppose that L : |J;,, Z™ — Hy is such that for
anym and any z € Z™,

ér,(L(2)) = 2 ér,(h).
Then L is a learning algorithm for Hy and its sample complexity satis-

fies the inequality

]

for all ¢,6 € (0,1). The same statement holdrs for the k-bit perceptron
N', with mq(e, 8) replaced by

mg(e,8) = 632 (k(n+ 1)In2+1In (%)) .

mi(e,8) < mole,6) = 632 (nln2 +in(n+1)+1n (3)) ,

2.4 Restricted Model
Definitions

As we emphasized, in the model of learning we have considered, it is not
assumed that there is a ‘target function’ computable by the network.
But if this is the case, one can obtain learnability results with smaller
sufficient sample sizes.
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To describe this restricted model of learning, let H be a set of {0,1}-
valued functions on a set X and, rather than having an arbitrary distri-
bution P on Z = X x {0,1}, let us imagine that we have some target
function t, belonging to H, and a probability distribution u on the set
X of inputs. We define the error of h € H with respect to ¢ and u to be

ery(h,t) = p{z € X : h(z) # t(z)}.

In this context, the training samples (rather than being arbitrary mem-
bers of Z) are of the form

((z1,t(z1)), (22, U(22))s - - - 5 (Tms tH(Zm)))

which we call the training sample corresponding to x and t. A learning
algorithm maps from such samples to H and satisfies the following: given
any €,6 € (0,1), there is mq(e,d) such that for m > my(e, ), for any
t € H and any probability distribution g on X, with p™-probability at
least 1 — 4, a random z € X™ is such that if

z= ((zl,t(ml))’ (z‘Zs t($2)), ey (mm’ t(mm)))

is the corresponding training sample, then er,(L(z)), the error of the
output hypothesis, is less than €. (In this case, since ¢t € H, we can aim
for arbitrarily small error, since the optimal error is 0.)

The restricted model may be regarded as a straightforward special
case of the model of learning described in this chapter. For, given any
t € H and a distribution p on X, there is a corresponding distribution
P on Z, in the sense that for any measurable subset A of X,

P{(z,t(z)) :z € A} = p(A),
P{(z,y):z€ A, y#tx)} = 0,

and, furthermore, erp(h) = er,(h,t). Thus the restricted learning prob-
lem corresponds to considering only a subset of all possible distributions
Pon Z.

Consistent learning algorithms

Given any training sample 2 corresponding to a function ¢ € H, there
is always at least one function in H that matches ¢t on the sample, in
the sense that its values on the z; agree with the labels ¢(x;). (Indeed,
the target function ¢ itself obviously has this property, and there may
be other such functions.) It turns out that any L returning a function
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h € H that matches the sample is a learning algorithm for a finite class
H. (Such a learning algorithm is said to be consistent.)

Theorem 2.6 Suppose that H is a finite set of functions from a set X to
{0,1}. Let L be such that for any m and for anyt € H, if c € X™ and
z i3 the training sample corresponding to x and t, then the hypothesis
h = L(2) satisfies h(z;) = t(z;) fori =1,2,...,m. Then L is a learning
algorithm for H in the restricted model, with sample complexity

mi(e,0) < mo(e,8) = —ln (|I;|)

Proof Let t € H and suppose h € H is such that
ery(h,t) =p{z € X : h(z) # t(z)} > ¢

Then the probability (with respect to the product distribution x™) that
h agrees with ¢ on a random sample of length m is clearly at most (1 —
€)™. This is at most exp(—em), using a standard approximation. Thus,
since there are certainly at most |H| such functions h, the probability
that some function in H has error at least ¢ and matches ¢ on a randomly
chosen training sample of length m is at most |H|exp(—em). For any
fixed positive d, this probability is less than & provided

m > mo(d,¢) = —ln (l;ﬂ) )

as required. O

The main difference between this sample complexity bound and that
given in Theorem 2.4 is the presence of 1/¢ rather than the larger 1/¢2.
We shall see this difference arise in a number of contexts. The intuitive
explanation of this improvement is that less data is needed to form an
accurate estimate of a random quantity if its variance is smaller.

2.5 Remarks
Learning with respect to a touchstone class
It is often useful to weaken the requirement of a learning algorithm by
asking only that (with high probability)

erp(L(2)) < optp(T) + €= tig;'erp(t) +€
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where T, called the touchstone class, is a subset of H. We call this
learning with respect to a touchstone class. What we require in this
modified framework is that L outputs a function whose error is close
to the smallest error achievable by a function in the class T' (and not
necessarily to the smallest error of a function in the full class H). For
example, in learning with a multi-layer neural network, we might be
satisfied if, after training, the network computes a function that is almost
as good as any function a simple perceptron could compute. The model
of learning we have considered may be viewed as the case in which
T = H. Sometimes it is computationally easier to learn with respect to
a touchstone class when T is a strict subset of H.

Bounding the expected value of error

In our definition of learning, we demand that if m > mg(e, §), then with
probability at least 1 — 4, erp(L(z)) < optp(H) + €. An alternative
approach would be to require a bound on the expected value of the
random variable erp(L(z)). Explicitly, we could ask that, given a €
(0,1), there is mg(a) such that

E (erp(L(2))) < optp(H) +

for m > mg(a), where E denotes the expectation over Z™ with respect
to P™. This model and the one of this chapter are easily seen to be
related. By Markov’s inequality (see Appendix 1),

E (erp(L(2))) < optp(H) + €0
<> E(erp(L(z)) — optp(H)) < €6

=> P™{erp(L(z)) —optp(H) > €} < fg =4.

Therefore, learnability in the alternative model implies learnability in
our model, and we may take mq(e, ) = mg(ef). Conversely, suppose

m - ) @
P {erp(L(2)) - optp(H) 2 5} < 5.
Then, since erp(L(2)) — optp(H) < 1 for all 2z, we have

E(erp(L(2) = optp(H)) < ZP™{erp(L(z)) - optp(H) < 5} +

P {erp(L(2)) - optp(H) > 5 }
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It follows that learnability in the sense of this chapter implies learnability
in the alternative model, and we may take mgy(a) = mo(a/2, a/2).

2.6 Bibliographical Notes

For an introduction to measure theory and probability, see, for example,
(Billingsley, 1986; Feller, 1971).

The problem of supervised learning for pattern classification is an old

one, and there are many books discussing it. See, for instance, the books
of Duda and Hart (1973), and Devroye, Gyérfi and Lugosi (1996). The
probablistic models of learning discussed in this chapter derive from a
model due to Valiant (1984b). (Valiant, however, emphasizes the compu-
tational complexity of learning, something we do not address until later
in this book.) In fact, the ‘Probably Approximately Correct’ (PAC)
model as originally developed is precisely our restricted model of learn-
ing; our main model of learning is a form of ‘agnostic PAC learning’,
studied by Haussler (1992), Kearns, Schapire and Sellie (1994), Maass
(1995), and others.
' The existence of universal asymptotically optimal pattern classifica-
tion schemes was first shown by Stone (1977). Devroye (1982) showed
that the rate at which the error of such schemes converges to the Bayes
optimal can be arbitrarily slow.

The fact that finite hypothesis spaces are learnable in the restricted
model was shown by Valiant (1984b). Blumer, Ehrenfeucht, Haussler
and Warmuth (1989) highlighted the important role of consistent learn-
ing algorithms in learning, building on work of Vapnik and Chervonenkis
(1971).

The notion of a touchstone class has been studied by Kearns et al.
(1994). Later in the book, we shall see an example of a neural network
class that can be learnt efficiently using a larger class of functions.

The learning model that focuses on the expected value of error has
been investigated by Haussler, Littlestone and Warmuth (1994); see also
(Devroye and Lugosi, 1995). The relationship between this model, the
restricted model, and many other learning models is studied in (Haussler,
Kearns, Littlestone and Warmuth, 1991).

There has been a great deal of work on learning models that re-
lax Valiant’s PAC model (the restricted model). For instance, these
models allow noisy labels (Angluin and Laird, 1988; Kearns and Li,
1993; Sloan, 1995; Cesa-Bianchi, Fischer, Shamir and Simon, 1997), re-
lax the assumptions of the independence of training examples (Aldous
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and Vazirani, 1990; Bartlett, Fischer and Hoffgen, 1994), relax the as-
sumption that the distribution generating training examples is fixed
(Bartlett, 1992; Bartlett, Ben-David and Kulkarni, 1996; Barve and
Long, 1997; Freund and Mansour, 1997), relax the assumption that the
relationship between the examples and their labels is fixed (Kuh, Petsche
and Rivest, 1991; Blum and Chalasani, 1992; Helmbold and Long, 1994),
relax the requirement that the sample size bounds apply to all distribu-
tions (Benedek and Itai, 1991) and functions (Benedek and Itai, 1988),
and restrict consideration to some restricted set of probability distribu-
tions (Li and Vitdnyi, 1991; Li and Vitdnyi, 1993). In other models, the
training examples are not randomly chosen; they may be chosen by the
learner, and labelled by an oracle (Angluin, 1988; Angluin, 1992), or they
may be chosen by a helpful teacher (Shinohara and Miyano, 1991; Gold-
man and Kearns, 1991; Jackson and Tomkins, 1992; Anthony, Brightwell
and Shawe-Taylor, 1995).



3
The Growth Function and VC-dimension

3.1 Introduction

The previous chapter gave a formal definition of the learning problem,
and showed that it can be solved if the class Hy of functions is finite.
However, many interesting function classes are not finite. For example,
the number of functions computed by the perceptron with real-valued
weights and inputs is infinite. Many other neural networks can also be
represented as a parameterized function class with an infinite parameter
set. We shall see that learning is possible for many (but not all) function
classes like this, provided the function class is not too complex. In this
chapter, we examine two measures of the complexity of a function class,
the growth function and the VC-dimension, and we show that these are
intimately related. In the next two chapters, we shall see that the growth
function and VC-dimension of a function class determine the inherent
sample complexity of the learning problem.

3.2 The Growth Function

Consider a finite subset S of the input space X. For a function class H,
the restriction of H to the set S (that is, the set of restrictions to S of
all functions in H) is denoted by H|;. If H|, is the set of all functions
from S to {0, 1}, then clearly, H is as powerful as it can be in classifying
the points in S. We can view the cardinality of Hj; (and in particular
how it compares with 25 I) as a measure of the classification complexity
of H with respect to the set S.
The growth function of H, IIg : N = N, is defined as

Hpg(m) =max {|H;|: $C X and |S| =m}.
Notice that Ilg(m) < 2™ for all m. If H is finite, then clearly Ilg(m) <

29
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|H| for all m, and IIg(m) = |H| for sufficiently large m, so the growth
function can be considered to be a refinement of the notion of cardinality
that is applicable to infinite sets of functions.

As an example, we shall calculate the growth function for the percep-
tron. By a dichotomy (by H) of a finite subset S of the input space,
we mean one of the Il 5 (S) ways in which the set S can be classified by
functions in H into positive and negative examples; that is, a dichotomy
is one of the functions f : § = {0,1} in H|;. To count the number of
dichotomies of a subset of the input space, it is convenient to consider
the parameter space. If we divide the parameter space into a number
of regions, so that in each region all parameters correspond to the same
dichotomy of the set, we can then count these regions to obtain an upper
bound on the number of dichotomies. We shall see in later chapters that
this approach is also useful for more complex function classes.

Theorem 3.1 Let N be the real-weight simple perceptron with n € N
real inputs and H the set of functions it computes. Then

g (m) =2Xn: (mk"l).

k=0

Here,

(:) _afa- 1)--1-)!(a—b+1)

for any @ > 0 and b > 0. By convention, we define (§) = 1 for any a > 0.
Notice that (§) =0 for b > a, and it is easy to see that Y ;_, (7) = 2™
for n > m.

The proof of Theorem 3.1 involves three steps. We first show that the
number of dichotomies of a set of m points is the same as the number
of cells in a certain partition of the parameter space (defined by the
points). Then we count the number of these cells when the points are in
general position. (A set of points in R" is in general position if no subset
of k41 points lies on a (k—1)-plane, for k = 1,...,n.) Finally, we show
that we can always assume that the points lie in general position, in the
sense that if they are not, then this can only decrease the number of
dichotomies.

The set of parameters for a real-weight simple perceptron with n in-
puts is K* x R, which we identify with R**!, For a subset S C R**! of
this space, we let CC(S) denote the number of connected components of
S. (A connected component of S is a maximal nonempty subset A C S
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such that any two points of A are connected by a continuous curve lying
in A.)

Lemma 3.2 For a set S = {z1,...,2m} C R"*, let P, P,,..., Py, be the
hyperplanes given by

P, = {(w,0) e R Tz, —0= 0}.
Then

|H,| =CC (R"‘” -U P,-) :
i=1

Proof Clearly, |H| s| is the number of nonempty subsets of parameter
space R**! of the form

{(w,0) e R**! :sgn(wTz; ~ ) =b; fori=1,...,m}, (3.1)

where (b1,b2,...,bn) runs through all 2™ {0,1}-vectors. Let C =
R+ —|Ji2; P;. In every connected component of C, the sign of wTz; —6
is fixed, for ¢ = 1,...,m. Hence each distinct connected component of
C is contained in a distinct set of the form (3.1), and so

|H}5| > CC(0).

To prove the reverse inequality, we show that every set of the form (3.1)
intersects exactly one connected component of C. First, if a set (3.1)
contains (w,8) for which wTxz; — 6 # 0 for all 4, then it intersects ex-
actly one connected component of C, as desired. But every set of the
form (3.1) contains such a point. To see this, suppose (w,8) satisfies
sgn(wTz; —0) = b; for i = 1,...,m. Define

6= min{le:z:i —0| cwla; — 0 £ 0}.
Then (w,8 — §/2) also satisfies sgn(wTz; — 8) = b; for all i, but in
addition wTz; — @ # 0 for all 5. It follows that
|H}s| < CC(O).
O

Figure 3.1 shows an example of an arrangement of three hyperplanes
in R?, defined by three points in R. It turns out that the number of
cells does not depend on the choice of the planes P; when the points in
S are in general position, as the following lemma shows. Before stating
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Fig. 3.1. The planes P,, P;, and P; (defined by points z1,z2,z3 € R) divide
R? into six cells.

this lemma, we note that the planes in Lemma 3.2 may be expressed in
the form

P, = {v e R 0Tz = 0},

for i = 1,...,m, where 27 = («F,~1). When the z; are in general
position, every subset of up to n+1 points in {21, 22, ..., 2} is linearly
independent. To apply the lemma, we shall set d = n + 1.

Lemma 3.3 For m,d € N, suppose T = {z1,...,2m} C R? has every
subset of no more than d points linearly independent. Let P, = {v € R¢ :
vT2;=0} fori=1,...,m, and define

C(T)=CC (Rd - G Pi) .

Then C(T) depends only on m and d, so we can write C(T') = C(m,d),
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P, Py

......... ——

N
R R e T

Fig. 3.2. Planes P;, Pz, and P in R®. The intersections of P; and P, with P
are shown as bold lines.

and for all m,d > 1, we have
m-1
C(m,d) =2 . 3.2
ma=23 (") 52)

Proof First notice that linear independence of every subset of up to d
points of T is equivalent to the condition that the intersection of any
1 < k < d linear subspaces P; is a (d — k)-dimensional linear subspace
(a ‘(d — k)-plane’). With this condition, it is clear that C(1,d) = 2 for
d > 1, and C(m,1) =2 for m > 1, so (3.2) holds in these cases. (Recall
that (™) = 1 for any positive m.)

We shall prove the lemma by induction. Assume that the claim is
true for all T C R/ with |T'| < m and j < d. Then suppose that we have
m planes Py, ..., P, satisfying the independence condition, and that we
introduce another plane P so that the linear independence condition for
the corresponding m + 1 points is satisfied. (See Figure 3.2.)

Consider the m intersections of the new plane P with each of the pre-
vious planes. By the linear independence condition, each intersection is
a (d — 2)-plane in the (d — 1)-plane P, and all of these (d ~ 2)-planes
satisfy the independence condition in P (that is, the intersection of any
1<k <d-1of them is a (d — 1 — k)-plane). Clearly, having inter-
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sected Pi,..., P, the number of new components of R? obtained by
then introducing P is exactly the number of connected components in P
defined by the m (d—2)-planes in P. (For every connected component of
P—JZ, P, there are two connected components of R? —JI~; P;, one to
either side of P, that were a single component before P was added. Con-
versely, every new component created by the addition of P is a subset
of some component C of R¢ — UL, Pi, and must have a corresponding
new component on the ‘other side’ of P. Since C is connected, there
must be a connecting point in P, but C C R¢ —|JI2, P;, so this point is
in P—;~, Pi.) The inductive hypothesis then shows that the number
of connected components in our arrangement depends only on m and d,
and is given by

Cim+1,d) = C(m,d)+C(m,d-1)
-(ECE0)
=22 () (2)
() E)

It follows that (3.2) is true for all m,d > 1. O

Proof (of Theorem 3.1) Let S = {z1,z2,...,2m} be an arbitrary
subset of X = R". Applying Lemmas 3.2, 3.3, and the observations
before Lemma 3.3, we see that if S is in general position then

|His | =C(m,n+1)=2kz:(:)(m;1).

If S is not in general position, then suppose that H|; = {f1,...,fx},

and that, for ¢ = 1,2,...,m, (w;,6;) corresponds to the function f; as
follows:
1 ifwlz; —0;,>0
() = j iZ
f3(=s) { 0 otherwise.

Then let
8 = min{|wlz; — 8;] : 1 < i < m, wlz; — 6; #0},

and § = min; é;. Now if we replace each 8; by 8' = 8; — §/2, we obtain
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a set of parameters (wj,§;) corresponding to the functions in H|,, with
the additional ‘separation’ property that Iw}‘m.- ~6;1>6/2>0foralli
and j.

Clearly, it is possible to perturb the points in S so that for any set §
within some sufficiently small ball,

'Hlsl < |Hls| . (3.3)

(If we define W = max; ||lw;]|, then any point in S can be moved any
distance less than §/(2W) without altering the classifications of the point
by the functions f;.) Now, general position is a generic property of a
set of points in K", in the sense that the set of m-tuples of points in
R™ that are not in general position has Lebesgue measure zerof when
regarded as a subset of R™". As a result, within the ball of perturbed
sets S satisfying (3.3), we can always find some set in general position,
so that

|H|§| =C(m,n + 1),

which, together with (3.3), shows that the number of dichotomies is
-maximal for points in general position. W]

3.3 The Vapnik-Chervonenkis Dimension

For a function class H and a set S of m points in the input space X,
if H can compute all dichotomies of S (in our notation, if |H| s| = 2™),
we say that H shatters S. The Vapnik-Chervonenkis dimension (or
VC-dimension) of H is the size of the largest shattered subset of X (or
infinity, if the maximum does not exist). Equivalently, the VC-dimension
of H is the largest value of m for which the growth function Iy (m)
equals 2™, We shall see that the behaviour of the growth function
is strongly constrained by the value of the VC-dimension, so the VC-
dimension can be viewed as a ‘single-integer summary’ of the behaviour
of the growth function.

t If S is not in general position, some subset of S of size k+ 1 lies on a (k — 1)-plane,
for some 1 < k < n. This means that the determinant of some (k + 1) x (k+1)
matrix constructed from an axis-orthogonal projection of the elements of this
subset is zero. However, there is a finite number of these matrices, and their
determinants are analytic (polynomial) functions of the m points. Clearly, each of
these functions is not identically zero, so the set of points that are not in general
position has Lebesgue measure no more than the sum of the measures of the zero
sets of these analytic functions, which is zero.
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For the perceptron, we have

n
m-—1
Oa(m) = 23 ( : )
k=0
2m ifn>m-1
m=-2 E;cn;nl...l (™1} otherwise,

and this is less than 2™ exactly when m > n+2, so VCdim(H) = n+1.

As an illustration of the notion of VC-dimension, the proof of the
following theorem gives an alternative derivation of the VC-dimension
of the perceptron.

Theorem 3.4 Let N be the real-weight simple perceptron with n € N
real inputs. Then a set S = {z1,...,Zm} C R™ is shattered by H if
and only if S is affinely independent; that is, if and only if the set
{@T,-1),..., (=L, -1)} is linearly independent in R**. It follows that
VCdim(H) =n+1.

Proof We first show that if S is shattered by H then it must be affinely
independent. Suppose, to the contrary, that S is shattered by H, but is
affinely dependent. Then for any b € {0,1}™ there is a weight vector w
in R™, threshold @ in R, and vector v € R™ such that

zf -1

z7 -1 w
: (0)=“
L |
with v; > 0 if and only if b; = 1. Let {(w1,61),...,(wsm,02m)} be
a representative set of weights satisfying these constraints for binary
vectors by, b, . . ., bam, the 2™ possible values of b. Then there are vectors

v1,...,02m (whose components have the appropriate signs, determined
by the b;) such that

z7 -1
T
T2 -1 w W Wam
(01 02 “ee 02m )—('Ul-.-'v2m).
zf -1

But since we have assumed that S is affinely dependent, without loss of
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generality we can write
m—1
(em 1) = ai(e] -1)
i=1
for some a3 ...,am—1. It follows that all column vectors v; have v,; =
Y7 ajvji. If we choose i such that aju;; > Oforall1 < j <m -1,
then, necessarily, v,; > 0, which contradicts our assumption that the v;
together take on all 2™ sign patterns. It follows that VCdim(H) < n+1.
For the second part of the proof, suppose that S is affinely indepen-
dent. Then the matrix

zf -1
¥ -1
I -1

has row-rank m. So for any vector v € R™ there is a solution (w,8) to
the equation

=7 -1
¥ -1 w

: (0)=“
zb -1

from which it immediately follows that S can be shattered. Clearly,
VCdim(H) > n + 1. a

This result can be generalized to any function class H whose members
are thresholded, shifted versions of elements of a vector space of real
functions; that is, to a class of the form H = {sgn(f + g) : f € F}, where
g is some fixed real function and F satisfies the linearity condition: for
all f1,f2 € F and a;, a3 € R, the function a3 f; + as f2 also belongs to
F. Recall that the linear dimension dim(F) of a vector space F is the
size of a basis, that is, of a linearly independent subset {f,...,f4} C F

for which {$L, cifi ;s €R} = F.

Theorem 3.5 Suppose F is a vector space of real-valued functions, g is a
real-valued function, and H = {sgn(f + g) : f € F}. Then VCdim(H) =
dim(F).

Proof The proof is similar to that of Theorem 3.4. Let {fi,..., f4} be
a basis for F. Then, if {z;,22,...,Zm} is shattered by H, there are
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vectors vy, vz, ..., vsm taking (as in the previous proof) all possible sign
patterns, and corresponding w;, ws,...,ws= € R? such that
9(@1) g(@) - g(=1)
g(z2) g(z2) -+ g(22)
M(W1"‘U)2m)=('vl""l)2'H)— . . . ,
9(zm) g(zm) - 9(xTm)
(3.4)

where

fi(z)  fa(m1) - falz1)
f@2)  fa(ze) - faza)

filem) Folom) - fol@m)

(The proof for the simple perceptron effectively uses the basis functions
ficzrzifori=1,...,nand fp41: x> —1,it hasg:z — 0, and it
denotes the last entry of w; by 6;.)

If m > d then the matrix M on the left of Equation (3.4) is not of
row-rank m, so as in the proof of Theorem 3.4, we may assume that its
last row can be written as a linear combination of the other rows. With
vj; and o; defined as in the previous proof, we then have

m=1 m=1
Umi = Z a;vji + 9(Tm) — Z a;9(z;).
j=1 i=1
If g(zm) — 2; @jg(z;) 2 0, choose i such that a;jv;; > 0forall 1 <j <
m —1, and we see that v,; > 0. Otherwise, choose i such that a;jv; <0
for all j, and we see that v,,; < 0. In either case, the v; do not take all
2™ sign patterns, and so VCdim(H) < d.

Conversely, since {fi, f2,...,fa} is a basis of F, there is a d-set
{z1,%2,...,24} such that the linear system of equations (3.4) is full-
rank. To see why, suppose that for any d-set {z1,...,z4}, the rows of
the matrix M form a linearly dependent set. Then the vector space V
spanned by all vectors of the form (fi(z), f2(2),..., fa(z)) as = ranges
through all of the domain of F', has linear dimension at most d — 1, since
it has no basis of length d. But this would mean that fi,..., fs were
linearly dependent, which is not the case. It now follows, as in thie proof
of Theorem 3.4, that VCdim(H) > d. O

As mentioned above, we shall see that the growth function determines
the inherent sample complexity of the learning problem. The following
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useful result shows that the behaviour of the growth function is strongly
constrained by the VC-dimension.

Theorem 3.6 For a function class H with VCdim(H) = d,

Ma(m) < 3° (T) (35)

i=0

for all positive integers m.

Proof For m < d, inequality (3.5) is trivially true since in that case the
sum is 2™. Assume, then, that m > d and fix a set S = {z1,...,2m} C
X. We will make use of the natural correspondence between {0,1}-
valued functions on a set and subsets of that set by defining the set
system (or family of sets)

F={{z;€S: f(z;) =1}: f € H}.

The proof proceeds by creating a transformed version F* of F that is
an ideal and has the same cardinality as F. (A set F* of subsets is an
ideal if each set in F* has all of its subsets also in F*.) We then prove
that

A=r1< 3 (),

i=0
which will yield the result, since S was chosen arbitrarily.
For an element z of S, let T, denote the operator that, acting on a set

system, removes the element 2 from all sets in the system, unless that
would give a set that is already in the system:

T, (F)={A-{z}:Ac FJu{Ade F: A- {z} € F}.

Consider now F* = Ty, (Ty, (- - T, (F) - - -)). Clearly, |F*| = |F}. Fur-
thermore, for all z in S, Tx(F*) = F*, so F* is an ideal.

To prove the bound on the cardinality of F*, it will be useful to define
the notion of shattering for a family of subsets, in the same way as for
a family of {0,1}-valued functions. For R C S, we say that F shatters
Rif FNR={ANR: A€ F} is the set of all subsets of R.

Suppose we can show that any subset shattered by F* is also shattered
by F. This would imply that 7* can only shatter sets of cardinality at
most d. Since F* is an ideal, this would mean that the largest set in F*
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has cardinality no more than d. It would then follow that

d
171y (m>
i=0 ¢
(since this expression is the number of subsets of S containing no more
than d elements), and hence that |F| is bounded as required.

It suffices therefore to show that, whenever F* shatters a set, so does
F. For z in S, and R C S, suppose, then, that T;(F) shatters R. If z is
not in R, then, trivially, F shatters R. If z is in R, then for all AC R
with z not in A, since T,(F) shatters R we have A € T,(F) N R and
AU {z} € T,(F) N R. By the definition of the operator T}, this implies
A€ FORand AU {z} € FnR. This shows that F shatters R. The
result follows. O

Theorem 3.6 has the following corollary, which makes it explicit that a
function class of finite VC-dimension has polynomially-bounded growth
function.

Theorem 3.7 Form >d > 1,

=0 (T) < (%)d° (3.6)

Hence, for a function class H with VCdim(H) = d,
=2m ffm<d
< () ifm>d,

and, form > 1, Og(m) <m? +1.

M=

g (m) { (3.7)

Proof For 0 < i <dand m > d, (m/d)%d/m)’ > 1. Hence,

d d
> (7) < w3 (7)) @m) < (mfa + ajmym < (mefay?
=0 i=0
where the second inequality follows from the Binomial Theorem (Equa-
tion (1.6) in Appendix 1), and the last inequality follows from Euler’s
Inequality (Inequality (1.4) in Appendix 1).

The bound I (m) < m? + 1 follows from Theorem 3.6. 0

This result, together with the definition of the VC-dimension, imme-
diately gives the following corollary, which shows that the log of the
growth function is within a log factor of the VC-dimension.
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Corollary 3.8 For a function class H with VCdim(H) = d, if m > d
then

d < log, Ty (m) < dlogy(em/d).

3.4 Bibliographical Notes

The notion of VC-dimension was introduced by Vapnik and Chervo-
nenkis (1971). It has subsequently been investigated by many authors.
See, for example, (Bollobis, 1986, Chapter 17), in which it is referred to
as the trace number of a set system. Wenocur and Dudley (1981) named
VCdim(H) + 1 the VC-number of the class H. It seems that it was first
called the VC-dimension by Haussler and Welzl (1987). A number of
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learning problem that we study here. The VC-dimension has found
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Welzl, 1987; Matousek, 1995).

The inductive argument to count the number of cells in a hyperplane
arrangement was apparently first discovered by Schléfli in the last cen-
tury (see (Schlifli, 1950)). A number of authors have presented this
argument; see (Cover, 1965; Makhoul, El-Jaroudi and Schwartz, 1991).
" The linear algebraic proof of the VC-dimension of a thresholded vector
space of real functions (Theorem 3.5 and its corollary, Theorem 3.4) are
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The question of the possible rates of growth of Ix(m) was posed
by Erdés in 1970, and the answer (Theorem 3.6) was independently
discovered by a number of authors (Sauer, 1972; Shelah, 1972; Vapnik
and Chervonenkis, 1971); see (Assouad, 1983). This theorem is widely
known as Sauer’s Lemma. The proof presented here was first presented
by Steele (1978); see also (Frankl, 1983; Alon, 1983; Bollob4s, 1986).
The theorem can also be proved using an inductive argument that is very
similar to the argument used to prove the bound on the growth function
of the real-weight simple perceptron (Theorem 3.1). In addition, we
shall encounter a linear algebraic proof in Chapter 12.

The proof of Theorem 3.7 is due to Chari, Rohatgi and Srinivasan
(1994).
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General Upper Bounds on Sample
Complexity

4.1 Learning by Minimizing Sample Error

In Chapter 2, we showed that if a set H of functions is finite then it is
learnable, by a particularly simple type of learning algorithm. Specifi-
cally, if, given a training sample z, L returns a hypothesis L(z) such that
L(z) has minimal sample error on z, then L is a learning algorithm for
H. Generally, for any set H of {0,1}-valued functions (that need not
be finite), we define a sample error minimization algorithm} for H—
or SEM algorithm—to be any function L : |J;-_, Z™ — H with the
property that for any m and any z € Z™,

ér,(L(z)) = ’rzré'%ér,(h).

Thus, a SEM algorithm will produce a hypothesis that, among all hy-
potheses in H, has the fewest disagreements with the labelled examples
it has seen. Using this terminology, the learnability result of Chapter 2
(Theorem 2.4) has the following consequence.

Theorem 4.1 Suppose that H is a finite set of {0,1}-valued functions.
Then any SEM algorithm for H is a learning algorithm for H.

Our main aim in this chapter to show that the conclusion of Theo-
rem 4.1 also holds for many infinite function classes. Explicitly, we shall
show that if H has finite Vapnik-Chervonenkis dimension then any SEM
algorithm for H is a learning algorithm. Theorem 2.4 provides bounds
on the estimation error and sample complexity of SEM algorithms for
finite function classes. But as these bounds involve the cardinality of the
1 We are not yet explicitly concerned with questions of computability or computa-

tional complexity; thus, for the moment, we are content to use the term ‘algorithm’
when speaking simply of a function.

42
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function class, they are clearly inapplicable when H is infinite. We shall
see, however, that, for H of finite VC-dimension, the estimation error
and sample complexity of any SEM algorithm can be bounded in terms
of the VC-dimension of H. (To a first approximation, In |H| is replaced
by VCdim(H).) Moreover, we shall see that, for some finite classes, the
new bounds are better than those given earlier.

The main theorem is the following.

Theorem 4.2 Suppose that H is a set of functions from a set X to
{0,1} and that H has finite Vapnik-Chervonenkis dimensiont d > 1.
Let L be any sample error minimization algorithm for H. Then L is a
learning algorithm for H. In particular, if m > d/2 then the estimation
ervor of L satisfies

i setm0= (2 on(22) e (9

and its sample complezxity satisfies the inequality

mu(e,8) < mole, §) = g; (2d In (16-2-) +1n (%)) .

This is a very general result: the bound applies to all function classes
H with finite VC-dimension. It may seem surprising that such a simple
learning algorithm should suffice. In fact, we shall see in the next chapter
that the sample complexity bound applying to the SEM algorithm is
tight in the rather strong sense that no learning algorithm can have a
significantly smaller sample complexity. (In Part 4, we shall also see
that the computational complexity of learning cannot be significantly
less than that of minimizing sample error.)

4.2 Uniform Convergence and Learnability

As with the learnability result of Chapter 2, the crucial step towards
proving learnability is to obtain a result on the uniform convergence of
sample errors to true errors. The use of a SEM algorithm for learning
is motivated by the assumption that the sample errors are good indi-
cators of the true errors; for, if they are, then choosing a hypothesis
with minimal error is clearly a good strategy (as indicated in Chapter 2
by Figure 2.1). The following result shows that, given a large enough

t The restriction d > 1 is just for convenience. In any case, classes of VC-dimension
0 are uninteresting, since they consist only of one function.
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random sample, then with high probability, for every h € H, the sam-
ple error of h and the true error of h are close. It is a counterpart to
Theorem 2.2.

Theorem 4.3 Suppose that H is a set of {0, 1}-valued functions defined
on a set X and that P is a probability distribution on Z = X x {0,1}.
For 0 < € < 1 and m a positive integer, we have

2
P™ {lerp(h) — ér,(h)| > € for some h € H} < 411 (2m)exp (—G—ST-) .

The proof of this uniform convergence result is rather involved and is
deferred until the next section. However, notice that if Iy (2m) grows
exponentially quickly in m then the bound is trivial (it never drops below
1). On the other hand, if II5(2m) grows only polynomially quickly in
m, the bound goes to zero exponentially fast. So Theorem 4.2 follows
fairly directly from this result, as we now show.

Proof (of Theorem 4.2) We first show that if
lerp(h) —ér (k)] <e forallhe H, (4.1)

then erp(L(z)) is close to optp(H). We then use Theorem 4.3 to show
that the condition on e suffices (and we solve for m).

Suppose that (4.1) holds. Then we have
erp(L(2)) < ér,(L(2))+e

= min ér (h) + e (4.2)

Now, since H might be infinite, we cannot be sure that the infimum
optp(H) = infrey erp(h) is attained; we can, however, assert (since the
infimum is a greatest lower bound) that for any a > 0 thereis an h* € H
with erp(h*) < optp(H) + a. It follows from (4.1) and (4.2) that

erp(L(2)) < ér,(h")+¢

< erp(h*) + 2¢
< optp(H)+2e+a.

Since this is true for all a > 0, we must have
erp(L(2)) < optp(H) + 2¢.
Now, Theorem 4.3 shows that (4.1) holds with probability at least 1 — 4§
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provided
4115 (2m) exp(—€2m/8) < 6;
that is, provided
e€> % In (411 (2m)/6) .

So, applying Theorem 3.7, we have that, with probability at least 1 -4,
39 1/2
erp(L(2)) < optp(H) + <E (dIn(2em/d) + 1n(4/6))) .

For the second part of the theorem, we need to show that m > my(e, 8)

ensures that erp(L(z)) < optp(H) + €. Clearly, by the above, it suffices
if

m> %;‘1 (dlnm + din(2e/d) + In(4/8)) .

Now, since Inz < az —lna -1 for all a,z > 0 (Inequality (1.2) in
Appendix 1), we have

€2 €2 \ 64d €?

2 €2 ee? |’

IN

Therefore, it suffices to have

m> % 32 = (dIn(128/€%) + In(4/8)) ,

m > - (2dln(12/e) +1n(4/4))

suffices. d

4.3 Proof of Uniform Convergence Result

We now embark on the proof of Theorem 4.3. This is rather long and
can, at first sight, seem mysterious. However, we shall try to present it
in digestible morsels.
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High-level view

First, we give a high-level indication of the basic thinking behind the
proof. Our aim is to bound the probability that a given sample 2z of
length m is ‘bad’, in the sense that there is some function h in H for
which |erp(h) — ér,(h)| > . We transform this problem into one involv-
ing samples z = rs of length 2m. For such a sample, the sub-sample r
comprising the first half of the sample may be thought of as the orig-
inal randomly drawn sample of length m, while the second half s may
be thought of as a ‘testing’ sample which we use to estimate the true
error of a function. This allows us to replace erp(h) by a sample-based
estimate ér,(h), which is crucial for the rest of the proof. Next we need
to bound the probability that some function h has €r,(h) significantly
different from ér,(h). Since the labelled examples in the sample are cho-
sen independently at random (according to the distribution P), a given
labelled example is just as likely to occur in the first half of a random
2m-sample as in the second half. Thus, if we randomly swap pairs of
examples between the first and second halves of the sample, this will
not affect the probability that the two half-samples have different error
estimates. We can then bound the probability of a bad sample in terms
of probabilities over a set of permutations of the double sample. This
allows us to consider the restriction of the function class to a fixed dou-
ble sample and hence, for classes with finite VC-dimension, it reduces
the problem to one involving a finite function class. As in the proef
for the finite-case (Theorem 2.2), we can then use the union bound and
Hoeflding’s inequality.

Symmetrization

As indicated above, the first step of the proof is to bound the desired
probability in terms of the probability of an event based on two samples.
This technique is known as symmetrization. In what follows, we shall
often write a vector in Z?™ in the form rs, where r,s € Z™. The
symmetrization result is as follows.

Lemma 4.4 With the notation as above, let
Q ={z€ Z™: |erp(h) — ér,(h)| > ¢ for some h € H}
and

R={(rs) € 2™ x 2™ : |6, (k) — ér, ()] > 5 forsome he H} .
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Then, for m > 2/¢2,
P™Q) < 2P*™(R).
Proof We prove that P?™(R) > P™(Q)/2. By the triangle inequality,
if
lerp(h) — ér.(h)| > € and lerp(h) — ér5(h)| < €/2,
then |ér.(h) — ér,(h)| > €/2, so
P™R) > P2 {3he H, |erp(h) - ér,(h)] > ¢ and
lerp(h) — érs(h)| < €/2}
/ P™{s:3h € H, |erp(h) — €. (k)| > € and
Q

lerp(R) — €érs(h)] < €/2} dP™(r). (4.3)

Now, for r € @ fix an h € H with |erp(h) — ér,.(h)| > €. For this h, we
shall show that

P™ {lerp(h) — éxy(h)| < €/2} > 1/2. (4.4)
It follows that, for any r € Q we have

P™{s:3h € H, lerp(h) — €r.(h)| > € and |erp(h) — ér,(h)| < €/2}
>1/2,

and combining this result with (4.3) shows that P>™(R) > P™(Q)/2.
To complete the proof, we show that (4.4) holds for any h € H.
For a fixed h, notice that mér,(h) is a binomial random variable, with
expectation merp(h) and variance erp(h)(1 — erp(h))m. Chebyshev’s
inequality (Inequality (1.11) in Appendix 1) bounds the probability that
lerp(h) — €rg(h)| > €/2 by
erp(h)(1 —erp(h))m
(em/2)*
which is less than 1/(e?m) (using the fact that z(1 — z) < 1/4 for =

between 0 and 1). This is at most 1/2 for m > 2/e2, which implies (4.4).
O

Permutations

The next step of the proof is to bound the probability of the set R of
Lemma 4.4 in terms of a probability involving a set of permutations on
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the labels of the double sample, exploiting the fact that a given labelled
example is as likely to occur among the first m entries of a random
z € Z®™ as it is to occur among the second m entries.

Let 'y, be the set of all permutations of {1,2,...,2m} that swap i
and m +1, for all ¢ in some subset of {1,...,m}. That is, forall ¢ € Ty,
and i € {1,...,m}, either o(i) = ¢, in which case o(m + i) =m +1, or
o(i) = m+i, in which case s(m+1) = i. Then we can regard o as acting
on coordinates, so that it swaps some entries z; in the first half of the
sample with the corresponding entries in the second half. For instance,
a typical member o of I's might give

0(21,22,Z3,Z4,z5,26) = (21,25,26,24,22,23)-

The following result shows that by randomly choosing a permutation
o € I'y, and calculating the probability that a permuted sample falls in
the bad set R, we can eliminate the dependence on the distribution P.

Lemma 4.5 Let R be any subset of Z*™ and P any probability distri-
bution on Z. Then

P>™(R) =EPr(cz € R) < max Pr(cz € R),
z m

where the expectation is over z chosen according to P*™, and the prob-
ability is over o chosen uniformly from I'y,, the set of swapping permu-
tations on {1,...,2m} described above.

Proof First notice that for any o in 'y,
P>™(R) = P?™{z:0z € R},

since coordinate permutations preserve the product distribution P?™.
Since I'y, is finite we can interchange summation and integration as
follows. (Here, 1g(2) is the indicator function of R, taking*value 1 if
z € R and 0 otherwise.)

P*™R) = / 1a(z) dP*™(2)
Z’

) / 1r(02) dP™(2)

o€l

- /Z _ (lrml ) lR(crz)> dP?™(2)

0€lm

IFmI
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Pr(oz € R) dP*™(2)
Z2m
< max Pr(oz € R).

2€Z%™

Notice that the maximum exists, since there is only a finite set of values
that the probability under a random permutation can take. O

Reduction to a finite class

In order to bound P?™(R), we see now that it suffices to obtain an upper
bound on the maximim over z € Z?™ of the probability Pr(cz € R)
under random o.

Lemma 4.8 For the set R C Z?™ defined in Lemma 4.4, and permuta-
tion o chosen uniformly at random from T'y,,

P R) < 2M4(2 —me?
Jnax r(cz € R) < 2Ilg(2m)exp —5 )

Proof Suppose that z = (z1,22,...,22m) € Z?™, where the labelled
example z; equals (z;,y;), and let S = {z1,%2,...,%Z2m}. Let t = |H|s|,
which is at most I (2m). Then there are functions hy, hs,...,hy € H
such that for any h € H, there is some i between 1 and ¢ with h;(z;) =
h(z) for 1 < k < 2m.

Recalling that

A 1 >
ér,(h) = — Hl<i<m:h(z;) #u},
we see that gz € R if and only if some h in H satisfies
1 .
— |{1 <i<m:h(z,)) # ?Ia(i)}‘ -
1 : d
— [{m+1<i < 2m: h@om) # v }| 2 5
Hence, if we define

v_?' — 1 if hj(.’l,‘,') 75 Yi
t 0 otherwise

for1 <i<2mand 1< j <t we have that 0z € R if and only if some
j in {1,...,t} satisfies

1~ 1 =
) DAL Rl S AN
i=1

i=le

> €f2.
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> e/2>

Z( a(i) — z;(m-i-i) )

i=1

Then the union bound for probabilities gives

Pr(cz € R) E(”.,(,) a'(m+t))

A
IAB
AR
o
/-\

IA

g (2m) 112;)%% Pr (

26/2) .

Given the distribution of the permutations o, for each 1, vi(‘.) - vf,(m +)

equals :I:Ivf - v,’;, +il, with each of these two possibilities equally likely.

Thus,
( >¢f 2)

1 m
=Pr ( —_ > 6/2) ,
m
=1

where the probability on the right is over the 5;, which are independently
and uniformly chosen from {—1,1}. Hoeffding’s inequality shows that
this probability is no more than 2 exp(—me?/8), which gives the result.

O

0(1) a(m+1))

i ”fn+i|ﬂi

Combining Lemmas 4.4, 4.5, and 4.6 shows that, for m > 2/¢2,

P™{3h € H, lerp(h) — ér,(h)] > €}
< 2P™(R) < 411y (2m) exp(—me?/8).

The same bound holds for m < 2/e? since in that case the right-hand
side is greater than one. Theorem 4.3 is now established.

4.4 Application to the Perceptron

Perhaps the primary motivation of the work in this chapter is to obtain
for infinite function classes the type of learnability result we earlier ob-
tained for finite classes. For example, although we were able earlier to
prove learnability for the (finite) classes of functions computed by the
binary-weight perceptron and the k-bit perceptron, we could not obtain
any such result for the general perceptron, as this is capable of comput-
ing an infinite number of functions on R®. However, the theory of this
chapter applies, since the n-input perceptron has a finite VC-dimension
of n + 1, as shown in Chapter 3. We immediately have the following
result.
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Theorem 4.7 Let N be the perceptron on n inputs, and let Z = R* x
{0,1}. Suppose that L : {J;._, Z™ — Hpy is such that for any m and
any z € Z™,

ér,(L(2)) = min ér,(h).

(That is, L is a SEM algorithm.) Then L is a learning algorithm for
Hpy, with estimation error

1/2
en(m,8) < (::n_z ((n+1)In(2em/(n + 1)) + ln(4/5)))

form > (n+1)/2 and 0 < § < 1. Furthermore, L has sample complezity

mi(e,8) < i—;‘ (2(n+ 1) In (1?2) +1In (%)) ,

for all ¢,6 € (0,1).

It is worth noting how Theorem 4.2 compares with the corresponding
result for finite function classes, Theorem 2.4. We start by comparing
the two sample complexity results for the case of the k-bit perceptron.
‘As we saw in Chapter 2, Theorem 2.4 gives an upper bound of

632 (k(n +1)+In (;—))

on the sample complexity of a SEM learning algorithm for the k-bit,
n-input perceptron. Since a k-bit perceptron is certainly a perceptron,
Theorem 4.7 applies to give a sample complexity bound of

5 (s 1 (2) +(2))

for such an algorithm. For many values of € and 4, this is worse (that is,
it is larger), but it should be noted that it has no explicit dependence
on k, and so for large enough k, there are ranges of ¢ and 4 for which
the new bound is better.

A more striking example of the use of the new bound for finite function
classes may be given by considering the boolean perceptron, the percep-
tron restricted to binary-valued inputs. Here, the perceptron functions
as usual, but the relevant domain is X = {0,1}" rather than X = R".
It is clear that, since X is finite, 8o is the set of functions H computed
by the boolean perceptron. It can be shown that (if n is large enough),
|H| > 2v*-n)/2_ 1t is clear that the VC-dimension of the boolean per-
ceptron is no more than that of the perceptron—namely, n+ 1. (In fact,
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the VC-dimension is precisely n + 1.) Suppose that L is a SEM learning
algorithm for the boolean perceptron. The results of Chapter 2 yield an

upper bound of
2 2|H|
3 In (_6 )

on its sample complexity, which, given that |H| > 2("*~™)/2 s at least

;25 (("22'”) In2+In (%)) .

By contrast, the sample complexity bound obtained from Theorem 4.2

% (o0 (2) o (£)).

This latter bound has worse constants, but note that it depends linearly
on n, whereas the first bound is quadratic in n. Thus, in a sense, the
bound of this chapter can be markedly better for the boolean perceptron
than the simple bound of Chapter 2.

4.5 The Restricted Model

We now briefly consider the restricted model of learning, in which there
is a target function in H and a probability distribution 4 on the domain
X of H. (See Chapter 2.) Here, any algorithm returning a consistent
hypothesis is a learning algorithm, a result that follows from the theory
of this chapter, since such an algorithm constitutes a SEM algorithm.
Moreover, it is possible to obtain a better upper bound on the sample
complexity of such learning algorithms than that obtained above for the
general learning model. To do so, instead of using a general uniform
convergence result, we use the following bound (where the notation is
as usual): for any ¢t and any m > 8/¢ let P,aq be the probability

p™ {for some h € H, h(z;) = t(z;), (1 <i <m) and er,(h,t) > €}.
Then
Poag < 2115(2m) 27/,

(The proof is similar to that of Theorem 4.3, except that Hoeffding’s
inequality is replaced by a simple counting argument: the probability
of a permutation that gives no mistakes on the first half sample but at
least em/2 on the second half sample is no more than 2-¢™/2, This
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replaces the larger factor of exp(—€>m/8) that arose from Hoeffding’s
inequality.) This bound can be used to obtain the following result. The
proof is similar to that of Theorem 4.2.

Theorem 4.8 Suppose that H is a set of functions from a set X to
{0,1} and that H has finite Vapnik-Chervonenkis dimension d > 1. Let
L be a consistent algorithm; that is, for any m and for anyt € H, if
z € X™ and z is the training sample corresponding to x and t, then the
hypothesis h = L(z) satisfies h(z;) = t(z;) for i = 1,2,...,m. Then
L is a learning algorithm for H in the restricted model, with sample

complezity
4 12 2
mr(ed) < < (dln (—e-) +In (3))

and with estimation error

er(m,d) < % (dln (2%17-3) +In (%)) .

The constants in this result can be improved, but that need not con-
cern us here. What is most important in the sample complexity bound
is the dependence on e: for the general model, the upper bound we ob-
tained involved a 1/€? factor, whereas for the restricted model, we can
obtain an upper bound involving the much smaller 1/e factor. Equiv-
alently, the error of the hypothesis returned by a SEM algorithm ap-
proaches the optimum at rate (Inm)/m in the restricted model, whereas
the corresponding rate in the general model is /(In m)/m. The intuitive
explanation of this improvement is that less data is needed to form an
accurate estimate of a random quantity if its variance is lower.

4.6 Remarks
A better uniform convergence result

Theorem 4.3 is not the best uniform convergence result that can be
obtained. It is possible to prove the following result, although the proof
is a little more involved.

Theorem 4.9 There are positive constants c1, ¢z, and c3 such that the
following holds. Suppose that H is a set of {0, 1}-valued functions defined
on a domain X and that H has finite Vapnik-Chervonenkis dimension
d. Let P be a probability distribution on Z = X x {0,1}, € any real
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number between 0 and 1, and m any positive integer. Then
P™{|erp(h) — ér,(h)] > ¢ for some h € H} < clcge‘°3‘2"‘.

This leads to the following learnability result.

Theorem 4.10 There is a positive constant ¢ such that the following
holds. Suppose that H is a set of functions from a set X to {0,1}
and that H has finite Vapnik-Chervonenkis dimension d > 1. Let L be
any sample error minimization algorithm for H. Then L is a learning
algorithm for H and its sample complezity satisfies the inequality

mp(e,d) < mg(e,8) = e% (d+ln <%>> .

The sample complexity bound mg(e, §) should be compared with the
bound mg(e,d) of Theorem 4.2, which contains an additional In(1/¢)
term multiplying the VC-dimension.

The proof of Theorem 4.9 is similar to that of Theorem 4.3, except that
we use the following improvement of Lemma 4.6. Ignoring constants,
the growth function of H in Lemma 4.6 is replaced by an expression of
the form cVCdim(H)  and this leads to the improvement in the sample
complexity bound by a factor of Inm.

Lemma 4.11 For the set R C Z?™ defined in Lemma 4.4, and permu-
tation o chosen uniformly at random from T, if m > 400(VCdim(H) +
1)/€%, then

2
. 41VCdim(H) —me
zlélzag'c"Pr(ozER)§4 41 exp( 76 )

The proof of Lemma 4.11 involves the following result. In this lemma,
the VC-dimension of a subset of {0,1}™ is defined by interpreting a
vector in {0,1}™ as a function mapping from {1,...,m} to {0,1}. We
omit the proof (see the Bibliographical Notes).

Lemma 4.12 For any G C {0,1}™, if all distinct g,9' € G satisfy

1 ..
- Hi:gi #gill > ¢
then
VCdim(G)
161 < (ﬂ) .

€
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This lemma shows that the size of any set of pairwise e-separated
points in {0,1}™ is bounded by an exponential function of its VC-
dimension. In the lemma, the separation of two points is measured
using the distance d; defined for two vectors g, ¢’ in R™ as

1 m
di(9,9) = — > loi — gil-
i=1

In later chapters, we introduce the notion of a packing number (see
Section 12.2); we shall see that Lemma 4.12 corresponds to a bound on
the d; packing number of a class with finite VC-dimension.

The proof of Lemma 4.11 uses a chaining argument. The idea is to
split each function of interest in the original class H|, into a sum of
functions chosen from a sequence of classes of progressively increasing
complexity. Then the desired uniform convergence result for the original
class is obtained by combining uniform convergence results for all of these
classes. The classes are constructed carefully to balance the complexity
of the class and the magnitude of functions in the class. For classes
that are more complex, although the uniform convergence result must
apply to a richer class, that class contains smaller functions, so the
variables of interest have smaller variance. This delicate balance leads to
a slight improvement over Lemma, 4.6, in which we considered the whole
class H), at once by directly applying the union bound and Hoeflding’s
inequality.

Proof (of Lemma 4.11) Notice that max,¢cz2m Pr(cz € R) is equal to
the maximum over z € Z?™ of
€
> -
- 2) ?

where the probability is over §; chosen uniformly from {+1}, and the
function £(h(x;),y;) takes value 1 if h(z;) # y; and 0 otherwise.
Fix z = ((z1,¥%1),- - - » (T2m, Y2m)) € Z*™ and define

G = {(¢(h(z1),11), - .-, L(A(z2m), y2m)) : h € H}.

Y Bi (6h(:),5) — LA (@mti)s Ymes))

i=1

Pr (Elh € H,

Let

D Bi(E(h(2:),3:) — L(R(@mti)s Ymers))

i=1
>£).
=3

p = Pr(BheH,

>5)
-2

> Bi(9i — gmai)

=1

Pr (Elg €qG,
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Let d = VCdim(H). It is easy to verify that VCdim(G) < d.

Let n = |log,m) + 2f. We define a sequence of sets Go,...,Gn
as follows, so that as i increases it constitutes a progressively better
approximation of G. Fix Gy as a set containing a single (arbitrary)
element of G. Then, for each j = 1,...,n, first set G; = G;_, then add
to G; an element g € G for which d;(g,g') > 277 for all ¢’ € G;. Keep
adding these distinct elements until it is no longer possible to do so.
Then it is easy to verify that the sets G; have the following properties,
forj=1,...,n.

* Gj-1 €Gj,

o for all g € G, some §; € G; has d1(§;,9) < 277,
o for all distinct g,g' € G;, di(9,9') > 279,

e G,=G.

We now define a sequence of sets Vy,...,V, that contain differences
between vectors in the sets G;. Let Vo = Go. For j =1,...,n, define

Vi={9-9j-1:9€Gj},

where for each g € G and j = 0,...,n, §; denotes an element of G; that
has dy(§;,9) < 2779. It is easy to see that these difference sets V; have
the following properties, for j = 0,...,n.

o forallveV,

m
Z |’Ui| < 2_(j_2)m)
i=1
e for all g € Gj, there are vectors vo € Vo,n1 € V4,...,v; € V},
such that g = }7_,v;. In particular, for all g € G, there are
vo € Vo,...,vn € Vo with g =37 jv;.

Hence,
m n
p<Prl3vweW,...,un€V,, zﬂiz(v:i,i — Vjmti)| 2 -;- ’
i=1 j=0
where v; = (vj1,...,%j2m). By the triangle inequality,

n

m
/4 S Pr 3’UO S ‘,0’- ceyUn € Vn) Z Zﬂi(vj,i - vj,m+i) Z
j=0li=1

[ TR

1 Recall that the floor function, |:], is defined as the largest integer no larger than
its real argument, and that the ceiling function, [-], is defined as the smallest
integer no smaller than its argument.
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and if we choose ¢, . . ., €, such that
n
Yei<e/2, (4.5)
Jj=0
then

Z ﬁi(vi - 'Um+i)

i=1

n
pSZPr (EIvEVj,

=0

_>_ej).

We shall use Hoeffding’s inequality (Inequality (1.16) in Appendix 1)
to give a bound on each of these probabilities, exploiting the fact that
221 (v; — ym4i)? gets progressively smaller as i increases. Indeed, since
il lvil € 27U=Bm and v; € {-1,0,1}*™, we have

Z('vi - Um+i)2

i=1

4){i: i = vmyil = 2H 4+ 1{i ¢ [vi — Vil = 1}

2m
2)_lui
i=1

S m2_(1—4) .

IA

Applying Hoeffding’s inequality shows that for each j

2m

Z Bi(vi — vm+)

i=1

< 2lVj|exp (—e2m2i~?).

Pr (EIv €Vj,

> Gj)

Now |V;| < |G,|, points in G; are 27J-separated, and VCdim(G;) <
VCdim(G) < d, so Lemma 4.12 implies that

Vil < (41-29)°.
Hence,

n
p<2-41%) exp(jdn2 - &m27?).
§=0

If we choose €; = €4/(j + 1)277/12, then it is easy to verify that (4.5) is
satisfied. Substituting shows that

n 2 2
< 92.419 (ding-EMmy_&m
p <2 gexp (’ (d“ 576) 576
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2
d _&em
2-41 exp( 576 )Zexp( (dln2 576))

2. 419exp (-e "')

IA

576

1-2%exp (S72)

For m > 400(d + 1) /€2, the denominator is at least 1/2, which gives the
result. 0

4.7 Bibliographical Notes

The results presented in this chapter are to a great extent derived from
the work of Vapnik and Chervonenkis (1971) in probability theory (see
also the book of Vapnik (1982)). In particular, Theorem 4.3 is from
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from Appendix 1 in the proof of Theorem 4.2 follows Anthony, Biggs and
Shawe-Taylor (1990). That paper gave sample complexity bounds for the
restricted model with improved constants; see also (Lugosi, 1995). In our
discussion of sample complexity bounds for the boolean perceptron, we
noted that the number of such functions is at least 2(**~"/2, This is due
to Muroga (1965; 1971). Results of Chapter 3 lead to an upper bound
2n’(1+0(1)) | In fact, a recent paper of Zuev (1989) shows that if N(n) is
the number of functions computable by the n-input boolean perceptron,
then, as n — 00, log, N(n) ~ n2. The results on the complexity of learn-
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General Lower Bounds on Sample
Complexity

5.1 Introduction

In the previous chapters we showed that a class of functions of finite VC-
dimension is learnable by the fairly natural class of SEM algorithms, and
we provided bounds on the estimation error and sample complexity of
these learning algorithms in terms of the VC-dimension of the class. In
this chapter we provide lower bounds on the estimation error and sample
complexity of any learning algorithm. These lower bounds are also in
terms of the VC-dimension, and are not vastly different from the upper
bounds of the previous chapter. We shall see, as a consequence, that
the VC-dimension not only characterizes learnability, in the sense that a
function class is learnable if and only if it has finite VC-dimension, but
it provides precise information about the number of examples required.

5.2 A Lower Bound for Learning
A technical lemma

The first step towards a general lower bound on the sample complexity
is the following technical lemma, which will also prove useful in later
chapters. It concerns the problem of estimating the parameter describing
a Bernoulli random variable.

Lemma 5.1 Suppose that a is a random variable uniformly distributed
on {a_,a;}, where a_ = 1/2 —¢/2 and ay = 1/2 + €/2, with 0 <
€ < 1. Suppose that &,...,&n are i.i.d. (independent and identically
distributed) {0,1}-valued random variables with Pr(¢; = 1) = a for all
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i. Let f be a function from {0,1}™ to {a—,a;}. Then

Pr(f(Er,- . fm) #0) > & (1— \/1 _exp ("—2{7—/2—‘—2)) . ()

Hence, if this probability is no more than 6, where 0 < § < 1/4, then

mzzllz"; In (85(11—25))J‘ (5.2)

In this lemma, f can be viewed as a decision rule. That is, based on
the observations &;, f(éi,...,&m) represents a guess of whether a = a_
or « = ay. The lemma shows that for every decision rule there is
a limitation on its accuracy that depends on the similarity of the two
choices (€) and the amount of data (m).

Proof For a random sequence £ = (&,...,&m), define N(¢) = [{i: & =
1}|. We first show that the maximum likelihood decision rule, which
returns a = a_ if and only if N(£) < m/2, is optimal, in the sense that
for any decision rule f, the probability of guessing « incorrectly satisfies

Pr(f©) #0) > FPr(N(©)2m/fa=a)+
%Pr(N(&) <m/2a=ay). (53)

To see this, fix a decision rule f. Clearly,

Pr(f(¢) # a)

SPr(f(O)=ala=ay)+
SPr(f(©)=asla=a.)

= SPr(f(®)=a_ and N(©) 2m/2a=a,)+
SPr(f(6) = a_ and N(E) <m/2]a=ay) +

SPr(f(€) =y and N(©) 2m/2la=a_) +
SPr(f(6) = oy and N(§) <m/2] = a_d)

But the probability of a particular sequence £ is equal to

aN @ (1 - @)m-NE),
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so if N(€) > m/2, Pr(éla = ay) > Pr(€|a = a_). Hence,
Pr(f(§) =a- and N(§) 2 m/2[a=ay) 2
Pr(f(¢) = a_ and N(§) > m/2|a = a_).
Similarly,
Pr(f(§) =a4 and N(§) <m/2la=0a_) 2
Pr(f(§) = at and N(§) <m/2la =ay).
Substituting into (5.4), and using the fact that either f(§) = a_ or
f(€) = ay, gives Inequality (5.3).
Now, we assume that m is even (for, if it is not, we may replace m by

m + 1, which can only decrease the probability), and discard the second
term to show that

PI(7(6) # &) 2 3 Pr(N(©) 2 m/2|a =),

which is the probability that a binomial (m,1/2—¢/2) random variable is
at least m/2. Slud’s Inequality (Inequality (1.22) in Appendix 1) shows
that

Pr(f(€) # o)

v

1o (z> m/2 - m(1/2 - ¢/2) )
2 T /m(1/2-¢€/2)(1/2+€¢/2)

1 me2
- 5Pr<Z2 1—62)’

where Z is a normal (0,1) random variable. Standard tail bounds for
the normal distribution (see Inequality (1.23) in Appendix 1) show that

Pr(ZZﬂ)Z%(l—\/l—-e‘ﬂ’)

for any 8 > 0. Hence,

Pr(f(6) #a) > % (1 - \/1 — exp (-l"fzz)) .

It follows that Pr(f(£) # a) > § when

m < 1-¢ In !
€2 85(1-26)/°

provided 0 < § < 1/4. Recall that if m was odd, we replaced it with
m + 1, which gives (5.1) and (5.2). O
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The general lower bound

Using Lemma 5.1, we can now obtain the following general lower bound
on the sample complexity of a learning algorithm.

Theorem 5.2 Suppose that H is a class of {0,1}-valued functions and
that H has Vapnik-Chervonenkis dimension d. For any learning algo-
rithm L for H, the sample complezxity mp(c,d) of L satisfies

d
>
mL(6,9) 2 335e

for all 0 < ¢,6 < 1/64. Furthermore, if H contains at least two func-
tions, we have

my(e,0) > 2 [12}52 In (sa(11~ 26)>J

Jorall0<e<land0<d<1/4

Proof At the heart of the proof of these inequalities is a simple ap-
plication of the probabilistic method, a useful technique for proving the
existence of objects with certain properties. To apply the method, we
assume that the underlying probability distribution P is itself chosen
uniformly at random from a specified finite class of distributions. We
then show that, for any learning algorithm, the expectation (over this
random choice of P) of the probability of failure is at least §, which
implies that for some distribution P, the probability of failure is at least
4. Notice that we can prove that, for each algorithm, there is a dis-
tribution that leads to failure of the algorithm, even though we do not
explicitly construct a distribution that is problematic for that algorithm.
The main idea behind showing that the expected probability of failure
is at least & for the first inequality of the theorem is to concentrate the
distribution on a shattered set, and then set the conditional probability
Pr(y = 1ljz) near 1/2 (actually (1 + ce)/2, for some constant c) for each
point z in the shattered set. To get near-optimal error, the algorithm
must estimate these conditional probabilities to accuracy ce for a signif-
icant proportion of the points, but Lemma 5.1 shows that this means
that it must see at least of order 1/¢? examples of each point. Having
given this overview, we now proceed with the technical details.

Since H has VC-dimension d, there is a set S = {z;,%2,...,24} of d
examples that is shattered by H. (We may assume d > 1; the theorem
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clearly holds if d = 0.) Let P be the class of all distributions P with the
following properties:

o P assigns zero probability to all sets not intersecting S x {0, 1},
e foreachi=1,2,...,d, either

= P(z;,1) = (1+a)/(2d) and P(;,0) = (1 - a)/(2d), or
- P(zi,1) = (1 - a)/(2d) and P(z:,0) = (1+ a)/(2d),

where 0 < o < 1. (The parameter a will be chosen later.)

First, we note that for a given P € P, the optimal error optp(H)
is achieved by any function h* € H for which ~2*(z;) = 1 if and only
if P(z;,1) = (1 + a)/(2d). (The class H contains such functions h*
because it shatters S.) The optimal error is given as follows:

d
optp(H) = erp(h') = P{h*(@) £y} = 3 =% =
i=1

—a_1 ¢
2d 2 2

Furthermore, for any h € H we have

d
1+ l-a
erp(h) Z(Tlh(zs)¢h‘(xs)(zi)+ 24 lh(z.')=h‘(a:.~)(xi))

i=1
d
* [¢]
= erp(h) + 5 D Ingeoyhe (oo (@1)- (5.5)
i=1

For any sample z € Z™, let N(z) = (Ny1(2),...,N4(z)), where N;(z) is
the number of occurrences of either (z;,0) or (x;,1) in z. Then for any
h = L(z) we have

d
1
E (a’ Z lh(:c.’)-",éh‘ (i) (xi))

i=

1

d
D E (Iaaeh o) (@)
i=1

& =

d
= ézzPr(h(zi) # h*(z;)| N(z) = N)Pr(N(2) = N),

N i=1

where N = (N1, ..., Ny) ranges over the set of d-tuples of positive inte-
gers with "% | N; = m. From Lemma 5.1,

Pr(h(z;) # h*(z:)| N(2) = N)
= Pr(h(z:) # h*(zi)| Ni(2) = V)
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> %(1—\/1—exp<—£ﬁli_i_—el?)g)>.

It is easy to check that this is a convex function of N;, and so

(d Y Laoshe(en (f'h))

i=1

> ZPr(N(z) N)= Z4< \/—exp(—%))

i=1

1 d+1)e?
> 4(\/(<ﬂ/._>))

by Jensen’s inequality (see Appendix 1). Let B denote the quantity on
the right hand side of the last inequality.

Using the fact that any [0, 1]-valued random variable Z satisfies

Pr(Z > v) > EZ-

(1 7)>EZ 7

for 0 < v < 1, we have

( Z Lh(z:)she (2:) (T5) > 7B> >(1-9)B

i=1

for any 0 < v < 1. Hence,
EP™ {erp(L(2)) — optp(H) > yBa} > (1 - 7)B,

where the expectation is over the random choice of the probability dis-
tribution P from P. It follows that some P has

P™ {erp(L(z)) — optp(H) > vBa} > (1 - v)B.

Then
B> (5.6)
— 1 - ’7 .
and
€ <vBa (5.7
together imply

P™ {erp(L(z)) — optp(H) > €} > 4. (5.8)
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Now, to satisfy (5.6) and (5.7), choose ¥ = 1 — 83. Then (5.7) follows
from
1

m<d ( ;2"‘2 In(4/3) - 1) .

Setting a = 8¢/(1 — 85) implies € = ya/8, which together with (5.6) and
the choice of v implies (5.7), since B > 1/8 in that case. Hence,

m<d ((1 = 8‘2:62' (89)° 1n(as3) - 1)

implies (5.8). Using the fact that 0 < ¢,d < 1/64 shows that

< —
™2 3202

will suffice, which gives the first inequality of the theorem.

The proof of the second inequality is similar but simpler. Since H
contains at least two functions, there is a point £ € X such that two
functions h, he € H have hy () # ha(z). Consider the distributions P
and P; that are concentrated on the labelled examples (z, h;(z)) and
(z, h2(z)), and satisfy Pyi(z,hi(2)) = ax and Pi(z,he(z)) = 1 - ag,
with a4 = (1 +£¢€)/2 as in Lemma 5.1. If P is one of these distributions
and the learning algorithin chooses the ‘wrong’ function, then

erp(L(z)) —optp(H) =(1+€)/2-(1~-¢)/2=€.

Hence, learning to accuracy e is equivalent to guessing which distribution
generated the examples.

Now, if we choose a probability distribution P uniformly at random
from the set {P-, P;}, then Lemma 5.1 shows that, for any learner L,
the expectation (over the choice of P) of the probability (over 2 € Z™)
that the learner has erp(L(z)) — optp(H) > ¢ is at least § if

m<2 112_;2 In (35(11— 26))J

provided 0 < § < 1/4. 0

As an important consequence of this theorem, we see that if a class of
functions is learnable then it necessarily has finite VC-dimension.

5.3 The Restricted Model

It is natural to ask whether finite VC-dimension is also necessary for
learnability in the restricted model, and if so to seek lower bounds on
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the sample complexity and estimation error of learning in this model.
Theorem 5.2 tells us nothing about the restricted model since the prob-
ability distributions used in the proof of that theorem do not correspond
to target functions combined with probability distributions on the do-
main. However, it is still possible to use the probabilistic method to
obtain lower bounds in this model.

Theorem 5.3 Suppose that H is a class of {0,1}-valued functions and
that H has Vapnik-Chervonenkis dimension d. For any learning algo-
rithm L for H in the restricted model, the sample complezity my/(e,d)
of L satisfies

d-1

32¢

for all0 < € < 1/8 and 0 < § < 1/100. Furthermore, if H contains at
least three functions, we have

1 1
my (e, d) > 2—eln (3) ,

for0<e<3/4and0<d<1.

mr (6, 6) Z

Proof -Suppose that S = {zo,21,...,2,} is shattered by H, where r =
d—1. (We assume that d > 2.) Let P be the probability distribution on
the domain X of H such that P(z) =0if ¢ € S, P(zo) = 1— 8¢, and for
i=12,...,d, P(z;) = 8¢/r. With probability one, for any m, a P™-
random sample lies in S™, so henceforth, to make the analysis simpler,
we assume without loss of generality that X = S and that H consists
precisely of all 2¢ functions from S to {0,1}. For convenience, and to
be explicit, if a training sample z corresponds to a sample z € X™ and
a function t € H, we shall denote L(z) by L(z,t).

Let S’ = {z1,%2,...,z,} and let H' be the set of all 2" functions h € H
such that h(z¢) = 0. We shall make use of the probabilistic method, with
target functions ¢ drawn at random according to the uniform distribution
U on H'. Let L be any learning algorithm for H. We obtain a lower
bound on the sample complexity of L under the assumption that L
always returns a function in H'; that is, we assume that whatever sample
z is given, L(2) classifies zo correctly. (This assumption causes no loss of
generality: if the output hypothesis of L does not always belong to H’,
we can consider the ‘better’ learning algorithm derived from L whose
output hypotheses are forced to classify zg correctly. Clearly a lower
bound on the sample complexity of this latter algorithm is also a lower
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bound on the sample complexity of L.) Let m be any fixed positive
integer and, for z € S™, denote by I(z) the number of distinct elements
of §’ occurring in the sample z. It is clear that for any € §', exactly
half of the functions k' in H' satisfy h'(z) = 1 (and exactly half satisfy
h'(z) = 0). It follows that for any fixed z € S™,
ooy erp(Liz,t) = 51— H2)
T 2
where E;.py(.) denotes expected value when ¢t is drawn according to U,

the uniform distribution on H’. We now focus on a special subset S of
S™, consisting of all z for which I(z) < r/2. If z € S then, by (5.9),

(5.9)

Ei.yerp(L(z,t)) > 2¢. (5.10)

Now, let @ denote the restriction of P™ to S, so that for any A C S™,
Q(A) = P*(ANS)/P™(S). Then

Ez~QEt~U erp(L(z,t)) > 2¢,

since (5.10) holds for every z € S. (Here, E;.q(-) denotes the expected
value when z is drawn according to @.) By Fubini’s theorem, the two
expectations operators may be interchanged. In other words,

EivE;~qerp(L(z,t)) = EzagEiu erp(L(z,t)) > 2e.
But this implies that for some t' € H',
E;~qerp(L(z,t')) > 2e.

Let p, be the probability (with respect to Q) that erp(L(z,t')) > e
Given our assumption that L returns a function in H', the error of
L(z,t') with respect to P is never more than 8¢ (the P-probability of
S'). Hence we must have

2¢ < Egngerp(L(z,t')) < 8epe + (1 — pe)e,

from which we obtain p, > 1/7. It now follows (from the definition of
Q) that

P™erp (L(z,t')) 2 ¢} > Q{erp(L(z,t)) 2 €} P™(S)
= p.P™(S)
%P"‘(S).

\%

Now, P™(S) is the probability that a P™-random sample z has no more
than r/2 distinct entries from S’. But this is at least 1 — GE(8¢,m,7/2)
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(in the notation of Appendix 1). If m < r/(32¢) then, using the Chernoff
bound (see Inequality (1.14) in Appendix 1), it can be seen that this
probability is at least 7/100. Therefore, if m < r/(32¢) and § < 1/100,

17 1
m 4 —— = —

and the first part of the result follows.

To prove the second part of the theorem, notice that if H contains at
least three functions, there are examples a,b and functions hy,hy € H
such that hj(a) = hza(a) and hy(b) = 1,he(b) = 0. Without loss of
generality, we shall assume that hj(a) = he(a) = 1. Let P be the
probability distribution for which P(a) =1 — ¢ and P(b) = € (and such
that P is zero elsewhere on the example set X). The probability that a
sample € X™ has all its entries equal to a is (1—€)™. Now, (1—¢)™ > &
if and only if

1 1
MmE g " (3)

Further, —In(1 — €) < 2¢ for ¢ < 3/4. It follows that if m is no more
than (1/(2¢))In(1/6) then, with probability greater than &, a sample
z € X™ has all its entries equal to a. Let a! denote the training sample
a! = ((a,1),...,(a,1)) of length m. Note that a! is a training sample
corresponding both to h; and to hs. Suppose that L is a learning al-
gorithm for H and let L, denote the output L(al) of L on the sample
al. If L,(b) = 1 then L, has error at least ¢ (the probability of b) with
respect to hz, while if L,(b) = 0 then it has error at least ¢ with respect
to hy. It follows that if m < (1/(2¢))In (1/4) then either

P™ {erp (L(z,h1)) > €} > P™{a'} > ¢
or
P™ {erp (L(z, h2)) > €} > P™{a'} > 4.

We therefore deduce that the learning algorithm ‘fails’ for some t € H
if m is this small. O

As in the corresponding upper bounds, the key difference to be ob-
served between the sample complexity lower bound for the restricted
model and that given in Theorem 5.2 for the general model is that the
former is proportional to 1/e rather than 1/e.
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5.4 VC-Dimension Quantifies Sample Complexity and
Estimation Error

Combining Theorem 5.2 and Theorem 4.10, we obtain the following
result.

Theorem 5.4 Suppose that H is a set of functions that map from a
set X to {0,1}. Then H is learnable if and only if it has finite Vapnik-
Chervonenkis dimension. Furthermore, there are constants cy,co > 0
such that the inherent sample complexity of the learning problem for H
satisfies

C1 . 1 C2 . 1
) (VCdlm(H) +In (5)) < mpul(e,d) < 2 (VCdlm(H) +In <3)> .
Jorall0<e<1/40 and 0 < § < 1/20.

In particular, since Theorem 4.10 applies to sample error minimiza-
tion algorithms, if L is a SEM algorithm for H, then its sample com-
plexity satisfies these inequalities, and so its estimation error grows as
V/(VCdim(H) + In(1/6)) /m.

This result shows that the VC-dimension of a function class determines
its statistical properties in a rather strong sense. It also shows that
the simple SEM algorithms have a nearly optimal estimation rate. The
results presented in this chapter and the previous chapter together imply
the following theorem. In this theorem, we use the ©(-) notation}, which
indicates that the functions are asymptotically within a constant factor
of each other.

Theorem 5.5 For a class H of functions mapping from a set X to
{0,1}, the following statements are equivalent.

(i) H is learnable.
(ii) The inherent sample complezity of H, mpy(e, d), satisfies

mu(e,8) = © (Eliln (%)) .

1 Recall that, for functions f,g : N = N, f = O(g) means that there are pos-
itive numbers ¢ and bi,...,b; such that for any a; > b; (for i = 1,...,k),
f(a1,...,a;) < cg(ay,...,ar). Similarly, f = 02(g) means that there are pos-
itive numbers ¢ and b),...,b; such that for any a; > b; (for i = 1,...,k),
f(a1,...,a;) > cg(a1,...,ax). Also, f = ©(g) means that both f = O(g) and
f = ©(g). For convenience, we extend this notation in the obvious way to functions
that increase as some real argument gets small.
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(iii) The inherent estimation error of H, eg(m,d), satisfies

exa(m,0) =0 ( -:;ln (%)) .

(iv) VCdim(H) < oo.

(v) The growth function of H, Ilg(m), is bounded by a polynomial
inm.

(vi) H has the following uniform convergence property: There is a
function eo(m, 6) satisfying
o for every probability distribution P on X x {0,1},

pm {sup lecp(h) - ér,(h)] > eo(m,é)} < é,
heH

o €(m,8) =0 (,/(1/m) In(1 /"5"')').

This theorem shows that the learning behaviour of a function class H
and its uniform convergence properties are strongly constrained by its
VC-dimension. Recall that, in order to be able to apply Theorem 4.3
(or its improvement, Theorem 4.9) in the previous chapter, we only
need the growth function Ilg(m) to grow more slowly with m than
e’™. In fact, Theorem 3.7 shows that it either grows as 2™ (if the
VC-dimension is infinite) or as m¢ (if the VC-dimension is finite). So
Theorem 4.3 can only be used to show that estimation error decreases
as 1/y/m (equivalently, that sample complexity grows as 1/¢2). Now the
lower bounds in this chapter show that this is essentially the only rate
possible: while the constants are different for different function classes,
if the VC-dimension is finite, we have this rate, and if it is infinite, the
class is not learnable.

The same characterization is of course also possible for the restricted
model, by making use of Theorems 5.3 and 4.8. The following theorem
implies that we can add the property ‘H is learnable in the restricted
model’ to the list of equivalent statements in Theorem 5.5.

Theorem 5.6 Suppose that H is a set of functions from a set X to
{0,1}. Then H is learnable in the restricted model if and only if H has
finite Vapnik-Chervonenkis dimension. Furthermore, there are constants
1,62 > O such that the inherent sample complezity of the restricted
learning problem for H satisfies

L (VCdim(H) +In (%))
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S mL(C, 6)
< izl (VCdim(H) In (l) +1In (l>> .
€ € )
5.5 Remarks

Relative uniform convergence results

The results in this chapter show that the rate of uniform convergence
of erp(h) to ér;(h) can be no faster than 1//m (if we require an upper
bound that is valid for all probability distributions). In fact, the rate of
uniform convergence of erp(h) to a slightly larger value is considerably
faster; the following theorem shows that if the VC-dimension of the class
is finite, erp(h) decreases to (1 + a)ér,(h) at least as quickly as Inm/m,
for any fixed o > 0.

Theorem 5.7 Suppose that H is a set of {0,1}-valued functions defined
on a set X and that P is a probability distribution on Z = X x {0,1}.
For0<e<1, a>0, and m a positive integer, we have

P™{3h € H: erp(h) > (1 + a)ér,(h) + B}

< A4llg(2m)exp <:1-E-£—i%) .

The theorem follows immediately from the following theorem, on set-
ting v to 26/« and € to a/(2 + a).

Theorem 5.8 For H and P as in Theorem 5.7, and 0 < ¢,v < 1,
erp(h) — ér,(h) 2

—velm
erp(h) + ér,(h) + v > 6} < 4l (2m) exp (2(1 - 62)) ’

Proof The theorem follows from the inequality

erp(t) = () n} < dlly(amesp (7).

Verp(h)
(5.11)

‘We omit the proof of this inequality, but note that it uses similar ideas to
the proof of Theorem 4.3. To see that the inequality implies the theorem,
suppose that erp(h) — ér,(h) < ny/erp(h). Then for any & > 0 we have
two cases:

(i) Kerp(h) < (1 +1/a)?n?, then erp(h) < ér,(h) +n%(1 + 1/a).

P"‘{BhGH:

P"‘{EIhGH:
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(ii) erp(h) > (1+1/a)*n?, then erp(h) < ér,(h)+a/(1+a)erp(h),
and so erp(h) < (1 + a)ér,(h).

In either case, erp(h) < (1 + a)ér,(h) +7*(1 + 1/a). Hence,
P™{3h € H: erp(h) > (1 + a)ér,(h) +n*(1 + 1/a)}
< 4y (2m) exp (-—4—) .
Choosing a = 2¢/(1 — €) and 9% = 2ve?/(1 — €?) gives the result. O

The inequality in Theorem 5.8 can be made two-sided; the argument
is similar. That theorem also implies a version of Theorem 4.3, with
different constants. To see this, notice that erp(h) < 1 and ér,(h) < 1,
)

P™{3h € H : erp(h) — ér,(h) > n}
<p™ {Hh € H : erp(h) — ér,(h) >

erp(h) + € (h) + v
2+v ’
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6

The VC-Dimension of Linear Threshold
Networks

6.1 Feed-Forward Neural Networks

In this chapter, and many subsequent ones, we deal with feed-forward
neural networks. Initially, we shall be particularly concerned with feed-
forward linear threshold networks, which can be thought of as combina-
tions of perceptrons.

To define a neural network class, we need to specify the architecture
of the network and the parameterized functions computed by its compo-
nents. In general, a feed-forward neural network has as its main compo-
nents a set of computation units, a set of input units, and a set of con-
nections from input or computation units to computation units. These
connections are directed; that is, each connection is from a particular
unit to a particular computation unit. The key structural property of a
feed-forward network—the feed-forward condition—is that these connec-
tions do not form any loops. This means that the units can be labelled
with integers in such a way that if there is a connection from the unit
labelled % to the computation unit labelled 7 then ¢ < j.

Associated with each unit is a real number called its output. The
output of a computation unit is a particular function of the outputs of
units that are connected to it. The feed-forward condition guarantees
that the outputs of all units in the network can be written as an explicit
function of the network inputs.

Often we will be concerned with multi-layer networks. For such net-
works, the computation units of the network may be grouped into layers,
labelled 1,2,...,¢, in such a way that the input units feed into the com-
putation units, and if there is a connection from a computation unit in
layer ¢ to a computation unit in layer j, then we must have j > i. Note,
in particular, that there are no connections between any two units in

74
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input units @

layer 2

layer 3 8

Fig. 6.1. A feed-forward network.

a given layer. Figure 6.1 shows a multi-layer network with three layers
of computation units. This figure also illustrates the convention used
to number the layers of computation units. Consistent with this num-
bering scheme, an ‘¢-layer network’ denotes a network with £ layers of
computation units.

A feed-forward network is said to be fully connected between adjacent
layers if it contains all possible connections between consecutive layers
of computation units, and all possible connections from the input units
to the first layer of computation units. For our purposes, one of the
computation units in the final (highest) layer is designated as an output
unit. (More generally, there may be more than one output unit.)

Associated with each computation unit is a fixed real function known
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as the unit’s activation function. Usually we shall assume that this
function is the same for each computation unit (or at least for each
computation unit other than the output unit). We shall assume in this
part of the book that the activation function of the output unit is binary-
valued (so that the network can be used for classification, and so that
the theory of the previous chapters applies). The functionality of the
network is determined by these activation functions and by a number
of adjustable parameters, known as the weights and thresholds. Each
connection has a weight—which is simply some real number—assigned
to it, and each computation unit is assigned a threshold value, again
some real number. All of the weights and thresholds together constitute
the state of the network. We shall usually use the symbol W to denote
the total number of weights and thresholds; thus, W is the total number
of adjustable parameters in the network. (Recall that the activation
functions are fixed.)

The input patterns are applied to the input units. If there are n in-
puts then each input pattern is some element of R*® and the network
computes some function on the domain R". The computation units re-
ceive and transmit along the relevant connections of the network. The
action of a computation unit may be described as follows. First, the
inputs into the unit (some of which may be from input units and some
from computation units) are aggregated by taking their weighted sum
according to the weights on the connections into the unit, and then sub-
tracting the threshold. Then the activation function of the unit takes
this aggregation as its argument, the value computed being the output
of the computation unit. Explicitly, suppose that the compitation units
and inputs are labelled with the integers 1,2,...,k, and that the com-
putation unit labelled r has activation function f.. Suppose that this
unit receives inputs 2, 22, ..., 24 from d units, and that the weights on
the corresponding connections are (respectively) w;,ws,...,wq. Then
the output of r is

d
Ir ijzj -0],

i=1

where @ is the threshold assigned to unit r.
A feed-forward network is said to be a linear threshold network if each
activation function is the step function,

1 ify>0
0 otherwise.

£(4) = sgaly) = {
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The simplest type of linear threshold network is the perceptron, dis-
cussed in earlier chapters. Later we shall look at sigmoid networks,
which make use of the activation function f(y) = 1/(1+ e~¥), and also
at networks with piecewise-polynomial activation functions.

6.2 Upper Bound

In this section we present upper bounds on the VC-dimension of feed-
forward linear threshold networks (by which, to be precise, we mean
the VC-dimension of the class of functions computed by the network).
We already know one such result, from Chapter 3: the VC-dimension
of a perceptron on n (real or binary) input units is n + 1, which equals
W, the total number of weights and thresholds. The following result
gives a general upper bound on the VC-dimension of any feed-forward
linear threshold network, in terms of the total number W of weights and
thresholds.

Theorem 6.1 Suppose that N is a feed-forward linear threshold network

having a total of W variable weights and thresholds, and k computation

units. Let H be the class of functions computable by N on real inputs.
Then for m > W the growth function of H satisfies

o < emk\"”

a(m) < (W) )

and hence VCdim (H) < 2W log,(2k/In2).

Proof Let k denote the number of computation units in the network.
Since the network is a feed-forward network, we may label the compu-
tation units with the integers 1,2,...,k so that if the output of compu-
tation unit ¢ is fed into unit j then ¢ < j. We shall bound the growth
function in an iterative manner, by considering in turn the action of each
computation unit.

Recall that by a state of the network we mean an assignment of weights
to the connections, and thresholds to the computation units. Suppose
now that S is any set of m input patterns. We say that two states
w,w' of N compute different functions on S up to unit | if there is some
input pattern z in S such that, when z is input, the output of some
computation unit labelled from 1 to ! differs in the two states. (In other
words, if one has access to the signals transmitted by units 1 to { only,
then, using input patterns from S, one can differentiate between the two
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states.) We shall denote by D;(S) the maximum cardinality of a set of
states that compute different functions on S up to unit I. Note that the
number of functions computed by N on the set S is certainly bounded
above by D(S). (Two states that do not compute different functions
up to unit k—the output unit—certainly yield the same function on
S.) For | between 2 and k, we let w' denote the vector of weights and
thresholds at units 1,2,...,l. Thus w* describes the state of the network
up to computation unit [. Crucial to the proof is the observation that
the output of computation unit ! depends only on the network inputs,
the outputs of the computation units that feed into I, and the weights
and thresholds at unit I. To exploit this, we ‘decompose’ ! into two
parts, w'~! and (;. The first of these describes the state of the network
up to unit ! — 1 (and hence determines the outputs of the computation
units 1 to [ — 1), while the second, {;, denotes the threshold on unit
I and the weights on the connections leading into ! (from input units
or previous computation units). Since computation unit ! is a linear
threshold unit, the set of functions computable by that unit (in isolation)
has VC-dimension d;, where d; is the number of parameters associated
with unit [ (that is, the number of connections terminating at I, plus
one for its threshold).

Consider first computation unit 1. Two states compute different func-
tions up to unit 1 if and only if they result in different outputs at unit
1. Therefore, the number of such mutually different states is bounded
simply by the number of dichotomies achievable by the perceptron de-
termined by unit 1, on the sample S. The perceptron in question has
VC-dimension d; and so, by Theorem 3.7, the number of dichotomies
is no more than (em/d;)%, since m > W > d;. In other words,
Dl(S) < (em/dl)dl.

We now consider a unit /, where 2 <! < k. The decomposition of w*
into w'~! and (; shows that if two states compute different functions on
S up to unit I, but do not compute different functions up to unit I — 1,
then these states must be distinguished by the action of the unit . Now,
by Theorem 3.1, and the fact that { computes linear threshold functions
of d; — 1 inputs, if T is any set of m points of R* ~1, then the number of
ways in which unit ! can classify T, as the weight vector (; varies, is at
most (em/d;)%. Therefore, for each of the D;_;(S) different states up
to unit { — 1, there are at most (em/d;)% states that compute different
functions up to unit /. Hence

Dy(S) < Di-1(S) (em/dy)™.
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It follows, by induction, that

Di(S) < H( )d' (6.1)

As mentioned earlier, IIy(m) is bounded by the maximum of Di(S)
over all S of cardinality m, so (6.1) implies

InTg(m) < Ed,ln( ) )

i=1

The expression on the right is reminiscent of the entropy of a discrete

random variable. We may write
() (%)
em

d; em k d; w
IWIH(TIT)J'HWI“(%)

1 w
Wlnl'[y(m) +In (EE) <

]
= |l

S{ES

—

=
/N
&=
~—

noting that YF_, d;/W = 1. Since d;/W > 0, we see that the bound
can indeed be expressed as an entropy. It is well known (and easy to
show, using the convexity of the logarithm function) that entropy is
maximized when the distribution is uniform, that is when dj/W = 1/k
for | = 1,2,...,k. The fact that d; is restricted to integer values can
only decrease the sum. Hence,

w

Rearranging, we have

1 InIlg(m) +1In (z) <Ink.
em

g (m) < (ev"lj’“)

To see that this gives the required bound on VCdim(H), notice that
if m > W log,(emk/W) then 2™ > I1y(m), which implies VCdim(H) <
m. Inequality (1.2) in Appendix 1 shows that for any a,z > 0, Inz <
az — Ina — 1, with equality only if az = 1. Applying this inequality
with z = emk/W and a = In2/(2ek) shows that it suffices to take
m = 2W log,(2k/In2). O
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6.3 Lower Bounds

The following result shows that the VC-dimension of two-layer linear
threshold networks is bounded below by a quantity of order W, the
total number of weights.

Theorem 6.2 Let N be a two-layer linear threshold network, fully con-
nected between adjacent layers, with n > 3 input units, k computation
units in the first layer (and one output unit in the second layer). Suppose
that k < 271 /(n? + n + 2). Then the class H of functions computable
by N on binary inputs is such that

VCdim(H) > nk +1 > 3W/5,
where W = nk + 2k + 1 is the total number of weights and thresholds.

Proof We prove the result by constructing a shattered set of size nk +
1. Recall that the decision boundary of a linear threshold unit is a
hyperplane, so that for all points on one side of the hyperplane, the
unit outputs 0 and for all points on the other side, or on the hyperplane
itself, it outputs 1. The idea of the proof is to choose appropriate values
for the parameters of the network and then, for each of the & first layer
units, to include in the shattered set n points that lie on its decision
boundary. By adjusting the parameters of a first layer unit slightly, we
can adjust the classification of each of the associated n points, without
affecting the classification of the other points.

Now, a three-packing of {0,1}" is a subset T of {0,1}" such that for
any two members of T, their Hamming distance (the number of entries
on which they differ) is at least three. If we construct a three-packing
in a greedy way, by iteratively adding to T" some point that is at least
Hamming distance three from all points in T, each new point added to
the packing eliminates no more than N = (3) + (}) + 1 points from
consideration. It follows that some three-packing T has

an 2n+1
IT} 2 N n2+n+2
Solet T = {t1,t2,...,t} be a three-packing (recall that k < 2"*+!/(n%+
n + 2)). For i between 1 and k, let S; be the set of points in {0,1}"
whose Hamming distance from ¢; is 1. (Thus, S; consists of all n points
of {0,1}" differing from ¢; in exactly one entry.) There is a single hy-
perplane passing through every point of S;. (Without loss of generality,
suppose t; is the all-0 element of {0,1}", then S; consists of all points
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with exactly one entry equal to 1, and the appropriate hyperplane is
defined by the equation z; + 22 + ... + z, = 1.) Furthermore, because
T is a three-packing no two of these k& hyperplanes intersect in [0, 1]".
Let us set the weights and thresholds of the computation units in the
first layer so that the decision boundary of the ith unit in the layer is
the hyperplane passing through S;, and for input ¢; the output of the
unit is 0. Assign weight 1 to each connection into the output unit, and
assign threshold k& to the output, so that the output of the network is 1
precisely when the output of all units in the first layer is 1.

Since the points of S; sit on the hyperplanes described above, the
weights and threshold corresponding to unit ¢ may be perturbed—in
other words, the planes moved slightly—so that for any given subset
S; of S;, unit ¢ outputs 0 on inputs in S; and 1 on inputs in S; - S;.
Furthermore, because the hyperplanes do not intersect in the region
[0,1]", such perturbations can be carried out independently for each of
the k units in the first layer. The network can therefore achieve any
desired classification of the points in § = U§=1 S;. In other words, this
set S is shattered.

Furthermore, by negating the weights and thresholds of the first layer
units, and changing the threshold at the output unit to 1, the network
can still shatter the set S by perturbing the first layer parameters. How-
ever, it now classifies each t; as 1, where before they were classified as
0. So the set SU {t,} is shattered, and hence VCdim(H) > nk + 1.

The second inequality of the theorem follows from the fact that n > 3,
which implies W < nk + 2nk/3 + 1 < 5(nk +1)/3. |

The lower bound just given is linear in the number W of weights
and thresholds, while the upper bounds of the previous section indicate
that the VC-dimension of a feed-forward linear threshold network is
of order at most W log, W. Moreover, we have already seen that the
perceptron has VC-dimension W, so it is natural to ask whether the
bound of Theorem 6.1 is of the best possible order or whether one should
be able to prove that in this case the VC-dimension is really of order W.
In other words, can it be true that some feed-forward linear threshold
networks have VC-dimension significantly larger than W, the number
of variable parameters? The answer is ‘yes’, as shown by the following
results, which we state without proof. (See the Bibliographical Notes
section at the end of the chapter.)
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Theorem 6.3 Let W be any positive integer greater than 32. Then there
is a three-layer feed-forward linear threshold network Ny with at most W
weights and thresholds, for which the following holds. If H is the class
of functions computable by Nw on binary inputs, then VCdim(H) >
(1/132)W log, (k/16), where k is the number of computation units.

Theorem 6.3 refers to networks taking binary inputs. It is perhaps
surprising that, even with this restriction, a network may have a ‘su-
perlinear’ VC-dimension. The result shows that no upper bound better
than order Wlog, k can be given: to within a constant, the bound of
Theorem 6.1 is tight.

The networks of Theorem 6.3 have three layers. The following result
shows that there are two-layer feed-forward linear threshold networks
having superlinear VC-dimension on real inputs. These networks have
fewer layers—and hence in a sense are less complex—than those of Theo-
rem 6.3, but the result concerns real inputs, not binary inputs and hence
is not immediately comparable with Theorem 6.3. For the same reason,
the result is not directly comparable with Theorem 6.2.

Theorem 6.4 Let N be a two-layer feed-forward linear threshold net-
work, fully connected between adjacent layers, having k computation
units and n > 3 inputs, where k < 2"/2~2, Let H be the set of functions
computable by N on R*. Then

. nk k w k
vedim(H) > ioe, (§) 2 g5 108 (5)

where W = nk + 2k + 1 is the total number of weights and thresholds.

We omit the proof. (See the Bibliographical Notes section at the end
of the chapter.) Theorem 6.4 should be compared to the upper bound of
Theorem 6.1. The upper and lower bounds are within constant factors
of each other.

Notice that Theorems 6.3 and 6.4 show that there are certain neu-
ral networks with VC-dimension growing at least as WlogW. Recall
that the upper bound of Theorem 6.1 applies to feed-forward networks
with an arbitrary number of layers. By embedding two- and three-layer
networks in a network of any fixed depth, it is easy to show that there
is a sequence of networks of that depth with VC-dimension increasing
as WlogW. However this does not imply a similar result for arbitrary
architectures. Given an arbitrary sequence of linear threshold networks
of fixed depth with increasing W, it is clear that the VC-dimension
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cannot be forced to grow as Wlog W without some constraints on how
the weights are distributed among the layers. A trivial example is a
three-layer network with k; units in the first layer and k; > 2*! units
in the second layer. In this case, any weights associated with additional
computation units in the second layer cannot lead to an increase in VC-
dimension, since it is already possible to compute all boolean functions
of the k; first layer outputs. However, in this case it is known that the
VC-dimension is larger than some universal constant times W, provided
that k2 is smaller than a fixed exponential function of k; . It is not known
whether this bound can be improved without a stronger constraint on
the number of second layer units.

6.4 Sigmoid Networks

Feed-forward sigmoid networks form an important and much-used class
of neural network. In such networks, the output unit has the step func-
tion as its activation function, but the activation function of every other
computation unit is the standard sigmoid function, o, given by

1

1+ev’
(A computation unit of this type is often called a sigmoid unit.) The
graph of the function ¢ may be found in Chapter 1 as Figure 1.3. Note
that the standard sigmoid network just defined has a binary-valued out-
put, in contrast to the two-layer real-output sigmoid network discussed
in Chapter 1.

The sigmoid function is, in a sense, a ‘smoothed-out’ version of the
step function, sgn, since ¢ maps from R into the interval (0,1) and it
has limits

a(y) =

ay;glwa(a) =0, algxgo ola)=1.

As M increases, the graph of the function a = ¢(Ma) becomes increas-
ingly like that of the linear threshold step function sgn(a).

The VC-dimension upper bound results obtained in this chapter are
specifically for linear threshold networks and cannot be applied to sig-
moid networks. (We shall derive upper bounds on sigmoid networks in
Chapter 8.) However, it is possible to use the lower bound results on the
VC-dimension of multi-layer linear threshold networks to obtain lower
bounds on the VC-dimension of multi-layer sigmoid networks, by means
of the following observation.
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Theorem 6.5 Suppose s : R — R satisfies limy_,0 8(a) = 1 and
limg——co 8(@) = 0. Let N be a feed-forward linear threshold network,
and N' a network with the same structure as N, but with the threshold
activation functions replaced by the activation function s in all non-
output computation units. Suppose that S is any finite set of input pat-
terns. Then, any function computable by N on S is also computable by
N'.

It is easy to see that the limits 1 and 0 can be replaced by any two
distinct numbers.

Proof Consider a function h computable by N on S. Label the com-
putation units with integers 1,2,...,k% in such a way that unit j takes
input from unit ¢ only if i < j, and so that unit k& is the output unit. Let
vi(z) denote the net input to computation unit 7 in response to input
pattern z € S. (That is, if unit ¢ has input vector z, weight vector w,
and threshold wo, v;(z) = w”z 4+ wo.) The proof uses the fact that we
can multiply the argument of s(-) by a large constant and, provided the
argument is not zero, the resulting function accurately approximates a
threshold function.

First, define € = min; mingeg |v;(z)]. Suppose that € > 0. (Otherwise
we can change the thresholds to ensure this, while keeping the function
computed on S unchanged.) Now, we step through the network, re-
placing each threshold activation function v ~ sgn(v) by the function
v — 8(Mv), where M is a positive real number. Let v; p(z) denote the
net input to computation unit { in response to z € S when the activation
functions of units 1,...,7 — 1 have been changed in this way. Since S is
finite and € > 0, the limiting property of s implies that

Jim max |s(Muv;(z)) - sgn(vi(z))] = 0.

Since the net input to a computation unit is a continuous function of
the outputs of previous units, this implies that

Jim_maxos,u (2) - va(a)] =0,
and so

im max |s(Mvz,u(z)) — sgn(va(2))] = 0.
Proceeding in this way, we conclude that

Jim max fug () — vk(2)| =0,
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which shows that, for sufficiently large M,

sgn(v, m(2)) = sgn(vi(z)) = h(z)

for all z € S. Now, by scaling the weights and thresholds by M and
replacing the activation function v — s(Mv) by the function v — s(v),
we see that the function h on S is computable by N'. a

It follows immediately that any set of input patterns shattered by a
network of linear threshold units is also shattered by a network of units
each with an activation function s of the type described. Hence the lower
bound results Theorem 6.2, Theorem 6.3 and Theorem 6.4 also hold for
such networks, and in particular for standard sigmoid networks.

6.5 Bibliographical Notes

The proof of the upper bound of Theorem 6.1 is due to Baum and Haus-
sler (1989). (For more on properties of the entropy function, which were
used in that proof, see, for example, (Cover and Thomas, 1991).) This
result was originally due to Cover (1968). A lower bound on the VC-
dimension of two-layer networks that is linear in the number of weights
was also presented in (Baum and Haussler, 1989). Theorem 6.2 gives a
slight improvement (by a constant factor) of this result, with a simpler
proof; see (Bartlett, 1993a). The corresponding result for real inputs (re-
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binary inputs) appears in (Baum, 1988), using a technique that appeared
in (Nilsson, 1965). Lower bounds for networks with binary weights are
given in (Ji and Psaltis, 1991). Theorem 6.3 is due to Maass (1994), and
Theorem 6.4 is due to Sakurai (1993). General lower bounds for any
smoothly parameterized function class are given in (Erlich, Chazan, Pe-
track and Levy, 1997) (see also (Lee, Bartlett and Williamson, 1995a)).
The Q(W) bound for arbitrary three-layer linear threshold networks with
not too many computation units in the second layer was presented in
(Bartlett, 1993a; Bartlett, 1993b). The fact that lower bounds for linear
threshold networks imply lower bounds for sigmoid networks is proved,
for example, in (Sontag, 1992; Koiran and Sontag, 1997).
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Bounding the VC-Dimension using
Geometric Techniques

7.1 Introduction

Results in the previous chapter show that the VC-dimension of the class
of functions computed by a network of linear threshold units with W pa-
rameters is no larger than a constant times W log W. These results can-
not immediately be extended to networks of sigmoid units (with continu-
ous activation functions), since the proofs involve counting the number of
distinct outputs of all linear threshold units in the network as the input
varies over m patterns, and a single sigmoid unit has an infinite number
of output values. In this chapter and the next we derive bounds on the
VC-dimension of certain sigmoid networks, including networks of units
having the standard sigmoid activation function o(a) = 1/(1 + e~ ).
Before we begin this derivation, we study an example that shows that
the form of the activation function is crucial.

7.2 The Need for Conditions on the Activation Functions

One might suspect that if we construct networks of sigmoid units with
a well-behaved activation function, they will have finite VC-dimension.
For instance, perhaps it suffices if the activation function is sufficiently
smooth, bounded, and monotonically increasing. Unfortunately, the sit-
uation is not so simple. The following result shows that there is an
activation function that has all of these properties, and even has its
derivative monotonically increasing to the left of zero and decreasing
to the right (so it is convex and concave in those regions), and yet is
such that a two-layer network having only two computation units in the
first layer, each with this activation function, has infinite VC-dimension.
What is more, the activation function can be made arbitrarily close to

86
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Fig. 7.1. The graphs of the functions s(-) (defined in Equation (7.1), with

¢ = 0.05 and the standard sigmoid o(-) (defined in Equation (1.1)), (a) in the
interval [—10,10] and (b} in the interval [1, 2].

the standard sigmoid, o(a) = 1/(1 4+ e~%). Clearly, then, finiteness of
the VC-dimension of neural networks depends on more than simply the
smoothness of the activation function.

Theorem 7.1 Define

+cz%e sinz (7.1)

s@) = l1+e®

for ¢ > 0. Then s(-) is analytic, and for any sufficiently small ¢ > 0, we
have

xl_l_)nolo s(z) =1,
im, o(e) =0,
<0 #fz>0

d?
Es(w){ >0 ifz<O.

Let N be a two-layer network with one real input, two first-layer compu-
tation units using this activation function, and one output unit, so that
functions in Hy are of the form

z +— sgn (wp + wy8(a12) + wes(azz)),
with z,wo, w1, Ws,61,a2 € R. Then VCdim(Hy) = oo.

Figure 7.1 compares the graphs of s(-) and the standard sigmoid.
The proof of Theorem 7.1 relies on the following lemma.
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Lemma 7.2 The class F = {z — sgn(sin(az)) : a € R*} of functions
defined on N has VCdim(F') = oo.

Proof For any d € N, choose z; = 2¢~! for i = 1,...,d. We shall show
that the set {z;,...,24} is shattered by F, and since d is arbitrary this
establishes that VCdim(F) = oo. For (by,...,b4) € {0,1}9, let

d
c=Y 279b; + 274+
J=1

(so the binary representation of ¢ is 0 - bybe---b41). Then by setting
a = 2mc, we can use the function sgn(sin(az;)) to extract the bits b;

from c¢. That is,
d . Iy
sgn | sin | 2r | D 279b; 4 271+ | 21
Jj=1

i~1
sgn | sin Z(2‘"j7r)bj + wb;
Jj=1
d . . 3
+ ) (@Imb; + 241

It

sgn(sin{az;))

j=i+1

d—i
sgn (sin (w (b,- + Z 2‘jb,-+j + 2—(d—i+1)) )) ’
j=1

and the argument of sin(:) in the last expression lies strictly between
biw and (b; + 1)x, so sgn(sin(az;)) = 1 — b;. Since this is true for any
i = 1,...,d, and any choice of the b;, it follows that {z1,...,z4} is
shattered. O

It is now easy to vérify the claims made in Theorem 7.1. The proper-
ties of s(-) are easy to check (although checking the properties of convex-
ity to the left of zero and concavity to the right of zero is tedious). To
show that the class Hy has infinite VC-dimension, we use the network
N to compute sgn(sin(az)). Specifically, for a € R, set the weights so
that the network computes sgn(h,(z)), where

ha(2) = s(az) + s(—az) — 1 = 2¢(az)®e~*"*" sin(az).

For a > 0 and z > 0, sgn(h,(z)) = sgn(sin(az)), so Lemma 7.2 implies
that VCdim(Hy) = oo.
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7.3 A Bound on the Growth Function

In the remainder of this chapter, we consider classes of binary-valued
functions that are obtained from parameterized real-valued functions by
‘thresholding’. Classes defined in this way include the perceptron and
the class of functions computed by thresholding the output of a multi-
layer network of units having either the standard sigmoid activation
function or a piecewise-polynomial activation function. In this definition,
and in the remainder of this chapter, we assume that there are d real
parameters; we use a to denote the vector of these parameters.

Definition 7.3 Let H be a class of {0,1}-valued functions defined on a
set X, and F a class of real-valued functions defined on R® x X. We
say that H is a k-combination of sgn(F) if there is a boolean function
g:{0,1}* = {0,1} and functions f1,..., fx in F so that for all h in H
there is a parameter vector a € R% such that

h(z) = g(sgn(f1(a,2)),- - - ,58n(fr(a, 2)))

forall x in X.

We say that a function f in F is continuous in its parameters (CP
in its parameterst) if, for all z in X, f(-,z) is continuous (respectively,

cr).

In this chapter we develop a technique for bounding the growth func-
tion of a class H of functions expressible as boolean combinations of
parameterized real-valued functions in this way. Theorem 7.6 below
provides a bound in terms of the number of connected components of
the solution set in parameter space of certain systems of equations in-
volving the real-valued functions that define H. (Recall that a connected
component of a subset S of R? is a maximal nonempty subset A C S for
which there is a continuous curve connecting any two points in A.) We
can think of this as a generalization of the notion of the number of so-
lutions of a system of equations. It turns out that we need only concern
ourselves with systems of equations that are not degenerate in the follow-
ing sense. (Here, for a function f : R = R, if f(a) = (f1(a),..., fia)),
then the Jacobian of f at a € R%, denoted f'(a), is the d x I matrix with
entry i,j equal to D;f;(a), the partial derivative of f;(a) with respect
to the ith component of a = (a1, ...,a4).)

t that is, the first p derivatives of f are defined and are continuous functions.



90  Bounding the VC-Dimension using Geometric Technigues

file) =

/ @

Fig. 7.2. An example illustrating Definition 7.4. The set {f1, f2, f3} does not
have regzular zero-set mtersections, since the Jacobian of the function (f1, f2) :
has rank 1 at a*

Definition 7.4 A set {f1,..., fe} of differentiable functions mapping
from R? to R is said to have regular zero-set intersections if, for all
nonempty subsets {i1,...,%} C {1,...,k}, the Jacobian of (fi,,..., fi,) :
R? — R has rank | at every point a of the solution set

{a€R?: fi,(a)=--- = fi(a) =0}.

This definition forbids degenerate intersections of the zero-sets of the
functions. For instance, if two zero-sets ‘touch’ at a point, so that the
hyperplanes tangential to them at that point coincide, the functions do
not have regular zero-set intersections (see Figure 7.2). More generally,
when the zero-sets of more than two functions intersect at a point and
the intersection of the tangent hyperplanes at that point has higher
dimension than expected, the functions do not have regular zero-set
intersections.

The main result of this chapter gives a growth function bound in terms
of a solution set components bound. As in Chapter 3, we use the notation
CC(A) to denote the number of connected components of a set A C R?,
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Definition 7.5 Let G be a set of real-valued functions defined on R?.
We say that G has solution set components bound B if forany1 <k <d
and any {f1,..., fr} C G that has regular zero-set intersections, we have

cC (rk] {ac®: fi(a) =0}) <B.

i=1

Notice that the intersection of any k > d zero-sets of functions with
regular zero-set intersections must be empty (otherwise the rank con-
dition in Definition 7.4 could not be satisfied). Hence we need only
consider k < d in the definition of the solution set components bound.

We shall always be concerned with classes F' of real-valued functions
defined on R? x X, and with the solution set components bound for the
class G = {a — f(a,z): f € F,z € X}. We say that F has solution set
components bound B when this is the case for the corresponding class
G. Furthermore, we say that F' is closed under addition of constants if,
for any c € R, whenever f € F, the function (a,z) — f(a,z) + c is also
in F.

With these definitions, we can present the main theorem of this chap-
ter.

Theorem 7.8 Suppose that F is a class of real-valued functions defined
on R? x X, and that H is a k-combination of sgn(F). If F is closed
under addition of constants, has solution set components bound B, and
functions in F are C% in their parameters, then

My(m) < Bg (":") <B (#)d,

form > dfk.

As an example, suppose H is the class of functions computed by the
simple perceptron on R?. Then the parameter space is R4*! and we can
define F' as the class of functions f satisfying

d
fla,z) =) miai+ao +c,

i=1

for some c in R, where a = (ag,a3,...,aq4). (We include the redundant
constant c¢ so that F' is closed under addition of constants.) In this case,
F has solution set components bound B = 1. Also, functions in F are
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C® in their parameters and H is a 1-combination of sgn(F), so

matm < - (7).

=0
Notice that
d+1 d+1
- -1
2(7) = (") ()
‘ 1 £ ) i—-1
=0 =1
d
m-1 m-—1
= 2;;( i )+<d+1)’

so this bound is larger than the correct value (see Theorem 3.1) by
(+1). However, the bound on the VC-dimension that is implied by

Theorem 7.6 is tight.

7.4 Proof of the Growth Function Bound

The remainder of this chapter is more technical than most other parts
of the book. The reader who is happy to accept Theorem 7.6 on trust
can proceed to Chapter 8 (perhaps after reading the first paragraph of
Section 7.5), without suffering much loss of continuity.

Growth function and connected components in parameter
space

Recall that in the proof of the growth function bound for the perceptron,
we first related the number of dichotomies of a set of input points z; to
the number of cells in the partition of the parameter space defined by
the equations wTz; — § = 0 (Lemma 3.2). The following lemma, shows
that we can do this more generally, for any class that is a k-combination
of thresholded real-valued functions. In this case, we relate the growth
function to the number of connected components of the complement of
certain zero-sets of functions that have regular zero-set intersections.
(For the simple perceptron, this is equivalent to the condition that the
examples are in general position.)

We first need the following lemma, which shows that almost all shifts
of a set of functions result in a set that has regular zero-set intersections.
‘We use this to show that we can always perturb the problem to give a new
collection of zero-sets that have regular intersections, without decreasing
the number of dichotomies.
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Lemma 7.7 Given a set {f1,..., fr} of C? functions that map from R?
to R, the set

S = {A € RF 2 {fi = AM,.--, fr — M} does not have
regular zero-set intersections}

has measuret 0.

Proof Consider a subset A of {f1,..., fr}; without loss of generality
suppose it is {f1,..., fi}. If we define f : R = R as f = (f1,..., fi),
Sard’s Theorem (see Appendix 1) implies that the set

Sa={y€eR :3z € R’ st. f(z) =y and rank f'(z) <!}

has measure 0. Let T4 = (R' — S4) x R¥~!. Clearly, the comple-
ment of T4 has measure 0. We can construct the corresponding set
T4 C RF of ‘regular values’ for any subset A. It is easy to see that,
if we choose A from the intersection over all subsets A of the T4, then
{fi = M,..., fx = M} has regular zero-set intersections, so § C R* -
(N4 Ta. But we can write

R* —mTA':U(Rk --TA),

which is a finite union of measure 0 sets, and hence has measure 0. So
S has measure 0. (]

Lemma 7.8 Let F be a class of real-valued functions defined on R x X
that is closed under addition of constants. Suppose that the functions
in F' are continuous in their parameters and let H be a k-combination

of sgn(F). Then for some functions fi,..., fr in F and some ezamples
Ti1,...,Zm 0 X, the set

{a— fi(a,z;):i=1,...,k j=1,...,m}

has regular zero-set intersections and the number of connected compo-
nents of the set

k m
Rd-U U {aGRd :f;(a,a:j)=0}
=1 j=1
is at least g (m).

t See Section Al.3.
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Proof Since H is a k-combination of sgn(F'), we can fix functions
fi,---s fr in F and g : {0,1}* = {0,1} that give the parameterized
representation

h(x) = g(sgn(fl(a’ 23)), see )Sgn(fk(aa .’B))))

for functions h in H. Fix arbitrary z,...,Z,, in X. For each dichotomy
computed by some function h in H, there must be a corresponding a in
R? satisfying

h(z;) = g (sgn(fi(a,z;)), . . .,sen(fi(a, z;)))

for j =1,...,m. We want to relate the number of these dichotomies to
the number of connected components of a certain set in the parameter
space. To this end, consider the zero-sets in parameter space of the
functions a = fi(a,z;):

{a € R*: fi(a,z;) =0},

for j =1,2,....mand ¢ = 1,2,...,k. These sets split the parameter
space into a number of cells, each of which is a connected component of
the set

k m
S=R-|JJ{acR: fia,z;) =0}. (7.2)
i=1 j=1
Figure 7.3 shows an example of the cells defined by these zero-sets, with
k=m=2.

If two parameters a; and a; in S give distinct dichotomies of the set
{z1,...,Zm}, then a; and a; lie in distinct cells of S. (This is true
because if a; and ap give distinct dichotomies, there must be some 1
and j such that one of fi(a1,z;) and fi(az, x;) is positive and the other
negative. Then the continuity of f; with respect to its parameters implies
that, for any continuous curve connecting a; and ay, there must be a
point on that curve where f;(a,z;) = 0.)

It is possible that we may be forced to consider parameters that lie on
one of the zero-sets. In the case of the perceptron, we could adjust the
offset parameter 8 to ensure that any dichotomy can be computed with
parameters that do not lie on any boundary set (where w'z; — = 0 for
some x;), so we needed only to count the number of (n + 1)-dimensional
cells in parameter space. In the more general case we consider here, there
might be dichotomies that can only be computed by parameters lying
on some zero-set. In this case, we perturb the zero-sets by considering
fi(a,z;) — Aij; = 0 for some small ); ;, instead of f;(a,z;) = 0. This
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fi(a,z1) =0
~

f](a,.’l:z) =0

/

f2(a,21) =0

/

f2(ayz2) =0

/

Fig. 7.3. The connected components of the set S of Equation (7.2).

will ensure that dichotomies that previously could only be computed by
parameters lying on the zero-set can be computed by parameters that
lie strictly inside a distinct cell in the new (perturbed) partition of the
parameter space.

For the example illustrated in Figure 7.3, the zero-sets of fi(a,z;),
fa(a,z1), and f(a,2;) intersect at a single point. Suppose that the
signs of these functions are such that the point a¢* shown in the fig-
ure satisfies fi(a*,z;) > 0, fo(a*,z;) < 0, and fz(a*,z2) < 0. Then
the only parameter for which we have sgn(f; (-, z1)) = sgn(f2(-,21)) =
sgn(f2(',a:2)) = 1—which corresponds to fl (a’7 zl) > 0) f2(a7 .’131) 2 0’
and fo(a,z2) > 0—is the intersection point of the three zero-sets. Fig-
ure 7.4 shows the situation when we replace fa(a,z;) by fo(a,z1) +¢;
the shaded region in the figure marks parameters that do not lie on any
of the zero-sets, but ensure that the three functions are nonnegative.

Now, suppose that lH l¢ey I = N, and choose parameter vectors

..... 2m}
ay,...,ayn from R? so that for each distinct dichotomy there is a cor-
responding a;. (Some of the a; might lie in the zero-set of one of the
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fi(e,21) =0
/ fi(a,z2) =0

/ fola,z1)+e=0
/

fa(a,z2) =0

/

Fig. 7.4. A perturbed version of the arrangement of zero-sets in Figure 7.3.
The shaded region is a new connected component that results from the per-
turbation.

functions f;(-,z;).) Choose e strictly between 0 and
min {|fi(a1, z;)| : fia1,2;) <0,1<i<k,1<j<m,1<I< N}

(and choose any ¢ > 0 if this set is empty). Then for any sequence
(A1,15- -+ > Ak,m) from (0,€)*™, consider the sets

{ae R : fia,25) = =X}

fori=1,...,kand j=1,...,m, and the complement of their union,

k m
R=R'-|J|J{ac®: fila,z;) = -\ }.

i=1 j=1

Clearly, the choice of € implies that all of the a;’s lie in R. In fact, each
a; must lie in a distinct connected component of R. To see this, notice
that since a; and ay give rise to distinct dichotomies, there is some ¢ and
Jj such that sgn(fi(a1,z;)) # sgn(fi(az,z;)). Without loss of generality,
assume fi(a1,7;) > 0 and fi(as,z;) < 0. Cleatly, fi(ar,%;) > —Aij
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and, by the choice of ¢, fi(az,z;) < —e < —A;;, which implies a; and
a; are in distinct connected components of R.

It follows that, whatever the choice of the A; ; (subject to 0 < A;; <
¢), for each dichotomy of {z1,...,2,,} there corresponds at least one
distinct connected component of R.

By Lemma 7.7, we can choose suitable values of A1 j,...,Ax,m such
that the set of functions

{f.,-(',zj) =f,-(-,a:j)—,\,-,,~ = 1,...,k,j= 1,...,m}

both has regular zero-set intersections and satisfies

k m
cc |- U {ae®: fiaz) =0} 2N

i=1 j=1

This is because the set of suitable \; ; contains the intersection of a set
of positive measure with the complement of a set of zero measure, and
so is nonempty. The functions f; are in F' because it is closed under
addition of constants. The result follows. O

Bounding the number of connected components: the regular
case

In the proof of the growth function bound for the simple perceptron,
we used an inductive argument to count the number of cells in an ar-
rangement of hyperplanes (Lemma 3.3). In this section, we use a very
similar inductive argument to give a bound on the number of connected
components of the set described in Lemma 7.8, in terms of the number
of connected components of the solution set of a system of equations
involving the functions fi(-,z;). (In the case of the simple perceptron,
the number of connected components of the solution set is never more
than one.) In this lemma, and in what follows, we use the convention
that ;9 Si = R? for subsets S; C R?.

Lemma 7.9 Let {f1,..., fx} be a set of differentiable functions that map
from R¢ to R, with regular zero-set intersections. For each i, define Z;
to be the zero-set of fi: Z; = {a € R® : fi(a) =0}. Then

cc(md—Lk)z,-) < > cc(ﬂz.-).

i=1 SC{1,....k} i€S
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The proof requires two lemmas. The first shows that if we take a
connected component of a set defined by some of the zero-sets, and
remove a connected component of its intersection with another of the
zero-sets, the set is split into no more than two pieces. We omit the
proof, which uses ideas from point set topology. (See the Bibliographic
Notes section.)

Lemma 7.10 Define a set of functions {fi,..., fr} as in Lemma 7.9,
and define sets S1,...,Sk—1 so that fori = 1,...,k — 1, either S; =
{a € R : fi(a) =0} or S = {a € R* : fi(a) # 0}. Let C bea
connected component of nf;ll S;, and let C' be a connected component of
Cn{a€ R4 : fr(a) = 0}. Then C —C' has no more than two connected
components.

The second lemma we need gives a result analogous to the induction
step in the argument used to bound the growth function of the simple
perceptron.

Lemma 7.11 Define a set of functions {f1,...,fr} and the zero-sets
Zyy...,Z as in Lemma 7.9. Let I C {1,...,k} and define M =
(icr Zi- Define b = k ~ |I| and let {M,,..., My} = {Z; : i ¢ I}.
Then

b b-1 b-1
CC{M-|JM;|<cC|M-|JM;)+cC|MnM—|JM).
j=1 j=1 i=1
Figure 7.5 illustrates the case in which M = R® (I = @), and M,
M,, and M3 are planes. Here, M — U:;=1 M; consists of eight cells,

bounded by the three planes, M — U?=1 M; consists of four cells, and
MnM; - U§=1 M; consists of four cells, bounded by the bold lines in
the figure. (Compare Figure 7.5 with Figure 3.2.)

Proof Let S = M — |J;Z{ M;. Suppose that CC(S) = N. We wish
to show that removing M, from S increases the number of connected
components from N to no more than

b-1
N+CC (Man—UMj) .
Jj=1

Let {C1,...,Cn} be the connected components of S. Consider one of
these components, C;. Let A, be a connected component of C; N Mp.
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M M;

/

Fig. 7.5. An example of zero-sets My, M2, and Ms in M = R®. (See
Lemma 7.11.) The intersections of M3 (= M N M3) with M; and M; are
shown as bold lines.

(See Figure 7.6.) By Lemma 7.10 (with C = C; and C' = A, ), removing
A, splits C; into no more than two connected components. Consider
a second component A; of C; N M,. Since it is disjoint from 4,, it
lies entirely within one connected component of C; — A;. We have
established that C; — A; has at most two components. Let us suppose
that its components are D; and D, (where we take D; = § if in fact
C; — A has just one component), and choose the labels of D; and D,
so that A2 N Dy = §. (See Figure 7.6.) By Lemma 7.10 (with C = D,
and C' = A;), CC(D; — A2) <2, and so

CC(C; — (A1 U Ay)) CC((Cj — A1) — A2)
CC((D1 - A2) U (D, - A2))
CC(D1U(D; - Az))
1+ CC(D; - Ap) < 3.

IN

Continuing in this way, considering in turn further components of C; N
My, we obtain

CC(Cj — M) < CC(C; N M) + 1.
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A, A,

Fig. 7.6. A connected component C; of S, as described in the proof of
Lemma 7.11. The bold lines, A; and As, are connected components of C;NM,.
The shaded regions, D; and D, are the two components of C; — A;.

Hence, writing S as a disjoint (and disconnected) union of the C;, we
have

b
CC{M-|JM;| = CC(S-M,)
j=1
N
= cclUc-M
J=1
N
= ) CC(Cj- M)
Jj=1
N
< Y (CC(CinMy) +1)
j=1

N
= CC U(CjﬂMb) +N

i=1

= CC(SN M)+ CC(S),

which is what we require. (]
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Proof (of Lemma 7.9)
We shall prove that the following proposition, (Py), is true for any
b € NU {0}. The lemma will follow from the case b = k.

(P3) Suppose k > b. Define functions {fi,..., fr} and their zero-
sets Zi,...,2Zy as in Lemma 7.9. Let I C {1,...,k} such that
|[I| = k —b. Define M = ();c; Z; (and recall that we define
NicoZ: = RY), and let {M,..., My} = {Z; :i & I}. Then

CC(M—CJM,-) < > cc(MnﬂM,-),

i=1 SC{1,...,b} i€S

where, if b = 0, the right-hand side is to be interpreted as
CC(M).

Clearly, (Py) is true, since it states that CC(M) < CC(M) for M =
ﬂf=1 Z;. Suppose that (Pp) is true, and consider k > b+ 1and I C
{1,...,k} with [I| = k — (b +1). Let M =(\;¢; Z;, and define the zero
sets {M1,...,Mp+1} = {Z; : i ¢ I}. Then Lemma 7.11 and (P;) imply
that

cc (M - UM.-)

i=1
b b
< cc (M— UMi) +CC (MnM¢,+1— UM,-)
i=1 i=1
< Y CC(MnﬂM,-)+
SC{1,...,b} i€S
>, cc (Man.Hn ﬂM,-) .
SC{1,...,b} €S

Notice that the first sum in this expression includes all subsets of the set
{1,...,b+ 1} that do not contain b+ 1, and the second can be written
as a sum of the same form over all subsets that contain b+ 1. It follows
that

b+1
CC(M—UM,-)s 2 cc(MnﬂM,-),
i=1 SC{1,...,b+1} i€s

and hence (Pp41) is true. O
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Proof of Theorem 7.6
The proof of Theorem 7.6 is now immediate. The first inequality follows
from Lemmas 7.8, and 7.9, taking the zero-sets Z; in Lemma 7.9 to be

those of the mk functions a — fi(a,z;) defined on the parameter space
R¢, fori=1,2,...,kand j = 1,2,...,m. This gives the bound

Mg(m) < max ) Cc(ﬂzi)

SC{1,...,mk} ieS
4 /mk

< BZ( )
i=o N7

where the maximum is over the zero-sets Z; that have regular intersec-
tions, and the second inequality follows from the definition of the solution
set components bound and the fact that the intersection of more than d
such zero-sets is always empty.

The second inequality of Theorem 7.6 follows from Theorem 3.7, pro-
vided m > d/k.

7.5 More on Solution Set Components Bounds

In finding a solution set components bound for a set G of functions, it
is often convenient to express the functions in G as functions of addi-
tional variables representing the result of intermediate calculations. For
example, if, while computing f(a), we calculate b;, then by, and so on
up to by, and we use these to calculate f(a), then we can write f in the
form ‘

f(a) = f(a’bl)”"bn),

where each b; is a function only of a and by,...,b;—1. The theorem in
this section shows that we can consider the variables by, ..., b, as extra
parameters, and that we can obtain a solution set components bound
for G from a bound for the class of functions involving these extra pa-
rameters. The situation is, however, not quite so simple: in calculating
solution set components bounds for a function class, we need to consider
simultaneously k < d functions f of this form, and we must expect each
to compute its own independent intermediate variables b;. Hence, using
n intermediate variables to compute each function f corresponds to the
addition of dn new parameters, n for each of the d functions. (Typi-
cally, more parameters corresponds to a larger solution set components
bound.) To simplify notation in the theorem and proof, when we write
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a function of these dn + d arguments as a function of fewer arguments,
it indicates that the function does not depend on the other arguments.
First, we formalize the notion of using additional, or ‘intermediate’,
variables. In this definition, an intermediate calculation is expressed as
b = ¢(a) for some function ¢. To ensure that the intermediate variables
take the appropriate values, we use the trick of defining a function g for
which the constraint b = ¢(a) is satisfied when g(a,b) = 0. This implicit
definition of the intermediate variables is convenient, since we are only
interested in the behaviour of functions around their zero-sets.

Definition 7.12 For a set G of differentiable real-valued functions de-
fined on R? and a set G of differentiable real-valued functions defined
on R¥ ™)) | we say that G computes G with n intermediate variables i,
Jorany1 <k <dand{f1,...,fr} CG, there is a set

{fl’gl,l""$gl,n7'")fk’gk,la"')gk,n} g é

that satisfies the following conditions.

(i) Fori=1,...,k, there are differentiable functions ¢;1,...,¢in :
R¥n+1) 4 R which can be written

#ia(a,b) = ¢i(a)
$ij(a,b) = ¢ij(a,biy,...,bij1) forj=2,...,n

wherea € R?, andb = (b1,1,...,b1,n,---,bd0) € R, (The func-
tion ¢;; defines the intermediate variable b; ;, and the ¢; ; are
ordered so that their values depend only on previously computed
intermediate variables.)

(i) For i = 1,...,k, the functions gi1,...,9in can be written as
g,-,j(a, b) = gi,j(a., bi,l,o--,bi,j) fOT all a, b, andj = 1,...,n.
(That is, the function g;; depends only on previously computed
intermediate variables, and on b; ;.)

(iii) Fori=1,...,k, andl =1,...,n, if b;; = ¢; j(a,b) for all a, b,
and j <1, then for all a and b we have

gi(a,b) = 0 if and only if by = $i4(a,b)
and
Db;,zgi,l (a’ ¢i,l (a'1 b)’ seey ¢i,l (a" b)) # 0.

(That i3, the function g; ; implicitly defines the intermediate vari-
able b; ;. The derivative condition ensures that the zero-set in-
tersections remain regular.)
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(iv) For alla € R? and b € R, if b;; = ¢;(a,b) fori=1,...,k
andj=1,...,n then

fi(a) = ft (aa ¢1,1 (a’ b)a o ’¢k,n(a’ b))

fori=1,...,n.

Theorem 7.13 For function classes G and G and a positive integer n,
if G computes G with n intermediate variables, then any solution set
components bound for G is also a solution set components bound for G.

The following lemma will be used in the inductive proof of Theo-
rem 7.13. It shows that adding a single intermediate variable preserves
both the number of connected components and the regularity of the
zero-set intersections. As explained above, we specify the value of the
intermediate variable b € R implicitly through the equation g(a,b) = 0,
which implies b = ¢(a) in the zero-set intersection.

Lemma 7.14 Suppose fi,...,fx :R* = R, fi,..., fe : R¥*! 5 R, and
¢ :R% = R are differentiable functions satisfying f;(a) = fi(a, ¢(a)) for
alla € RY. Let g : R4+ — R be a differentiable function such that, for
alla € RY,

g9(a,b)y =0 if and only if b = ¢(a),

and

Dsg(a, ¢(a)) # 0.
Define

k
z = (){a:fila)=0},

=1

k
Z = {@b:96b=0yn{@b: fi(e,5) =0}.

i=1
Then we have:
(i) CC(Z2)=CC(Z), and
(ii) fora € Z, the Jacobian of ( fl’ ..+, fk) at a has rank k if and only
if the Jacobian of (f1,..., fx,9) at (a,d(a)) has rank k + 1.

Proof
1. The transformation a — (a, ¢(a)) is a one-to-one function mapping
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from Z to Z. Clearly, this transformation preserves connectedness, so
CC(2) = CC(2).

2. Define f = (f1,...,fx) and f = (fi,..., fi). Fix a point (a, ¢(a)) in
Z. In what follows, we consider the Jacobians of f and ( £, g) at a and
(a, ¢(a)) respectively, but to simplify notation we write these as f' and
(f,9)', dropping the a and (a, $(a)).

We can write the Jacobian of (f,g) as

FoN Daf D.g )
(f) g) ( Dbf Dbg *
Let p(J) denote the rank of a matrix J. Then, since Dyg # 0 and

I 0
D
Dyg

is a full rank (k + 1) x (k + 1) matrix (where I is the k x k identity
matrix), we have

oo = o Db Def)

_ Daf D,g I"_ 0
B p<<Dbf DbQ)(—%f;f 1))

= p(Daf“g':'gDag Dag)

0 Dyg
_ : Dyf

Now, since g(a, #(a)) = 0 for all a, Dog + Dpg¢' = 0. It follows that
¢' = —D,g/Dyg, and hence

Dy f
Dyg

so p((f,9)") = p(F') + 1, as required. 0

f'=Dof + Dyf ¢' = Dof — ==Dag,

‘We can now prove Theorem 7.13.

Proof (of Theorem 7.13) Suppose S; = {f1,...,fk} C G has regular
zero-set intersections in RY. Let

SZ = {fla"°1fk’gl.1,"'vgk,n}
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be the corresponding functions in G satisfying Definition 7.12. We prove
by induction that S; has regular zero-set intersections if and only if S,
does, and that the numbers of connected components in their zero-set
intersections are the same, from which the theorem follows.

The induction proceeds over a sequence of function classes, involving
successively more of the additional variables b; ;. To start with, define
Go = {f?,...,f}, with f? = f;. (So Go = S;.) Now, define the set
G of functions mapping from R%*! to R to be G; = {fll, e ,f,:,gl,l},
with

fH@b) = fe)
fori=2,...,k and all a, and

fi(@,$1,1(a)) = fi(a),

for all a. Notice that we can think of g, as a function defined on
Rét1. Lemma 7.14 implies that G has regular zero-set intersections if
and only if the same is true of Gy, and that the zero-set intersections
have the same number of connected components. We proceed in this
fashion, iteratively adding a parameter (b; ;), modifying a function (f})
to depend on the new parameter, and adding another function (g; ;) that
implicitly defines the value of the new parameter in its zero-set. Finally,
we obtain the set Gk, which is the set of restrictions of functions in S,
to R4+4n | 50 the result follows. D

7.6 Bibliographical Notes

Several examples are known of well-behaved activation functions giving
rise to small networks with infinite VC-dimension. The first was given by
Sontag (1992). See also (Macintyre and Sontag, 1993). Sontag’s example
has the added feature that, for any set of points in R, and any desired
dichotomy, it is easy to find parameters for a two-layer network with
two computation units in the first layer, so that the network computes
the desired dichotomy of the points. (This implies that proving lower
bounds on the computational complexity of learning two-layer sigmoid
networks requires some strong conditions on the sigmoid functions—see
Chapter 25. Of course, results from Chapter 5 show that such compu-
tational difficulties are irrelevant in this case, since the VC-dimension of
the function class is infinite.) Krzyzak, Linder and Lugosi (1996) give a
similar example for radial basis function networks. Devroye et al. (1996)
give an example of a sigmoid network in which the activation function
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is again analytic and monotonically increasing, but also convex to the
left of zero and concave to the right. They showed that a two-layer net-
work with eight first-layer units of this kind has infinite VC-dimension.
The example we give in Section 7.2 is simpler. The elegant proof of
Lemma 7.2 was suggested by Jon Baxter and Phil Long,.

The techniques for bounding the growth function that are described
in the remainder of the chapter and in Chapter 8 are mainly due to
Goldberg and Jerrum (1995). These ideas have a long history. The
idea of counting the number of connected components in the partition
of parameter space defined by the input points goes back to the growth
function calculations for the simple perceptron. (See the bibliographi-
cal notes at the end of Chapter 3.) Goldberg and Jerrum gave bounds
on the VC-dimension of function classes that are polynomial in their
parameters; the idea of Lemma 7.8 arose in the proof of their result.
A similar idea was independently suggested at the same time (and re-
ported at the same conference, COLT’93) by Ben-David and Linden-
baum (1993). Both Ben-David and Lindenbaum’s paper and an early
version of Goldberg and Jerrum’s paper used a result of Milnor (1964)
that implies a bound on the number of connected components of the
complement of the solution of a system of polynomial equations. Later
versions of the Goldberg and Jerrum paper used the slightly stronger
results of Warren (1968), who was studying approximation properties
of polynomials, and apparently was unaware of Milnor’s result. Fol-
lowing Goldberg and Jerrum, Karpinski and Macintyre (1997) noticed
that a result developed by Warren as a too! could be used more gen-
erally: Lemma 7.9 was essentially in (Warren, 1968), and the proof of
Lemma 7.10 is in (Warren, 1968). Karpinski and Macintyre showed how
to tie these results together and use Sard’s Theorem to reduce the prob-
lem to the regular case for C* functions. They then used solution set
components bounds for sets of functions involving exponentials to give
VC-dimension bounds for sigmoid networks (we shall encounter these
results in the next chapter). The idea of representing the computation
of intermediate variables as the solution of another equation in an aug-
mented set of parameters is also due to Karpinski and Macintyre.



8

Vapnik-Chervonenkis Dimension Bounds for
Neural Networks

8.1 Introduction

In this chapter we apply the theory developed in the previous chapter
to derive bounds on the VC-dimension for a number of specific types of
neural network classes, including standard sigmoid networks.

8.2 Function Classes that are Polynomial in their Parameters

We first consider classes of functions that can be expressed as boolean
combinations of thresholded real-valued functions, each of which is poly-
nomial in its parameters. To apply Theorem 7.6 to obtain bounds on
the VC-dimension for these classes, we need a solution set components
bound (that is, a bound on the number of connected components in
the intersection of zero-sets of polynomials). The following result will
be useful for this. It follows from Bezout’s Theorem (which describes
the number of solutions of a non-degenerate system of polynomial equa-
tions). Here, the degree of a polynomial f of d variables is the maxi-
mum, over monomials appearing in f, of the sum of the exponents in
the monomial.

Lemma 8.1 Suppose f : R¢ — R is a polynomial of degree . Then the
number of connected components of {a € R? : f(a) = 0} is no more than
19-1(1 +2).

Corollary 8.2 Forl € N, the set of degree | polynomials defined on R%
has solution set components bound B = 2(21)4.

Proof Suppose 1 < k < d and that f;,..., fi are degree ! polynomials
defined on R¢. Then the polynomial 3%, f? has degree no more than

108
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21, and its zero-set is the intersection of the zero-sets of {fi,..., fx}-
Applying Lemma 8.1 gives the result. 0O

Theorem 8.3 Let F be a class of functions mapping from R% x X to R so
that, for all z € X and f € F, the function a = f(a,z) is a polynomial
on R?® of degree no more than l. Suppose that H is a k-combination of
sgn(F). Then if m > d/k,

2emkl) d

Ty (m) < 2 (25
and hence VCdim(H) < 2dlog,(12kl).

Proof From Theorem 7.6 and Corollary 8.2, we have

matm) < 3 ("2t

i=0

and if mk > d, Theorem 3.7 shows that

Mz (m) < 2(20)° (E’Z—’“)d =2 (26’;"“)".

To prove the bound on the VC-dimension, recall that if IIg(m) <
2™ then we have VCdim(H) < m. Now, 2(2emkl/d)? < 2™ if and
only if d(log,m + logy(2ekl/d)) < m — 1. But logym < m/(2d) +
log,(2d/(eIn2)) (see (1.2) in Appendix 1), so it suffices to have m >
2(dlog,(4kl/In2) + 1), which is implied by m > 2dlog,(12k!). 0O

Theorem 8.3 is a powerful result; it can be used to give bounds on the
VC-dimension of a function class in terms of the number of arithmetic
operations required to compute the functions, as the following result
demonstrates.

Theorem 8.4 Suppose h is a function from R? x R* to {0,1} and let
H = {z+ h(a,z) :a € R*}

be the class determined by h. Suppose that h can be computed by an
algorithm that takes as input the pair (a,z) € R¢ x R* and returns
h(a,z) after no more than t operations of the following types:

o the arithmetic operations +, —, x, and [/ on real numbers,
o jumps conditioned on >, >, <, <, =, and # comparisons of real
numbers, and



110 Vapnik-Chervonenkis Dimension Bounds for Neural Networks

¢ output 0 or 1.
Then VCdim(H) < 4d(t + 2).

Proof Let A denote the algorithm that computes h. We first show
that any comparison that A makes can be expressed as a comparison
of bounded degree polynomials in the parameters a. Then we show
that the output of A can be expressed as a boolean function of the
results of comparisons involving a bounded number of these polynomials.
Theorem 8.3 then gives the result.

The degree of a rational function (a ratio of polynomials) is the sum of
the degrees of the numerator and denominator polynomials. The result
of an arithmetic operation on two rational functions can be expressed
as a rational function with degree no more than the sum of the degrees.
Furthermore, a comparison of two rational functions is equivalent to a
comparison of two polynomials, with degree no more than the sum of
the degrees of the rational functions. It follows that any comparison
performed by A can be expressed as a comparison of polynomials of
degree no more than 2¢.

The algorithm A can be expressed as a computation tree of depth no
more than ¢, with each node corresponding to a comparison between
polynomials, and each leaf corresponding to an output operation. There
can be no more than 2¢~! — 1 comparison nodes in this tree, so the
number of distinct polynomials that are examined by the algorithm is
no more than 2t-1 — 1.

To invoke Theorem 8.3, we must express h as a fixed boolean com-
bination of functions of the form sgn(p;(a)) (where p; is a polynomial).
This involves only comparisons of the form p;(a) > 0, so we may need to
use a negated copy of each polynomial to allow the computation of the
>, <, =, and # comparisons using just the sgn(-) function. It follows
that we can express h as a (2° — 2)-combination of sgn(F'), where F is
the class of polynomials of degree no more than 2¢. Theorem 8.3 shows
that VCdim(H) < 2d(2t + log, 12) < 4dt + 8d. |

This theorem has interesting consequences. If we consider a model
of computing that only allows the standard arithmetic operations and
comparisons with real numbers, then any class consisting of functions
that are specified by a finite number of parameters and can be computed
in finite time on such a computer has finite VC-dimension. Furthermore,
if we consider a sequence of function classes computed in this way, with
increasing dimension n of the input domain (X = R"), and with the
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number of parameters and the computation time growing only polyno-
mially with n, then the VC-dimension also grows only polynomially. It
follows that any class containing functions computable in time polyno-
mial in the input dimension n has VC-dimension polynomial in n. The
main result in Chapter 4 (Theorem 4.2) shows that this implies the
sample complexity grows only polynomially with the input dimension.

The following result shows that the bound of Theorem 8.4 cannot be
improved by more than a constant factor.

Theorem 8.5 For all d,t > 1, there is a class H of functions, pa-
rameterized by d real numbers, that can be computed in time O(t) (us-
ing the model of computation defined in Theorem 8.4), and that has
VCdim(H) > dt.

Proof The idea of the proof is to show that we can extract one of up to
t bits from any of the d parameters in time O(¢) (with the input value
specifying which parameter and which bit in that parameter). This
means that we can shatter a set of dt input points.

More specifically, the algorithm we consider computes a function h :
R? x R? — {0,1}. We shall define this function only for certain values
of a € R? and z € R?; it is easy to ensure that the algorithm halts in
time O(t) and outputs something for other parameter and input values.

Consider z = (I,m) € {1,...,d} x{1,...,t}. Leta = (a1,...,aq4) be a
sequence of t-bit numbers in [0, 1); explicitly, suppose a; = 2_2':1 a; ;279
for a;,,...,ais € {0,1}. Then define

h(a,(l,m)) = a;,m.

Clearly, h can be computed in time O(t) by iteratively doubling, com-
paring with 1, and conditionally subtracting 1 from a;. (We assume
that ¢t = Q(d), since otherwise no algorithm can read the d parameters.)
Since we can choose the a;; arbitrarily, the set {1,...,d} x {1,...,t}
(of size dt) is shattered by H. O

It is interesting to observe that Theorem 8.4 would no longer be true
if we allowed computation of the floor function, |-], in unit time. In that
case, there would be an algorithm to compute the function h of Theo-
rem 8.5 in time} O(log,(t)), which would imply that there is a class H

t In fact, this observation and Theorem 8.4 show that in the model of computation
defined in Theorem 8.4, taking the floor function of t-bit numbers takes time
Q(t/log, t).
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of functions that can be computed in time T and involving d parame-
ters with VCdim(H) = Q(27Td). Similarly, if we allowed computation of
the sin(-) function in unit time, a constant time program could compute
a class of functions defined by a single parameter but having infinite
VC-dimension (see Lemma 7.2).

8.3 Piecewise-Polynomial Networks

As an easy example of the application of Theorem 8.4, we may con-
sider the class of feed-forward linear threshold networks. Recall that
Theorem 6.1 implies that the VC-dimension of the class of functions
computed by a linear threshold network with W parameters (weights
and thresholds) is O(W InW). Since computing the output of a linear
threshold network takes time O(W), Theorem 8.4 immediately gives the
following (slightly worse) bound.

Theorem 8.6 Suppose N is a feed-forward linear threshold network with
a total of W weights, and let H be the class of functions computed by
this network. Then VCdim(H) = O(W?).

This theorem can easily be generalized to networks with activation
functions that are piecewise-polynomial. A piecewise-polynomial func-
tion f : R = R can be written as f(a) = Y-7_; 14()(a)fi(a), where
A(1),..., A(p) are disjoint real intervals whose union is R, and f3,..., fp
are polynomials. We say that f has p pieces, and we define the degree
of f as the largest degree of the polynomials f;. Figure 8.1 shows a
piecewise-polynomial activation function, which has three pieces and
degree one. (In fact, Figure 1.3, which we described as the graph of
the standard sigmoid function, illustrates a piecewise-polynomial acti-
vation function with 100 pieces and degree one, because this function
was plotted using 100 line segments.)

Theorem 8.7 Suppose N is a feed-forward network with a total of W
weights and k computation units, in which the output unit is a lin-
ear threshold unit and every other computation unit has a piecewise-
polynomial activation function with p pieces and degree no more than
l. Then, if H is the class of functions computed by N, VCdim(H) =
O(W(W + kllog, p)).
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f(a)

\j

-1 1
Fig. 8.1. A piecewise-linear activation function.

Proof To compute an activation function, we can determine the ap-
propriate piece with [log, p] comparisons. Computing the value of the
function takes an additional O(l) steps. Hence, the total computation
time is O(W + kllog, p), and Theorem 8.4 implies the result. (]

If the number of layers in the network is restricted, the following bound
is better.

Theorem 8.8 Suppose N i3 a feed-forward network of the form de-
scribed in Theorem 8.7, with W weights, k computation units, and all
non-output units having piecewise-polynomial activation functions with
p pieces and degree no more than l. Suppose in addition that the com-
putation units in the network are arranged in L layers, so that each unit
has connections only from units in earlier layers. Then if H is the class
of functions computed by N,

T (m) < 2% (2emkp(l + 1)2-1) "

and
VCdim(H) < 2W Llog, (4W Lpk/1n2) + 2W L?log,(1 + 1) + 2L.
For fized p and |, VCdim(H) = O(W Llog, W + WL?).
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Proof Without loss of generality, suppose that in each non-output unit
the activation function is a fixed piecewise-polynomial function o : R —
R, of the form

P
a(u) = ) Lag(w)di(u),

i=1
where A(1) = (—o0,t1), A(%) = [ti=1,8) for i = 2,...,p, t; < &2 <
-+ < t, = oo, and each ¢; is a polynomial of degree no more than
l. Let k; denote the number of computational units in layer ¢, so that
k=k +ky+---+kr_y +1. For input z and parameter vector a € RV,
let f(z,a) denote the argument of the threshold function in the output
unit, so that the network computes sgn(f(z,a)). Let F be the class of
functions {z — f(z,a) : a € RV }, so that sgn(F) is the set of functions
computed by N.

Before presenting the details, we outline the main idea of the proof.
For any fixed input z, the function f(z,a) corresponds to a piecewise-
polynomial function in the parameters a, of bounded degree. Thus, the
parameter domain R can be split into regions, and in each of these
regions the function f(z,-) is polynomial. Theorem 8.3 shows that each
region does not contribute much to the growth function. Taking the sum
of these bounds over all regions gives the result.

Now, fix arbitrary z;,22,...,2Z, in X. We wish to bound

K = |{(sgn(f(z1,a))....,sg0(f(@m, a))) :a € RV}

Consider a partition S = {S1, 53, ...,Sn} of the parameter domain RY .
(So, UL, Si =R¥ and S;NS; =0 if i # j.) Clearly

N
K <Y {(sen(f(z1,0)),...,580(f(zm,a))) : a € S;}|.
=1
We choose the partition so that within each region S;, the functions
f(z1,°),..., f(zm,*) are all fixed polynomials of degree no more than
(I + 1)L-1. Then, by Theorem 8.3, each term in this sum is no more

than
- w
2 (@—(l—;,ﬂi—l-> . (8.1)

In the remainder of the proof, we define the partition and show that
it is not too large. The partition is constructed recursively, through
a sequence S;,Sz,...,8L— of successive refinements. These partitions
are constructed so that for any parameter value within a fixed element
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of partition S,, and for any unit in the first n layers, the net input to the
unit lies within some fixed piece of the piecewise-polynomial activation
function. In this way, we recursively construct the partition Sy_,, which
defines regions of parameter space where the function f is polynomial
in the parameters. :

Let S; be a partition of R¥ such that, for all § € &;, there are
constants by ; ; € {0,1} for which

sgn(ph,z;(a) — ;) = b5 foralla € S, (8.2)

where j € {1,...,m}, h € {1,...,k1} and i € {1,...,p}, and where
Dh,z; i the affine function describing the net input to the A-th first
layer unit, in response to z;. Recall that t; are the break-points of the
piecewise-polynomial activation functions. Clearly, for any fixed S, any
first layer unit, and any z;, as a ranges over S the output of the first
layer unit in response to z; is a fixed polynomial in a. Note that the
partition S; only distinguishes weights in the first layer of computation
units. If we define H, as the set of functions

{(h,l,]) g sgn(ph,zj(a) - ti) ‘a € RW} ’

then we can choose S; so that its size is no larger than Iy, (mkyp). If
W, is the number of weights in the first layer, the functions in H; are
thresholded versions of functions that are affine in these W) parameters,
and so Theorem 8.3 implies that

2emk,p W
< —_— .
51l <2 (2p2)

(Notice that we can obtain a better bound from Theorem 3.1, but using
the weaker consequence of Theorem 8.3 simplifies subsequent calcula-
tions, and only affects the final result by a constant factor.)

Now, let Wi,..., Wi be the number of variables used in computing
the unit outputs up to layer 1,..., L respectively (so W = W), and let
ky,...,kr be the number of computation units in layer 1,..., L respec-
tively (recall that k; = 1). Define S,, (for n > 1) as follows. Assume
that for all S in S,—; and all z;, the net input of every unit in layer n
in response to z; is a fixed polynomial function of a € S, of degree no
more than (I +1)"!. Let S, be a partition of A that is a refinement of
Sp—1 (that is, for all S € S,, there is an S’ € S,—; with S C '), such
that for all S € S, there are constants by ; ; € {0,1} such that

sgn(pn,z;(a) —t;) =bns; foralla€e S, (8.3)
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where pp ., is the polynomial function describing the net input of the
h-th unit in the n-th layer, in response to z;, when a € S. Since S C S’
for some S’ € Sp-1, (8.3) implies that, within S, the output of each nth
layer unit in response to an z; is a fixed polynomial in a of degree no
more than I(I + 1)"~1. If we define H,, as the set of functions

{(h,‘l,]) = Sgn(ph,zj(a) - ti) ‘a € ]RW} )

then we can choose S,, such that, for all $' € S,_; the number of
subsets |[{S € S, : S C S'}| is no more than Iy, (mk,p). Since H,
contains thresholded functions that are polynomial in W,, parameters,
with degree no more than (I + 1)*~!, Theorem 8.3 implies that for S’ €
Sn—l)

. U
I{Sesn.sgsusz( o
Notice also that the net input of every unit in layer n + 1 in response to
z; is a fixed polynomial function of a € S € S, of degree no more than
@+ 1)".

Proceeding in this way we obtain a partition S;_; of A such that for
S € Sr-1 the network output in response to any z; is a fixed polynomial
of a € S of degree no more than I(I + 1)£~2, Furthermore,

w, L-1 i-1\ Wi
5 (2emk1p) H 9 (2emk,p(l +1) )

2emk,p(l + 1)*! ) W

|SL—|

IA

Wi

H 9 (2emk,p(l + 1)1 )

=1

Multiplying by the bound (8.1) shows that

L . i—1\ W
K< H 0 (2emk,pé‘l,+ 1) )
i=1 ¢

IA

Since the points «,...,%, were chosen arbitrarily, this gives the re-
quired upper bound on the growth function of H.

Taking logarithms to base two of this bound shows that the VC-
dimension d of H satisfies

L . i-1
d < L +‘Z W; log, (W)
i=1 ¢

< L1+ (L-1)Wlog,(l + 1) + W log,(2edpk)].
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Applying Inequality (1.2), Appendix 1, shows that
VCdim(F) < 2L[(L - 1)W logy (I + 1) + W log, (4W Lpk/In2) + 1).

The second statement in the theorem follows from the fact that L < k <
w. O

This theorem implies that if we approximate an activation function
with a piecewise-polynomial function, the resulting network has bounded
VC-dimension. Suppose the activation function f increases monotoni-
cally and takes values between 0 and 1. Then there is a piecewise-
constant function f with O(1/A) pieces that approximates f within A
everywhere. (Using higher order polynomials instead of constants also
allows the approximating function to match derivatives of f.) Then
a feed-forward network with W parameters, L layers, and computa-
tion units with activation function f has VC-dimension O(WL(L +
log,(WL/A))). So even though Theorem 7.1 shows that, for certain
sigmoidal activation functions, small networks of units with these ac-
tivation functions have infinite VC-dimension, there are many sigmoid
functions (including the function defined in Theorem 7.1) for which net-
works of units with activation functions that accurately approximate
these sigmoid functions have small VC-dimension. The class of func-
tions that can be approximated accurately using piecewise-polynomial
functions is large, and includes, for example, functions of bounded vari-
ation.

The bounds given by Theorems 8.7 and 8.8 are nearly optimal. For
networks with a fixed number of layers and a piecewise-polynomial ac-
tivation function with a fixed number of pieces of fixed degree, Theo-
rem 6.3 shows that, in the case of binary inputs and at least three layers,
the VC-dimension grows as Wlog, W, and so Theorem 8.8 cannot be
improved by more than a constant factor. Similarly, Theorem 6.4 shows
this in the case of real inputs and at least two layers. If we also consider
the number of layers, Theorem 8.7 gives better bounds than Theorem 8.8
when W = o(L?). The following theorem shows that the O(W?) bound
of Theorem 8.7 cannot be improved by more than a constant factor if we
allow an arbitrary number of layers. In fact, the result applies to a rich
class of activation functions, including the standard sigmoid function, as
well as piecewise-polynomial functions.

Theorem 8.9 Suppose s : R — R has the following properties:

(i) limga—oo 8(@) =1 and limy—,—o 8(a) =0, and
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(ii) s is differentiable at some point o € R, with s'(ap) # 0.

For any L > 1 and W > 10L — 14, there is a feed-forward network with
L layers and a total of W parameters, where every computation unit but
the output unit has activation function s, the output unit being a linear
threshold unit, and for which the set H of functions computed by the

network has
. Ll |w

Clearly, the constants 1 and 0 in this theorem can be replaced by any
two distinct numbers.

In the proof of Theorem 8.9, we construct a network of linear thresh-
old units and linear units (that is, computation units with the identity
activation function) that exhibits the lower bound, and then use the
following result to show that we can replace these units by units with
activation function s.

Lemma 8.10 Let N be a feed-forward network of linear units and lin-
ear threshold units, with the oulput unit a linear threshold unit. Let
N' be a feed-forward network identical to N, but with all computation
units except the output unit replaced by computation units with activa-
tion function s : R — R, where s has properties 1 and 2 of Theorem 8.9.
Then for any finite set S of input patterns, every function on S computed
by N can be computed by N'.

Proof The proof is similar to the proof of Theorem 6.5: we show that
we can accurately approximate a threshold function by multiplying the
argument of s(-) by a large constant, and we can accurately approxi-
mate the identity function by concentrating on a neighbourhood of the
differentiable point aq of s.

Consider a function g computed by NV on S. Suppose that IV contains
k computation units, and label these units so that unit j takes input
from unit ¢ only if i < j. Let v;(z) denote the net input to computation
unit % in response to input pattern z € S, for 1 < ¢ < k. Defining

€ = min {melg [vi(z)| : i is a linear threshold unit} ,
T

we can assume without loss of generality that ¢ > 0. Now, we step
through the network, replacing each threshold activation function v ~
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sgn(v) by the function
v = s(Mv), (8.4)

and replacing each identity activation function by
v (s(v/M + ag) — s(a)) M/s' (o), (8.5)

where M is a positive real number. For 1 < i <k, let v; p(z) denote the
net input to computation unit ¢ in response to z € S when the activation
functions of units 1,...,7 — 1 have been changed in this way. If unit 1
is a linear threshold unit, the finiteness of S and the fact that ¢ > 0
implies that

Jim max|s(Muv;(z)) ~ sgn(v1(z))| = 0.
If unit 1 is a linear unit, we have
. _ 1 _ =0.
Jim_max|(s(u1(z)/M + o) = s(a0)) M/5'(0) - 1(2)| = 0
In either case, we have that

Jim max [v2,m(z) — v2(z)| =

Proceeding in this way, we conclude that

Jim max vk, m(2) — vk ()] =

and so, for sufficiently large M,

sgn(vk,m(z)) = sgn(vk(z)) = g().

By scaling the weights and adjusting the thresholds of units in the net-
work, we can replace the activation functions (8.4) and (8.5) by v — s(v),
which shows that the function g on S is computable by N’. (M

Proof (of Theorem 8.9) The proof follows that of Theorem 8.5; we
show how the functions described there can be computed by a network,
and keep track of the number of parameters and layers required. (It is
not surprising that the dependence on time in the proof of Theorem 8.5
corresponds to the dependence on depth in this proof.)

Fix M,N € N. Let a; = ¥}, 0, ;277 for a; ; € {0,1}, 50 a; € [0,1)
fori=1,...,N. We will consider inputs in By x Bjs, where

BN={C1;31S7:SN},
e; € {0,1}" has ith bit 1 and all other bits 0, and By is defined similarly.
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Fig. 8.2. The network of linear threshold units and linear units constructed
to prove the VC-dimension lower bound of Theorem 8.9.

As in the proof of Theorem 8.5, we show how to extract the bits of the
a;, so that for input z = (e, e,,) the network outputs a;,,,. (We use this
encoding of the integers I,m to simplify the network computation and
reduce the number of layers required.)

The construction is illustrated in Figure 8.2. Suppose the network in-
putis z = ((u1,...,un),(v1,...,9M)) = (€&1,€m). Then using one linear
unit we can compute ) ;_, u;a; = a;. This involves N + 1 parameters
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and one computation unit in one layer. (In fact, we only need N param-
eters, but we need the extra parameter when we apply Lemma 8.10.)
Define

M
— k—1—j
Cp = 22 Jaz,j,

j=k

fork=1,...,M. Then

arx = sgn(cx —1/2)
for all k. Also, ¢; = a; and

Ck = 2Ck—1 — Gy k-1

for k =2,...,M. Clearly, we can compute the bits a;1,...,a;,pm—1 and

the numbers ¢, ...,cp—1 in another 2(M — 2) + 1 layers, using 5(M —

2) + 2 parameters in 2(M — 2) + 1 computation units (see Figure 8.2).
Now set

M-1
b=sgn (2CM—1 - a,M-1— Z Ui) .

i=1
If m = M then b = a;,pm, otherwise b = 0. This, and the computation of

M-1
A m = bv V (a;,i A 'Ui)
=1
involves another 5M parameters in M + 1 computation units, and adds
another 2 layers. (Here, we are using the standard notation for describ-
ing boolean functions in terms of the OR connective V and the AND
connective A, and we interpret 0 as FALSE and 1 as TRUE.)

In total, there are 2M layers and 10M + N — 7 parameters, and the
network shatters a set of size NM. Notice that we can add parameters
and layers without affecting the function of the network. So for any
L,W €N, we can set M = |L/2) and N = W + 7 — 10M, which is at
least |W/2] provided W > 10L — 14. In that case, the VC-dimension is

- Bkl

Lemma 8.10 implies the result. O
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8.4 Standard Sigmoid Networks

Discrete inputs and bounded fan-in

In this section we consider networks with the standard sigmoid activation
function, o(a) = 1/(1 + e~*). The first result is for two-layer networks
with discrete inputs. We define the fan-in of a computation unit to be
the number of input units or computation units that feed into it.

Theorem 8.11 Consider a two-layer feed-forward network with input
domain X = {-D,-D+1,...,D}" (for D € N) and k first-layer com-
putation units, each with the standard sigmoid activation function (the
output unit being a linear threshold unit). Let W be the total number of
paramelers in the network, and suppose that the fan-in of each first-layer
unit is no more than N. Then the class H of functions computed by this
network has VCdim(H) < 2W log,(60N D).

This theorem implies that if the fan-in of the first-layer units in a
two-layer network is bounded by a fixed number N, and the inputs are
restricted to a fixed discrete set of this kind, then the VC-dimension
increases only linearly with the number of parameters. It is easy to
see that, even for binary inputs, the VC-dimension of these networks
is ©(W). (The lower bound is exhibited by a two-layer linear thresh-
old network with k first-layer units and Nk inputs, with each input
connected to only one first-layer unit. The argument used to prove The-
orem 6.2 easily extends to show that this network shatters a set of size
Nk = Q(W). Theorem 6.5 shows that this lower bound also applies
to sigmoid networks.) In contrast, Theorem 8.9 shows that standard
sigmoid networks with discrete inputs (|X| = O(W?)) but fan-in Q(W)
and depth Q(W) have VC-dimension Q(W?2). Theorem 8.11 implies that
there is a similar gap for linear threshold networks, because we can apply
Theorem 6.5 (and the observation above) to give the following result.

Theorem 8.12 Consider a two-layer feed-forward linear threshold net-
work that has W parameters and whose first-layer units have fan-in no
more than N. If H is the set of functions computed by this network on
binary inputs, then VCdim(H) < 2W log,(60N). Furthermore, there is
a constant ¢ such that for all W there is a network with W parameters
that has VCdim(H) > <W.

This result shows that there is a gap between the VC-dimension of
these networks and the Q(W log, W) VC-dimension for both deeper net-
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works with arbitrary fan-in (Theorem 6.3) and two-layer networks (even
with constant fan-in) with richer input domains (Theorem 6.4).

Proof (of Theorem 8.11) The proof involves a simple transforma-
tion of the parameters in such a way that, for each input vector z, the
network computes the sgn function of a polynomial in the transformed
parameters. We can then apply Theorem 8.3.

Consider a first-layer unit, and suppose (without loss of generality)
that it has connections from the first N input components, z;,...,ZnN.
Let w,,...,wy be the corresponding weights, and let 8 be the threshold,
so the unit computes

1
fle) = 1+exp (- Z;Ll wiz; + 0)
_ e €)”
I )P+ (T ()P
Now, if we set a; =e~% for j =1,...,N, and ao = €’, we have

Hl'v=1 a?
f@) = : N
Iy o? + (T)y 077 ) a0

which, for z; € {-D,..., D}, is the ratio of a polynomial of degree ND
and a polynomial of degree no more than 2ND + 1. (Notice that such a
transformation cannot decrease the VC-dimension.)

Since the network has a linear threshold output, it computes the sgn
function of an affine combination of k of these rational functions, or of
inputs. For a fixed input vector, this is equivalent to the sgn function of
a polynomial of degree no more than 3N D 4 2 in the transformed first
layer weights and the second layer weights. Theorem 8.3 shows that
VCdim(H) < 2W log,(36ND + 24) < 2W log,(60N D). O

Notice that the proof technique of Theorem 8.11 is specific to the par-
ticular form of the standard sigmoid activation function. It apparently
cannot be extended to arbitrary finite domains, since the proof requires
elements of X to be small integral multiples of some number.

General standard sigmoid networks

The following result provides a general VC-dimension bound for stan-
dard sigmoid networks.
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Theorem 8.13 Let H be the set of functions computed by a feed-forward
network with W parameters and k computation units, in which each
computation unit other than the output unit has the standard sigmoid
activation function (the output unit being a linear threshold unit). Then

w
HH(m) < 2(Wk)2/2(18Wk2)5Wk (Eug)

provided m > W, and
VCdim(H) < (Wk)? 4+ 11Wklog, (18Wk?).

There is a considerable gap between this O((kW)?) bound and the
best known lower bound of (W?2), which is exhibited by a network
with k = ©(W) computation units (see Theorem 8.9).

The following result is analogous to Theorem 8.4, which gives bounds
on the VC-dimension of a function class in terms of the number of arith-
metic operations required to compute the functions. In this case, we
also allow the computation of the exponential function to be one of the
basic operations.

Theorem 8.14 Let h be a function from RY x R™ to {0,1}, determining
the class

H={z+ h(a,z):a € R¢}.

Suppose that h can be computed by an algorithm that takes as input the
pair (a,7) € R? x R* and returns h(a,z) after no more than t of the
following operations:

o the exponential function o~ e* on real numbers,
o the arithmetic operations +, —,' x, and [ on real numbers,
o jumps conditioned on >, >, <, <, =, and # comparisons of real
* numbers, and
e output 0 or 1.
Then VCdim(H) < t2d(d + 19log,(9d)). Furthermore, if the t steps

include no more than q in which the exponential function is evaluated,
then

d
and hence VCdim(H) < (d(q + 1))? + 11d(g + 1)(t + log,(9d(g + 1))).

2 em(2t —2)\*
g (m) < 2(4@+D/2(94(q + 1)2t)34(e+) ( ) ,
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This result immediately implies a bound on the VC-dimension for
feed-forward standard sigmoid networks that is only a constant factor
worse than the bound of Theorem 8.13. Notice that, for ¢ = 0 (which
corresponds to the function classes described by Theorem 8.4, defined
in terms of arithmetic operations), this result is only a constant factor
worse than Theorem 8.4, since O(d(d + t + log, d)) = O(dt) when we
assume that the program makes use of all d parameters.

Proof of VC-dimension bounds for sigmoid networks and
algorithms

The proofs of Theorems 8.13 and 8.14 use the following solution set
components bound for polynomials of certain exponential functions.

Lemma 8.15 Let fi,..., f, be fized affine functions of a,,...,aq4, and
let G be the class of polynomials in ay,. .., aq,e1(® .. efd(d) of degree
no more than I. Then G has solution set components bound

B= 2q(q—1)/2(l + 1)2d+q(d+ 1)d+2q.

Because the affine functions f; in this lemma must be fixed, we cannot
apply Theorem 7.6 directly (not even for the case of two-layer networks).
The following lemma shows how we can apply Theorem 7.13 to get
around this problem. Recall that the degree of a rational function (a
ratio of two polynomials) is the sum of the degrees of the numerator and
denominator polynomials.

Lemma 8.16 Suppose G is the class of functions defined on R* com-
puted by a circuit satisfying the following conditions: the circuit contains
q gates, the output gate computes a rational function of degree no more
than | > 1, each non-output gate computes the exponential function of a
rational function of degree no more than l, and the denominator of each
rational function is never zero. Then G has solution set components
bound 2(99)°/2(9qdl)59d,

Proof The idea of the proof is to include extra variables to represent the
value of the rational function computed at each gate and the value of the
output of each gate. This shows that the class defined in Lemma 8.15
computes G with intermediate variables, so we can apply Theorem 7.13.

Fix a set of k functions fi,..., fr from G, where k¥ < d. Define
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polynomials n; j and d; j (for i =1,...,k and j = 1,...,q) so that each
fi can be defined recursively in terms of v;1,...,v;4-1, by

_ni4la,vi1(a),...,vig4-1(a))
file) =3 @ vi,i @), viq-1(a))

and, for j=1,...,q-1,

i ~(a,v¢1(a),...,vi ‘_1(0))
e =iy,

dij(a,vi1(a),...,vij-1(a))

(That is, fi(a) is the output of circuit ¢, and v; j(a) is the output of gate
J in circuit ¢.) Now, consider the functions

fi(a,b,C) = Cigs
gij(a,b,¢) = ¢ijdij(a,biy,... bij-1)—nijla,big,...,bi-1),

fori=1,...,kand j=1,...,q, and
hi,]’ (a" b, C) = exP(ci,j) - bi,j

fori=1,...,kand j=1,...,q—1.

Let F be the set of polynomials in the variables (a, b, c¢) and exp(c; ;),
fori =1,...,k and j = 1,...,¢9 — 1, of degree no more than [ + 1.
Clearly, the functions f;, gi,j, and h; ; are in F. Lemma 8.15 shows that
F has solution set components bound

B = 2¥e~Dde-1)-1)/2(] 4 9)d54-1)(24d 4 1)24(2a-1)+1
< 26D*/2(9qdp)Ped.

It is easy to check that F' computes G with 2¢ — 1 intermediate vari-
ables (the derivative condition is satisfied because the denominators of
the rational functions are never zero), so Theorem 7.13 shows that this
implies the same solution set components bound for G. [

Proof (of Theorem 8.13) For a standard sigmoid network with W
parameters and k& computation units, and a fixed input vector z, there
is an equivalent circuit of the kind defined in Lemma 8.16. To see this,
notice that we can distribute the computation of the standard sigmoid
function, so that the exponential function is computed at the output
of one gate, and the function a — 1/(1 + &) is computed by the gates
to which this gate is connected. In this way, every gate in the circuit
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(except the output gate) computes a function of the form

w;
€xp (_ - 1+Ui _Ej:ijj) )

where v; is the output of gate ¢ and z; is a component of the input
vector. Since there are no more than k variables v; in the denominators,
we can compute a common denominator and express the argument of
the exponential function as a rational function (of the weights w; and
gate outputs v;) of degree no more than 2k. Lemma 8.16 (with d = W,
g = k, and [ = 2k), together with Theorem 7.6 shows that

Mg (m) < 2WR/2(18W k2)SWE (em /W)W

for m > W. For this number to be less than 2™ we require

m > (Wk)?/2 + 5Wklog,(18Wk?) + W log,(em/W).
Inequality (1.2) in Appendix 1 implies that

Wlog,m < m/2 + Wlog,(2W/(eln2)),

so it suffices if

m > (Wk)? + 10Wklog,(18Wk?) + 2W log,(2/In2),
and this is implied by m > (Wk)? + 11Wklog,(18Wk?). O

Proof (of Theorem 8.14) We start with the growth function bound.
The proof closely follows that of Theorem 8.4.

First, by the same argument as in the proof of Theorem 8.4, any
rational function computed by the algorithm has degree no more than
2t. Furthermore, the number of distinct circuits of the kind described in
Lemma 8.16 (call these rational/exponential circuits) that are examined
by the algorithm can be no more than 2t~! — 1, but to express this as
a boolean combination of sgn functions, we may need to use a negated
copy of each. Also, each rational/exponential circuit contains no more
than g+1 gates. It follows that we can express h as a (2! —2)-combination
of sgn(F), where F is the class of rational/exponential circuits of size
q + 1. Lemma 8.16 and Theorem 7.6 imply that

d
Tz (m) < 2KTH/2(gd(q + 1)2t)5d(e+D (%}ﬁ)
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(provided m > d/(2% — 2)), and this is less than 2™ when
2
g+ D)
2
Applying Inequality (1.2) from Appendix 1 shows that

m > (d(g + 1))% + 10d(g + 1)(t + log,(9d(q + 1))) + d(t + log,(2/In2)),

will suffice, and this is implied by m > (d(q + 1))% + 11d(¢g + 1)(t +
log,(9d(g + 1))). It follows that VCdim(H) < (d(g + 1))?> + 11d(g +
1)(t + log,(9d(q + 1))).

If we allow up to ¢ = ¢t — 1 exponential functions in the computation,
we have

+5d(g+1)(t+log,(9d(g+1)))+dlog,(e/d)+dt+dlog, m.

VCdim(H) < (dt)? + 11dt(t + log,(9dt))
< t3d(d + 191og,(9d)),

which is the first inequality of the theorem. O

8.5 Remarks

The techniques used in this chapter to establish VC-dimension bounds
for sigmoid networks are considerably more generally applicable. For in-
stance, in radial basis function networks, the computation units compute
a function of their input vector z € R® of the form ¢((z — ¢)TZ(z — ¢)),
where ¢ € R® and T is an n x n matrix. A common choice for ¢(:) is
the function a — e~%. In this case, Theorem 8.14 immediately implies
bounds on the VC-dimension of these radial basis function networks, or
even networks that combine piecewise-polynomial activation functions,
the standard sigmoid, and radial basis functions. Other choices for ¢
include various rational functions, such as the function a — 1/(1 + a).
In this case, the more specific result, Theorem 8.4, implies slightly better
bounds on the VC-dimension.

Another example of a function class for which the bounds of Theo-
rem 8.14 are applicable is the mizture of ezxperts model. In this model,
the network computes the function

f() = Zim O fila)

k .
i=1 egi (z)

where fi,..., fr and g1,..., gi are functions computed by sigmoid net-
works. The idea of the model is that each of the functions f; gives a
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good approximation to the desired mapping in some region of the input
space (f; is an ‘expert’, with specialized expertise in that region), and
the value at some z of each corresponding function g; indicates the con-
fidence in that expert’s accuracy at the point z. Clearly, Theorem 8.14
gives bounds on the VC-dimension of the class of functions computed
by these networks.
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Classification with Real-Valued Functions

9.1 Introduction

The general upper and lower bounds on sample complexity described in
Chapters 4 and 5 show that the VC-dimension determines the sample
complexity of the learning problem for a function class H. The results
of Chapters 6 and 8 show that, for a variety of neural networks, the
VC-dimension grows with the number of parameters. In particular, the
lower bounds on the VC-dimension of neural networks described in Sec-
tion 6.3, together with Theorem 6.5, show that with mild conditions on
the architecture of a multi-layer network and the activation functions
of its computation units, the VC-dimension grows at least linearly with
the number of parameters.

These results do not, however, provide a complete explanation of the
sample size requirements of neural networks for pattern classification
problems. In many applications of neural networks the network pa-
rameters are adjusted on the basis of a small training set, sometimes an
order of magnitude smaller than the number of parameters. In this case,
we might expect the network to ‘overfit’, that is, to accurately match
the training data, but predict poorly on subsequent data. Indeed, the
results from Part 1 based on the VC-dimension suggest that the estima-
tion error could be large, because VCdim(H)/m is large. Nonetheless,
in many such situations these networks seem to avoid overfitting, in that
the training set error is a reliable estimate of the error on subsequent ex-
amples. Furthermore, Theorem 7.1 shows that an arbitrarily small mod-
ification to the activation function can make the VC-dimension infinite,
and it seems unnatural that such a change should affect the statistical
behaviour of networks in applications.

One possible explanation of such discrepancies between theory and
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practice is that in the theoretical model we have discussed, a learning
algorithm is required to perform well for any probability distribution. In
particular, in proving lower bounds on sample complexity, we used care-
fully constructed probability distributions, and it seems unlikely that
these distributions are accurate models for applications. It could well
be the case that learning problems that occur commonly in applications
are easier than the ‘distribution-free’ theory indicates. However, it is not
clear how we can take advantage of this, since, as argued in Section 2.1,
in many applications of neural networks we have little knowledge of the
process generating the data.

Another inadequacy of the learning model investigated in Part 1 is
that it is not appropriate for many neural network learning algorithms.
For instance, suppose we wish to use a real-output sigmoid network for
binary classification. It is natural to threshold the real output of the
network to obtain a binary classification label. This is the approach
taken implicitly in Part 1 of this book, and the theoretical results ob-
tained there apply. However, many learning algorithms for real-output
sigmoid networks take into account the value of the real number that is
computed by the network, and not simply its binary thresholded value.
Such algorithms typically do not minimize the number of misclassifica-
tions over the training examples, but instead minimize the squared error
of the real-valued outputs, a procedure that can lead to very different
behaviour. An algorithm of this type is unlikely to return a function
whose thresholded version makes a small number of classification errors
on a sample but has its function values all close to the threshold. (Such
a function would have real output values that, on the training sample,
mostly fall on the correct side of the threshold, but not by much. Algo-
rithms that minimize squared error, as we shall see, tend not to produce
such ‘indecisive’ functions.) Therefore, we cannot expect that algorithms
of this type will produce a function whose thresholded version has near-
minimal sample error. For this reason, the theory of Part 1 cannot be
readily used to guarantee a nearly optimal misclassification probability.

In the next seven chapters, we investigate an alternative model of
learning that is more applicable to situations where a real-output neu-
ral network is used for binary classification, but in a way other than
by simple thresholding. As described above, if one simply thresholds
real-valued functions in some class and applies the theory of Part 1,
then all that matters is whether a function gives a real number output
lying on the correct side of the threshold. In the modified approach, we
take into consideration the ‘margin’ by which the function value lies on
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the correct side; that is, we take into account the distance between the
threshold value and the real number output by the network. Such an
approach enables us to exploit the fact that learning algorithms com-
monly used for neural networks (such as gradient descent algorithms
that locally minimize squared error) tend to produce classifiers having
a large margin on most of the training examples. In the new model of
learning, we shall require that the output hypothesis of the algorithm
has misclassification probability nearly as small as the smallest error of
a ‘large margin’ classifier in the class. We shall see that this approach
eliminates some of the peculiarities of the results obtained in Part 1.
The new model is, in effect, a ‘relaxation’ of the learning model studied
in Part I, in the sense that we weaken the requirement on the misclas-
sification error of the output hypothesis. By measuring error using the
margins, we obtain bounds on misclassification probability of the form

error < (estimate of error) + (complexity penalty),

where the error estimate is measured using margins and the complex-
ity penalty depends, for instance, on the size of the parameters in the
network, rather than on the number of parameters. In many cases, this
new model explains how overfitting may be avoided even with train-
ing sets that are considerably smaller than the number of parameters.
This does not contradict the lower bounds of Chapter 5: the complexity
penalty can be smaller in the new model, because in situations where
overfitting might occur in the old model, the new error estimate would
be large. Loosely speaking, the limitations of the learning algorithms
(that they cannot find functions with few errors on the training data,
since those functions do not have large margins) effectively counter the
deficiency in the amount of training data. Since the new model more
accurately describes the types of learning algorithm used in practice, the
results in this part are likely to give a more accurate explanation of the
performance of these learning algorithms.

9.2 Large Margin Classifiers

Suppose F is a class of functions defined on the set X and mapping
to the interval [0,1], such as the class of all functions computable by a
real-output sigmoid network, for example. One way to use such a class
for binary classification is to use ‘thresholded’ versions of its functions;
that is, to work with the class of binary-valued functions of the form
h(z) = sgn(f(z) — 1/2), and then to apply the theory of Part 1. Here,
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however, we take a different approach, in which we are interested in
functions that classify examples correctly, but with a large margin. In
this definition, f can be viewed as a function that maps to the interval
[0,1]; we define the notion of margin more generally because it will be
useful later.

Definition 9.1 Let Z = X x {0,1}. If f is a real-valued function in F,
the margin of f on (z,y) € Z is

, _[ f@-12 ify=1
margin(f(z),y) = { 1/2 - f(x) otherwise.

Suppose v is a nonnegative real number and P is a probability distribu-
tion on Z. We define the error erp(f) of f with respect to P and v as
the probability

er}(f) = P {margin(f(s),y) < 7},

and the misclassification probability of f as

erp(f) = P{sgn(f(z) - 1/2) # y}.

Clearly, if sgn(f(z) — 1/2) correctly classifies y, the margin is nonneg-
ative. We can interpret a large positive margin as a ‘confident’ correct
classification. Notice that erp(f) < erph(f) for all ¥ > 0, and that
inequality can hold.

Recall that a learning algorithm for a class H of binary-valued func-
tions is a function taking a training sample 2 € Z™ and returning a
function A in H that, with high probability over Z™, has error satisfy-
ing

erp(h) < gléllfiel‘p(g) +e.

We can define a classification learning algorithm for a class F' of real-
valued functions in an analogous way.

Definition 9.2 Suppose that F is a class of functions mapping from X
into R and that Z denotes X x {0,1}. A classification learning algorithm
L for F takes as input a margin parameter v > 0 and a sample z €
U2, 2%, and returns a function in F such that, for any¢,6 € (0,1) and
any vy > 0, there is an integer mo(e,d,7) such that if m > mo(e,d,7)
then, for any probability distribution P on Z = X x {0,1},

p™ {erp(L(fy, 2)) < irelger}(g) + e} >1-4.
9
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We define the sample complezity function my (e, d,7) of L as the small-
est integer that can be taken to be mg(e, d,) in this definition, and the
inherent sample complezity mr (e, d,v) of the classification learning prob-
lem for F as the minimum over all learning algorithms L of my (e, 6, 7).
As in the definition of the binary classification problem, we say that an
algorithm L has estimation error bound e(m,d,~) if, for all m, 4, v, and
P, with probability at least 1 — § over z € Z™ chosen according to P™,

erp(L(y,2)) < inf erp(g) + €(m,é,7).

The estimation error of L, denoted ez (m,d, ), is the smallest possible
estimation error bound.

Clearly, if F is a class of {0,1}-valued functions, Definition 9.2 and
the analogous Definition 2.1 for learning binary-valued function classes
are equivalent. In deriving the results for neural network classes in the
previous chapters, we have, in effect, considered the binary-valued class
H = {sgn(f-1/2) : f € F}. By considering directly the real-valued class
F, Definition 9.2 gives a potentially easier learning problem, since now
the learning algorithm needs only to find a function with misclassification
probability close to the best error ‘at margin 7’.

This definition of learning is well-motivated for neural networks. In
particular, learning algorithms for real-output sigmoid networks typi-
cally attempt to find a function in F' that approximately minimizes the
squared error on the training sample. The following proposition shows
that when there is a function with small squared error, that function is
also a large margin classifier. In order to state the result, we need one
further definition: for a function f in F and v > 0, the sample error of
f with respect to v on the sample z is

&1(f) = o |{i - margin(£ (@), ) < 7}.

Proposition 9.3 For any function f : X — R and any sequence of
labelled examples ((z1,71),- -+, (@m,¥m)) in (X x {0,1)™, if

% 1Zn;(f(fb‘i) —y)’<e

then
&) (f) <e/(1/2-7)?
forall0<y<1/2.
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Proof T margin(f(zs), s) <7, then |£(zi) ~ sl > 1/2=7. S0 &7(f) 2
€/(1/2 — 4)? implies

LS e w2

i=1
O

It is possible to obtain a result analogous to Theorem 2.4 that provides
a bound on the sample complexity of classification learning with a finite
class of real-valued functions. However, in this case there is no advantage
to considering the real-valued nature of the class. We shall see in the
following chapters that there can be a considerable advantage if the
function class is infinite.

9.3 Remarks

When using a [0, 1]-valued function for pattern classification, we can in-
terpret the value of the function as an estimate of the probability that
the correct label is 1. This provides extra information that would be
ignored if we simply thresholded the function, and this is frequently
valuable in applications. For instance, in predicting outcomes of a med-
ical procedure, it seems sensible to allow a classifier to return a ‘don’t
know’ value, rather than forcing it to predict either a 0 or a 1. In such
cases, we can consider two kinds of errors: those where the classifier says
‘don’t know’, and those in which it makes a prediction, but is wrong.
For a class of [0, 1)-valued functions, it is reasonable to interpret a value
near the threshold (say, within v) as a ‘don’t know’ value. In that case,
er} measures the sum of the probabilities of these two kinds of errors.
Although the results described in the following chapters give bounds on
erp in terms of the infimum over F of er},(f), it is easy to extend these
results to obtain bounds on er}.

9.4 Bibliographical Notes

The idea that studying margins might provide an explanation of the
surprisingly good generalization performance of neural network classi-
fiers was first described in (Bartlett, 1998), but the definition of learning
presented in this chapter is new. This work builds on a large collection
of results and intuition for linear classifiers. Many authors (see, for ex-
ample, (Duda and Hart, 1973)) have suggested building linear classifiers
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with large margins; part of the motivation seems to have been robust-
ness to noise in the input variables. Vapnik (1982) studied combinatorial
properties of large margin classifiers. Boser, Guyon and Vapnik (1992)
proposed algorithms for large margin linear classifiers. Shawe-Taylor,
Bartlett, Williamson and Anthony (1996) gave an analysis of linear clas-
sifiers with large margins. The results in (Bartlett, 1998) also have tech-
nical ancestors in (Lee, Bartlett and Williamson, 1996; Lee, Bartlett
and Williamson, 1995b) (see also (Koiran, 1994)) and in (Anthony and
Bartlett, 1995), as well as in (Shawe-Taylor et al., 1996)—we shall meet
some of these results in later chapters.

The observation (Proposition 9.3) that minimizing squared error gives
good margins was made in (Bartlett, 1998). (But see (Sontag and Suss-
mann, 1989) for an illustration that minimizing squared error using gra-
dient descent can be problematic, even for simple problems.)

The model described in this chapter is related to the problem of learn-
ing probabilistic concepts (see (Kearns and Schapire, 1994)). A proba-
bilistic concept is a function defined on an input domain X mapping
to the interval [0,1). The value of the function at a point £ € X is
an estimate of the probability that the label associated with z is 1. In
this model, a learning algorithm aims to produce a probabilistic concept
from some class that approximately minimizes the expected value of
some loss function. Typical loss functions studied include the quadratic
loss function, (f(z),y) — (f(z) — y)?, and the absolute loss function
(f(z),y) » |f(z) — y|. The quantity er}, defined in this chapter is the
expected value of the loss function (f(z),¥) = 1|7(z)-y>1/2—+(Z¥)-
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Covering Numbers and Uniform
Convergence

10.1 Introduction

Just as in Chapter 4, we shall show that in many cases an algorithm
returning a function with small sample error will constitute a learning
algorithm (where, in the present context, the sample error is measured
with respect to a certain margin). The details will be given in Chap-
ter 13. As in the theory developed earlier for the case of classes of
functions mapping into {0,1}, we first obtain a ‘uniform convergence’
result, analogous to Theorem 4.3. The notion of covering numbers will
prove crucial in our analysis.

10.2 Covering Numbers
Measuring the extent of a function class

Theorem 4.3 concerns a class of functions that map from some set X
into {0, 1}, and it involves the growth function Ilz(m). Recall that if S
is a finite subset of X, then H|; denotes the restriction of H to S, and
that the growth function Iy is given by

g (m) = max {|H);|: SC X and |S| =m}.

Since H maps into {0,1}, H|, is finite for every finite S. However, if we
consider a class F' of real-valued functions, we encounter the problem
that even for finite S, Fi; may be infinite. Thus we cannot make use
of the cardinality of F|; in obtaining a uniform convergence result for
real function classes. In fact, we only need the set F|; to have not too
many elements that are very different; instead of cardinality, we use the
notion of covers to measure the ‘extent’ of F|,.

140
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Fig. 10.%. The centres of the do balls form an e-cover of the shaded region,
F, CR°

Covering numbers for subsets of Euclidean space

Given W C R* and a positive real number ¢, we say that C C R* is a
deo €-cover for W if C C W and for every w € W there is a v € C such
that

max {|lw; —v|:i=1,...,k} <e.

In other words, given any vector w in W, there is some vector in C
whose distance from w is less than ¢, where distance is measured using
the metric do, on R¥, defined by

doo((zlymm (RN 7xk)y (ylay2’ see ’yk)) = m?x Izi - yi|'

For v € R* and € > 0, define the open d, ball at v of radius € to be the
set

{u € R* : doo(u,v) < €}.
Then we could also define an e-cover for W C R¥ as a subset C of W for

which W is contained in the union of the set of open d, balls of radius
€ centred at the points in C. Figure 10.1 illustrates this idea. We say
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that W is totally bounded if for each € > 0 there is a finite e-cover for W.
In this case, we definet the dy, €-covering number of W, N(e, W, doo),
to be the minimum cardinality of a do, e-cover for W.

Uniform covering numbers for a function class

Suppose that F is a class of functions from X to R. Given a sequence
T = (21,%2,...,%x) € X¥, we let Fj, be the subset of R given by

FL = {(f(xl)’f(z'l)a""f(zk)):fe F}'

(If the z; are distinct, there is a clear one-to-one correspondence be-
tween F|_ and the restriction F|; of F to the set S = {z1,22,...,2,} C
X.) For a positive number ¢, we define the uniform covering number
N (€, F, k) to be the maximum, over all z € X¥, of the covering num-
ber N (e, F}, ,dw) (and we take it to be infinite if there is no bound on
these covering numbers); that is,

Noo (€, F k) = max {N(e, Fj, ,doo) : € X*}.

The covering number N, (¢, F, k) can be interpreted as a measure of
the richness of the class F' at the scale e. For a fixed value of ¢, this cov-
ering number—and in particular how rapidly it grows with k—indicates
how much the set Fj, ‘fills up’ R*, when we examine it at the scale e. For
example, suppose that functions in F map to the interval [0,1]. If there
is a vector z in X* with F|, = [0,1]¥, then N (¢, F, k) grows roughly
as (1/€)*, and this is the fastest growth possible. However, we shall
see that if functions in F' are bounded and Fj, is always contained in a
linear subspace of R of dimension d, then Ny, (¢, F, k) grows roughly as
(k/€)?, which is polynomial in k. We shall see in the next section that
the rate of growth of these covering numbers with k is crucial, just as
the rate of growth of Iy (k) with k was crucial for binary classification.

In fact, the uniform covering number is a generalization of the growth
function. To see this, suppose that functions in H map into {0,1}. Then,
for all z € X*, H), is finite and, for all € < 1, N'(¢, H|,,ds) = |H|, |, s0
Noo (e, H, k) = Ty (k).

t We explicitly write doo in the definition since we shall see that it is useful to be
able to define covering numbers in terms of other notions of distance.
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10.3 A Uniform Convergence Result

In this section we present and prove a uniform convergence result for a
class of real-valued functions. (Strictly speaking, it is not a uniform con-
vergence result, since it gives uniform one-sided bounds on error prob-
abilities.) The proof of this result is in many ways similar to the proof
of the corresponding result in Chapter 4, Theorem 4.3, although the
technical details are slightly more intricate.

Theorem 10.1 Suppose that F is a set of real-valued functions defined
on the domain X. Let P be any probability distribution on Z = X x
{0,1}, € any real number between 0 and 1, v any positive real number,
and m any positive integer. Then

P™ {erp(f) > €r(f) + € for some f in F}

2
< 2N (7/2, F,2m) exp (—%) .

Notice how this compares with Theorem 4.3: that bound involves the
growth function, whereas this involves the covering number. Since the
covering number is a generalization of the growth function, this result is,
in a sense, a generalization of a one-sided version of Theorem 4.3. Recall
that Theorem 4.3 is useful when Il (m) increases polynomially with m,
and this is guaranteed when the VC-dimension of H is finite. In the same
way, Theorem 10.1 shows that the probability that the sample error does
not provide a uniformly accurate error estimate decreases to zero as the
training sample size m increases, provided that the covering number
N (7/2, F,2m}) does not grow too rapidly with m. In particular, if the
covering number grows only polynomially with m, this probability goes
to zero exponentially quickly as a function of m.

We now embark on the proof of Theorem 10.1. This uses the same
key techniques as the proof of Theorem 4.3, namely symmetrization,
permutation, and reduction to a finite class. Having presented some
high-level justification for these techniques in Chapter 4, and having
given many of the essential definitions, we proceed a little faster with
the present proof.

Symmetrization

First, we have the following result, which allows us to consider a sample-
based estimate of erp(f).
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Lemma 10.2 With the notation as above, let
Q={z€2Z™:some f in F has erp(f) > &) (f) + ¢}
and
R={(r,s) € Z™ x Z™ : some f in F has ér,(f) > &} (f) +¢/2}.
Then for m > 2/é2,
P™(Q) < 2P*™(R).
Proof The proof closely follows the proof of Lemma 4.4.

If some f € F satisfies erp(f) > €r}(f) + ¢ and ér,(f) > erp(f) —€/2,
then it satisfies ér,(f) > érY(f) +¢/2, so

P’™(R) > P> {3f € F,erp(f) > ér7(f) +¢and
érs(f) > erp(f) —€/2}
/ P™{s:3f € F, erp(f) > &2(f) + ¢ and
Q
ér,(f) > erp(f) —€/2} dP™(r).  (10.1)

As in the proof of Lemma 4.4, we can use Chebyshev’s inequality to
show that

P™ {ér,(f) > exp(f) - ¢/2} 2 1/2

for all f € F, provided that m > 2/€?, and this, together with (10.1),
shows that P?™(R) > P™(Q)/2. O

Permutations

As in Chapter 4, we now bound the probability P?™(R) in terms of a
probability involving permutations of the sample labels. Recall that I'y,
is the set of permutations o on {1,2,...,2m} that switch elements from
the first and second halves (that is, {¢(i),0(i + m)} = {i,i + m} for
i=1,...,m). Recall also that we can regard a permutation o as acting
on an element of Z2™, so that

0z =0(21,22,- .., %2m) = (Zo(1)s 25(2)> - - + » Zo(2m))-
Lemma 4.5 shows that

P>™(R) =EPr(ocz€ R) < max Pr(cz € R), (10.2)
¥4 m
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where the expectation is over z in Z?™ chosen according to P?™, and
the probability is over permutations chosen uniformly in I'y,. So the
problem reduces to estimating this latter probability.

Reduction to a finite class

In the analogous step of the proof of Theorem 4.3, we used the union
bound to show that the probability that oz € R is no more than the
sum over all elements of F|, of some probability involving an element.
As noted earlier in this chapter, the corresponding restriction here is
typically infinite, so instead we approximate F, by using a cover.

Lemma 10.3 For the set R C Z®>™ defined in Lemma 10.2, and for a
permutation o chosen uniformly at random from I'y,,

2
max Pr(oz € R) < N (7/2, F,2m) exp (_f_nl) .
zezZm 8

Proof Fix z = (21,...,%2m) in Z%™, where z; = (z;,y:). Let ¢ =

(z1,...,%2m) and fix a minimal v/2-cover T of F},. Clearly, |T| =
N(71/2,F,,dx) < N (7/2,F,2m). Then for all f in F there is an
fin T with |f(z;) — fil < v/2for1 < i < 2m. Now, if oz € R
then, by definition, some f in F has ér,(f) > €rl(f) + ¢/2, where r =
(z,(l),.. .,z,(m)) and 8 = (z,,(,,,+1),... ,z,(gm)). By the definition of
€rs(f) and é](f), this f satisfies

% {m+1<i<2m:sgn (f(zow) — 1/2) # vony }|
> —|{1<i<m:margin (f(@o) o0) <7}| + 5
Now, if sgn(f(z) — 1/2) # y then margin(f(z),y) < 0, so this implies
% H{m+1 <i < 2m : margin (f(zo(;)), Yoiy) < 0}
> % {1 < < m: margin (F@o), vo9) < 7}|+ 3. (103)

Choose f € T such that, for all i, |f; — f(z:)] < 7/2. It follows that
if margin(f;,5;) < /2, then margin(f(z;),y;) < 4. Furthermore, if
margin(f(z;),:) < 0 then we have margin(f;,5;) < v/2. Combining
these facts, we see that if 0z € R then there is some f € T such that

% |{m +1<4<2m:margin (fﬂ(i)rya(i)) < 7/2}'
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1 ) . (2 €
> = I{l < i < m:margin (fa(i):ya(i)) < ’7/2}| +3-
If we define
;. _ [ 1 if margin(f;,y;) < v/2
v(f1) = { 0 otherwise,
then it follows that

Pr(ocz € R)

<Pr (Elf €T: % i (v(f,otm +1) - (£, 0@)) 2 e/2) :

i=1

The union bound then implies that this probability is no more than

7| mas Pr (% - (v(F,0m +i) - v(f,06)) 2 e/z)

i=1

L~ ,; ; :

= [TImaxPr | = 3" |o(f,)) - o(f,m+9)| B 2 ¢/2 ),
fer mia

where the final probability is over the §;, which are independently and
uniformly chosen from {—1,1}. Hoeflding’s inequality (see Appendix 1)
shows that this probability is no more than exp(—e?m/8), which implies

the result. a

Theorem 10.1 now follows from Lemma 10.2, Inequality (10.2), and
Lemma 10.3. Indeed, it is trivially true for m < 2/e2, because in that
case the right-hand side of the bound is greater than 1, so we can apply
Lemma 10.2.

In fact, Theorem 10.1 can be improved in the case that functions in
F take values that are far from the threshold value of 1/2. Clearly, the
behaviour of a function in F is irrelevant in a region where its value
is far from 1/2. If functions in F are very complex in such regions,
the covering number of F' might be an overly pessimistic measure of
the complexity of F. Instead of F, consider the class m,(F’), where
7yt R = [1/2 — 4,1/2 + ] satisfies

1/24+4 fa>1/2+7%
y(a) = { 1/2—v fa<1/2-« (10.4)
a otherwise,
(see Figure 10.2), and #,(F) = {my o f : f € F}, where (go f)(z) =
g(f(z)). It is clear that the analysis carried out in the above proof is still
true when f is replaced by 7, o f, and hence we can use a cover of =.,(F)
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Fig. 10.2. The graph of the function m, : R = [1/2 —7,1/2 +1].

rather than F. Clearly, the covering numbers of n,(F) are no larger
-than those of F', and can be considerably smaller. For example, if there
is a point z € X for which the set {f(z) : f € F} C R is unbounded,
then No (7/2, F, 1) = oo for all ¥ > 0, whereas N (7/2,7,(F),1) < 4.
Thus, the following theorem is an improvement of Theorem 10.1.

Theorem 10.4 Suppose that F is a set of real-valued functions defined
on a domain X. Let P be any probability distribution on Z = X x {0,1},
¢ any real number between 0 and 1, v any positive real number, and m
any positive integer. Then

P™ {erp(f) > &)(f) + € for some f in F}
2
< 2Nw (%,m,(F),2m) exp (_6_812) .

10.4 Covering Numbers in General

The notion of covering numbers can be defined quite generally, and in
subsequent chapters we shall use several notions of covering numbers
other than those discussed earlier in this chapter. We now give the
general definition.

Recall that a metric space consists of a set A together with a metric,
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d, a mapping from A x A to the nonnegative reals with the following
properties, for all z,y,z € A:

(i) d(z,y) =0if and only if z = y,
(i) d(z,y) = d(y,z), and
(iii) d(z,z) < d(z,y) + d(y, 2).

For € > 0, and for W C A, we say that C' C A is an e-cover of W with
respect to d if C C W and for every w € W there is a v € C such that
d(w,v) < €. In other words, the union of the set of d balls of radius €
centred at the points in C contains W. We say that W is totally bounded
if for each € > 0 there is a finite e-cover for W. In this case, we define
the e-covering number of W, N'(e, W, d), to be the minimum cardinality
of an e-cover for W with respect to the metric d.

Of course, the definition just given subsumes the one we used earlier in
the chapter for d = do,. There are many other metrics—and hence, types
of covering number—on RF. Of particular relevance are the covering
numbers corresponding to the metrics d; and ds, given by

k
1
di(z,y) = 5 Z |lzi — il

i=1
and
Lk 1/2
_ 2
da(z,y) = (E ;(zi - ) ) .

In Section 10.2 we defined the uniform covering numbers N, (¢, F, k),
for a function class F. In an analogous way, we may define uniform
covering numbers corresponding to the d; and ds metrics: we define

Ny (e, F k) = max {N (e, F}, , dp) : z € X*}

for p=1,2,00.
Jensen’s inequality (see Appendix 1) shows that
di(z,y) < da(z,y), (10.5)
and it is immediate that
d2(2,y) < doo(z,y)- (10.6)

Hence, we have the following result.
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Lemma 10.5 For any class F of real-valued functions defined on X,
anye>0, and any k € N,

Nl (63F7k) SN2(€’Fak) SNOO(G:FJG)'

10.5 Remarks
Pseudo-metric spaces

It is possible to define general covering numbers with respect to a pseudo-
metric rather than a metric. A pseudo-metric d satisfies the second and
third conditions in the definition of a metric, but the first condition does
not necessarily hold. Instead, d(z,y) > 0 for all z,y, and d(z,z) = 0,
but we can have z # y and d(z,y) = 0.

Improper coverings
Recall that, if (A,d) is a metric space and W C A, then, for ¢ > 0, we
say that C C A is an e-cover of W if C C W and for every w € W
there is a v € C such that d(w,v) < e. If we drop the requirement
that C C W then we say that C is an improper cover. (The type of
cover we defined earlier is sometimes called a proper cover.) We use this
definition of cover because it is often more convenient, but the following
lemma shows that the corresponding definition of covering number is
closely related to the one used in this chapter.

Lemma 10.6 Suppose that W is a totally bounded subset of a metric
space (A,d). For ¢ > 0, let N'(e, W, d) be the minimum cardinality of a
finite improper e-cover for W. Then,

N(2¢,W,d) < N'(e,(W,d) < N(e, W, d)
for all € > 0.

Proof The second inequality is immediate since any proper cover is
also an improper cover. For the first inequality, suppose that C’ is an
improper e-cover for W of mimimum cardinality. Then, since no element
of C’ can be removed (since it is minimal) without leaving some element
of W ‘uncovered’, it must be the case that for each v' € C' there is
c(v') € W with d(c(v'),v') < e. Consider the set C = {c(v') : v' € C'}.
We claim C is a proper 2e-cover for W. Certainly, C C W. Furthermore,
for w € W, there is v' € C' such that d(w,v') < ¢, and by the triangle
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inequality, d(w, ¢(v')) < d(w,v')+d(v',c(v')) < e+e¢. The result follows.
O

10.6 Bibliographical Notes

Theorems 10.1 and 10.4 are from (Bartlett, 1998). The proofs of these
theorems use ideas due to Vapnik and Chervonenkis (1971) (see also
Section 4.7) and Pollard (1984). Kolmogorov and Tihomirov (1961)
give many useful properties of covers, including Lemma 10.6.
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The Pseudo-Dimension and Fat-Shattering
Dimension

11.1 Introduction

Chapters 4 and 5 show that the Vapnik-Chervonenkis dimension is cru-
cial in characterizing learnability by binary-output networks, and that
it can be used to bound the growth function. Chapter 10 shows that
covering numbers are a generalization of the growth function useful for
analysing classification by real-output neural networks (or, more gen-
erally, by real-valued function classes). We see later in the book that
covering numbers are also important in analysing other models of learn-
ing. It is natural to ask whether there is a ‘combinatorial’ measure
analogous to the VC-dimension that can be used to bound the cover-
ing numbers of a class of real-valued functions, and hence to quantify
the sample complexity of classification learning. This is largely true,
although the definitions and proofs are more complicated than for the
binary classification case. In this chapter we introduce the key ‘dimen-
sions’ that we use in our analysis of learning with real function classes
and establish some associated basic results and useful properties. In the
next chapter we show how these dimensions may be used to bound the
covering numbers.

11.2 The Pseudo-Dimension
The definition of the pseudo-dimension

To introduce the first of the new dimensions, we first present a slightly
different formulation of the definition of the VC-dimension. For a set
of functions H mapping from X to {0,1}, recall that a subset S =
{z1,23,...zm} of X is shattered by H if H|; has cardinality 2™. This
means that for any binary vector b = (b, be,...,by) € {0,1}™, there is

151
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Fig. 11.1. The set {z1,z2} C R is shattered by the class F of affine functions
on R, F={z— az+b:a,b € R}. The points r;,re witness the shattering.

some corresponding function hy in H such that

(hb(zl): hb(z2)7 sy hb(zm)) =b,

or, in other words, such that hy(z;) = b; for all 4.

For a class F of real-valued function, we may modify this definition
of shattering as follows. (Recall that sgn(a) takes value 1 if @ > 0 and
0 otherwise.)

Definition 11.1 Let F be a set of functions mapping from a domain X
to R and suppose that S = {z,,22,...,2m} C X. Then S is pseudo-
shattered by F if there are real numbers r1,7r2,...,7y, such that for each
b € {0,1}™ there is a function f, in F with sgn(fo(z:) — r5) = b; for
1<i<m. Wesay that r = (r1,72,...,ry) witnesses the shattering.

Thus, S is pseudo-shattered if there are numbers ry,7s,...,rn and
2™ functions f, that achieve all possible ‘above/below’ combinations
with respect to the r;. (See Figure 11.1.) Often we will simply write
‘shattered’ when we mean ‘pseudo-shattered’. Corresponding to this
notion of shattering, we have the pseudo-dimension.

Definition 11.2 Suppose that F is a set of functions from a domain
X to R. Then F has pseudo-dimension d if d is the mazimum car-
dinality of a subset S of X that is pseudo-shattered by F. If no such
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mazimum exists, we say that F has infinite pseudo-dimension. The
pseudo-dimension of F is denoted Pdim(F).

Other interpretations of pseudo-dimension

There are at least two other useful ways of defining pseudo-shattering
and the pseudo-dimension.

First, for any f € F, let By be the indicator function of the region
below or on the graph of f; that is,

By(z,y) = sgn(f(z) — y)-

Then the pseudo-dimension of F is precisely the VC-dimension of the
subgraph class B = {By : f € F}.
Second, for any £ € X™, define

F, ={(f(z1), f(z2),..., f(zm)) : f € F} CR™.

Then the set {z,23,...,Zn} is pseudo-shattered if this subset of R™ is
sufficiently ‘extensive’ in the following geometrical sense. Suppose that
for a given r € R™ and W C R™,

WH+r={w+r:weW}

denotes the translate of W by r, and define the 2™ orthants of R™ to
be the sets of points (y1,¥s,...,ym) defined by m inequalities, with in-
equality ¢ being either y; > 0 or y; < 0. Then the set {z;,z2,...,Zm}
is pseudo-shattered by F' if and only if some translate Fj, + r of F, in-
tersects all 2™ orthants of R™. This interpretation of pseudo-dimension
is useful in some proofs.

Pseudo-dimension and compositions with non-decreasing
Sunctions

The following theorem shows that composing the function computed by
a neural network with a non-decreasing function (such as the standard
sigmoid, or the step function) does not increase its pseudo-dimension.

Theorem 11.3 Suppose F is a class of real-valued functions and o :
R — R is a non-decreasing function. Let o(F) denote the class {oo f :
f € F}. Then Pdim(c(F)) < Pdim(F).
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Proof For d < Pdim(o(F)), suppose
{o0ofs:be€{0, l}d} C o(F)

pseudo-shatters a set S = {z1,...,z4} C X, witnessed by (ry,...,74).
Then, by suitably relabelling the fy, forallb € {0,1}¢and i € {1,...,d},
we have sgn (o(fs(z:)) — i) = b;. Take

yi = min { fo(z;) : o(fo(2:)) > ri,b € {0,1}}

fori = 1,...,d. (Notice that the minimum exists, since the set is fi-
nite.) Then, since o is non-decreasing, it is straightforward to verify
that sgn (fu(z:) — y;) = b; for b€ {0,1}¢ and i € {1,...,d}. a

Pseudo-dimension and linear dimension

We now present a quite general result that is useful in estimating the
pseudo-dimension of many function classes. Recall that a class F' of
real-valued functions is a vector space if for all f,g € F and any two
real numbers X and u, the function Af + ug belongs to F. The following
result links the pseudo-dimension to the linear dimension.

Theorem 11.4 If F is a vector space of real-valued functions then
Pdim(F) = dim(F).

Proof For the class B of ‘below-the-graph’ indicator functions defined
above, Pdim(F) = VCdim(Br). But

Br = {(z,y) — sgn(f(2) - v) : f € F},

so the functions in By are of the form sgn(f + g), where f is a func-
tion from the vector space and g is the fixed function g(z,y) = -y.
Theorem 3.5 now shows that VCdim(Br) = dim(F). (]

Many of the function classes discussed in this book contain functions
that map into some bounded range, and hence cannot be a vector space.
However, if the class is a subset of a vector space, the following imme-
diate corollary can be applied.

Corollary 11.5 If F is a subset of a vector space F' of real-valued
functions then Pdim(F) < dim(F").



11.2 The pseudo-dimension 155

Linear computation units and polynomial transformations

Theorem 11.4 immediately enables us to calculate the pseudo-dimension
of many function classes. In this section, we consider linear functions of
certain fixed transformations of the inputs.

Suppose that F is the class of affine combinations of n real inputs of
the form

n
f(z) =wo+ ) wizi,
i=

where w; € R and = = (z1,...,2Z,) € R" is the input pattern. We can
think of F as the class of functions computable by a linear computation
unit, which has the identity function as its activation function.

Theorem 11.6 Let F be the class of real functions computable by a
linear computation unit on R®. Then Pdim(F) =n + 1.

Proof It is easy to check that F' is a vector space. Furthermore, if
1 denotes the identically-1 function and, f; is the ith co-ordinate pro-
jection, fi(z) = z;, for 1 < i < n, then B = {f1, f2,---,fn,1} is &
basis of F. To see this, notice that any function in F is a linear com-
bination of the elements of B, so it remains only to show that these
functions are linearly independent. Suppose, then, that the constants
Q1,Q2,...,0n41 are such that f = a1 fi + asfo + -+ + anfn + Ans1l
is the identically-0 function. Then, f(0) = 0 implies that ap+1 = 0
and f(e1) = f(e2) = --- = f(ep) = 0 imply that @y = -+ = a, = 0,
where e; has entry i equal to 1 and all other entries 0. It follows that
dim(F) = n + 1 and hence, by Theorem 11.4, Pdim(F) =n + 1. O

We saw earlier in the book that the VC-dimension of the class of (binary-
valued) functions computed by the boolean perceptron is the same as
that computed on real inputs. The following theorem shows that the
corresponding statement is true of pseudo-dimension.

Theorem 11.7 Let F be the class of real functions computable by a
linear computation unit on {0,1}". Then Pdim(F)=n+ 1.

Proof We need only note that in the proof of the previous theorem, the
proof of the linear independence of the functions fi, f2,..., fa, 1 involved
values of z (the all-0 vector and the e;) that are in {0,1}". Thus the
functions form a basis of the space of functions computed by the linear
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computation unit on {0,1}". This space therefore has linear dimension
and pseudo-dimension n + 1. O

As a generalization of the class of functions computable by a linear
computation unit, we can consider the class of polynomial transforma-
tions. A polynomial transformation of R" is a function of the form

(@) = wo + w11 (2) + wada(z) + - - - + Wiy (),

for x € R"®, where [ is some integer and for each ¢ between 1 and I, the
function ¢; is defined on R™ by

n
¢i(2) = [] =5*
i=1
for some nonnegative integers r;;. The degree of ¢; is ryy +riz2+- - - +rin.
We say that the polynomial transformation f is of degree at most k
when the largest degree of any ¢; is at most k. Thus the polynomial
transformations of degree at most one are precisely the functions com-
puted by a linear computation unit and, for example, the polynomial
transformations of degree at most two on R® are the functions of the
form

f(z) = wo+ w1z + waTs + wsTs + wsx? + wszl + wexs +

WrT1T2 + WeT1T3 + WeT2T3.

Theorem 11.8 Let F' be the class of all polynomial transformations on
R"™ of degree at most k. Then

Pdim(F) = (" : k).

Proof It is easy to see that F is a vector space, 50 to prove the result
we exhibit a basis for F of size ("}*).

Let us denote the set {1,2,...,n} by [n], and denote by [n]* the set of
all selections of at most k objects from [n] where repetition is allowed.
Thus, [n)* may be thought of as a collection of ‘multisets’. For example,
[3]? consists of the multisets

0,{1},{2}, {3}, {1,1},{2,2},{3,3},{1,2},{1,3},{2,3}.

For each T € [n}*, and for any z = (1,%2,...,%s) € R?, ¢T denotes

the function
¢T(m) = H Zi,
i€T
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with repetitions as required, and with the convention that [[;cq2; = 1.
For example, {123} (z) = 72225, ¢{11:2}(2) = 23x;, and ¢°(z) = 1.
It is clear that the functions ¢; used in the definition of the polynomial
transformations may be written in the form ¢; = ¢ for some multiset
T. Therefore a function defined on R” is a polynomial transformation

of degree at most k if and only if there are constants wr, one for each
T € [n]¥, such that

fl@) = Z wr¢” (z).

T€(n)*

It follows that F is a vector space of functions, spanned by the set
B(n,k) = {¢T : T € [n]*}. We prove by induction that this set is
linearly independent. The base case (n = 1) follows from the fact that
the functions 1,z,x2,3,...,z* are linearly independent. Suppose now
that the assertion is true for a value of n > 1 and let k be any positive
integer. By the inductive assumption, the set {¢7 : T € [n]f} is a
linearly independent set. For 0 < j < k, let T C [n + 1)* be the set
of selections containing n + 1 exactly j times. Suppose that for some
constants ar, for all z € R*+!,

Z aréT(z) =0.
T€[n+1}*
Then,
K

Yol T ardl(e) =0

j=0 TeT;

for all z, where, for T € T}, ¢7(z) is ¢7 (z) with the j factors equal to
Tyt deleted. (So, ¢7 € B(n,k).) It follows, from the linear indepen-
dence of the functions 1,2p41,22,;,...,25,,, that for all z;,29,...,2,,
we have

> argl(z) =0

TEeT;

for each j. But the inductive assumption then implies that for all j and
for all T € Tj, ar = 0; that is, all the coefficients ar are zero. Hence the
functions are linearly independent. It follows that dim(F) = |B(n, k)| =
|tn]*|-

It remains to show that [n]* consists of ("}*) multisets. To see this,
let us represent a multiset having k; copies of element ¢ as a binary
vector consisting of k; ones, then a zero, then ko ones, then a zero,
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..., then k, ones, then a zero, then (k — Y ", k:) ones. (For example,
{1,1,2,4,4,5} € [5]® is encoded as 11010011010.) This defines a one-to-
one correspondence between [n)¥ and the subset of vectors in {0,1}"**
with exactly k ones. It follows that

|n)*| = (n -,: k).
O

The following result shows that for k£ > 1, the pseudo-dimension of the
class of polynomial transformations defined on {0,1}" is strictly less
than that of the class defined on R*. (We have seen above that these
dimensions are equal when k = 1.)

Theorem 11.9 Let F' be the class of all polynomial transformations on
{0,1}" of degree at most k. Then

Pdim(F) = Xk: ('Z)

i=0

Proof The proof involves showing that a subset of the set B(n, k) defined
in the proof of the previous theorem is a basis for F. If we restrict
attention to binary inputs, then any terms ¢T in which T contains a
repetition are redundant, simply because for £ = 0 or 1, " = z for all
r. We shall denote the set of all subsets of at most k objects from [n]
by [n]*). Any T € [n]® contains no repetitions. For example, [3](®
consists of the sets

0,{1},{2},{3},{1,2},{1,3},{2,3},

Clearly, [n]®) consists of Y}, (7) sets. In view of the redundancy of
repetitions in the binary-input case, the class F of polynomial transfor-
mations on {0,1}" is generated by the set

C(n,m)={¢": T € [n]®}.
To show that this is a basis, suppose that for some constants ar and for
all z € {0,1}",

A)= D ar¢’(z)=0.

Te[n]®)

Set z to be the all-0 vector to deduce that ag = 0. Let 1 <1 < k
and assume, inductively, that ar = 0 for all T C [n] with |T| < I. Let
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T C [n] with [T| = I. Setting z; equal to 1ifi € T and 0if i € T, we
deduce that A(z) = ar = 0. Thus for all T of cardinality !, a7 = 0.
Hence ar = 0 for all T, and the functions are linearly independent. (O

11.3 The Fat-Shattering Dimension
Definition of the fat-shattering dimension

Recall that a set S = {z1,z2,...,2Zs,} is shattered by a function class
F if there are numbers 71,7s,...,7, such that all 2™ ‘above/below’
combinations with respect to the r; are possible. We can make this
condition more stringent by requiring not merely that the function values
on the z; be either above r; or below r;, but above or below by at least
a certain ‘clearance’. The following definition formalizes this.

Definition 11.10 Let F be a set of functions mapping from a domain
X to R and suppose that S = {z1,22,...,2m} C X. Suppose also that
7 is a positive real number. Then S is y-shattered by F if there are real
numbers r1,72,...,7y such that for each b € {0,1}™ there is a function
fo in F with

fo(@i) > ri+7if b =1, and fy(z;) <ri —7if bi =0, for 1 <i < m.
We say that r = (r1,72,...,Tm) Witnesses the shattering.

Thus, S is y-shattered if it is shattered with a ‘width of shattering’ of
at least . (See Figure 11.2.) This notion of shattering leads to the
following dimension.

Definition 11.11 Suppose that F is a set of functions from a domain
X toR and that ¥ > 0. Then F has y-dimension d if d is the mazimum
cardinality of a subset S of X that is y-shattered by F. If no such mazi-
mum ezxists, we say that F has infinite v-dimension. The y-dimension of
F is denoted fatp (). This defines a function fatp : R* — NU {0, 00},
which we call the fat-shattering dimension of F. We say that F has
finite fat-shattering dimension whenever it is the case that for all v > 0,
fatp (v) is finite.

Since this dimension depends on the scale «, it is often described as
a scale-sensitive dimension. To illustrate the fat-shattering dimension,
we consider classes of functions of bounded variation. We say that a
function f : [0,1] — R is of bounded variation if there is V such that
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Fig. 11.2. The set {1, z2} C R is y-shattered by the class F of affine functions
on R, F={z+ ax+b:a,be R}. The points r1,r, witness the shattering.

for every integer n and every sequence y1,¥s,...,¥n Of numbers with
0<y1 <y2 <+~ <¥Yn <1, wehave

n—-1

S ) - F@l < V.

i=1

In this case, we say that f has total variation at most V.

Theorem 11.12 Let F be the set of all functions mapping from the
interval [0, 1] to the interval [0,1] and having total variation at most V.
Then

fatr(9) =1+ l%J .

Proof Suppose that v > 0 and that the set S = {z1,22,...,2m} is
v-shattered, witnessed by r = (ry,72,...,mn). Assume, without loss of
generality, that 21, < 23 < --+ < &p,. (Clearly, no two of the z; can be
equal.) Since S is vy-shattered, there are two functions fi, fo € F with
the following properties:

fi(xi)) >ri+y  foriodd,
fi(zi) <ri—y  forieven,
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and

folzs) <ri—v  foriodd,
fa(zs) > i+ for i even.

Suppose that m is odd. Then the total variation V; of f; satisfies
m~1
> i) = filmis)]
i=1
(m-1)/2
= ) (IAG@a-1) - Al@a)l + | filzas) — Alz2))
=1
(m-1)/2
Y (filma-1) - 2fi(za) + fi(Tas))
=1
(m-1)/2
Z (rai—1 = 2ry + ror41) + 2(m — 1)y.
I=1

1%}

v

v

\

Similarly, the total variation V2 of f; satisfies
(m-1)/2
Va2 Z (—7‘21_1 + 2rq; — T2[+1) + 2(m - 1)'7.
I=1
Clearly, max(V;,V2) > 2(m — 1)y. I m is even, the same argument
shows that

max(Vi, V2)

m/2-1
Z (rai-1 — 2ra +r2141) + Tmo1 — Tm
=1

> 2(m-1)y.

v

+2(m - 1)y

But, since f; and fo have total variation at most V, it follows that
m <1+ V/(2v), and so

fatr(7) <1+ [%J .

Now, let d = |V/2vy] and let S = {i/d:i =0,1,2,...,d}, which has
cardinality d + 1. Let G consist of 2¢+! functions g : [0,1] = {0,27}
that are piecewise-constant on the intervals

0_1_ 13 2d-3 2d-1 2d-1 1
'2d)’|2d’2d)’" "7’ 2d ' 2d )’ 2d 7]
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Then it is clear that S is shattered by G, witnessed by the all-y vector
r = (v,7-...,7). Furthermore, G C F, since each ¢ € G has total
variation at most 2yd = 2y |V/2y| < V. It follows that F -shatters S
and hence

14
fatr () 2 |S| =1+ l2—7J ,

as required. O

Relating fat-shattering dimension and pseudo-dimension

Given that the notion of v-shattering is a refinement of that of pseudo-
shattering, some relationships between the fat-shattering dimension and
the pseudo-dimension can be given.

Theorem 11.13 Suppose that F is o set of real-valued functions. Then:

(i) For ally > 0, fatp () < Pdim(F).
(ii) If a finite set S is pseudo-shattered then there is vy such that for
all ¥ < 40, S is y-shattered.
(iii) The function fatp is non-increasing with +.
(iv) Pdim(F) = lim,yo fatp (y) (where both sides may be infinite).

Proof For (i), we need only note that if a finite set S is v-shattered
for some 4 > 0 then it is pseudo-shattered. For (ii), suppose the finite
set S = {z1,22,...,Zm} is pseudo-shattered by F', witnessed by r =
(r1,72y...,Tm). With the functions f, € F as in the definition of pseudo-
shattering, let

o = %mm {ri— fol@s) 1 1< i <m, be {0,1}™, filz:) <ri}.

Then for all ¥ < v, S is 7-shattered, witnessed by r’, where r; =
ri —0/2. To prove (iii), we observe that if y¥ < 4’ then any +'-shattered
set is also -shattered. Part (iv) follows immediately. O

It should be noted that it is possible for the pseudo-dimension to be
infinite, even when the fat-shattering dimension is finite for all positive
v. Indeed, by Theorem 11.12 and part (iv) of Theorem 11.13, this is
true for the class of functions on [0, 1] of total variation at most V' (for
any V).

We say that a function class is closed under scalar multiplication if for
all f € F and all real numbers A, the function Af belongs to F. Any
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vector space of functions is certainly closed under scalar multiplication,
so the class of functions computable by the linear computation unit, for
instance, has this property. (Note, however, that any set of functions
mapping into a bounded range does not have this property.)

Theorem 11.14 Suppose that a set F of real-valued functions is closed
under scalar multiplication. Then, for all positive v,

fatp (v) = Pdim(F).

In particular, F has finite fat-shattering dimension if and only if it has
finite pseudo-dimension.

Proof Suppose that a finite set S = {z1,22,...,Zmn} is pseudo-shattered
and that v is some arbitrary positive number. Part (ii) of Theorem 11.13
shows that there is a 70 > 0 such that S is «p-shattered. Suppose the
shattering is witnessed by (r1,72,...,7m), and let the functions {fs} be
as in the definition of ~o-shattering. Then the functions {(v/70)fs} 7-
shatter S, witnessed by ((7/70)r1,.-.,(Y/7)rm). But these functions
are also in F, since F is closed under scalar multiplication, and so for
all ¥ > 0, fatr (y) > Pdim(F). Combining this with part (i) of Theo-
rem 11.13 gives the result. |

11.4 Bibliographical Notes

The pseudo-dimension was introduced by Pollard (1984; 1990), who also
observed that Theorem 11.4 follows from the corresponding result for
VC-dimension. Several closely related dimensions have been consid-
ered; see, for example, the definition of VC-major classes in (Dudley,
1987). Theorem 11.3 is from (Haussler, 1992); see also Proposition 4.2
in (Dudley, 1987)). The results on classes of polynomial transformations
may be found in (Anthony, 1995; Anthony and Holden, 1993; Anthony
and Holden, 1994).

The fat-shattering dimension was introduced by Kearns and Schapire
(1994), who used it to prove lower bounds in a related learning problem
(that of learning probabilistic concepts—see Section 9.4). Closely related
quantities were used earlier in approximation theory (Lorentz, 1986,
p. 113), and attributed in (Tikhomirov, 1969) to Kolmogorov. The cal-
culation of the fat-shattering dimension of bounded variation functions
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(Theorem 11.12) is due to Simon (1997). (In fact, Simon calculates a
slightly different dimension, but the calculation is essentially identical.)



12

Bounding Covering Numbers with
Dimensions

12.1 Introduction

Having introduced the pseudo-dimension and fat-shattering dimension,
we now show how these can be used to bound the covering numbers of
a function class. Given that these dimensions are generalizations of the
VC-dimension and that the covering numbers are generalizations of the
growth function, this is analogous to bounding the growth function in
terms of the VC-dimension. The details are, as one might expect, rather
more complicated.

12.2 Packing Numbers

In computing upper bounds on covering numbers, it is often useful to
bound related measures of ‘richness’ known as packing numbers. Since
several different packing numbers are also useful later in the book, we
define them for a general metric space.

Suppose that A is a set and that d is a metric on A. Given W C A
and a positive number ¢, a subset P C W is said to be e-separated, or to
be an e-packing of W, if for all distinct =,y € P, d(z,y) > €. Figure 12.1
shows a subset of R? that is e-separated with respect to the dy metric.

We define the e-packing number of W, M(e, W, d), to be the maximum
cardinality of an e-separated subset of W. (If there is no upper bound
on the cardinality of e-separated subsets of W, we say that the packing
number is infinite.) We are particularly interested in the cases where A
is R* for some k and the metric d is either the dy, metric, the d; metric,
or the dy metric. As for covering numbers, we are concerned with cases
where W = H|, for a function class H and a sample z of length k. We
define the uniform packing numbers as

M, (e, H, k) = max {M(¢, H,,dp) : € X*}

165
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{

Fig. 12.1. The crosses form an e-separated subset of R? with respect to the d,
metric.

for p=1,2,00.
It turns out that packing numbers are intimately related to covering
numbers, as the following result shows.

Theorem 12.1 Let (A,d) be a metric space. Then for all positive ¢,
and for every subset W of A, the covering numbers and packing numbers
satisfy

M(2¢,W,d) < N(e,W,d) < M(e, W, d). (12.1)

Proof For the first inequality in (12.1), suppose that C is an e-cover for
W and that P is a 2e-packing of W of maximum cardinality, M(2¢, W, d).
We show that |P| < |C|, from which the inequality follows. Now, for
each w € P, since C is an e-cover for W, there is some v € C such
that d(w,v) < e. If |P] > |C|, then (by a simple application of the
‘pigeonholet principle’) there must be some v € C such that for two
points w;, w2 of P, d(w;,v) < € and d(wz,v) < €. Then, since d is a
metric,

d(wy, w2) < d(wy,v) + d(ws,v) < 2e.

t The pigeonhole principle states that if n pigeons are distributed over fewer than
n pigeonholes, some pigeonhole must contain more than one pigeon.
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But this contradicts the fact that the points of P are 2¢-separated, and
we obtain the desired result.

To prove the second inequality, suppose that P is an e-packing of
maximal cardinality, M(e, W, d). Then for any w € W, there must be a
v € P with d(v, w) < ¢; otherwise w is not an element of P and PU {w}
is an e-packing, which contradicts the assumption that P is a maximal
e-packing. It follows that any maximal e-packing is an e-cover. O

12.3 Bounding with the Pseudo-Dimension

In this section we bound the doo-covering numbers by a quantity involv-
ing the pseudo-dimension.

Theorem 12.2 Let F be a set of real functions from a domain X to the
bounded interval [0, B]. Let ¢ > 0 and suppose that the pseudo-dimension
of F isd. Then

erm (1))’

which is less than (emB/ (ed))? for m > d.

Quantization

Integral to the proof of Theorem 12.2 is the technique of quantizing the
function class. This is a method that we employ several times in the
book.

Suppose that F is a class of functions mapping from a domain X into a
bounded interval in R. We assume that this interval is [0, 1]; by shifting
and scaling, everything that follows can be modified to deal with the
case where functions in F' map into some other bounded interval.

Let a be any positive real number. For any real number u, the quan-
tized version of u, with quantization width o is

0nt=al2].

In other words, Q4 (u) is the largest integer multiple of « less than or
equal to u. (See Figure 12.2.) For a function f € F, the function Q,(f)
is defined on X as

(Qa(f)) (z) = Qa (f(2)) .-
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Qa(u)
A
1
h *—
20 )
a - O
0 ¢ T T U
0 o 2a 1

Fig. 12.2. The quantization function Qs : R =+ R.

This function maps from X into the finite subset {0, ,2q,...,[1/a] a}
of [0,1). We denote by Qq(F) the function class {Q.(f) : f € F}.

Proof of Theorem 12.2
Packing numbers and the quantized class

To derive upper bounds on covering numbers, we bound the correspond-
ing packing numbers and appeal to Theorem 12.1. (This approach is
typical; it seems to be easier to show that there cannot be too many
well-separated functions than to show directly that a small cover ex-
ists.) The first step in bounding the packing numbers of a function class
is to reduce the problem to one involving a quantized version of F', as
expressed by the following lemma.

Lemma 12.3 For a set F of real-valued functions mapping from X into
the interval [0,1), we have

Moo (6, F,m) < Moo (a l J ,Qa(F),m)

€
a
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for all positive integers m, all € > 0, and all 0 < o < €. Hence,

QP),.|.

Moo (6, F,m) < [nax

Proof We use the following inequality, which holds for any real numbers
a,b.

IQa(a) - Qa(b)l 2 Qa(la - bl)

= [tzJ—l§J+§—t§J—(£—l£le
21- 12+ lle-121- G- 12)])

but the second term is zero since it is the floor function of the difference
between two numbers in the interval [0, 1).

Now, fix ¢, m, and z = (z1,...,Zm) € X™. Consider any two
functions f,g € F, and let f|, denote (f(z1), f(z2),...,f(zm)). Then
doo(f),»9],) 2 € implies that some 1 < 4 < m has |f(z;) — g(2;)| > €. By
the inequality above, this implies that

1Qaf(2:) — Qag(zi)| 2 [2 J .

Hence, the quantized versions of distinct elements of an e-separated set
are a|e/a)-separated. For a < ¢, this gives the first inequality of the
theorem. The second inequality follows on substituting a = ¢, since

M(&,Q(F), ,deo) = |Qu(F),, |-

IA

O

Now, since Q.(-) is non-decreasing, Theorem 11.3 shows that the
pseudo-dimension of the quantized class is no more than that of F,

Pdim (Q.(F)) < Pdim(F) (12.2)
for all € > 0.

A combinatorial result

We now see that to bound the covering number, it is enough to bound the
cardinality of Q.(F),, . Fixing some z € X™, we may regard the class
QG(F)I. as a set of functions mapping from the finite set S consisting of
the entries of z to the finite range Y.
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It is possible to bound the size of Q.(F) |s using Theorem 3.6, by
considering the corresponding subgraph class Bg, () (see Section 11.2).
To see this, notice that

|@.(),,

(Indeed, if we were to add a function to F so that Q.(F),, contained a
new vector, this would lead to a new vector in Bg, () lsxy .) Theorem 3.6
shows that

< |Bc.(F)|3xy

4 /mN

jeon| <X (™), (123
=0

where N = |[Y| = |1/¢] + 1 and d = VCdim (Bg,(r)). But then d =

Pdim (Q¢(F)) < Pdim(F), so we have a bound in terms of the pseudo-

dimension of F. However, to prove Theorem 12.2 we need a slightly

better bound. The following result is sufficient.

Theorem 12.4 Suppose that H i3 a set of functions from a finite set X
of cardinality m to a finite set Y C R of cardinality N and that H has
pseudo-dimension at most d. Then

d
H|< (m) N -1)\.
<3 (7)w -

Notice that substituting N = 1 into this theorem gives Sauer’s Lemma
(Theorem 3.6). Theorem 12.4 follows from a more general result, which
also applies to other notions of dimension. Before presenting this result,
we require some definitions.

We can think of a subset T of {0,1}™ as a set of {0, 1}-valued functions
defined on {1,...,m}, each of which maps i to ¢; for some (¢1,...,tm) €
T. Using this interpretation, we can define the VC-dimension of T" as the
VC-dimension of the class {i = ¢; : (t1,...,tm) € T} of functions defined
on {1,...,m}. For any finite subset Y C R, a set S C Y™ of m-vectors,
and a set @ of functions from Y to {0, 1}, we define the ®-dimension of
S, denoted $#dim(S), as the maximum over ¢, ¢2,...,0m € ¥ of

VCdim ({(¢1(y1)’ v a¢m(ym)) : (ylv .. sym) € S}) .

To see how this general framework applies to the problem considered in
Theorem 12.4, suppose that X = {z1,22,...,Zm}, Y = {y1,¥2,..-, YN}
where y; < y2 < -+ < yn, and that we take

S = Hjy = {(h(z1), h(z2),...,h(zm)) : h € H}
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and & = &5 = {s;:1 < i < N}, where s;(a) = sgn(a — y;). Then it is
straightforward to see that ®dim(S) is precisely Pdim (H).

The following theorem uses the notion of a spanning set. Recall that,
for a subset {v;,...,vn} of a vector space V, we define the span of the
subset as

N
span{vy,...,vn} = {Za;vi s € R} ,
i=1
and we say that the subset spans V if span{v;,...,uny} = V. For a
finite set Y = {y1,y2,...,yn} the set of real-valued functions defined
on Y (denoted RY) is a vector space of dimension N. In the following
theorem, the condition that ®|, spans the vector space RY ensures that
the set ® is rich enough to capture the complexity of the set S.

Theorem 12.5 For a finite set Y of cardinality N, and a set SC Y™
with

&dim(S) < d,
if ®), spans R then

d
S| < (m) N - 1)\,
is1<30(7 )@ -1

To see that this theorem implies Theorem 12.4, suppose that ¥ =
{y1,...,yn} where y1 < y2 < --- < yn, and that s;,32,...,8N are as
defined above. Then, as we have noted, #dim(S) = Pdim(H). Further-
more, ®;, consists of the N vectors

1,1,1,...,1), (0,1,1,...,1), (0,0,1,...,1), ...,(0,0,...,0,1).

These vectors span RV and hence ®|, spans RY .

The proof of Theorem 12.5 uses the following lemma, which shows
that a certain class (9 has &), spanning RS. The proof also uses
the observation that any such class must have |S| < dim(span(&(¥)).
For a set of functions & as above, @ denotes the following set of
functions defined on Y™. (These functions are ‘monomials’ evaluated
by forming the products of the values of some of the functions in ¢ at
up to d of the y;.)

i=1 j=1

d &k
o = {(yl,...,ym)HHH@(w..):kzo, ¢; €9, lslesm}-
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We use the convention that 1'[,-60 a; =1.

Lemma 12.6 Suppose Y s a finite set, ® is a set of {0,1}-valued
Junctions defined on Y, and S C Y™ satisfies 8dim(S) = d. If ®;,
spans RY, then &9, spans RS.

Proof The proof is in two steps. First, we show that if ®, spans RY
then (™), _ spans RY". Then we show that this implies ()|  spans
RS.

If @, spans RY, where Y = {31,92,...,yn}, then there are functions
$1,...,¢n in @ for which the matrix

$1(y1) d1(yz) -+ éi(yn)
$2(31) d2(y2) - d2(yn)

¢Niy1) ¢Nky2) ¢~(yN)

is of full rank. The Kronecker product of two N x N matrices, A = (a;;)
and B, is given by

anB a12B -+ ainB

a1 B axB --- anB
A®B=

aniB an:B --- annB

If A and B are of full rank, so is A ® B. (To see this, notice that
(A® B)(C ® D) = (AC) ® (BD), so we have (A® B)(A"! ® B~1) =
In @ In = Ina, where Iy is the N x N identity matrix.) Therefore, the
m-fold Kronecker product, M @ M ® --- ® M is of full rank. Now, it is
easy to see that this matrix is of the form

Pi(z1)  Pi(ze) -+ Yi(anm)
Ya(z1)  ta(z2) - Pa(znm)

Ynm(21) Ynm(22) - PNm(znm)
where the N™ functions %; : Y™ — R are all the functions of the form
1/)((201,11!2, ceey wm)) = ¢j1 (w1)¢.1'2 (w2) T ¢jm (wm)

where 1 < j1,72,...,Jm < N, and where the 2; are all the elements of
Y™ of the form (y;,,¥iss---,¥i,,) for 1 < 41,83,...,%m < N. It follows
that &™) spans RY ™.

lym
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For the second part of the proof, we show that this implies that (@)
spans RS. Consider a monomial in ®™) involving k > d components
of y. We show that, for all y € S, this is equivalent to some linear
combination of monomials each of which involves no more than k ~ 1
components. Without loss of generality, we shall consider the monomial
I'[f___l ®i(y:), with k > d. Since

VCdlm {(¢1(yl)a . -s¢k(yk)) 'y € Y} S d,

there is some k-vector (b1,...,b) € {0,1}* such that, for all y € S,
some 1 < i < k has ¢;(y;) # b;. If we define

oy J 1=¢i(y) ifb;=0,
a(y) = { #i(y;) otherwise,

then I'[:;1 zi(y) = 0 for all y € S. Expanding the product in this
equation to a sum, and noticing that Hf=1 ¢:(y;) appears in only one
term shows that we can write

k
[[4:@) =p(:1n),.... 61 (w1))
i=1
for all y € S, where p is a polynomial involving only monomials with no
more than k — 1 of the variables ¢;(y;). Applying this result iteratively
to every monomial involving more than d components shows that any
monomial in (™) is equivalent on S to a linear combination of mono-
mials in 4. Combining this with the first part of the proof, we see
that ),  spans RS a

Proof (of Theorem 12.5) Since & spans RY , Lemma 12.6 implies that
any function on S can be represented as a linear combination of elements
of 4. But any function ¢ : Y - R—and, in particular, any function
in $—can be represented as a polynomial of degree no more than N -1,

() = fj —#0__Tw-.
=1 Hj;u(‘ o). oy

It follows that any function on S can be represented as a linear combi-
nation of elements of the set M ~* of monomials with up to d variables,
each with exponent no more than N — 1,

]
M, '1={y'—>1_[yj,.‘=0Slsd,1$jssm,05ke$N—1},

i=1
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where, as above, we use the convention that [];cq y;.‘.." = 1. That is,
M‘f”'lb spans RS, and so |S| < dim (span (MY ~!)). The proof of
Theorem 11.8 shows that the set of all monomials of bounded degree is
linearly independent, which implies that

IS| < |M) Y = i (’:’) (N = 1)i.

i=0

O

Obtaining Theorem 12.2
Theorem 12.2 follows immediately. Fix any z and let H be the restriction
of Q¢(F) to the set consisting of the m entries of X. Then H maps into
the finite set Y of cardinality N = 1+ |1/¢] and, by Lemma 12.3,
Theorem 12.1, and Theorem 12.4,

Q)| = 1Bl < z:; M

where d = Pdim(H) < Pdim(F). The first inequality of the theorem
now follows, on rescaling F' and € by a factor of B. The second inequality
follows from Theorem 3.7.

Neo (6, F;m) < Jmax

12.4 Bounding with the Fat-Shattering Dimension
A general upper bound

We now present one of the key results of this chapter, in which we bound
the packing numbers (and hence the covering numbers) by an expression
involving the fat-shattering dimension.

Theorem 12.7 Suppose that F is a set of real functions from a domain
X to the bounded interval [0, B] and that ¢ > 0. Then

Moo (6, F,m) < 2 (mb2)“°g2 v ,
where b = |2B/¢|, and, with d = fatp (¢/4),
4 (m
= i
=2, (i )b ‘
=1
The proof of this result is given below, but first we state a useful

corollary, which follows from the relationships between covering numbers
and packing numbers expressed by Theorem 12.1.
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Theorem 12.8 Let F' be a set of real functions from a domain X to the
bounded interval [0, B]. Let € > 0 and let d = fatp (¢/4). Then for all
m>d,

4mB? dlog,(4eBm/(de))
Noo(G,F,m)<2( m ) .

€2
Proof Theorem 12.1 and Theorem 12.7 imply that

amB2\ log2(Zis: (7)@B/¢))]
€ ) )

Noo (€, F,m) < 2 (

By Theorem 3.7, form >d > 1,
d i d d d
m\ (2B 2B m 2B em\ ¢
v=3(7) (%) <(B) 2 (7)< () &)

and hence

[log, y] < [dlog,(2eBm/(de))] -

If d > 1, this is no more than dlog,(4eBm/(de)), from which the result
follows. If d = 0, it is easy to see that N (¢, F,m) < 1. 0

Proof of Theorem 12.7

As in the proof of Theorem 12.2, Theorem 12.7 is proved by relating the
packing numbers and dimension of F' to those of @, (F), for appropriate
a. In this case we bound the packing numbers using combinatorial
techniques, much as we bounded the growth function in Theorem 3.6.

Relating packing numbers and dimensions to those of the quantized
class

For a function class F, if ¢ > 0, Lemma 12.3 shows that
Mo (6, F,m) < Mo (e,Qe/z(F),m).
If a < 2¢ then
fatg, (r) (€) < fatp (e — a/2), (12.4)
which implies
fatg,,,(r) (€/2) < fatr (¢/4).



176 Bounding Covering Numbers with Dimensions

To see (12.4), suppose that Qq(F) e-shatters {z;,...,z4} C X, wit-
nessed by the vector (ry...,r4) € RS. Then for all b = (by,...,bq) €
{0,1}* there is a function f, € F with

Qafs(zi) =1 > € ifb=1

Qafo(zi)—ri < —€ ifb;=0.
It follows that

folzi)—rmi 2 € ifb;=1

zx)—-1ri < —e+a ifb=0.
So F (¢ — af2)-shatters {z;,...,z4} C X, witnessed by the sequence
(r1 +a/2,...,ra + a/2). This implies (12.4).

A finite combinatorial problem

Fix z € X™, let H denote Qe/z(F)I., and let d = fatq, ,(r) (¢/2). By a
simple rescaling, the following lemma shows that

M(e, H,doo) < 2(mb?)1og2¥1
where b = |2B/¢| and y is as defined in the lemma. This implies Theo-
rem 12.7.
Lemma 12.9 LetY = {0,1,...,b}, and suppose | X| = m and H C Y X
has fatyg (1) = d. Then

M(2,H,doo) < 2(mb?)[loeav]]
withy = 2?:1 (T)b'

As in the proof of Theorem 3.6, the proof of this lemma uses a count-

ing argument, although the proof here is more complicated. The proof
hinges on using an inductive argument to bound, for 2-separated classes

of functions, the number of distinct pairs consisting of a 1-shattered set
and a witness for the shattering.

Proof We can assume that b > 3. (The result holds trivially if b < 2
since in that case a maximal 2-packing of H has cardinality 1 or 2.)
For k > 2 and m > 1, define t(k,m) as

min{ [{(4,r) : G 1-shatters A C X, witnessed by r: A2 Y, A#0}|:
|IX|=m,GCYX,|G|=k,and G is 2-separated} ,

or take t(k,m) to be infinite if the minimum is over the empty set.
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Notice that the number of pairs (A,r) with A # 0 and |A] < d is less

than
d N
=3 (7)o
=1 M

since for each fixed A of positive cardinality ¢ < d, there are at most
(b - 1) < b possible functions r that witness the 1-shattering of A.
(The definition of 1-shattering shows that we cannot have r(z) = 0 or
r(z) = b.) It follows from the definition of ¢ that if ¢(k,m) > y, then
every 2-separated set G C YX of cardinality k 1-shatters some A with
|A] > d. But fatg (1) = d, so if t(k,m) > y then M(2,H,dy) < k.
Hence, it suffices to show that

¢ (2(mb2)“°32 ﬂ,m) >y (12.5)

foralld>1andm > 1.

Now, if there is no 2-separated subset of YX of cardinality k¥ =
2(mb?)[108291 then #(2(mb?)1'°82%1 m) = oo and we are done. So as-
sume that such a set G of functions exists. Split G arbitrarily into k/2
pairs. (Note that k is divisible by 2.) Since the functions in G are 2-
separated, for each such pair (gi,g2), we can choose some z € X such
that |g1 (z) — g2(z)| > 2. By the pigeonhole principle, there is an zg € X
such that we choose & = z, for at least k/(2m) of these pairs. (Other-
wise, the number of functions in G' would be less than 2mk/(2m) = k,
a contradiction.) The number of possible {i,j} C Y with j > i+ 2 is
(*%') — b. We can apply the pigeonhole principle again to deduce that
there exist 4,j € Y with j > ¢ + 2 such that for at least

k/(2m) _ k
Ci)-b mP

pairs (g1,92), we have {g1(%o), 92(z0)} = {i,7}. Thus, there are two
subsets G1,G; of G such that |G| = |G| > k/(mb?) and, for some
29 € X and some 4, € Y with j > i + 2, g1(z0) = ¢ for g3 € G, and
g2(x0) = j for g € G3. Clearly the functions in Gy are 2-separated on
X — {xo}, since they are 2-separated on X but equal on zo. The same is
true of G2. Hence, by the definition of the function ¢, there are at least
t (|k/mb?] ,m — 1) pairs (4,r) such that G, 1-shatters A C X — {0},
witnessed by r : A — Y, and the same is true of G2. Moreover, if both
G: and G, l-shatter A witnessed by r, then G 1-shatters A U {zo},
witnessed by 1/, where r’ equals r on A and r'(z¢) = (i +4)/2). It
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follows that

t(k,m) > 2¢ (lmisz m— 1) . (12.6)

Since the total number of functions in H is bounded by (b + 1)™,
we have |G| = 2(mb?)[°&¥] < (b + 1)™, from which it follows that
m > [log, y]. Applying (12.6) [log, y] times shows that

t(2(mb?)829,m) > 2t (2(mb?)oe 11 m - 1)
> 2M&vly2,m — logy]),  (12.7)

but the definition of ¢ shows that ¢(2,m) =1 for all m > 1. Combining
this with (12.7) gives (12.5), and this completes the proof. O

A general lower bound
Recall that the d;-metric on R* is defined as follows:

k
1
dl((zl’x'h' .. 7$k)’ (yl:y'h s ’yk)) = ',; Z |$,‘ - yt'l‘
i=1

Recall also that, for all z,y € Rf, di(z,y) < dwo(z,y), so that for
any function class F, any ¢, and any m, N (¢, F,m) < N (¢, F,m)
(see Lemma 10.5). The following result gives a lower bound on the
dy-covering numbers (and hence on the do,-covering numbers).

Theorem 12.10 Let F be a set of real functions and let ¢ > 0. Then,
Noo (€, F,m) > M (¢, F,m) > fatr(16¢)/8
for m > fatp (16¢).

Proof We first show that if d = fatr (16€) then N; (2¢, F, d) > e?/8. Fix
a sample z of length d that is 16¢-shattered. Then, by the definition of
16¢-shattering, there is a vector r € R? such that the following holds:
for any b € {0,1}9, there is fy € F such that fy(z;) > r; + 16eif b; = 1
and fy(z;) <7 —16€if b; = 0. Let G = {f : b € {0,1}¢} C F be such
a set of 2¢ functions. For b,c € {0,1}¢, let A(b,c) be the number of
entries on which b and ¢ differ (that is, the Hamming distance between
them). For g € G, denote by g), the element (g(z1), 9(x2),...,9(z4)) of
R9. Then it is clear that for any b,c € {0,1}9,

di (foy.r for.) 2 g%ﬁ.
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Therefore, if d; (fb|_, fc|,,) < 4¢ then A(b,c) < d/8. It follows that, for
any fixed f; € G, the number of functions f. € G for which the distance
dy fb|.’fc|.) is less than 4¢ is no more than

% ()

= \!
But, by a Chernoff bound (see Appendix 1), this sum of binomial coef-
ficients is at most

29 LE(1/2,d,d/8) < 29 ~94/04 < 24 ¢~9/8,

That is, every function in G has no more than 2%e~%/# functions from
G at d; distance less than 4e.

Suppose C is a 2¢-cover for F|, . For each element c € C, if some g € G
satisfies di (c,,9).) < 2¢, we have
{g’ €G:d; (g’l,,q,) < 2e} C {g' €EG:dy (g'|_,g|,) < 46} ,

by the triangle inequality. But this set has cardinality no more than
24¢=4/8 30 every element of the cover C' accounts for no more than
24¢=4/8 elements of G. Since C covers G, we must have

IGI__ _ _ass
IC|Z2de_—d/8_e/’

This shows that
M (2¢, F,d) > exp (fatp (16¢)/8) .

Now we bound N (¢, F,m) for m > d. Suppose that m > d and let
m = kd + r where k,r are integers, with k > 1and 0 < r < d. Let 2
be the sample of length m obtained by concatenating k copies of = and
adjoining the first r entries, z;,22,...,2, of . Now, for f,g € F,

& (flag) = = Do If) - g(a)

= T (; | f(z:) —Q(fvs)l) +

o IORECY
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d
> 2 G;If(mi) —g(z.~)|>
m-—r

2
m

di (f.,9..) -

Since m > d, we have m = kd + r < (k + 1)d < 2kd and hence r =
m — kd < m/2. Hence, if dy (f|,,9,,) < € then d; (f|,,9.) < 2¢. As
a result, given any e-cover of Fj,, there is a 2¢-cover of Fj, of the same
cardinality. Therefore

M (¢, F,m) > N1 (2¢, F,d) > exp (fatr (16¢)/8),

as required. O

Fat-shattering dimension characterizes covering numbers

The upper and lower bound results Theorem 12.8 and Theorem 12.10
show that the fat-shattering dimension determines in a fairly precise
manner the covering numbers of a function class. The following theorem
(which follows immediately from the preceding ones) makes this clear.

Theorem 12.11 If F is a class of functions mapping from a set X into
the interval [0, B], then for any ¢, if m > fatp (e/4) > 1,

12%2—efatp (16) < log, M; (¢, F,m)

IA

logy Noo (€, F,m) < 3 fatr (¢/4) log2 (4‘3’3’”) .
This shows, in particular, that if a class has finite fat-shattering di-
mension, then the covering number N (€, F,m) is a sub-exponential
function of m.

An example

To illustrate the application of these results, consider again the class F
of functions from [0, 1] to [0, 1] of total variation at most V. We have
seen (Theorem 11.12) that fatr (y) = 1+|V/(27)]. From Theorem 12.8,
we obtain the following upper bound on the covering numbers of this
class.



12.5 Comparing the two approaches 181

Theorem 12.12 Let F be the class of functions of total variation at

most V, mapping from the interval [0, 1] into [0,1). Then, for anye > 0,
4m (142V/¢) logy(2em/V)

7)

Noo (6, F,m) < 2(

for all m.

In Chapter 10 it was noted that the appropriate covering numbers
for analysing classification by real function classes are those of the class
7,(F), which maps into a bounded interval of length 2y. Indeed, in
Theorem 10.4, the key covering number is N (7/2,7,(F),2m). The
following result applies.

Theorem 12.13 Suppose that F is a set of real functions and that
v > 0. Ifd = fatp (y/8) then

Noo (7/2,75(F),2m) < 2(128m)*1o82(52em/d),

Proof By a trivial translation, we may assume =.,(F') maps into [0, 27].
Then, by Theorem 12.8, taking B = 27y and € = 7/2, we have

Noo (7/2,7(F),m) < 2(64m)?1082(16em/d),
from which the result follows. d

12.5 Comparing the Two Approaches

We have seen that if F' is uniformly bounded and has finite pseudo-
dimension then there is a constant ¢; such that the covering numbers
satisfy

Noo (e, Fim) < (220),

where d = Pdim(F). More generally, if F' is uniformly bounded and has
finite fat-shattering dimension, then there are constants ¢z, ¢3 such that

Noo (e, Fym) < (

cam\ dloga(cam/(de))
) ’
where d = fatp (¢/4). Certainly, d = fatr (¢/4) < Pdim(F), and if the
two are equal then the first bound is better. However, it is possible for
fatp (¢/4) to be significantly less than Pdim(F). For example, for the
class F of bounded variation functions considered in Theorem 12.12,

Pdim(F) is infinite, but fatp (¢/4) is finite for all ¢ > 0. It follows



182 Bounding Covering Numbers with Dimensions

that there can be no characterization of the rate of growth of the cov-
ering numbers (as in Theorem 12.11) in terms of the pseudo-dimension.
Nonetheless, the first bound is sometimes useful. For instance, if a func-
tion class F has finite pseudo-dimension then, for all sufficiently small
€, the fat-shattering dimension fatr (¢/4) equals the pseudo-dimension,
and then the covering number bound of Theorem 12.2 is better than
that of Theorem 12.8.

12.6 Remarks

A large family of dimensions, defined in terms of a set of {0,1}-valued
functions ®, satisfy the conditions of Theorem 12.5. It can be shown
that all of these dimensions are closely related. It is possible to extend
the definition of these dimensions to include sets ® of functions that
map from Y to {0,%,1}, and the fat-shattering dimension emerges as
a special case. Then a generalization of Lemma 12.9 can be obtained
in terms of any such dimension, provided the set ® satisfies a weaker
version of the spanning condition. This weaker condition is that, for any
two elements of Y that are separated by a gap of a certain size, there is
a function in ® that labels one of these elements as a 0 and the other as
a 1. (This is weaker than the condition that @, spans RY, since that
condition is equivalent to the condition that, for any two elements of Y,
there is a function in @ that labels those elements distinctly.)

Theorem 12.11 cannot be significantly improved: there are examples
of function classes that show that the lower bound cannot be improved
by more than a constant factor, and that the upper bound cannot be
improved by more than a log factor. However, there is one aspect of
this theorem that can be loose. For any non-decreasing function f from
R* to NU {0}, it is easy to construct a function class F' that has
fatp () = f(v). In particular, the fat-shattering dimension can increase
at an arbitrary rate as its argument approaches zero. It follows that the
constant in the argument of the fat-shattering function can be impor-
tant. It is known that if fatp is finite at a scale slightly smaller than
€/2, then the logarithms of these e-covering numbers (In N, (¢, F,m),
In N (€, F,m)) grow ‘acceptably slowly’ with m (that is, slower than
linearly), whereas they grow unacceptably quickly if fatp is infinite at a
scale slightly larger than €. (See the Bibliographical Notes.) Notice that
there is still an unexplained gap of a factor of two in our knowledge of
the appropriate scale at which the fat-shattering dimension determines
these covering numbers. It may be that this gap is inevitable. The intu-
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ition behind this conjecture is as follows. The proofs of upper bounds on
these quantities naturally involve packing numbers, whereas the proofs
of lower bounds involve covering numbeérs. Theorem 12.1 shows that

Moo (26, F,m) < Noo (6, F,m) < Moo (€, Fym).

There is an upper bound on M, (€, F, m) in terms of some fat-shattering
dimension at a scale of roughly €. To avoid violating this upper bound, if
it is possible that N, (¢, F, m) is close to M, (2¢, F,m) in the inequality
above, any lower bound on N, (¢, F,m) must be in terms of the fat-
shattering dimension at a scale of roughly 2e.
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The Sample Complexity of Classification
Learning

13.1 Large Margin SEM Algorithms

After our digression into covering numbers, pseudo-dimension and fat-
shattering dimension, we now return to the central learning problem of
this part of the book. In this chapter, we use the results of the last few
chapters to construct classification learning algorithms and to determine
bounds on the sample complexity of these algorithms.

In Chapter 4 we saw that for binary classification, it was appropriate
to use an algorithm that, given a training sample, returns as output
hypothesis some function which minimizes sample error; that is, we con-
sidered SEM algorithms L, which have the property that for all 2,

ér, (L(2)) = %}} ér,(h).

In analysing classification learning algorithms for real-valued function
classes, it is useful to consider algorithms that, given a sample and a
parameter v, return hypotheses minimizing the sample error with respect
to 7. Recall that, for a sample z = ((1,¥%1),-.-,(ZTm,Ym)) € Z™, a
function f: X — R, and v > 0, the sample error of f with respect to v
is defined as

&7(f) = — {i - margin(f(@:),4) <}

(See Definition 9.1.)

Definition 13.1 Suppose that F is a set of real-valued functions defined
on the domain X. Then a large margin sample error minimization algo-
rithm (or large margin SEM algorithm) L for F takes as input a margin
parameter v > 0 and a sample z € ;- Z™, and returns a function

184
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Jrom F such that for ally > 0, all m, and all z € Z™,

& (L(1,2)) = minéxl (9)

13.2 Large Margin SEM Algorithms as Classification
Learning Algorithms

Chapter 4 establishes that SEM algorithms are learning algorithms for
binary-valued classification when the class H has finite VC-dimension.
We show now that, analogously, the large margin SEM algorithms for
a function class F' are classification learning algorithms when F has
finite fat-shattering dimension. It is useful to recall the definition of
a classification learning algorithm for a real function class F. For any
probability distribution P on Z, such an algorithm L takes as input a
number v € (0,1/2] and a random binary-labelled sample 2, and returns
afunction f € F. If m > mg(e,d,7), then with probability at least 146,
f satisfies

erp(f) < optp(F) +e¢,
where opt}(F) = infsererh(f). (Here, my(e,6,7) denotes the sample
complexity of L.)
In Chapter 4, we made use of a uniform convergence result (Theo-

rem 4.3) which tells us that, provided H has finite VC-dimension and
m is large, then with high probability

ér,(h) —e <erp(h) < ér,(h)+e¢

for all h € H. In this chapter, we make use of Theorem 10.4, which, as
we shall see, establishes that for many function classes F',

erp(f) < ér)(f) +e

for all f € F with high probability (provided m is large enough). We
use this to obtain the following result.

Theorem 13.2 Suppose that F is a set of real-valued functions defined
on X and that L is a large margin SEM algorithm for F. Suppose that
€ € (0,1) and v > 0. Then, given any probability distribution P on Z,
for all m, we have

P™ {erp (L(7,2)) > optL(F) + €} < 2Noo (7/2,7,(F), 2m) e~ ™/ 72
+ e-—2e’m/9.
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It should be noted that Theorem 10.4 is not ‘two-sided’ in the way
that Theorem 4.3 is, for it does not bound the probability that erp(f) >
€r7(f) — e. For this reason, we prove Theorem 13.2 using a slightly dif-
ferent approach from that taken in Chapter 4. In proving Theorem 4.2,
we used the uniform lower bound on erp(f) to show that a near-optimal
function in the class is likely to have small sample error. However, since
we need only show this for a single such near-optimal function, we do
not need a uniform lower bound. In the analogous step in the proof
of Theorem 13.2, we use instead the following simple consequence of
Hoeffding’s inequality (see Appendix 1).

Lemma 13.3 Suppose that f is a real-valued function defined on X, P
ts a probability distribution on Z, €,y are real numbers with ¢ > 0 and
~ > 0, and m is a positive integer. Then

P™ {&r)(f) > erp(f) +€} < em2¢'m,
Proof (of Theorem 13.2) Let f* € F satisfy er},(f*) < opt}(F)+¢/3.
By Lemma 13.3,
2
&(f*) < opth(F) + 3 (13.1)

with probability at least 1—e=2¢"™/?, By Theorem 10.4, with probability
at least 1 — 2N, (7/2, 7, (F), 2m) e=<'m/72,
erp(f) <érl(f)+e/3forall fe€F. (13.2)
Thus, with probability at least
1- e 2€m/% _ 9 Noo (7/2,70(F), 2m) e~ ™/ 72
we have both (13.1) and (13.2), and in that case
ep(L(,2) < &l(L(nma)+3
< &l(f)+g
< opth(F)+e.

(The second inequality follows from the fact that L is a large margin
SEM algorithm, and so €} (L(7, 2)) = minger ér)(f) < &7(f*).) 0

Combining this result with Theorem 12.8, which bounds the covering
numbers in terms of the fat-shattering dimension, gives the following
result.
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Theorem 13.4 Suppose that F is a set of real-valued functions with
finite fat-shattering dimension, and that L is a large margin SEM algo-
rithm for F. Then L is a classification learning algorithm for F. Given
0 € (0,1) and v > 0, suppose d = fat,_(r) (v/8) > 1. Then the estima-
tion error of L satisfies

eL(m,d,7) < (72 (dl 08 (32§m) In(128m) + In (g)))lﬁ.

Furthermore, the sample complezity of L satisfies

mpg(e,d,7) < mo(e, 6,7) = 144 (27d1 2 (3465,_,6‘1) +In (g))

Jor all € € (0,1).

Proof By Theorem 13.2 and Theorem 12.13,
P™ {erp (L(7,2)} > optL(F) +¢€)
< 2N°° (7/2,75,(}7‘)’ 2m) P 2m/12 + 6'2‘2"‘/9
S 3 max (NOO (7/2, Wq(F)’ 2m)’ 1) e—ezm/72
< 6(128m)%!082(32em/d) e—e’m/‘lz, (13.3)

for d = fat,, (r) (7/8) > 1. Clearly, this last quantity is no more than §

when
1/2
€> (72 (dl g (322’”) In(128m) + In (g))) .

We now consider the sample complexity. The expression (13.3) is no
more than § if

em 6 32e 212¢ d
Wzln(—5->+7dln(d)+dl 2( p] )lnm+Fln m,

and for this it suffices if
m> :2 (ln (6) 7dIn (326) +14dlnm + = In? m) .

é d In2

To proceed from here, we bound Inm and In? m from above by expres-
sions that are linear in m. For the Inm term, we use Inequality (1.2) (in
Appendix 1), which implies

72-14d m 1008dl (4032d>

< =
€2 Inm i ee?
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For the In’m term we make use of Inequality (1.3) (in Appendix 1).
Taking b = 1728d/(¢%In2) and supposing that m > 1/b, this inequality
shows that
72d |,
€2ln2 In

m< %+ 216d In? (1728d) ’

eln?2 n eln?2

so it suffices to have m/2 at least

72 6 32e 4032d 3d . 5 (17284
-67 (ln (3) + 7dln (T) 4+ 14dln (?) + mln (62 1!12)) .

Some straightforward approximations yield the result. O

13.3 Lower Bounds for Certain Function Classes

Theorem 13.4 provides an upper bound on the sample complexity of
any large margin SEM classification learning algorithm in terms of the
fat-shattering dimension. For many function classes, it can be shown
that the sample complexity of any classification learning algorithm is
bounded below by a quantity involving the fat-shattering dimension.

Recall that a function class F is closed under addition of constants if
for every f € F and every real number ¢, the function z — f(z) + ¢ also
belongs to F. For instance, if F is the set of functions computable by
a linear computation unit, then F' is closed under addition of constants:
we simply adjust the threshold.

Theorem 13.5 Suppose that F is a set of functions mapping into the
interval [0,1] and that F is closed under addition of constants. Then, if
L is any classification learning algorithm for F, the sample complexity
of L satisfies

d 1-¢2 1
mg(¢,d,7) > max (32062’2 I_ 2¢2 In 86(1 - 25),') .

for 0 <¢,6 <1/64 and v > 0, where d = fat,, (r)(27) > 1.

(Recall that 7, : R = [1/2 — 7,1/2 + 9] is the squashing function
defined in (10.4).)

Proof The idea of the proof is to construct a class H of {0,1}-valued
functions (the definition of which depends on the parameter 7), and
show that a classification learning algorithm for F' can be used as a
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Fig. 13.1. Points {z1,...,z3} in the set T, with their associated witnesses r;.

The dotted lines extend 2 above and below each r;.

learning algorithm for H, and that the estimation errors (and hence
sample complexities) of both are closely related.

The first step is to construct the class H. Fix v > 0. Choose a set
S C X so that |S| = d = fat,, (r) (27) and S is 2v-shattered by 74, (F),
witnessed by r € [1/2—27,1/2+27]%. By the pigeonhole principle, either
at least d/2 of the r; fall in the interval [1/2 — 2,1/2], or at least that
many fall in [1/2,1/2+ 24]. Let T C S contain the corresponding z;,
so |T} > d/2. Clearly, T is vy-shattered by 2, (F), witnessed by either
1/2-v1/2-7,...,1/2 =) or (1/2+ v,1/2+ 7,...,1/2 + 7) (see
Figure 13.1). Because F is closed under addition of constants, it follows
also that T is y-shattered, witnessed by (1/2,...,1/2); we simply ‘shift’
all the relevant functions as necessary. Now let Fy C F be the set of
functions f in F such that for all z € T, |f(z) — 1/2| > «v. Clearly, the
set H of {0, 1}-valued functions on T defined by

H = {z + sgn(f(z) — 1/2) : f € Fo}

is the set of all {0,1}-valued functions on T, and hence VCdim(H) >
d/2.

The second step of the proof is to relate the problem of classification
learning F to that of learning H, and to appeal to the lower bound results
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from Chapter 5. Suppose that L is a classification learning algorithm
for F, with sample complexity mp(e,d,y). Then for any probability
distribution P on X x {0, 1}, the probability of a random sample z of
length m > my(c,d, ) satisfying

erp(L(7,2)) < opth(F) + ¢
is at least 1 — 4. Notice that
optp(F)

: v
it erh (/)

IA

; v
flélgo erp(f)

jnf erp(h),

since erp.(f) = erp(f) for all f € Fp. It follows that z — sgn(L(y, 2))
is a learning algorithm for H with sample complexity my(c,d,+). But
Theorem 5.2 shows that, for 0 < ¢,6 < 1/64,

d 1-¢2 1
S .
my(€,4,7) 2 max (320152’2 l 2¢2 In 84(1 - 25)J)

O

Theorems 13.4 and 13.5 show how the inherent sample complexity of a
function class grows with the fat-shattering dimension and the accuracy
parameter ¢. In particular, they show that there are constants ¢; and
¢z for which

cifaty,, () (27)

cafaty (r) (7/8)
62 S mF(eadsV) S ’——'ﬁi_z')__—

for suitably small € and &, provided that F is closed under addition of
constants. Clearly, it is only the behaviour of functions in F' near the
threshold value of 1/2 that influences the complexity of F for classifi-
cation learning, whereas the fat-shattering dimension in these bounds
measures the complexity of functions in x.,(F) over the whole of their
[1/2 — 4,1/2 + 7] range. The condition that F is closed under addition
of constants ensures that the complexity of functions in F is, in a sense,
uniform over this range. For example, consider the following class of
functions (which is not closed under addition of constants). Let a be a
positive constant, and define F as the set of all functions mapping from
N to [1/2 + @,00). Then fat, (r)(v/8) is infinite for v > 4a/3, but
there is a classification learning algorithm for F. (Indeed, since sgn(f)
is identically 1 for all f in F, classification learning with F is trivial.)
The class F' is certainly complex, but the complexity of the functions in
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F is restricted to a range that does not include the threshold, and hence
this complexity is irrelevant for classification learning.

13.4 Using the Pseudo-Dimension

The analysis in the previous section uses an upper bound on covering
numbers in terms of the fat-shattering dimension. However, we have also
derived an upper bound (Theorem 12.2) on covering numbers in terms
of the pseudo-dimension, and it is natural to investigate what this will
tell us about the sample complexity of classification learning algorithms.
Using Theorem 12.2 as it applies to m.,(F), the following result can easily
be obtained.

Theorem 13.6 If F is a set of real functions having finite pseudo-
dimension, and L is a large margin SEM algorithm for F, then L is a
classification learning algorithm for F. For all § € (0,1), all m, and
v > 0, its estimation error satisfies

ex(m,6,7) < almdi) = (2 (d In (8‘37’”) +In (%)))1/2 ,

where d = Pdim(F).

This result is, however, weaker than the VC-dimension results of
Chapter 4. To see this, let H = {z +> sgn(f(z) —1/2): f € F}, and
notice that VCdim(H) < Pdim(F) and optp(H) < opth(F). It fol-
lows that Theorem 4.2 implies a stronger version of Theorem 13.6 (with
smaller constants). Thus, using the pseudo-dimension to analyse classifi-
cation learning for classes of real-valued functions gives no improvement
over the results of Chapter 4. However, using the fat-shattering dimen-
sion in a ‘scale-sensitive’ analysis of classification learning can give a
significant improvement over the VC-dimension results of Part 1. In the
next chapter, we see examples of neural network classes that have finite
fat-shattering dimension, but whose thresholded versions have infinite
VC-dimension.

13.5 Remarks
Relative uniform convergence results

Theorem 13.5 implies that, for function classes satisfying a mild “self-
similarity” condition (the class is closed under addition of constants),
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the rate of uniform convergence of erp(f) to €r7(f) can be no faster
than 1//m. However, just as the relative uniform convergence results
of Section 5.5 demonstrate for the learning model of Part 1, it turns out
that erp(f) converges more quickly to (1 +a)ér](f) for any fixed a > 0,
as the following result shows.

Theorem 13.7 Suppose that F is a set of real-valued functions defined
on X, P is a probability distribution on Z, 4> 0, and a, > 0,

P™{3f € F: erp(f) > (1 + a)ér)(f) + B}

suwmewmmW(ﬁ¥%)

The theorem follows from the inequality

mlarcp, =P =610)
P {Hf €eF: o) > 6}
—e2m

< 4Nx (7/2, 74 (F), 2m) exp ( 1 )(13.4)

in the same way that Theorem 5.7 follows from Inequality (5.11). We
omit the proof of this inequality; it is closely related to the proof of
Theorem 10.1.
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ideas of Vapnik and Chervonenkis (1971) and Pollard (1984), but work-
ing with the d, metric, as in (Anthony and Bartlett, 1995). The proof
technique used for the lower bound, Theorem 13.5, is from (Bartlett,
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bound for the sample complexity of learning probabilistic concepts (see
Section 9.4), in terms of a different scale-sensitive dimension (that is
smaller than the fat-shattering dimension). Inequality (13.4), and a
slightly weaker version of Theorem 13.7 are also given in (Bartlett, 1998).
Independent related work appears in (Horvath and Lugosi, 1998), relat-
ing the classification performance of a class of real-valued functions to a
certain scale-sensitive dimension.
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The Dimensions of Neural Networks

14.1 Introduction

In this chapter we bound the pseudo-dimension and the fat-shattering
dimension of the function classes computed by certain neural networks.
The pseudo-dimension bounds follow easily from VC-dimension bounds
obtained earlier, so these shall not detain us for long. Of more impor-
tance are the bounds we obtain on the fat-shattering dimension. We
derive these bounds by bounding certain covering numbers. Later in the
book, we shall use these covering number bounds directly.

‘We bound the covering numbers and fat-shattering dimensions for net-
works that are fully connected between adjacent layers, that have units
with a bounded activation function satisfying a Lipschitz constraint,
and that have all weights (or all weights in certain layers) constrained
to be small. We give two main results on the covering numbers and
fat-shattering dimensions of networks of this type. In Section 14.3 we
give bounds in terms of the number of parameters in the network. In
contrast, Section 14.4 gives bounds on the fat-shattering dimension that
instead grow with the bound on the size of the parameters and, some-
what surprisingly, are independent of the number of parameters in the
network. This result is consistent with the intuition we obtain by study-
ing networks of linear units (units with the identity function as their
activation function). For a network of this kind, no matter how large,
the function computed by the network is a linear combination of the
input variables, and so its pseudo-dimension does not increase with the
number of parameters. In a network of computation units in which the
activation function satisfies a Lipschitz constraint, if the weights are
constrained to be small then the function computed by the network is
‘approximately linear’ in the parameters. It makes sense, then, that the

193
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Fig. 14.1. The networks N and N’ of Theorem 14.1; N computes f € F and
N’ computes h € H'.

fat-shattering dimension in this case does not increase with the num-
ber of parameters. On the other hand, the closeness to linearity of the
network function depends on the magnitude of the weights, the number
of layers, and the scale of interest, and we shall see that the bound on
fatr () increases with 1/, with the weight bound, and with the number
of layers.

These results suggest that there are two distinct notions of the com-
plexity of a multi-layer network: we can restrict a network’s complexity
either by restricting the number of parameters or by restricting the size
of the parameters.

14.2 Pseudo-Dimension of Neural Networks

We spent much effort in Part 1 in bounding the VC-dimension of vari-
ous types of neural network. Fortunately, we can use our VC-dimension
bounds to obtain bounds on the pseudo-dimension of real-output net-
works. The following result relates the pseudo-dimension of the set of
functions computed by a real-output network to the VC-dimension of
an augmented version of the same network. Figure 14.1 illustrates the
networks described in the theorem.
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Theorem 14.1 Let N be any neural network with a single real-valued
output unit, and form a neural network N' as follows. The network N'
has one extra input unit and one extra computation unit. This additional
computation unit is a linear threshold unit receiving input only from the
output unit of N and from the new input unit, and it is the output unit of
N'. If H' is the set of {0,1}-valued functions computed by N' and F the
set of real-valued functions computed by N then Pdim(F) < VCdim(H').

Proof Any state of N' is of the form w' = (w, w,6), where w is a state
of N, w is the weight on the connection from the new input to the new
output unit, and 4 is the threshold on the new computation unit. Any
input pattern to N’ is of the form (z,y) where z is an input pattern
to N and y is the new input. If h,s is the function computed by N’
when in state w’ then h,(z,y) = sgn (f,(z) + wy — ), where f, is the
function N computes in state w. Thus, if a state w' of N’ has § = 0 and
w = —1, then

hw’ (23, y) = 8gn (fw(x) - y) . (141)

But then the VC-dimension of the subset of H' that corresponds to this
choice of w and 8 is the VC-dimension of the sub-graph class,

Bp = {(z,y) = sgn(f(z) -v): f € F},

which is precisely the pseudo-dimension of F (see Section 11.2). The
result follows. a

It is clear that, in the notation of Theorem 14.1, the network N’ has
precisely two more parameters than N, one more computation unit, and
one more input. In fact, if the activation function s of the output unit
in the network N is non-decreasing and continuous from the rightt, then
we can write

sgn (3(g(z)) — ) = sgn (9(z) - s (¥)) ,

where s™1(y) = inf{a : s(a) > y}. It follows that we can compute
the functions described in the proof of Theorem 14.1 using a network
N' with the same number of computation units as N. Notice that the
standard sigmoid function, the identity function, and the sgn function
are all non-decreasing and continuous from the right.

t A function s : R — R is continuous from the right if, for all zo € R, limzz, 8(z) =
8(zo).
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We could give many specific pseudo-dimension bounds now by using
earlier VC-dimension bounds. We give just one example, which follows
from Theorem 8.13.

Theorem 14.2 Let F be the set of functions computed by a feed-forward
network with W parameters and k computation units, in which each com-
putation unit (including the output) has the standard sigmoid activation
function. Then

Pdim(F) < (W + 2)k)? + 11(W + 2)klog, (18(W + 2)k?).

14.3 Bounds on the Fat-Shattering Dimension in terms of
Number of Parameters

Covering numbers of compositions of function classes

In this section we bound the covering numbers and fat-shattering di-
mension of multilayer networks by quantities depending on the nuniber
of adjustable parameters. To obtain these bounds, we use the fact that
the functions computed by all units beyond the first layer can be ap-
proximated accurately by a finite set of such functions. The precise
details of this follow, but the basic idea is quite simple: we form a grid
in parameter space of the required fineness (depending on the level of
approximation required) and we use functions corresponding to the grid
points.

In the analysis of this section, we split the network into two parts: the
first layer, and later layers. We bound certain covering numbers for the
classes of functions computable by these parts, and then combine these
covering number bounds.

In what follows, X is the input space R", Y] is the output set of the
first layer (so that, for example, ¥; = [0, 1]* if there are k units in the
first layer, each of which maps to [0,1}]), F; is the class of vector-valued
functions that can be computed by the first layer, and G is the class of
functions that can be computed by the remainder of the network. Then
F; is a class of functions from X to Y;, G is a class of functions from Y; to
R, and the set of functions computable by the network is the composition
of these classes, G o Fy, given by Go F; = {go f : g € G, f € F;} where
(g0 f)(z) = g(f ().

We define the uniform, or L, distance between functions f,g:Y; —
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R by
dr..(9,h) = sup |g(y) — h(y)].
yEN

The following lemma bounds the do, covering number of the composition
of two function classes in terms of a do, covering number of one class
and an Lo, covering number of the other. Recall, from Chapter 10,
that N (e, F, d) denotes the e-covering number of a function class F with
respect to the metric d, and that, for a positive integer m,

Noo (6, F,m) = max {N (e, F,,dso) : € X™}.

Lemma 14.3 Let X be a set and (Y1,p) a metric space. Suppose that
L > 0, Fy is a class of functions mapping from X to Y1, and G is a class
of real-valued functions defined on Yy satisfying the following Lipschitz
condition: for all g in G and all y,z in Y1,

l9(y) — 9(2)| < Lp(y, 2).

Fory= (y1,...,ym) and 2 = (21,...,2m) from Y{™", let
P — .
d5(y,2) = [ P(Yi, %)
Then
Neo (6,G o Fi,m) < Jfnax N(e/(2L), Fy,,d5%) N(e/2,G,dL,,)-

Proof Fix z € X™. Suppose that Fiisan €/(2L)-cover of Fy|, with
respect to d2, and G is an €/2-cover of G with respect to dr, . Let

Gy, = {(6F)8(fa), - ,3Fm)) : f = (Fri s Fm) € By, g € 6.
We show that G le, is an e-cover of (G o F1)|, with respect to do. Since
élpl has cardinality no more than N(e/(2L), Fi,,dx)N(€/2,G, dL., ),
the result follows. To see that G, 2 is a cover, choose f € F; and
g € G, and pick f € F} and § € G such that d& (fi., f) < €/(2L) and
dr..(9,9) < €/2, where fi, = (f(z1),..., f(zm)). Then

max p(f(a;t)s ft) < e/(2L)a

1<i<m
and so

max |9(f(2) - 9(f)l S L(e/(2L)) = /2,
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which implies

1S l9(f(z:)) - §(f)l < e

The result follows. (]

It is clear that the existence of a finite Lo,-cover of a function class
is a much stronger requirement than the existence of any of the other
covers we considered in Chapter 12, because it implies that a finite
set of functions approximates the function class accurately at all points
of the input space. Even the class of functions computed by the real
weight perceptron with a single input cannot be approximated in this
strong sense, as the following proposition shows. In contrast, however,
Theorem 3.1 (together with the observation that the covering number
equals the growth function for {0, 1}-valued functions—see Section 10.2)
shows that we can find a d-cover for this class whose cardinality grows
linearly with m.

Proposition 14.4 Let F be the class of functions computed by the real
weight perceptron with a single real input. Then

N(e,Fydp ) =0

fore<1.

Proof Suppose there is a finite e-cover F'. Then each element of F' is
a function f, : R — {0,1} corresponding to a certain ‘transition point’
a, so that fo(z) = 0 if and only if 2 < a. Let S C R be the set of all
transition points of functions from the cover. Since S is finite, we can
choose a function f in F that has a transition point not in S, and hence
for all elements f of the cover there is some point in R at which f differs
from f by 1. Hence € > 1, and the result follows. a

Even though the existence of a finite L, cover for functions computed
by all but the first layer of the network is a stringent requirement, if we
bound the parameters and allow only smooth activation functions in
that part of the network, we can approximate the class in this strong
sense, as we shall see.
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Covering numbers for neural network classes

For the remainder of this section, we consider the class F' of functions
computed by a feed-forward real-output multi-layer network. We assume
that this network has the following properties:

e The network has £ > 2 layers, with connections only between adjacent
layers.

e There are W weights in the network,

o For some b, each computation unit maps into the interval [-b, b], and
each computation unit in the first layer has a non-decreasing activation
function.

e There are constants V > 0 and L > 1/V, so that for each unit in all
but the first layer of the network, the vector w of weights associated
with that unit has ||w]]; < V, and the unit’s activation function s :
R — [-b, b] satisfies the Lipschitz condition |s(a;) — s(a2)| < Lla; —
ay| for all a;,0; in R (Here, ||w]|; is the sum of absolute values of
the entries of w.)

For convenience, we also assume that the computation units have no
thresholds. It is straightforward to transform a network with thresholds
to one without: we add a new input unit with a constant value, and
a new computation unit in each non-output layer, with one connection
from the new unit in the previous layer, and we replace the threshold in
a computation unit with a connection from the new unit in the previous
layer.

Theorem 14.5 For the class F of functions computed by the network
described above, if € < 2b, then

4embW(LV)‘) w

N e Fom) < (22

The proof of this theorem uses Lemma 14.3. Suppose the network
has k units in the first layer. We split the network so that F = G o Fj,
where F; is the class of functions from X to ¥; = [—b,b]* computed by
the first layer units, and G is the class of functions from ¥; to [-b, ]
computed by the later layers.

As a first step, we show that functions in G satisfy a Lipschitz condi-
tion. For a = (a1,...,a;) € R¥, let [|aljoc = max; |a;|. (We will use the
corresponding metric on Y3, given by p(a,b) = ||a — b||e for a,b € ¥3.)
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Lemma 14.6 For the class G of functions computed by all but the first
layer, as defined above, every g in G and y1,y2 in Y1 satisfy

lg(w1) = 9@2)l < V) Pllys - yalloo-

Proof We decompose the function class G into functions computed by
each layer of units. Let Y; be the output space of units in layer i, so
if there are k; units in layer i, then Y; = [—b,b}¥. Then we can write
G =Gy 0Gy-10---0G2, where G; is the class of functions from Y;_; to
Y; computed by layer i. Then for any g; € G; and y1,y2 € Y;—1, by the
Lipschitz condition on s,

llgi(w1) — gi(w2)lloo < L max |wT (31 ~ g2,

where the maximum is over all weight vectors w associated with a unit
in layer i. Clearly (see Inequality (1.8) in Appendix 1), |w” (31 — y2)] <
Hwllillyr — v2ll0 < Vlys — y2lloo. The result now follows by induction
on i. 0O

The second step of the proof of Theorem 14.5 is to bound the d%-
covering numbers of Fy|,, where p is the absolute difference metric on
R, p(a’ b) = Ia - bl

Lemma 14.7 For the class Fy of functions computed by the first layer
defined as above, and for x € X™,

2emb\ "W ~We
N(C,Fu,,dgo)s ( e:n ) )

where Wg is the number of weights in all but the first layer.

Proof Fix x € X™. For f € F, (noting that F) is a class of vector-
valued functions), write f(z) = (fi(z),..., fi(z)) € [~b,b]*, and define

Fri={fi: (f1,..., fr) € i}

fori = 1,...,k. Clearly, Fj), C Flvll. X oo X Fl"‘l-’ and so we can
construct a cover of Fy|, with respect to d4, by taking the product of
covers of Flv"l- with respect to deo. This implies

k
N(e, F1|',dg°) < HN(é, Fl,i]’,doo)-
i=1
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Suppose X C R*. Since the activation function of each first-layer com-
putation unit is a non-decreasing function, we can apply Theorems 11.3,
11.6 and 12.2 to show that

2emb\"
zlg% N(f, Fl,ila7doo) S ( n )
for any i. Since kn = W — W, the result follows. O

The final step in the proof of Theorem 14.5 is to show that there is a
small Lo, cover of G.

Lemma 14.8 With notation as defined above, if ¢ < 2b and LV > 1
then

QLVWGb(LV):-1\ "¢
N(G,G,dLm)S ( E(LV—].) .
Proof We construct a fine grid of points in parameter space, and show
that the set of functions corresponding to these parameter values forms
an e-cover of the class G with respect to dz_ . To thisend, let A = 2V/N
for some integer N (which will be chosen later), and consider the set

S={-V,-V+A4,...,V-A,v}¥,

regarded as a subset of the parameter space. Clearly |S| = (N + 1)We.
Let Sg be the subset consisting of the points of S that satisfy the weight
constraints described in the definition of the network. Consider a func-
tion g in G, and its corresponding vector w of parameter values. Clearly,
there is a point @ in S (corresponding to a function § in G) such that
every component of 1 is within A of the corresponding component of
w. Now, as in the proof of Lemma 14.6, write G = Gy 0 Gy—1 0+ -0 Gys.
Define g, € Ga,...,9¢ € G¢ so that g = ggo- - - 09y, and define go,...,J;
similarly. Consider y; € Y1, and let ¢;41 = gia1(ys) fori=1,...,£-1.
Similarly, let §; = ¥, and define §;+1 = §i+1(f:). Now, we prove by
induction that
(LV)—t -1
Lv-1 -~
First, notice that this is trivially true for ¢ = 1. Next, assume that (14.2)
is true for i > 1. We have

llys — gillo < LAWGD (14.2)

lyis: = Girllo = lgita(@®:) — Girr1(@i)llo
< g1 @) = i1 @) lloo + Ngita (§:) — it (Fi)lloo-
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By the same argument as in the proof of Lemma 14.6, the first term in
this expression is no more than LV||y; — §iflo. To bound the second
term, consider a unit in layer (i + 1) of the network, and let the relevant
components of w and W be v and 9 respectively, so the unit computes
8(vT9;) in calculating g;41(§:) and s(974;) in calculating §;y1(J;). Then
it is clear that

ls(w" ) — s(@7 i)l < Lllv = dllall:lloo < LAWGD.
It follows that

LV)i-l -1
St +)

= LAWgh ((L—VZ‘—I) :

IA

Nyi+1 — Fitalloo LAWgb (
Lv-1
Hence,
(LV)¢-1 -1
Lv-1"
and so Sg corresponds to a dy, e-cover of G if this quantity is less than
¢. For this, it suffices if we choose
2LVWgb((LV)t1 - 1)
>
N2 LV =1
and we have NV(e,G,dL..) < (N +1)W%9, which implies the result. [

dr..(9,9) < LAWgb

+1,

Theorem 14.5 follows immediately from Lemmas 14.3, 14.6, 14.7,
and 14.8 (with the L of Lemma 14.3 taken to be (LV)¢1).

A bound on the fat-shattering dimension

As a corollary of Theorem 14.5, we can obtain a bound on the fat-
shattering dimension of the neural networks under consideration.

Theorem 14.9 For the class F of functions computed by the network
described above,

fatp (¢) < 16W (l In(LV) + 21In(32W) + In (e(Tb—l))> .

Proof Theorem 14.5 establishes that

4embW(LV)‘) v

Neo e Fym) < (2220 X
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By Theorem 12.10,
Nio (€, F,m) > efatp(lee)/s

for m > fatp (16¢). Setting d = fatp (€), replacing € by ¢/16, taking
m = d in the lower bound just stated, and using Inequality (1.2) from
Appendix 1 shows that

g < In(Now (¢/16, F,d))
< Wh (—64:3)3, EL:; )t)
= Wihd+Wh (%)
¢ Lown (1) s in (SBEELYY,
from which the result follows. a

For fixed depth, the bound of Theorem 14.9 is O(W In(VW/e)). Thus,
the rate of growth with the number of parameters W is essentially the
same as the corresponding results for linear threshold networks and for
piecewise-polynomial networks (Theorems 6.1 and 8.8). Both the bound
V on the size of the parameters and the scale e enter only logarithmically.

14.4 Bounds on the Fat-Shattering Dimension in terms of
Size of Parameters

In this section, we bound the fat-shattering dimension of sigmoid net-
works by quantities that do not depend on the number of parameters in
the network. The key idea is to approximate a network with bounded
weights by one with few weights. There are two steps in the derivation,
outlined in the next two sections: the first presents an approximation re-
sult for convex combinations of bounded functions, and the second uses
this to bound the covering numbers of the class of convex combinations
of basis functions in terms of covering numbers of the basis function
class.

An approzimation result

The following result shows that a convex combination of bounded func-
tions can be approximated by some small convex combination. The
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measure of approximation error is defined in terms of a scalar productf.
For a subset S of a vector space H, the convex hull of S, co(S) C H, is
defined as

N N
CO(S) = {Za;s;:Ne N,s; € S,0; > O,Zai = 1} .

i=1 i=1

Theorem 14.10 Let F be a vector space with a scalar product and let
£l = V/(£, f) be the induced norm on F. Suppose G C F and that, for
some B >0, ||g|| < B for all g € G. Then for all f € co(G), all k €N,
and all ¢ > B2 — ||f||?, there are elements gy,...,gr of G satisfying

1
;ng'f

i=1

2

c
< -
~k

Proof The proof uses the probabilistic method. The idea is to show that,
for a suitable random choice of the g;, the expectation of the squared
norm is bounded by ¢/k, from which it follows that there must exist some
gi’s for which the squared norm is no larger than this. Write f € co(G)
as Zf;l a;f; for f; € G and suppose the g;’s are chosen independently
such that Pr(g; = f;) = @;. Then we have

1 & 2 LA
Ezgi"‘fll = Epzz(gi—f,gj‘f)

E
i=1 =1 j=1
1 &
= E“,;;XI: ||9i—f||2+;(gi~f,gj‘f) .
i= j#é

The second term inside the sum is zero, since the independence of g;
and g; implies

N
E(@ - f,9i-f)=E (Zalfl —f,gj—f) =E(0,9;,- f)=0.

=1
For the first term, notice that

Ellg: - fII> = Ellgll® +IfI* ~ 2E(gs, f)
= Elgd” - A1
< e

t If F is a vector space, a scalar product on F is a function defined for all f, f2 in F
and denoted (f1, f2) with the properties: (1) (f1,f1) > 0for fi #0, (2) (f1,f2) =
(f29.fl)y (3) (Afl’f2) = A(fla.f2)) and (4) (f11f2 + f3) = (fl)f2) + (flaf3)'
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Combining shows that

2
_kzzc

i=1

Zy.

1-.1

Relating covering numbers
Recall the definition of the metric dp: for any z = (z,...,2,) and
y= (yl"'-’yn) in ]an

Lo 1/2
dy(z,y) = (; D (@i - yi)2> :
i=1

Notice that ds is the metric induced by the scalar product (a,b) =
(1/n) X7, aib; on R®. The following theorem uses the previous result
to bound covering numbers (with respect to dz) of bounded linear com-
binations of functions.

Theorem 14.11 Suppose b > 0 and that F is a class of [—b, b]-valued
functions defined on a set X, and N (¢, F,m) is finite for all m € N
and € > 0. Then provided ¢; + €3 < ¢,

logy NV (€,c0(F), m) < [b ] logy N2 (€2, F,m).

Proof Suppose N (€2, F,m) = N. Then for any z = (z1,...,Zm) € X™
there is an ez-cover S of Fj, such that |S| = N. We use Theorem 14.10
to show that we can approximate vectors in the restriction of co(F') to
z using small convex combinations of functions in S. To this end, define
Ty CR™ as

Tk—{st. s,GS}

i=1
Clearly |Ti| < N*. Choose any f € co(F), and suppose f = E._l a;fi
with a; > 0, Y_, = 1, and f; € F. Using the notation 9. =
(9(21),---,9(zm)), let f;), = (fi(z1),-.., fi(zm)) € R™. Since S is an

es-cover of F}, with respect to the d, metric, there are vectors fl, .
in S such that

& (fi.» fi) < €2
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It follows that

!
ds (f|,,zaifi> <e.

i=1

But Theorem 14.10 shows that there are g;,...,g¢ in S such that

o (13w Y e <

i=1 i=1

and the triangle inequality for d2 then implies that

1¢ b
d; (E Z:gi,fh.) <e+ e

Since this is true for any f € co(F), T is an (e3 +b/vk)-cover of co(F),, -
Choosing k = [b?/€3] gives the desired result.

We use the following two simple results in deriving the covering num-
ber and fat-shattering dimension bounds for neural networks. The first
concerns covering numbers of scaled versions of a function class. For
a real number « and a subset F' of a normed vector space, we define
aF ={af: f e F}.

Lemma 14.12 If G is a normed vector space with tnduced metric d and
F is o subset of G, then N (e, F,d) = N(|ale,aF,d), for any € > 0 and
a€R

Proof If F' is a minimal e-cover of F, then for all f € F there is an
f in F with d(f, f) < e. Since d is induced by a norm, it satisfies the
property d(af,af) = lald(f, f). It follows that oF is an |aje-cover of
aF, which implies N (|ale, oF,d) < N(e, F,d). The reverse inequality is
proved similarly. O

Finally, the following lemma shows that taking the composition of a
fixed function with functions from a class does not significantly increase
the covering number, provided the fixed function satisfies a Lipschitz
condition.

Lemma 14.13 Suppose F is a class of real-valued functions defined on
a set X, and the function ¢ : R — R satisfies the Lipschitz condition
|6(z) — $)| < Liz —y| for allz,y € R. Let o F = {po f: f € F}.
Then Nz (¢, ¢ o F,m) < Na (¢/L, F,m).
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The proof is similar to the proof of Lemma 14.12, but uses the fact
that

(¢ © )(z) = (60 9)(x)| < L|f(z) — g(=)].

Covering numbers for two-layer networks

We first consider two-layer networks in which the first-layer units com-
pute arbitrary functions from some set. The following theorem follows

easily from Theorem 14.11. In the theorem statement, —F), denotes
(-1)F.

Theorem 14.14 Suppose b > 0 and that F; is a class of [—b, b]-valued
functions defined on a set X and satisfying the following conditions:

(i) F 1= -F 1
(ii) Fy contains the identically zero function, and
(iii) N2 (e, F1,m) is finite for allm € N and € > 0.

For V > 1, define

i=1 i=1

N N
F= {Zwifi:N €N fi € Fthwil < V}-

Then for ¢; + €3 <,

2 b2

10g2N2 (E)F’m) S [V

€2
6“{ ] log2N2 (V,Fl,m).
Proof The conditions on F) imply that F = Vco(F;). Theorem 14.11
and Lemma 14.12 give the result. O

We can apply this result to give covering number bounds for two-
layer networks. The following corollary gives a bound that depends on
the input dimension, and is applicable to a network with non-decreasing
activation functions in the first layer units.

Corollary 14.15 Suppose that b > 0 and s : R — [-b,b] is a non-
decreasing function. Let V > 1 and suppose that F is the class of func-
tions from R™ to R given by
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N
F= {z»—) Zw,-s(v?a:+v,~o)+wo :NeNuwv; € R*, v €R,

i=1
N
D wil < V}-

i=0
Then for0<e<bandm>n+1,
5V2b%(n + 3) ( dembV )
log, .

<
logy Nz (€, F,m) < €2 e(n+1)

Proof Define F; as the class of functions computed by units in the first
layer,
Fy = {2~ s(v]z+vi0) : vi = (via,...,vin) € R*, 050 €R} .

Theorem 11.4 shows that the pseudo-dimension of the class of affine
combinations is n+ 1. Theorem 11.3 shows that this is not increased by
composing with the activation function, and Theorem 12.2 shows that

2emb \"*!
e(n+1)
for m > d. Lemma 14.12 shows that N2 (¢, —=Fi,m) = N; (¢, F1,m), and
so the class F; U—F; U{0,1} (where 0 and 1 are the identically zero and
identically one functions) has covering number

N (e, FU-F1U{0,1},m) < 2Nz (¢, F1,m) + 2.
Theorem 14.14 shows that

2p? n+1
log, Nz (e, F,m) < [_V_E?’?_] log (2( 2embV ) +2).

Na (e, Fiym) < Noo (6, Fyym) < (

e2(n+1)
Substituting €; = €3 = €/2 gives the result. O

The second corollary gives a bound on the logarithm of the covering
number that increases only logarithmically with the input dimension,
but it requires smooth activation functions in the first layer units and a
bound on the first layer weights.

Corollary 14.168 Suppose that b,L > 0 and s : R — [—b,b] satisfies
|s(a1) — s(az)| < Llay — az| for all aj,as € R. For V>1and B > 1,
let

N N
F= {Zwifi+w0:NeN,.fi € F1,2|‘w.'| < V}

i=1 =0
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where
n n
F = {a:r—) s (Zvim; +vo> v eERz € [—B,B]",Zlvil < V} .
i=1 i=0

Then for ¢ < V min{BL, b},

V3L2B\?
62

log, N2 (¢, F,m) < 50 ( ) log,(2n + 2).

Proof Applying Theorem 14.14 (as in the proof of Corollary 14.15) as
well as Lemma 14.13 shows that
[VzB2L2

——1—] lo 2/\/2(‘,I.J,Gu -Gu{0,1}, )

[V222L2] log, (2N2 (VL’G m) )

provided B > 1 and €; + €2 > ¢, where G = {z = z; :i € {1,...,n}}.
Clearly, for all € > 0, M2 (¢,G,m) < |G| = n. Since [V2B2L?/e?] <
2V2B2L%/e?, we can choose €; < € such that

|'V2B2L2] < 2V2B2L2

€ €

lOg2N2 (67 Flim)

IA

Hence,
2Q272
log2N2 (€ Fl,m) < —V—ﬂ'—lo (2n+2)

Similarly, if b > 1,

logzNz(e,Fm)<[Vzb]log2(2N2( Fl,) )

for €1 + €3 < e. Setting €) = ez = ¢/2 gives

VEL (11 Fum)

longfg (6, F,m) S

5V2b2L2 8V4B2L?
< = ( ————Iog2(2n+2))
67432 B2
< ﬂ’%b_il g,(2n +2),

and the result follows. O
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Covering numbers for deeper networks

We can use a similar approach to give bounds for deeper networks. For
convenience, we assume that the bound B on the magnitude of the input
values is equal to the maximum magnitude b of the activation function.
Define

Fp={zrzi:z=(21,...,2n) € [-b,b]", i € {1,...,n}}U{0,1},

where 0 and 1 are the identically zero and identically one functions,
respectively. For ¢ > 1, define

N i-1 N
={8 (ijfj) :NeN, ij UFk,Z|wj|SV}. (14.3)

j=1 k=0 Jj=1

Thus, Fp is the class of functions that can be computed by an £-layer
feed-forward network in which each unit has the sum of the magnitudes
of its weights bounded by V. We assume as above that the activation
function s : R — [—b, b] satisfies the Lipschitz condition |s(a;) —s(az)| <
Ljay — ag] for all a1, a2 € R

Theorem 14.17 For £ > 1, the class Fy defined above satisfies

log, Nz (¢, Fy,m) < = (E)) (VL))" 1og, (2n + 2),

provided b> 1,V > 1/(2L), and ¢ < VbL.

Proof As in the proof of Corollary 14.16,

V2b2L2
log, V2 (¢, Fy,m) <

log,(2n + 2). (14.4)
Theorem 14.14 and Lemma 14.13 nnply that

5V2b2L2
log, V2 (2VL’G' 1L,m ) (14.5)

for i > 1, where Gi—1 = Uj—p Fk. Clearly, G; = Gi~1 U F, so for i > 2,

l°g2 N2 (6, Gi’ m)
(5V362L3/e?)
S I°g2 (M (G’Gi—l’m) +./V2 ( Gt—l; ) )

l°g2N2 (61 F'um) <

2vL’
5V2p2L2
S 1+ log; s (557, Gs-1:m)
vzmz
< logy N (557> Gim1,m)- (14.6)
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We now prove by induction that this implies

25272\ 1 )
logy M2 (¢,Gi,m) < (GV:;L) 2V L)¢-1D6-2)

€
10g2 N’z ((2V—L)‘:f’ G1 , m) (147)
Clearly, this is true for ¢ = 1. If it is true for 1 < ¢ < j—1, (14.6) implies

logy V2 (6,Gj,m)
6V"’b2L2
6Vzb"’L2 6V2b2L2(2VL)2 -2 o
< = ( > ) (2VL)U-ADG-3) x

€
o5 Gty om)
6V22 L2\
(=

i P ;i €
) (2VL)(J 1)(i-2) log, N2 (W,Gl,m),

as desired. Now, Inequality (14.4) shows that
log, N2 (6,G1,m) < log, ((2n + 2)(2"2"2['2/ <) 4+ 2n+ 2)
3V2b2L2

< log,(2n + 2). (14.8)

Combining (14.5), (14.7), and (14.8) shows that
logy N, (€, F,m)
5V2b2L2

5V2b2L2 6V2b2L2(2VL)2
€2 €2

IA

-2
) (2VL) (£-2)(L-3) x

€
log, N> (W,Gl,m)

-2
5V3?L? (6v2b2L2(2VL)2) (VL) 5
€ €2
3VZb2L2(2V L)%
€2

) (2VL)*¢-Vog,(2n + 2),

log,(2n + 2)

6V2b2L2
2 €2

which implies the result. O
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A bound on the fat-shattering dimension

Using the covering number bounds of Corollary 14.15, together with
Theorem 12.10, straightforward calculations (similar to those used to
prove Theorem 14.9) give the following bound on the fat-shattering di-
mension of two-layer networks with bounded weights.

Theorem 14.18 Suppose that b > 1 and s : R — [-b,b] is a non-
decreasing function. Let V > 1 and suppose that F is the class of func-
tions from R to R given by

N
F= {a: - Zwis(v?z+v;o)+wo :NeNwv; e R*,v0 €R,

i=1
N
D lwil < V}.

i=0

Then for0<e<b,

2 8
fatp (€) < 2'%(n +3) (b—:/-) In (2—?{-) .

Using the proof techniques from Theorem 14.17, this result can eas-
ily be extended to networks of any fixed depth, with bounded non-
decreasing activation functions in the first layer and bounded, smooth
(Lipschitz) activation functions in later layers. As mentioned at the be-
ginning of this chapter, these bounds show that when the parameters in
all except the first layer are not too large relative to the relevant scale
(that is, V is small relative to €), the fat-shattering dimension of the
network grows linearly with the input dimension n. Hence, when the
computation units in all except the first layer are operating in their ‘ap-
proximately linear’ region, the dimension grows just as it would if the
network contained only linear computation units.

When the units in the first layer also have smooth activation functions
and small weights, Theorems 14.17 and 12.10 immediately imply the
following result. In this case, when the weights are small relative to the
relevant scale, the fat-shattering dimension can be even smaller than the
dimension of a network of linear units.

Theorem 14.19 Suppose that F; is defined recursively by (14.3). Then

2
€

2¢
fatp, (€) < 4 ( ) VL)X In(2n + 2),
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providedb> 1,V > 1/(2L), and € < 16VbL.

Note that both this bound and that of Theorem 14.18 depend on the
bound V on the size of the weights, but do not involve W, the number
of weights. For a fixed number of layers £, both bounds are independent
of the size of the network.

14.5 Remarks

Because the pseudo-dimension gives a bound on the fat-shattering di-
mension, the VC-dimension bounds of Chapter 8, together with The-
orem 14.1, imply bounds for several networks, including those with
piecewise-polynomial activation functions and the standard sigmoid acti-
vation function. These bounds are in terms of the number of parameters
in the network, and have the advantage over Theorem 14.5 that they do
not require a bound on the magnitude of the parameters. However, for
networks of units with the standard sigmoid activation function, these
bounds grow more quickly with the size of the network.

The techniques used in Section 14.4 can be applied to any function
classes that can be expressed as compositions of bounded linear combi-
nations and bounded scalar functions satisfying a Lipschitz condition.
For example, there are straightforward analogues of Theorems 14.18
and 14.19 for radial basis function networks with bounded parameters.
(See Section 8.5.)

Linear classifiers

Techniques from Section 14.4 give the following result for the class of
linear functions with bounded inputs and bounded weights. We as-
sume that the inputs have bounded infinity-norm, defined by ||z||leo =
max; |z;|, for ¢ = (z1,...,2,) € R, and that the weights have bounded
1-norm, defined by |lwll, = Y7, |wi|, for w = (wy,...,wn) € R®. The
proof follows from the bound on the covering numbers of Fj in the proof
of Corollary 14.16, together with Theorem 12.10.

Theorem 14.20 For the class Fy = {z = w7z : ||z]lo < 1, [Jw], <V}
we have

2
fatp, (€) < 22 (%) In(2n + 2).
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Since the 1-norm and the infinity-norm are dual norms, the bounds
on these norms ensure that functions in F' are bounded. A similar result
to Theorem 14.20 can be obtained for another pair of dual norms, the
2-norm of z and the 2-norm of w.

Theorem 14.21 For the class Fy = {z = w7z : ||z|]2 < 1, |jwll < V}

we have
2
fatp, () < (—‘G{-) .

These results are especially interesting because of the attractive com-
putational properties of these function classes. A problem closely related
to large margin sample error minimization for the class defined in The-
orem 14.21 (namely, the problem of maximizing v so that ér}(f) = 0)
can be expressed as a quadratic optimization problem with convex con-
straints. This problem can be solved in polynomial time using interior
point methods. As a result, these function classes have been studied
extensively. The bounds of Theorems 14.20 and 14.21, together with
the results of Chapter 13, explain why the generalization performance
of these classifiers does not have a significant dependence on the input
dimension n.

The proof of Theorem 14.21 involves two lemmas. The first shows
that the sum of any subset of a shattered set is far from the sum of the
remainder of that set. The second shows that these sums cannot be too
far apart when the 2-norms of the input vectors are small. Comparing
the results gives the bound on the fat-shattering dimension.

Lemma 14.22 Let Fy = {z— wTz: |zl <1, llwll <V}. If S is
e-shattered by Fy, then every subset Sg C S satisfies

|50~ 5 -0, 2 181e/7:

(Here, for a finite set T, 3, T denotes the sum of the members of T'.)

Proof Suppose that S = {z;,...,z4} is e-shattered by. Fy, witnessed
by r1,...,74 € R Then for all b = (b,...,bs) € {~1,1}4 there is a
wp with [Jwp|| < V such that, for all i, b;(wfz; — r;) > €. Fix a subset
So C S. We consider two cases. If

S {riczieSo} 2> {ri:zi €8-S}, (14.9)
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then fix b; = 1 if and only if z; € So. In that case we have wlz; > r; +¢
if z; € So, and wz'a:i < r; — € otherwise. It follows that

w{ (Z So) > Z {ri:z; € So} + |Sole.

Similarly,

wl (Z(s - so)) <Y {ri:zi € S-S} IS - Sole.

Hence,

wf (3 50- (5 - 50) 2 ISle.

But since |jw||z < V, the Cauchy-Schwarz inequality (Inequality (1.7) in
Appendix 1) implies that

|35 - S5 - s, 2 1sterv

In the other case (if (14.9) is not satisfied), we fix b; = 1 if and only
if z; € S — Sy, and use an identical argument. O

Lemma 14.23 For all S C R"* with ||z|l2 <1 for z € S, some So C S

satisfies
|2 50— (s - 50, < VISt

Proof The proof uses the probabilistic method. Fix any finite set
S = {z1,...,z4} satisfying the conditions of the lemma. We choose Sg
randomly, by defining Sp = {z; € S : b; = 1}, where by,...,bs € {-1,1}
are independent and uniform random variables. Then

E|Y 5~ (5 - 50 b
) i=1 2

d
= Z (ZE (b,-bja:?zj) + E||b,a:,||§)

2
E

i=1 \ jo#i
d

= Y E|lba;ll3
i=1

IA

|51,
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where the last equality follows from the fact that the b;’s have zero mean
and are independent. Since the expected value of this squared norm is
no more than |S], there must be a set Sp for which this quantity is no
more than |S]. a

Theorem 14.21 follows immediately: if S is e-shattered, then |Sle/V <

VISl s0 18] < (V/e)?.
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15
Model Selection

15.1 Introduction

The first two parts of this book have considered the following three step
approach to solving a pattern classification problem.

(i) Choose a suitable class of functions.
(ii) Gather data.
(iii) Choose a function from the class.

In this formulation, the class is fixed before the data is gathered, and
the aim is to select a function that is nearly optimal in the class. The
results presented so far show how the estimation error depends on the
complexity of this fixed class and the amount of data. For example,
consider a two-layer network Nw with input set X, W parameters, a
linear threshold output unit, and first-layer units with a fixed bounded
piecewise-linear activation function (such as the activation function il-
lustrated in Figure 8.1). Theorem 8.8, Theorem 4.3, and the proof of
Theorem 4.2 together imply the following result. For convenience in
what follows, we split the result into the key results that imply it.}.

Theorem 15.1 There are constants c¢1,cz,c3 such that the following
holds. For any W, let Hw be the class of functions computed by the
two-layer network Nw with piecewise-linear first-layer units, as defined
above. Suppose P is a probability distribution on X x{0,1}, and z € Z™
is chosen according to P™. Then with probability at least 1 — 4, every h

t In fact, we did not use Inequality (15.1) to derive Theorem 4.2. We include it here
for uniformity. It is easy to obtain, using an identical argument to the proof of
Lemma 13.3.

218
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in Hw satisfies

erp(h) < ér,(h) + ( (W In(Wm) + In (;)))1/2 .

For any fized h* (in particular, for h* € Hw satisfying erp(h*) <
infremy, erp(h) + 1/m), with probability at least 1 — § we have

ér,(h*) <erp(h®) + (;ng In (%)) 1/2. (15.1)

Hence, if Lw is a SEM algorithm for Hw (so that Lw(2) has ér, min-
imal over Hw ), then with probability at least 1 — § we have

erp(Lw(z)) < mf erp(h) + ( (W In(Wm) +In (;)))1/2 .

Unfortunately, this result is applicable only if we fix the complex-
ity of our class (that is, the number of first-layer units, and hence the
number W of parameters) before seeing any data. This is rather unsat-
isfactory; we would prefer that, after seeing the data, a learning system
could choose automatically a suitable level of complexity that gives the
smallest possible error. This problem is known as model selection.

As a second example, Theorem 14.18, Theorem 13.2, and the proof of
Theorem 13.4 together imply the following result. Here, the class Fy of
functions computed by the two-layer network Ny is defined by

k k

Fy = {a: - zwis(v?'a: +vi)+wo: k€N, led < V} , (15.2)
i=1 =0

where V is a positive constant, z € R"™, and the activation function

s : R = [-1,1] associated with each first-layer unit is a non-decreasing

function.

Theorem 15.2 There are constants c1,cz,c3 such that the following
holds. For any V and n, let Fy be the function class defined by (15.2).
Fiz v € (0,1} and suppose that P is a probability distribution on X x
{0,1}, and that z € Z™ is chosen according to P™. Then with probability
at least 1 — &, every f € Fy satisfies

erp(f) < &7(f) + ( (V ™ 152 (m) In (‘;) +1n (%)))1/2.
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For any fized f*, with probability at least 1 — § we have

a2(f") <erp(r) + (2t (%))/ .

In particular, this is true for f* € Fy with erp(f*) < infsep, erh(f) +
1/m. Hence, if Ly is a large margin sample error minimization al-
gorithm for Fy (so that &7 (Lv(z,7)) = mingep, €r7(f)), then with
probability at least 1 — § we have

erp(Lv(z,7))
< fieanv erp(f) + (%3 (z’;ﬂlf(m) In (—‘3) +In (%)))1/(215.3)

In this case, there are two complexity parameters, the weight bound
V and the margin v, that must be fixed in advance. Again, it would be
preferable to choose these parameters automatically.

15.2 Model Selection Results

The lower bound results of Chapter 5 show that we cannot hope to
find a function whose error is nearly minimal over the set of networks
with any number and size of parameters. However, in both cases the
above results show how to trade complexity for estimation error. For
instance, increasing « in (15.3) decreases the estimation error term, but
may increase the error term. An obvious approach here is to choose
the complexity parameters (and hence function class) to minimize these
upper bounds on misclassification probability. However the bounds of
Theorems 15.1 and 15.2 are applicable only if the complexity parameters
are fixed in advance. The following results are versions of these theorems
that allow the complexity parameters to be chosen after the data has
been seen. The estimation error bounds increase by only a log factor.

In the first of these theorems, let Hw be the class of functions com-
puted by two-layer networks with W parameters, as in Theorem 15.1.
Let L¢ be a learning algorithm that returns h € |Jy, Hw corresponding
to a pair (h, W) with h € Hy that minimizes

ér,(h) + (% (Wln(Wm) +In (%)))1/2, (15.4)

over all values of W € N and h € Hy. (Since in (15.4) we can always
restrict our consideration to a finite set of values of W, the quantity to
be minimized takes values in a finite set, and so the minimum always
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exists.) Notice that, if Ly is a sample error minimization algorithm for
Hyw, then a suitable algorithm L¢ is the one which returns the function
Lw(z) corresponding to the value of W for which

ér,(Lw(2)) + (% (W In(Wm) + In (—v};-))) v

is minimized. Here, ¢ € R is a parameter of the algorithm.

Theorem 15.3 There are constants ¢,c; for which the following holds.
Suppose P is a probability distribution on X x {0,1}, and z € Z™ is
chosen according to P™. For the two-layer network learning algorithm
L° described above, with probability at least 1 — § we have

erp(L(2))
< iélvf (hér}}'w erp(h) + (CEI (W In(Wm) + In (%)))Uz,) .

Define H = |Jy, Hw to be the class of functions computed by two-
layer networks with any number of parameters. Then we can think of
the algorithm L as minimizing an expression of the form

(sample error of h) 4+ (complexity penalty for h)

over H, where the complexity penalty involves the number W of param-
eters in the network that computes the function h. This optimization
problem involves an explicit trade-off between the number of parameters
and the sample error. The results of Chapter 5 show that, if we minimize
only the sample error over the class H, we cannot always hope to ob-
tain small error. Theorem 15.3 shows that if we include the complexity
penalty term, we can be confident that we will obtain a function with
small error. Furthermore, this approach is nearly optimal in the sense
that the resulting classification function minimizes the sum of error and
a complexity penalty term.

For the second theorem, let Fy be the class of functions computed
by the two-layer network with bounded output weights as described in
Theorem 15.2, for any positive real number V. Let L° be a learning
algorithm that returns f € |J,, Fv corresponding to a triple (f,V,7)
that has f € Fy and

&l (f)+ (% (VT?lnz(m) In (%) +In (%)))1/2 (15.5)

within 1/m of its infimum over all values of v € (0,1), V € R*, and



222 Model Selection

f € Fy. (We need to consider an algorithm that approximately min-
imizes this error criterion, since we cannot be sure that the minimum
always exists.) Notice that, if Ly is a large margin sample error mini-
mization algorithm for Fy, a suitable L€ is that which returns the func-
tion Ly (z,4) corresponding to the values of V and v for which

st (5 (2wt (2) ()"

is within 1/m of its infimum over all values of v € (0,1] and V € R*.

Theorem 15.4 There are constants c,c, such that the following holds.
Suppose P is a probability distribution on X x {0,1}, and z € Z™ is
chosen according to P™. For the two-layer network learning algorithm
L described above, with probability at least 1 — § we have

erp(L¢(z))

<t (g 00+ (3 (Froom (5) 0 () )

In the same way as for Theorem 15.3, if we define F = |J,, Fv to be
the class of functions computed by two-layer networks with unbounded
parameters, we can think of the algorithm described by Theorem 15.4
as minimizing over F' an expression of the form

(sample error of f) + (complexity penalty for f),

where the complexity penalty involves both the scale parameter v and
the size V of the parameters in the network that computes the function
f. The theorem shows that including the complexity penalty term in the
optimization will probably result in a function that has error no more
than the minimum of the sum of the error er}(f) (with respect to «y)
and a penalty term that depends on the complexity of the network at
scale 7. The quantity erp(f) can be larger than the misclassification
probability erp(sgn(f)) of the thresholded function. This is the cost
incurred by measuring complexity in terms of the size of the parameters
rather than the number of parameters. On the other hand, this result
and Theorem 15.3 are incomparable, since there are situations where
each approach results in a smaller error than the other.

Theorems 15.3 and 15.4 are examples of more general results that
bound the error of algorithms that minimize a sum of sample error and
a complexity penalty term. We shall discuss these more general results
in Section 15.4.
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15.3 Proofs of the Results

The proofs of these theorems use the following lemma, which shows how
to extend a probability statement that is true for any fixed value of a
parameter a € (0, 1] to one that is uniform over all values of a. In the
application to Theorem 15.1 above, for example, a corresponds to the
reciprocal of the complexity parameter W.

Lemma 15.5 Suppose P is a probability distribution and
{E(a1,0a2,0) : 0 < a1,09,8 < 1}
is a set of events such that:

(i) Forall0<a<1land0<d<1,
P(E(a,a,0)) < 4.
(ii) Forall0<a; <a<a;<land0<é <6<1,
E(a;,a3,61) € E(a, ,8).
Then for0< a,0 < 1,

P ( U E(aa,a,6a(l - a))) <4

«€(0,1]

The idea of the proof is to split the interval of values of the parameter o
into a countable collection of intervals that get exponentially smaller as «
gets close to zero, and allocate an exponentially decreasing proportion of
the probability § to these sets. In a sense, we are penalizing small values
of a, since the conditions of the theorem imply that the probability
statements we make get weaker as o gets close to zero. In the application
to Theorems 15.1 and 15.2 above, this implies that we make progressively
weaker statements as the complexity parameters W, V, and 1/ increase.
However, in this case it is not a significant penalty, since it introduces
only an extra logarithmic factor into the error bounds.

Proof We assume, of course, that for all 0 < a < 1 and 0 < § < 1, the
event |J,¢(o,1) E(@a,a,60(1 — a)) is measurable. Then we have

P ( U E(aa,a,déa(l - a)))

a€(0,1}
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P (G {E(aa,a,6a(l —a)):a € (ai+1,ai]})
i=0

< P (U E(a**!,at da*(1 - a)))
i=0
< Z P (E(a**',a",8a'(1 - a)))
=0
< 6(1—-a)2a‘=6.

=0

O

Proof (of Theorem 15.3) We combine the first inequality of Theo-
rem 15.1 with Lemma 15.5, taking E(ay,az,d) to be the set of z € Z™
for which some h in Hw, has

erp(h) > ér,(h) + (c—1 (Wylnm + ln(l/J)))l/ ?

where W, = |1/a1) and W, = {1/a3]. (In this proof, we do not take the
trouble to evaluate any universal constants, but it is clear that suitable
constants can be found.) Lemma 15.5 implies (on taking a = 1/2, say)
that, with probability at least 1 — 4, every h € |Jy, Hw satisfies

erp(h) < ér,(h) + ( (W In(Wm) +In (?)))1/2 ,

for some constant ¢, where W is the smallest value for which h € Hw.
In particular, if L°(z) € Hw, we have

erp(L(2)) < € (L°(2)) + (;% (Wln(Wm) +In (—véz)))l/z

< én(h)+ ( (W‘ In(W*m) + I (”‘;)))1(/1256)

for any W* and h* € Hw., from the definition of the algorithm L°.
Now, let W* and h* € Hw» be such that

erp(h*)+( (W‘ln(W"m)+1n (u;*)))lﬁ-'_ (%ln(%))l/z

is within 1/m of its infimum over all W and h € Hw. Then combin-
ing (15.6) with the second inequality of Theorem 15.1 shows that
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erp(L(2))

< ivr‘nlf ( mf erp(h) + ( (Wln(Wm) +1In (v:)))l/z) .

O

The proof of Theorem 15.4 is similar, except that Lemma 15.5 is
applied twice. For the first application, we fix v and define (a1, as,4d)
to be the set of z € Z™ for which some f in Fy, has

erp(f)>er"(f)+( (V2 In?(m)In (‘;)+1 (;)))1/2,

where V} = 1/a; and V, = 1/a,. For the second application, we define
E(0y,az,8) to be the set of 2 € Z™ for which some V and some f in
Fy satisfy

w00+ (3 (oo () ()

where 71, = a; and 12 = axs.

15.4 Remarks

The model selection methods described in this chapter are similar to a
number of techniques that are commonly used by neural network prac-
titioners. The learning algorithm L°, described in Theorem 15.4, that
approximately minimizes the quantity (15.5), is qualitatively similar to
a popular technique known as weight decay. In this technique, the cost
function (typically, total squared error on the training data) is aug-
mented with a penalty term involving the sum of the squares of the
parameters, and gradient descent is used to locally minimize this penal-
ized cost function. In the same way, (15.5) is a combination of a sample
error term and a penalty term that increases as the size of the weights
increase. ‘Early stopping’ is a related approach. Here, the gradient de-
scent procedure is initialized near the origin of parameter space, and
stopped after only a small number of steps have been taken. In this
case, the final parameters are guaranteed to be small.

It is clear that the proof of the first main result of this chapter (The-
orem 15.3) extends to give a similar result for any indexed family of
function classes {H; : t € N} that have increasing VC-dimension. In
this case, the penalty term involves the VC-dimension of the class con-
taining the function. Similarly, Theorem 15.4 extends to give a similar
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result for any indexed family of function classes {F; : t € R*} with in-
creasing fat-shattering dimension, and the corresponding penalty term
involves the fat-shattering dimension. One interpretation of these results
is that in balancing the performance of a function on the sample and
the complexity of the function, we should aim to minimize a combina-
tion of the error on the training data and the number of bits needed to
accurately describe the function’s behaviour on the training data (that
is, the logarithm of the growth function, or the logarithm of the appro-
priate covering number.) This is similar to the philosophy behind the
minimum description length principle, a model selection technique that
advocates choosing a function providing the shortest description of the
labels of the training points. Here, the length of the description is the
total number of bits needed to specify both the identity of the function
and the identity of the points on which it errs.

It is possible to derive slightly different versions of these results using
the relative uniform convergence results of Theorems 5.7 and 13.7. These
lead to error bounds of the form

erp(L°(2)) < crinf (,,é‘},fw erp(h) + % (W (Wm) +In (_V;_’_)))

and

erp(L%(2))

2
< q 1‘;’15 (fieanv erp(f) + % (%lnz(m) In (%) +In (;—,6-)))

for the two neural network classes considered here. (Of course, more
general results are possible for indexed families of function classes with
increasing VC-dimension or fat-shattering dimension.) These results
have the attractive property that if some function in one of the classes
has zero error, then the error of the algorithm’s hypothesis approaches
zero at essentially the optimal rate (see, for instance, Section 5.3). That
is, for every algorithm, the estimation error could not decrease signifi-
cantly faster, even if we knew in advance which function class contained
the target function. This property of an algorithm is known as ‘adaptiv-
ity’: the algorithm automatically adapts to the complexity of the target
function.

Although the rate of convergence of these methods is nearly optimal,
they suffer from the drawback that they are based on upper bounds on
error. While the upper bounds are tight in general (that is, there are
probability distributions that illustrate that they cannot be improved), if
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those upper bounds are loose for a particular problem, and in particular
if the complexity that minimizes the upper bound does not correspond
to that which minimizes the error, then these methods may not give
optimal results.

15.5 Bibliographical Notes

A general result of the form of Theorem 15.3 was given by Vapnik
(1982), who named the approach structural risk minimization. Similar
results, for a sequence of classes of bounded VC-dimension, have been
presented by a number of authors, including Linial, Mansour and Rivest
(1991), Lugosi (1995), Lugosi and Zeger (1996), and Shawe-Taylor et al.
(1996; 1998). Related results are given by Farag6 and Lugosi (1993) for
linear threshold networks, and by Krzyzak et al. (1996) for radial basis
function networks. Barron (1991) (see also (Barron, 1994)) has inves-
tigated the more general notion of complezity regularization, and gave
general results of the flavour of Theorems 15.3. These ideas have been
applied in a neural network context by Lugosi and Zeger (1996).

A large number of related model selection methods have been pro-
posed. Rissanen’s minimum description length (Rissanen, 1978) (see
also (Rissanen, 1986; Rissanen, 1989)), Wallace’s minimum message
length (Wallace and Boulton, 1968), and Akaike’s information criterion
(Akaike, 1974) are some of the better known. Kearns, Mansour, Ng and
Ron (1997) give a critique of a number of these methods, as well as of
structural risk minimization.

The approach formalized in Lemma 15.5 is known as the method of
sieves; see (Grenander, 1981). That lemma, as well as Theorem 15.4,
appeared in (Bartlett, 1998).

Heuristic techniques that aim to keep the weights of a neural network
small during training, such as weight decay, are described in (Hertz
et al., 1991).
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16

Learning Classes of Real Functions

16.1 Introduction

This part of the book examines supervised learning problems in which
we require a learning system to model the relationship between a pattern
and a real-valued quantity. For example, in using a neural network to
predict the future price of shares on the stock exchange, or to estimate
the probability that a particular patient will experience problems during
a surgical procedure, the predictions are represented by the real-valued
output of the network.

In the pattern classification problems studied in Parts 1 and 2, the
(z,y) pairs are generated by a probability distribution on the product
space X x {0,1}. In a similar way, we assume in this part of the book
that the data is generated by a probability distribution P on X x R.
This is a generalization of the pattern classification model, and includes
a number of other data-generating processes as special cases. For ex-
ample, it can model a deterministic relationship between patterns and
their labels, where each (z,y) pair satisfies y = f(z) for some function
f. It can model a deterministic relationship with additive independent
observation noise, where y; = f(z;) + #;, and the 7; are independent
and identically distributed random variables. It can also model a noisy
relationship in which the observation noise variables n; are mutually
independent, but the distribution of #; depends on the pattern z;.

In the pattern classification problem, we aim to find a function f that
has Pr(f(z) # y) nearly minimal over a certain class of functions. When
f(z) and y are real-valued, this aim is typically too ambitious. Instead,
it is more appropriate to take account of ‘how far’ f(z) is from y and
not simply whether or not it equals y. To measure how accurately f(z)
approximates y, we use the quadratic loss: the aim is to find a function
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J for which the expected quadratic loss, E(f(z) —y)?2, is nearly minimal
over some function class. This is called the real prediction problem.

Many other choices of loss function are possible (and we examine
some of these in Chapter 21), but quadratic loss has several desirable
properties. In particular, for random (z,y) € X x R, it is easy to show
that

E(f(z) - y)* = E(E(@ylo) - f(2))’ + E(E(ylz) -9)°,  (16.1)

which implies that choosing a function f to minimize quadratic loss is
equivalent to finding the best approximation of the conditional expecta-~
tion of y given x.

Since quadratic loss is not bounded, we need to make some additional
assumptions about the probability distribution P that generates the
(z,y) pairs. To see why this is necessary, consider a distribution P that
allocates a small probability (say, a) to some pair (zo,%0), Where the
magnitude of yo is large. Then unless a learning algorithm sees the
pair (Zo, yo) (and this can be made arbitrarily unlikely), we cannot hope
that it will choose a function that gives a near-optimal prediction for the
point zg. Even though the probability of this point is small, the cost of
an inaccurate prediction can be arbitrarily large. To avoid this difficulty,
we assume that the random variable y falls in a bounded interval. This
assumption is quite natural if y represents a physical quantity. We shall
insist, however, that a learning algorithm can cope with any bound on
the length of the interval. One reason for this requirement is that the
range of y values may not be known in advance.

It is easy to construct a similar example to that above, showing that
we also need some boundedness assumption on the real-valued functions
used by a learning algorithm. Consequently, we assume that these func-
tions map to a bounded interval. We concentrate on functions computed
by a variety of neural networks, typically with a bounded activation
function at the output or a bound on the magnitudes of the output
parameters, so this constraint is not too restrictive.

16.2 The Learning Framework for Real Estimation

In the real prediction problem, we assume that training examples are
generated at random according to some probability distribution on the
set X x R. We define the error of a function f : X = R with respect
to P to be the expected value of (f(z) — y)?, where the expectation is
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taken with respect to z = (z,y) drawn according to P. We write this as

erp(f) = E(f(z) - y)’ = E¢y,

where the loss function £; : X x R = R* is given by £s(z,y) = (f(z) —
y)?. Of course, if P is concentrated on X x {0,1} and if f maps to
{0,1} then the present definition of error coincides with that introduced
in Chapter 2. We shall assume that the range of the functions in F is
the bounded interval [0, 1}, and that P is such that y falls in a bounded
interval, so that there is a bound B > 1 for which (§ — y)? < B? for all
¥ € [0,1). That is, P is such that 1 — B < y < B with probability 1.
Obviously, the particular intervals chosen are not crucial, since we can
transform the problem by shifting and rescaling the functions and the y
values.

A learning algorithm in the present context will take as input some
sample z € (X x R)™ and return some function in F. In learning a real
function class, the aim is to produce, with high probability, a function
whose error is close to the optimal error, optp(F) = infscperp(f). We
formalize this as follows.

Definition 16.1 Suppose that F is a set of functions mapping from a
domain X into the real interval [0,1]. A learning algorithm L for F is
a function

o0
L: | JXxR™ > H
m=1
with the following property:
e given any ¢ € (0,1),

e given any 6 € (0,1),
e givenany B> 1,

there is an integer mo(e, 8, B) such that if m > mo(e, 6, B) then,
e for any probability distribution P on X x [1 — B, B],

if z is a training sample of length m, drawn randomly according to the
product probability distribution P™, then, with probability at least 1 -4,
the function L(z) output by L is such that

erp(L(2)) < optp(F) + ¢

where
optp(F) = }gt;‘erp(f).
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That is, for m > my(e, 8, B),
P™ {erp(L(z)) < optp(F) + €} >1-4.
We say that F is learnable if there is a learning algorithm for F'.

The sample complezity of a learning algorithm for F is defined in the
obvious manner: for each ¢, 4, and B, m(e, 4, B) is the least possible
value mq(e, 6, B) can take in Definition 16.1. It is easy to see that L is
a learning algorithm if and only if there is a function er(m,é, B) such
that, for all 6 € (0,1) and B > 1, €,(m, 4, B) = 0 as m — oo, and such
that for all m, §, B, and P, with probability at least 1 —  over z € Z™
chosen according to P™,

erp(L(2)) < optp(H) + €L(m,d, B).

In this case, the least possible ez(m,d, B) is the estimation error of
the algorithm L. It is, as in the previous two learning models, a sim-
ple matter to interchange between estimation error bounds and sample
complexity bounds.

We shall find it convenient to ignore the dependence on B in the sam-
ple complexity and estimation error bounds. In proving upper bounds
on sample complexity in this and later chapters, we assume that B =1,
define Z = X x [0,1], and assume that the support of the probability
distribution is a subset of Z. Hence, the loss function £{; maps from
Z to [0,1). This simplifies the statements and proofs of the results.
Also in the interests of conciseness, we define mp(e,d) as mg(e,é,1),
and similarly for €7. It is always straightforward to extend these proofs
to arbitrary B > 1, without changing any of the algorithms. We shall
indicate these extensions in the “Remarks” sections.

16.3 Learning Finite Classes of Real Functions
SEM algorithms learn finite classes

As with earlier learning problems, the ‘empirical’ error (sample error) of
a function on the training sample is useful as an indication of its error.
Given a function f € F and sample z = ((z1,41), (Z2,¥2),- -+ » (Tm>Ym))
in Z™, we define the sample error ér,(f) of f on z to be /

&f) = 2 3 (F@) - 3™

i=1
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With this definition of sample error, we can define a sample error min-
imization (SEM) algorithm for a finite class F' to be a function L from
Z™ to F with the property that

ér,(L(2)) = l}éigér,(f).

Theorem 16.2 Let F be a finite class of functions mapping from a set
X into the interval [0,1] and suppose that L is a SEM algorithm for F.
Then L is a learning algorithm for F, whose estimation error satisfies

wmd) < atmd=(Zm(2))"

Proof Suppose € = €o(m,d). By Hoeffding’s inequality, for any fixed

fEF,
™ {jée.() - erp(£)] 2 £}
= P"‘{ ie,(zi) -mEl| > %}
< 2e"2'"i/=2f

Hence

P™{3f € F, |er.(f) - erp(f)] 2 5 } < 21Fle™™/2,
which is 8, since € = €o(¢, §). Denote by f* any function in F for which
erp(f*) = optp(F) = mlgerp(F)

(Note that such an f* exists, since F is finite.) Then, with probability
at least 1 -4,

erp(L(z) < €n(L(2)) +3

< ef)+3
(ortr)+5) +5
= optp(F)+e.

A
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An application to neural networks

As a straightforward application of Theorem 16.2, we have the following
learnability result for neural networks in which we restrict the allowable
states to be those in which the weights and thresholds are expressible
as a sequence of k binary digits. (We assume that for each weight and
threshold, one of the k bits indicates whether the weight or threshold
value is positive or negative.)

Theorem 16.3 Suppose that N is a neural network with arbitrary ac-
tivation functions and an output that takes values in [0,1). Let F be
the set of functions computable by N when each weight and threshold is
represented using k bits. Then any SEM algorithm for F is a learning
algorithm for F and the sample complezity of any such algorithm L is
bounded as follows:

2 2
mp(e,0) < ) (len2+ln (3>) ,
where W is the total number of adjustable weights and thresholds.

Proof We need only note that since there are 2% numbers expressible in
the given form, the total number of possible states—that is, assignments
of weights and thresholds—is (2%)% since there are 2% possibilities for
each weight and threshold. Therefore, F is finite and |F| < 2¥W. The
result follows immediately from Theorem 16.2. 0

16.4 A Substitute for Finiteness

When we studied classification by real function classes, we found it useful
to use covering numbers, and to bound these using the fat-shattering
dimengion and pseudo-dimension. We shall carry out a similar analysis
for the present framework in the next two chapters, but first we present
a slightly less sophisticated way of extending to some infinite classes
the type of analysis we have just carried out for finite function classes.
This approach will, in a sense, be superseded by results in the next
few chapters, but is worth pursuing at this stage since it enables us to
introduce the notion of an approzimate-SEM algorithm.

Suppose that F is some set of functions mapping from a domain X
into the interval [0, 1]. Recall from Chapter 14 that the L., metric dr__
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on F is given by

dr. (f,9) = sup | f(z) — g(z)I,
z€X

for f,g € F. We can obtain a result similar to Theorem 16.2, for function
classes that are not necessarily finite but that are totally bounded with
respect to the Lo, metric. In this result, the learning algorithm makes
use of what we shall call an approzimate-SEM algorithm. Although
total boundedness with respect to the Lo, metric is a rather stringent
condition, we shall nevertheless find approximate-SEM algorithms useful
for real prediction when the function classes satisfy weaker conditions.

Definition 16.4 An approximate-SEM algorithm A for o function class
F takes as input a sample z in (J;o_, (X x R)™ and an error bound €
in R*, and returns a function in F such that

ér, (A(z,€)) < figfpe‘rz(f) +e
for all z and all e.

Note that, since F may be infinite, then, unlike the error measure used
in Part 1 of the book, the set of values of ér,(f), as f ranges through
F, may be infinite. Thus, we use infscF €r;(f) above, since there may
be no minimum value of ér,(f). For example, consider the class

1
F—{mn—)w.wek}

of functions defined on R, and suppose that the training data z satisfies
z; > 0 and y; = 1 for all 5. Then infscr ér.(f) = 0, since

. 1
u}}-{noo 14 e-wei =i
for all ¢, but every f € F has ér,(f) > 0.
The next theorem shows that if F' has finite covering numbers with

respect to the Lo, metric, then any approximate-SEM algorithm for F
can be used to construct a learning algorithm.

Theorem 16.5 Suppose that F is a class of functions mapping to the
interval [0, 1] that is totally bounded with respect to dr.,. Suppose that
A is an approzimate-SEM algorithm for F and let L satisfy L(z) =
A(z,€0/12) for z € Z™, where ¢¢ = \/72/m. Then L is a learning
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algorithm for F and

m(e,8) < mo(e,8) = 1 (2N kﬂ%ﬂm)) _

Proof Suppose that m > myg(e,8), and that z € Z™. Then, since
72/m, and m > mo(c,8) > 72/€%, we have € < €. It follows that

N A P €0 _ . oo €
ér, (L(2)) = ér; (A(z,€0/12)) < flggerz(f) +35 < }ngerz(f) + 33

(Note that, since € is not given as part of the input to the learning
algorithm, we cannot simply ask that the algorithm returns a hypothesis
with sample error within /12 of optimal. Instead, we use €p, determined
from the length m of the sample, and which turns out to be no more
than e provided m > mg(e, 8). This idea will be useful in later chapters.)

We now note that if f,g € F are such that dy_(f,g) <.a < 1, then
for any probability distribution P on Z = X x [0, 1],

lerp(f) —erp(9)] < 2¢.
To prove this, we first observe that for any = € X,
(f@) -y = (f@) - 9(@) +9(=) -y’
(f() - 9(=))(f(2) + g(z) - 2y) + (9(z) - v)?
2a + (g(z) - y)?, (16.2)
where we have used the fact that |f(z) — g(z)| < a. Therefore,

erp(f) = E(f(z) —y)® <E (2a + (9(z) - y)?) = 22+ erp(g),

and since the same argument can be repeated with f and g interchanged,
lerp(f) — erp(g)] < 2a. Since P is arbitrary, we also have |ér,(f) —
ér;(9)] < 2a for all z.

For € > 0, let C./12 be some fixed ¢/12-cover for F' with respect to
dr.,, of cardinality AV'(e/12, F, de) Now, for any function f € F there
isfe C./12 such that di (f, f) < €¢/12 and so0

lerp(f) — erp(f)| < '6 (16.3)

IN

and
lées(f) - ér(f)l < & (16.4)
for all z. Let P be any distribution on Z and let f* be such that
erp(f*) < optp(F) + 15
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Denote by f* a function in C, /12 such that

A (f*, f*) < %

From the proof of Theorem 16.2, since m > my(e, §), we have that with
probability at least 1 — 4§, for all g € C, /12,

lér.(9) —erp(9)| < -5 1 (16.5)

2

For convenience, we denote L(2) by f,. Choose f, € C, /12 such that

dr (fz, f-) < €/12. Then the following chain of inequalities holds with
probability at least 1 — §:

erp(L(2)) = erp(f;)
< S+erp(f,) by (16.3)

6
< -;— + (érz(fz) + i) by (16.5)
< i’; (er,(fz) + ) by (16.4)
< f2 (mf ér.(f) + )
< 5 + ér.(f*)

< §+ (ér,( )+ %) by (16.4)
< 335+ (erp(f*) + i) by (16.5)

< Xy (err+ ) byasy)
< 1112 + (optP(F) + 1—2-)
= optp(F) +e.

The result follows. O

16.5 Remarks

It is trivial to extend Theorem 16.2 to the case of an arbitrary bound B
on | f(z)—y|; the bound on the random variables in Hoeffding’s inequality
is increased by a factor of B2, which gives

4 1/2
er(m,6,B) < (gl (2[5")) .
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Similarly, we can extend Theorem 16.5 to this case. Here, Inequal-
ity (16.2) relating (f(z) — y)* to (9(z) — y)? when |f(z) — 9(z)| < a
becomes

(f(z) = 9)* < 2Ba + (g(z) - v)*.

Hence, as well as changing the constants in Hoeffding’s inequality, we
need to adjust the scale of the cover, which gives

mu(e,6,B) < 2P In (2N(€/(12B)’F’4Lw)) .

€2 é

Learning with respect to a touchstone class

We mentioned in Chapter 2 that the learning model of binary classi-
fication may be weakened by asking only that the algorithm return a
function with error close to the optimal error in a ‘touchstone class’.
The same modification may be made for real prediction. Explicitly,
given the touchstone class T of real functions, we may modify Defini-
tion 16.1 by allowing the algorithm to return a function in a larger set
F O T, and requiring only that, with high probability,

erp(L(z)) < optp(T) + e = firengerp(f) +e.

Allowing an algorithm to choose a function from the larger set F in this
way can make learning computationally easier. Furthermore, it can pro-
vide a significant reduction in the sample complexity, compared to learn-
ing the class T in the usual sense. Chapter 20 gives an example of this
kind: if the function class T is finite, and F is the set of convex combina-
tions of functions from T', the estimation error erp(L(2)) —inf e erp(f)
of an approximate-SEM algorithm L decreases more quickly as a function
of m than the estimation error of any learning algorithm that returns
functions from T'.

16.6 Bibliographical Notes

The model presented in this chapter is a special case of models that
have been proposed by Vapnik (1982) and Haussler (1992). We shall
encounter these more general models in Chapter 21.

Theorem 16.5 is an easy extension of Theorem 16.2. This result can
be improved, to give a better convergence rate (Barron, 1994; McCaffrey
and Gallant, 1994). In Chapter 20, we shall prove a result that implies
this better result (Theorem 20.10).
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Uniform Convergence Results for Real
Function Classes

17.1 Uniform Convergence for Real Functions

In Chapter 19, we shall show that in many cases an approximate-SEM
algorithm constitutes a learning algorithm. As in the development of
the earlier learning models, we first derive a uniform convergence result
for classes of real-valued functions. The following result and its proof
are similar to those of Theorems 4.3 and 10.1.

Theorem 17.1 Suppose that F is a set of functions defined on a domain
X and mapping into the real interval [0,1). Let P be any probability
distribution on Z = X x [0,1], € any real number between 0 and 1, and
m any positive integer. Then

P™ {some f in F has |erp(f) — ér,(f)| > €}
< 4N (¢/16, F,2m)exp (—€*m/32) .

Notice how this compares with Theorem 4.3: that bound involves the
growth function, whereas this involves the covering number. As we have
seen, the notion of error used here reduces to that of Chapter 4 when the
functions are {0, 1}-valued, and the covering number is a generalization
of the growth function, so in a sense this result is a generalization of
Theorem 4.3. Theorem 17.1 is also similar to Theorem 10.1, although
(as noted in Chapter 10) that result is one-sided. (Another difference
is that the present bound involves d; covering numbers rather than the
larger do, covering numbers.)

The proof of Theorem 17.1 uses the same key techniques as the proofs
of Theorems 4.3 and Theorem 10.1, namely symmetrization, permuta-
tion, and reduction to a finite class.

241



242 Uniform Convergence Results for Real Function Classes

Symmeltrization

Lemma 17.2 With the notation as above, let
Q={2€2Z™:s0me f in F has |erp(f) — ér.(f)| > €}
and
R= {(r,s) €Z™ x Z™ : some f in F has |6r,(f) — €rs(f)| > %}
Then, for m > 4/€%, P™(Q) < 2 P*™(R).
Proof The proof is similar to the proofs of Lemmas 4.4 and 10.2.

If some f in F satisfies lerp(f) — €r.(f)| > € and |erp(f) — €r,(f)| <
€/2, then it also satisfies |ér,.(f) — €r5(f)] > €/2, so

P2™(R) > P> {3f ¢ F:lerp(f) - érr(f)] > € and
lerp(f) — érs(f)] < €/2}
[P a:37 € P ferp(g) - (1) 2 € nd
lerp(f) — érs(f)| < €/2} dP™(r). (17.1)
Hoeffding’s inequality shows that
P™{lerp(f) — érs(f)l < €/2} 2 1/2

for all f € F, provided that m > 4/€2, and this, together with (17.1),
shows that P?™(R) > P™(Q)/2. O

i

Permutation and reduction to a finite class

Recall that T, is the set of permutations on {1,2,...,2m} that switch
elements i and m +1, for ¢ in some subset of {1,...,m}. By Lemma 4.5,

P>™(R) =EPr(cz € R) < max Pr(cz € R),
z m

where the expectation is over z in Z2™ chosen according to P?>™, and the
probability is over permutations ¢ chosen uniformly in I'y,. To bound
this latter probability, we again use the notion of covering numbers.
We first require two technical results concerning the covering numbers
of £ and of F. The first concerns covers of (lp)l', and is the key to
the reduction to a finite class. The second shows how a bound on the
cardinality of such covers can be given in terms of the covering numbers
of the class F itself.
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Lemma 17.3 Suppose that F is a set of functions mapping from a set X
into [0,1], and for f € F let £y : Z — [0, 1] be given by £s(x,y) = (f(z)-
y)2. Denote by Cr the collection {£s : f € F}. Let z € Z>™ and suppose
that (£g)|, is an €/8-cover with respect to dy for (£F),,, where G C F.
Definer = (r1,...,7m) € Z™ and s = (81,...,8m) € Z™ so that z =
(r1,--+sTms81,...,8m). Then, if f € F satisfies |ér.(f) — ér,(f)| > &,
there is some g € G such that |ér,(g) — €r5(g)| > .

Proof Fix z = (r1,...,Tm,81,---,8m) = (r,8) € Z?™. Suppose that
f € F satisfies

lére(f) - ra(P 2 5
and let ¢ € G be such that

2m

5 1) — ()] < 5.

f=1

Then
Iérr (g) — €r,(9)|

1 m 1 2m
Ezeg(zi)—; Z £y(2:)
=1

i=m+1
= % ; (€g(2i) = £5(24))

2m
3t~ by () + () —ére(f)l

i=m+1

2 lére(f) — e (f)
m 2m
P SCERUGIE IR
> [6e(f) = (Nl = = D lty(ai) — (a0
i=1
> €/4.

O

Lemma 17.4 For all positive integers m, for all positive numbers ¢, and
forallze Z™, N(G, (eF)|,yd1) < M (6/2,F,m).
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Proof Fix z = ((z1,%1),(22,¥2),--.,(ZTm,¥m)) and f,g € F. Then the
dy-distance between the vectors £y = (£s(21),...,€¢(2m)) and 4| is

SN ORIA

f=1

= % Z |(F(z:) — v3)® = (g9(z:) — w:)?|

i=1

= % S 1(f (@) - g(@a))(F(:) + g(z:) — 23|

f=1
IR

where we have used the fact that, since f and g map into [0,1] and
yi € [0,1), | f(z:) + g(z;) — 2y;] < 2. It follows that, given any €/2-cover
for Fj,, there is an e-cover for (€r),,, of the same cardinality. The result
follows. O

We now use these results to bound max,cz2m Pr(oz € R).

Lemma 17.5 For the set R C Z?™ defined in Lemma 17.2, and for a
permutation o chosen uniformly at random from L'y,

—e2m
Jnax Pr(cz € R) < 2V (¢/16, F,2m)exp (—37-) )

Proof Suppose that z € Z2™, where z; = (zi,;), and let T be a minimal
¢/8-cover for (lp)h with respect to the d; metric. Lemma 17.4 shows
that

ITI = N(e/s) (zF)l,’dl) S Nl (é/161Fa 2m);

Pick G C F such that T = ({g)), and |G| = |T|. Lemma 17.3 shows
that if 0z = rs € R then there is some f € G such that

ée(f) —ér,(f)l > ¢/4.

Thus,
Pr(cz € R)
. 1 e
< Pr <3f €G: |~ ; (ef(za(i)) - ef'(zcr(m+i))) > 6/4>
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1 m

< T If!l:gPr ( ~ ; (ef(za(i)) - ef(za(m+i))) > e/4)
1 m

= |T| xFeaécPr ( - ; |£f-(z,') - lf(zm+i)' Bil > 6/4) ,

where each g; is independently and uniformly drawn from {-1,1}. By
Hoeffding’s inequality, the probability in the last line is no more than
2 exp(—€*m/32), which implies the result. O

Theorem 17.1 now follows. It is trivially true for m < 4/€?, because
the right-hand side of the bound is greater than 1 in that case. For
m > 4/€, we have

P™(Q) < 2P*™(R) < 4/, (¢/16, F,2m)e=<"™/32,

as required.

17.2 Remarks

The results in this chapter do not depend significantly on the choice
of the quadratic loss function. In particular, except in the proof of
Lemma. 17.4, boundedness was the only property of this function that we
used. An examination of the proof of that lemma reveals that we only use
the fact that the loss function £(f(z),y) varies slowly when the function
value f(z) varies. Indeed, it is easy to prove the following generalization
of Lemma, 17.4, which requires that the loss function satisfies a Lipschitz
condition. (To see that it is a generalization, notice that the quadratic
loss function satisfies this condition with L = 2 when the ranges of the
functions and of y are restricted to the interval [0, 1}.)

Lemma 17.6 Let Y be a real interval and B > 1, and suppose that the
loss function £ : [0,1] x Y — [0, B] satisfies the Lipschitz condition,

[€(y1,90) — £(y2,0)| < Liyr — y2l

Jor all yo,y1,y2. Define s(z,y) = £(f(z),y). Then for a class F of
[0, 1])-valued functions,

ze(I)I(l?(J}(’)m N(€,£F|,,d1) < Nl (e/L,F,m).

This implies the following generalization of Theorem 17.1. Its proof
is essentially identical to that of Theorem 17.1, except that we need
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to take account of the changed bound on the loss function in applying
Hoeffding’s inequality.

Theorem 17.7 Suppose that F is a set of functions defined on a domain
X and mapping into the real interval [0,1], Y C R, and B > 1. Let
P be any probability distribution on Z = X x Y, € any real number
between 0 and 1, and m any positive integer. Then for a loss function
£:[0,1] x Y — [0, B] satisfying the Lipschitz condition of Lemma 17.6,

)

< 4N (¢/(8L), F,2m)exp (—e*m/(32B*)) .

Notice that if £ is the quadratic loss and Y is such that £ maps to [0, B],
the Lipschitz condition is satisfied with L = 2B.

1 m
El; — - ZZf(z,-)

i=1

p™ {some f in F has

17.3 Bibliographical Notes

The techniques of this chapter go back to Vapnik and Chervonenkis
(1971), and Pollard (1984) (see also (Haussler, 1992)). Lemma 17.6 is
due to Natarajan (1993) (see also (Bartlett, Long and Williamson, 1996;
Vidyasagar, 1997)).
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Bounding Covering Numbers

18.1 Introduction

We have seen that, for the real prediction model of learning considered
in this part of the book, the d;-covering numbers are crucial. These cov-
ering numbers are always bounded above by the de.-covering numbers,
the main object of study in Chapter 12, so the upper bounds for the
deo-covering numbers obtained in that chapter are also upper bounds
on the dj-covering numbers. However, it is possible to obtain better
bounds on the d,-covering numbers using more direct arguments. As in
Chapter 12, we present two bounds, one in terms of the fat-shattering
dimension, and one in terms of the pseudo-dimension.

18.2 Bounding with the Fat-Shattering Dimension

This section gives a bound on the d;-packing numbers in terms of the fat-
shattering dimension. This bound, presented in the following theorem,
uses a similar proof to that of Theorem 12.7, so some parts of the proof
are only sketched.

Theorem 18.1 Suppose that F is a set of real functions from a domain
X to the bounded interval [0,1) and that 0 < ¢ < 1. Then

M; (¢, F,m) < 2p3(Mog2v1+1)
where b = |4/e] and, with d = fatr (¢/8) > 1,
=3.(7)r
=\ .
We therefore obtain the following bound on the covering numbers.

247
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Theorem 18.2 Let F be a set of real functions from a domain X to the
bounded interval [0,1]. Let 0 < € < 1 and let d = fatp (¢/8). Then for
m>d>1,

4 3dlogy(16em/(de))
M (e, F,m) <2 (E) .

Proof By Theorem 18.1 and the relationship between covering and pack-
ing numbers,

4 3(togg y1+1)
Mo (o Fym) < M (e o) <2 () .
By Theorem 3.7, form >d > 1,
d i d
m\ (4 em\9 (4
< z bl z
<2 (D) () <)

and hence

dem 16em
[log, y] + 1 < dlog, (Tde—) +2 < dlog, ( = ) .

The result follows. O

Proof of Theorem 18.1

As in the proof of Theorem 12.7, we first relate the packing number
and dimension of F to the quantized version Q,(F), for appropriate a.

(Recall that Qo (F) = {Qa(f) : f € F}, where Qo(f)(z) = alf(z)/a].)
Fixe, m,0< a <e¢ and z = (z1,...,2,) € X™. Consider f,g € F,
and let f|, denote (f(z1),...,f(zm)). Then, using the fact that

|Qa(a) — Qa ()| > Qalla ~ b))
for all a,b € R (see the proof of Lemma 12.3), we have

& (N Qele))) 2 = Qallf(@:) -~ g(z0)

i=1
> =3 1f@) - o(z)] —a
i=1

= di(fi..9.) -
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Hence, given any e-separated subset of Fj_, there is an (e — a)-separated
subset of Q(F). It follows that

Ml (eiF’m) S Ml (6 -a, Qa(F)’m)'
The proof of Theorem 12.7 also showed that
fatq, () (¢) < fatp (e — a/2)

for a < 2¢ (see (12.4)).
Now, let H denote Q./4(F), and let d = fatq, () (¢/4). The following
lemma shows that

M(3¢/4, H,dy) < 2p3([l0g231+1)

where b = |4/¢] and y is as defined in the lemma. This implies Theo-
rem 18.1.

Lemma 18.3 Let Y = {0,1,...,b} with b > 3, and suppose that | X| =
m and H CYX has faty (1) =d > 1. Then

M(3,H,dy) < 2b3([ogav1+1)

d /m\
y= ()b
=1 v

Proof By analogy with the proof of Theorem 12.7,for k >2and m > 1,
define ¢, (k,m) as

with

min { |{(A4,7) : G 1-shatters A C X, witnessed by r: A=Y, A#0}|:
|IX|=m,GCYX,|G|=k, and G is 3-separated} ,

or take t;(k,m) to be infinite if the minimum is over the empty set.
Here, ‘3-separated’ means with respect to d;, and we regard d; as a
metric on YX by defining di(f, ) = (1/m) ¥, x | F(2) — g(z).

By the same argument as in the proof of Lemma 12.9, it suffices to
show that

t (2b3(r1°82 ﬂ+1),m) >y
for all d > 1 and m > 1. Also as in the proof of Lemma 12.9, we shall

demonstrate this by proving a lower bound on ¢ using induction.
Choose a set G of 2b3([98291+1) pajrwise 3-separated functions, and
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split G arbitrarily into k/2 pairs. Consider any pair (g;,g2) and let
I < m be the number of points z for which |g;(z) — g2(z)| > 2. Then

32 dilone) = 2 3 01@) - @) < = (b1 +2(m 1),
z€X
from which we obtain I > m/b. (Note that b > 2.) It follows that there
are kl/2 > km/(2b) triples (g1, g2, ) with |g1(z) — g2(z)| > 2. By the
pigeonhole principle there is some z9 € X such that for more than k/(2b)
of the pairs (g1, 92), we have |g1(zo) — g2(xo)] > 2. By the pigeonhole
principle again, there are ,j € Y with j > ¢ + 2 such that for at least

Bk

2((5)-v) " ¥
of these pairs, we have {g1(2o), 92(z0)} = {i,7}. If welet G, denote these
functions with g(zo) = ¢ and G, denote the functions with g(zo) = j, it
is easy to see that, for any g,¢' € Gy,

1 , 3m
3 Y ls@) -g'@) > —>3
z€X —{zo}
and a similar statement is true for G;. It follows that G has two subsets,
each of size at least k/b%, and each 3-separated on X — {z¢}. Thus,

ta(k,m) > 2t (lb—kiJ ,m—l).

An easy inductive proof, using the fact that ¢,(2,m) > 1 for all m,
together with the observation that m > [log, y] (obtained in a manner
similar to the corresponding observation in the proof of Theorem 12.7),
yields

completing the proof. O

18.3 Bounding with the Pseudo-Dimension

Since the fat-shattering dimension is always no more than the pseudo-
dimension, if a function class F' has finite pseudo-dimension, then Theo-
rem 18.2 trivially yields an upper bound on covering numbers in terms of
the pseudo-dimension. However, for classes of finite pseudo-dimension,
a quite different bound can be obtained.
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Theorem 18.4- Let F be a nonempty set of real functions mapping
from a domain X into the real interval [0,1] and suppose that F has
finite pseudo-dimension d. Then

d
Ni (e, F,m) < My (e, F,m) < e(d + 1) (2‘3)

€
Jor all e > 0.

We omit the proof of this theorem, but prove the slightly weaker result,

My (e, F,m) < 2 (2?61“ (i—e))d (18.1)

The result is obtained as a corollary of a more general result on packing
numbers of F. For a probability distribution P on X, we define the
pseudo-metric dz,(p) on the function class F by

dr,(p)(f,9) = E(|f(2) — g(2)]) = /If(x) — g(z)| dP.

The packing numbers of F' with respect to dr,(p) are then denoted
M(e, F,dr,(p)). We shall prove the following result.

Theorem 18.5 Let F be a nonempty set of real functions mapping
from a domain X into the real interval [0,1), and suppose F has finite
pseudo-dimension d. Then

2e ge\ )¢
M(e,F,dLl(p))<2 :—ln -

for any probability distribution P on X, and for all0 < e <1.

To obtain Inequality (18.1), we can simply note that if z € X™ and
if we take P, to be the distribution that is uniform on the entries of z
and vanishes elsewhere, then M(e, F},,d;) = M(e, F,dp,), and so

Mi(e,F;m) = max{M(e,F,,d):z€X™}
= max{M(e F,dp,):x € X™}

d
(0 ()
€ €
for all € > 0.

To proceed with the proof of Theorem 18.5, we first need a key lemma,
and for this we shall need some additional notation. For any z € R, we

A
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define the element sgn(z) of {0,1}* to be

sgn(z) = (sgn(z1),sgn(z2), - . ., sgn(2k)),
and for z € X* and r € R¥ let

sgn (F, —r) = {sgn(f,, - ) : f € F},
where, as usual, f|, = (f(z1), f(z2),..., f(zk))-

Lemma 18.6 Let F be a set of functions from X to [0,1], and suppose
that P is a probability distribution on X. Let x € X* be drawn according
to the probability distribution P*, and let r be a random element of [0, 1]*
where each entry of v is independently drawn according to the uniform
probability distribution on [0,1). Then for 0 <e< 1,

E |sgn (F}, — )| > M(e, F,dp,(p)) (1 — M(e, F,dp,(p))e™F),
where the expectation is over the random choice of x and r.
Proof Let G be an e-separated subset of F, with respect to di,(p),

and suppose that G has maximum possible cardinality M(e, F,dr,(p))-
Then we have

E |sgn (F), —7)|

> E |sgn (G}, —7)|

> E|{geG:sgn(g, —) #sgn(h, —1) VR € G,h # g}|

= ZPr(sgn(gh —r) #sgn(h, —r) Vh€ G,h # g)
9€G

= Y (1-Pr(3h€G,h #g,sen (g, —7) =sgn(k, —71)))
g€eG

> (10101, 235, P 0 0 =) =m0, =)

Now,

Pr (sgn (g), —r) =sgn (h), — 1))
k
= H (1 — Pr(r; is between h(z;) and g(z;)))

i=1

I

k
[1(-E la(z) - s(z0)
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k
exp (— Z E |h(z;) - y(fci)l)

—ck
< e,

IA

where the second last inequality follows from Inequality (1.4) in Ap-
pendix 1, and the last inequality follows from the fact that h and g are
e-separated. The result follows, since we now have

E |sgn (Fj, —r)| 2 |G| (1 - |Gle™*)
and |G| = M(e, F,d,(p))- g
We also have the following bound on |sgn (Fj, —r)| for any z € X*.

Lemma 18.7 Let F be a set of functions mapping from X to R and
having pseudo-dimension d > 1. Then, for allk > d, € > 0, z € XF,

andr € RF,
ek

pen (. -l < (%)

Proof Let H be the set of {0,1}-valued functions defined on X x R as
follows.

H = {(z,7) = sgn(f(z) —r): f € F}.

The definition of pseudo-dimension implies that Pdim(F) = VCdim(H),
and it is easy to see that

zEXb reRH lsen (Fl, — )| = Du (k).

The result follows immediately from Theorem 3.7. 0

Theorem 18.5 now follows after some manipulation.

Proof (of Theorem 18.5) Clearly, if d = Pdim(F) = 0, M; (¢, F,m) =
1, so the result holds in that case. Assume then that d > 1. Let
M = M(¢, F,dr,(p))- By the lemmas just presented,

d
M(1-Me™*) <E [sgn (F, -7)| < (%) , (18.2)

for k > d. We want to establish that

d
M<2 (§1n (§))
€ €
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for 0 <e <1 If (1/€)In(2M) < d and 0 < € < 1 then the right-hand
side of this bound is

d In(2M)
(B () () o

so the theorem holds in this case. Suppose now that d < (1/e¢) In(2M).
Taking k = [(1/€)In(2M)], we have k > (1/¢) In(2M), Me™* < 1/2,
and k > d. Thus,

(%)d > M (1 - Me™*) > M/2.

(2)'s (5009

(M/2)M4 < sln (41/fe) + Sln ((M/2)1/d) .

Now,

and so

Applying Inequality (1.2) from Appendix 1 implies
. gAY/ de/d
(M < 2o (2222,

which gives the result. (]

18.4 Comparing the Different Approaches

It is useful to see how the bounds of this chapter compare with those
implied by the results of Chapter 12.

Suppressing all multiplicative and additive constants (including those
in the exponent) in order to emphasize the dependence on m and ¢, the
bound resulting from Theorem 12.8 takes the form

) fatr(c/4) logz (m/(cfatp(e/4)))

’

Ny (&, Fym) < Noo (6, Fym) < (@

€

whereas the bound of Theorem 18.2 has the form

1 fatr(e/8) log, (m/(cfatr(e/8)))
Nl(eaF’m)S (;) .

For a fixed value of ¢, the second bound grows more slowly with m than
the first. In this sense, the second bound is often better.
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Consider now the bounds involving the pseudo-dimension. Suppress-
ing again all multiplicative and additive constants, Theorem 12.2 implies
a bound of the form

M(G)F’m) SNOO(€7F,m) S (

)

m\ Pdim(F)
<)
whereas the bound of Theorem 18.4 has the form
1)\ Pdim(F)
Merms (D)
The latter bound removes the dependence on m and hence is significantly
better.

There are two bounds derived in this chapter: one involving the fat-
shattering dimension and one involving the pseudo-dimension. Con-
cerning which of these is more useful, we may make comments similar
to those made in Section 12.5. Generally speaking, if a class has finite
pseudo-dimension, then for small ¢ it is better to bound N (¢, F,m)
using Theorem 18.4 rather than Theorem 18.2. For larger values of e,
or for classes with infinite pseudo-dimension, Theorem 18.2 may give
better results.

18.5 Remarks

All of the covering number bounds presented in this chapter assume that
functions in the class map to the interval [0,1]. Lemma 14.12 shows
that we can easily use these results to obtain covering number bounds
for classes of functions that map to any bounded interval, simply by
scaling and shifting the functions. A similar comment applies to packing
numbers.

Ly (P) covering numbers
The covering numbers discussed so far in this book are perhaps not the
most natural. For example, if P is a probability distribution on X,
consider the pseudo-metric dp,(p) defined by

1/2
diae)(fr9) = ( [ 4@ =g dP(w)) .

For the problem of learning to minimize squared error, this metric mea-
sures the distance between functions in some class F in the most direct
way. If we have access to a small cover of F' with respect to dp,(p)



256 Bounding Covering Numbers

for every P, then we can use it to construct a learning algorithm. The
uniform convergence result for finite classes (that follows from Hoeffd-
ing’s inequality and the union bound—see the proof of Theorem 16.2)
shows that the element of the cover with smallest sample error will have
expected error that is near-minimal over the cover, and the fact that
every function in F is approximated by an element of the cover implies
that this error is also nearly minimal over all of the class F. Of course,
the fact that the learning algorithm does not know the probability dis-
tribution P—in general the cover will depend on the distribution—is a
drawback to this approach.

In fact, it is possible to generate such a cover using training data, and
its size can be bounded in terms of the fat-shattering dimension. For
a sample (x1,...,%m) chosen according to a probability distribution P,
choose a subset of F whose restriction to the sample forms a cover of F/
with respect to the metric d2. It is straightforward to apply a uniform
convergence result like Theorem 17.1 to show that, for sufficiently large
m, with high probability this subset constitutes a cover with respect
to the metric dp,(p). Strictly speaking, instead of uniform convergence
over all functions in F', we need that, for all pairs of functions in F', their
distances under the metric d> and under the metric dp,(p) are close, but
this follows easily from Theorem 17.1. Thus, it is possible to prove the
following result.

Theorem 18.8 There are constants ¢, ce,c3 such that, for all probabil-
ity distributions P on X,

£ 2
In (N(e, F,d1,(p))) < erfatr (cze) In? (a_tlf’_iff_f__)_) .

A converse result is immediate from the lower bound on d; covers in
terms of the fat-shattering dimension (Theorem 12.10). This shows that

m}gxln (N(e, Fydrypy)) m}gxln (M(e, F,dp,(p))) > fatr (16€)/8.

18.6 Bibliographical Notes

Theorem 18.1 is from (Bartlett and Long, 1995), and its proof uses ideas
from (Alon et al., 1993). Theorem 18.4 is due to Haussler (1995). The
proof we give for the weaker Inequality (18.1) comes from (Haussler,
1992), using techniques due to Pollard (1984) and Dudley (1978).
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For a proof of a result analogous to Theorem 18.8, but for L, (P) cov-
ers, see (Bartlett et al., 1997). Buescher and Kumar (1991; 1992) used
the approach of constructing an empirical cover to design powerful gen-
eral learning algorithms. These algorithms can be successful in certain
situations (that is, for certain function classes and probability distribu-
tions) in which approximate-SEM algorithms fail. As we shall see in the
next chapter, this difference cannot occur in the learning problem stud-
ied here, since approximate-SEM algorithms lead to learning algorithms
for every learnable function class.



19

The Sample Complexity of Learning Real
Function Classes

19.1 Introduction

In Chapter 16, we encountered the notion of an approzimate-SEM al-
gorithm for a function class F, which takes as input a sample z and
a positive real number € and returns a function A(z,e) € F such that
€r, (A(z,¢€)) < infgerér,(f) + ¢. We proved that if a function class is
totally bounded with respect to the L, metric, then it is learnable by
an algorithm derived, as in Theorem 16.5, from any approximate-SEM
algorithm. In this chapter we use the uniform convergence results of
Chapter 17 and the covering number bounds of Chapter 18 to extend
this result to other function classes by showing that, provided F has
finite fat-shattering dimension, then any approximate-SEM algorithm
can be used to construct a learning algorithm for F. We also give lower
bounds on the sample complexity of any learning algorithm, in terms of
the fat-shattering dimension of the function class. These results show
that a function class is learnable if and only if it has finite fat-shattering
dimension.

19.2 Classes with Finite Fat-Shattering Dimension
The main result

The main result of this chapter, which makes use of the uniform conver-
gence result obtained in Chapter 17 and the covering number bounds of
Chapter 18, is as follows.

Theorem 19.1 Suppose that F is a class of functions mapping from a
domain X into the real interval [0,1], and suppose also that F' has finite
fat-shattering dimension. Let A be any approzimate-SEM algorithm for

258
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F and define, for z € Z™, L(2) = A(z,¢€0/6), where g = 16//m. Then
L is a learning algorithm for F, and its sample complezity satisfies

mi (e, 6) < mo(e,8) = _.5_9 (lsfatF (/256) In’ (128) ol (166))

for alle,6 > 0.

We say that the learning algorithm L described in Theorem 19.1 is
based on the approzimate-SEM algorithm A.

Proof By Theorem 17.1,
P™ {3f € F, lerp(f) - ér:(f)] > €/2} < 4M: (¢/32, F,2m)e=<"m/1%,

We claim that this quantity is at most §/2, provided m > mq(e, d). Let
d = fatp (¢/256). If d = 0, it is clear that V; (¢/32, F,2m) < 1, and the
claim follows, so assume that d > 1. Theorem 18.2 then shows that

—m128 128 3dlogg(512em/(de)) —m/128
4N, (¢/32, F,2m)e <8(= e .

For this to be at most §/2, we need

em 128 512em
12821:1(6)+3d1 (e )1og2( = )

which is equivalent to

em 16 128 512e 128
128 >In (5) +3dln< )1 2( 7 ) + 3dIn (—e-) log, m.

We now use Inequality (1.2) of Appendix 1, Inm < am—Ina -1, choos-
ing a appropriately, to verify the claim. (The details of the calculation
are omitted.)

Suppose then that m > mg(e,8), and that 2 € Z™. Then, with
probability at least 1 — §/2, a P™-random 2 € Z™ is such that

lerp(f) - ér,(f)| < % forall f € F. (19.1)

Furthermore, since €y = 1/256/m, and m > myo(e,d) > 256/¢2, we have
€0 < ¢, so it follows that

. A PN € _ . .. €
ér, (L(2)) = ér, (A(z,€/6)) < }Ielf,erz(f)+ g S }relfFerz(f)+6- (192)

Suppose that f* € F satisfies
erp(f*) < optp(F) + % (19.3)
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Hoeffding’s inequality (Inequality (1.16) in Appendix 1) implies that,
with probability at least 1 — §/2,

é,(f*) < erp(f*) + g- (19.4)

provided m > (18/€%)In(2/6). Thus, for m > mo(e, §), with probability
at least 1 — § we have

erp(L(2)) < e“rz(L(z))+§ (by 19.1)

PR 4e
< }rexgerz(f) +5 (by 19.2)

< e+
< ep(f)+e (by194)
< optp(F) +e¢, (by 19.3)

and it follows that L is a learning algorithm whose sample complexity
is bounded above by mg(e, ). O

19.3 Classes with Finite Pseudo-Dimension
Bounding sample complexity with pseudo-dimension

If a function class has finite pseudo-dimension, then it also has finite
fat-shattering dimension. Hence, by the results of the previous section,
it is clear that F is learnable by an algorithm derived as above from
an approximate-SEM algorithm. We can, however, use Theorem 18.4 to
obtain an upper bound on the sample complexity of such algorithms in
terms of the pseudo-dimension.

Theorem 19.2 Suppose that F is a class of functions mapping from
a domain X into the interval [0,1) of real numbers, and that F has
finite pseudo-dimension. Let A be any approzimate-SEM algorithm for
F and let L be as described in the statement of Theorem 19.1 (that is,
the learning algorithm based on A). Then L is a learning algorithm for
F and its sample complezity is bounded as follows:

mp(e,8) < mo(e,8) = % <2 Pdim(F) In (ﬁ) +In <16§)) ,

€

forall0<ed<1.
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Proof By Theorem 17.1 and Theorem 18.4, if d = Pdim(F) and m > d,
P™{3f € F, |erp(h) — ér(h)] > ¢/2}

< 8 %Eln —2566 dex —ez—m
p p P\" 128 /"

This is easily checked to be at most §/2 when m > mq(e, §). The rest of
the proof proceeds as in the proof of Theorem 19.1. 0

For a function class of finite pseudo-dimension, the sample complexity
bound of Theorem 19.2 is better than that implied by Theorem 19.1 for
small values of e. However, Theorem 19.1 is more widely applicable, since
not all classes with finite fat-shattering dimension have finite pseudo-
dimension.

19.4 Results for Neural Networks

Combining Theorems 19.1 and 19.2 with upper bounds on the fat-
shattering dimension or pseudo-dimension of a neural network function
class immediately gives sample complexity bounds for learning algo-
rithms for that class. The following two corollaries describe two such
bounds. Similar results can be obtained for other classes of networks
considered in Chapters 6, 8 and 14.

The first corollary concerns feed-forward networks with a bounded
number of computation units, each with a piecewise-polynomial acti-
vation function. Theorem 8.8 gives a bound on the VC-dimension of
this function class, and Theorem 14.1 extends this to a bound on the
pseudo-dimension, which implies the following result.

Corollary 19.3 Suppose that a feed-forward network N has W weights
and k computation units arranged in L layers. Suppose that each com-
putation unit has a fized piecewise-polynomial activation function with
p pieces and degree no more than l. Let F be the class of functions com-
puted by N. Then any approzimate-SEM algorithm for F can be used
to define a learning algorithm for F, and for fired p and I, the sample
complezity of this learning algorithm is

0] (;12- ((WLan +WL*)In (%) +In (%))) .

The second corollary concerns two-layer networks with bounded pa-
rameters, but an arbitrary number of first-layer units. Theorem 14.19
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gives a bound on the fat-shattering dimension of the class of functions
computed by such a network. Rather than combine this with Theo-
rem 19.1, we use the covering number bounds of Corollary 14.16 directly,
giving an improvement of log factors.

Corollary 19.4 Consider the class of two-layer networks defined in
Corollary 14.16, with inputs in [— A, A]", where each computation unit
has a bound V on the sum of the magnitudes of the associated parame-
ters, and an activation function that is bounded and satisfies a Lipschitz
constraint. Let F be the class of functions computed by this network.
Any approzimate-SEM algorithm can be used to define a learning algo-
rithm L for F that has sample complezity satisfying

mp(e,6) =0 (215 (glnn+ln (%))) .

19.5 Lower Bounds

The following theorem gives a lower bound on the sample complexity of
any learning algorithm, in terms of the fat-shattering dimension of the
function class. Together with Theorem 19.1, this shows that finiteness
of the fat-shattering dimension of a function class is a necessary and
sufficient condition for the existence of a learning algorithm for the class.

Theorem 19.5 Suppose that F is a class of functions mapping from X
to [0,1). Then for B >2,0<e<1 and0 <4 < 1/100, any learning
algorithm L for F' has sample complezity satisfying

fatr (e/a) — 1

mL(e"sa B) z 16 ’

forany0<a<1/4.

By suitable choice of a, this theorem implies that the sample com-
plexity of a learning algorithm for any function class F is Q(1/¢) and
Q(fatp (4¢)). '

There is a considerable gap between this result, which shows that the
sample complexity of any learning algorithm for a class F' satisfies

m(e, s, B) = Q (% +fatp (46)) , (19.5)
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and Theorem 19.1, which describes a learning algorithm with sample
complexity (for fixed B and §)

mle, 5, B) = O (}2 (fatp (¢/256) In? (%))) .

For instance, suppose that F is a class with lim,_,¢ fatr (€) = Pdim(F) <
00. Then the upper bound shows that the sample complexity grows as
1/€? (ignoring log factors), whereas the lower bound shows that it grows
at least as 1/e. This gap is inevitable; we shall see in the next chap-
ter that the sample complexity of a convex class F' with finite pseudo-
dimension grows as 1/¢, ignoring log factors, but for a non-convex class
sample complexity grows as 1/e2. There are also examples that illus-
trate that the second term in (19.5) cannot be improved in general.
In particular, in Chapter 26, we describe a learning algorithm for the
class of two-layer networks with an arbitrary number of first-layer units
and constraints on the size of the parameters. This algorithm is an ap-
proximate sample error minimization algorithm that returns a function
from a certain restricted subset of the class. It has sample complexity
O(fatF (€)), ignoring log factors.

Proof (of Theorem 19.5) The idea of the proof is to reduce the learning
problem to a related learning problem in the restricted model for pat-
tern classification. Consider the class Hy of all functions mapping from
the finite set {z1,...,24} C X to {0,1}. Theorem 5.3 shows that any
learning algorithm for Hy has sample complexity at least (d — 1)/(32¢)
for suitably small € and 4. We shall show that, for any fixed a between 0
and 1/4, any learning algorithm for the class F' that learns to accuracy
¢ can be used to construct a learning algorithm for Hy that learns to
accuracy a/2, where d = fatp (¢/a).

Fix 0 < a<1/4and 0 < € < 1, and let d = fatp (e¢/a). We can
assume that d > 1, because the theorem is trivial otherwise. Suppose
{z1,...,%4} is €/a-shattered by F, witnessed by ry,...,rq. Without
loss of generality, we suppose that X = {z;,...,z4}. Suppose that L is
a learning algorithm for F'. Then we can construct a learning algorithm
for Hy as follows. For each labelled example (x;,y;), the algorithm
passes to L the labelled example (z;,7;), where §; = 2 if y; = 1 and
§#; = =1 if y; = 0. Let P be the original distribution on X x {0,1},
and P the resulting distribution on X x {—1,2}. Then given a function
f: X = [0,1] produced by L, the algorithm for Hy outputs the function
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h: X - {0,1}, where h(z;) = 1 if and only if f(z;) > r;. We claim that
if erg(f) — opt(F) < € then erp(h) < /2.
To see this, notice that

optp(F)

i

inf erp(0)
inf E(g(a) - 9)°
< Emin{@-9):9 € {r@) £ e/a}},

where r(z;) = r;. The inequality follows from the fact that the distri-
bution is concentrated on a shattered set. It follows that

er5(f) - opt(F)
> E[(f() - )2 - min{(§ - )’ : 5 € {r(e) £¢/a}}].

Consider the quantity inside the square brackets. For z = z; withy; =0,
§i = —1 and this quantity is

(P +17 = (ri= £ +1)°
= (f(:c,) -r+ 2)2 +2 (f(:ct) -1+ -2-) ("‘i - 2 + 1)
2 (f(:l),) -ri+ 2) .

v

Hence for y =0, if

(f(&) = 9 ~min{(@ - 9)* 9 € {r(o) £ efa}} < =,

then f(z) < r(z), and hence h(z) = y. A similar argument applies when
y = 1. Thus,

erp(h)

< L@ - 97 -min{G- 99 € (0 £ e/} > 2}
E[(f(2) - 9) — min {(§ - §)* : § € {r(s) £ ¢/a}}]
235 (erp(f) - optp(F)),

IA

IA

where the second last inequality is Markov’s inequality (Inequality (1.10)
in Appendix 1). This implies the result. a



19.6 Remarks 265
19.6 Remarks

It is possible to improve on the upper bound of Theorem 19.1 for spe-
cific classes with infinite pseudo-dimension, using a chaining technique.
(We have seen an example of this technique in Section 4.6; it led to
an improved sample complexity result for the classification problem.)
However, the interesting cases of neural network classes with infinite
pseudo-dimension are networks with constraints on the size of the pa-
rameters but no constraint on the number of parameters. In Chapter 20
we show that all convex classes like this exhibit faster rates of uniform
convergence than one would expect from Theorem 19.1. In Chapter 26,
we use this result to show that a learning algorithm for these networks
has a sample complexity that matches the lower bound of Theorem 19.5.
It is easy to extend Theorems 19.1 and 19.2 to the case where the
bound B > 1. Using the result from Section 17.2 in place of Theo-
rem 17.1 gives the following sample complexity bounds, in terms of the
fat-shattering dimensijon and pseudo-dimension respectively.

4
mi(e,6,B) < 208 (18fatp( < )1n'~’ (@)ﬁuln(ﬁ)),

€ 2568 )
128B*

= (2 Pdim(F) In (@) +In (?)) _

Restricted model

mL(C,(S, B) <

Just as in previous parts of the book, we can define a restricted version
of the learning framework for real prediction, in which the labelled ex-
amples presented to the learning algorithm are of the form (z, f(z)) for
some f € F. However such a model can have some unnatural features
that arise because the value f(z) can encode an arbitrary amount of
information about f. (In previous models, the label could provide only
one bit.) The following example describes an extreme case of this phe-
nomenon, in which a single labelled example (z, f(z)) serves to uniquely
identify the function f. In this case, the fat-shattering dimension of F
is not an appropriate measure of its complexity.

Example 19.6 For a positive integer d, let So,...,Sa—1 be disjoint
subsets of X with |J; Sj = X. Define the class of [0, 1]-valued functions

Fa = {foo,...0a_, 1 b: € {0,1},i=0,...,d -1},
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where

3 d-1 1 d-1
fbo,...,ba-1 (m) = Z E IS; (x)bj + § Z bk2_k,
j=0 k=0

and 1g; is the indicator function for S;. That is, the labels b; determine
the two most significant bits of the binary representation of the value of
the function in S;, and the d least significant bits of its value at any
z € X encode the identity of the function. Clearly, for any v < 1/4,
fatp, (Y) = d. Hence, the union of these classes, F = |Jj2, Fy has
fatp (7) = 00 for v < 1/4, but any f in F can be identified from a single
example (z, f(z)).

There are less restricted models that avoid these pathological cases.
For instance, if the labels are noisy versions of the function values (so
that labelled examples are of the form (z, f(z) + 7), for some noise
variable 7) or if the labels are quantized versions of the function values,
the amount of information passed to a learner in a label is restricted.
Typically, the fat-shattering dimension is the appropriate measure of
complexity in such cases, in the sense that a function class is learnable
in the appropriate sense if and only if its fat-shattering dimension is
finite. We shall consider one such model at the end of the next chapter:
in that case the labels are noisy versions of the function values, and the
noise is such that the conditional expectation function E(y|z) is in the
class F.

Relative uniform convergence resulls

We shall see in the next chapter that the rate of uniform convergence
of erp(f) to ér;(f) for non-convex classes cannot be faster than 1/,/m.
However, as in Parts 1 and 2, it is possible to obtain a faster rate of
uniform convergence of erp(f) to a value slightly larger than ér,(f).
The following theorem is analogous to Theorems 5.7 and 13.7.

Theorem 19.7 Suppose that F is a set of [0, 1}-valued functions defined
on a set X and that P is a probability distribution on Z = X x [0,1].
For a,e > 0 and m a positive integer, we have

P™{3f € F: erp(f) > (1 + a)ér,(f) + €}
-2mae ) '

<8 (qgiay Pon) o (e
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The theorem is a consequence of the following result, since erp(f) >
(1 + a)ér.(f) + € if and only if

er(f)-éilf) | a
erp(f) +er,(f) +2/a” 2+a’

Theorem 19.8 For F and P as in Theorem 19.7, v >0and0< g < 1,

m Jerp(f) = én,(f)
P {af”' erp(f)+e‘rz(f)+v>ﬂ}

<4M (%{,Fﬂm) exp (—m;ﬂz) .

We omit the proof.

Model selection

It is possible to derive model selection results for learning real function
classes that are analogous to those presented in Chapter 15 for the case
of pattern classification. Consider an indexed family of function classes
{F: : t € R*} with increasing fat-shattering dimension. The estimation
error bounds of this chapter, together with the techniques of Chapter 15
give error bounds for algorithms that choose a function from these classes
to minimize a sum of the sample error for a function f and a complexity
penalty for f.

19.7 Bibliographical Notes

Alon, Ben-David, Cesa-Bianchi and Haussler (1997) gave the first uni-
form convergence result in terms of the fat-shattering dimension. A
learning result like Theorem 19.1 (but in terms of absolute loss, rather
than quadratic loss) is given in (Bartlett, Long and Williamson, 1996)
using the results of Alon et al., together with a result like Lemma 17.6
relating covering numbers of a class to those of the loss function class.

For a description of the chaining technique, see, for example, (Pollard,
1984; Pollard, 1990). Long (1998b) uses this technique to analyse a class
with infinite pseudo-dimension that improves on the results presented in
this chapter. Birgé and Massart (1993) give examples of function classes
and learning algorithms forthese classes that have faster convergence of
estithation error than sample error minimization algorithms.

Bartlett, Long and Williamson (1996) showed that the finiteness of
the fat-shattering dimension of a class F characterizes the learnability
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of F when the labels are noisy versions of the value of a target function
from the class F. Anthony and Bartlett (1995) showed that the same
property characterizes learnability for a deterministic noise model, and
when the labels are quantized versions of a target function’s value. (See
also (Bartlett, 1994).) Simon (1997) gave lower bounds in terms of a
different scale-sensitive dimension.

The lower bound result, Theorem 19.5, is new. The example that
illustrates the problem with obtaining lower bounds in the restricted
model appeared in (Bartlett, Long and Williamson, 1996). Theorem 19.8
is due to Haussler; it is an improvement of a result due to Pollard (1984).
A similar inequality, expressed in terms of d, covering numbers, can also
be derived from a stronger result that is similar to Inequality (5.11), but
for real-valued functions (see (Bartlett and Lugosi, 1999)).

Model selection results for neural networks and related classes of real-
valued functions have been presented by a number of authors, including
Barron (1991; 1994), Krzyzak et al. (1996), and Lugosi and Zeger (1995).
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Convex Classes

20.1 Introduction

We have seen in the previous chapter that finiteness of the fat-shattering
dimension is necessary and sufficient for learning. Unfortunately, there
is a considerable gap between our lower and upper bounds on sample
complexity. Even for a function class with finite pseudo-dimension, the
bounds show only that the sample complexity is 2(1/¢) and O(1/€?). In
this chapter, we show that this gap is not just a consequence of our lack
of skill in proving sample complexity bounds: there are function classes
demonstrating that both rates are possible. More surprisingly, we show
that the sample complexity or, equivalently, the estimation error rate
is determined by the ‘closure convexity’ of the function class. (Closure
convexity is a slightly weaker condition than convexity.) Specifically,
for function classes with finite pseudo-dimension, if the class is closure
convex, the sample complexity grows roughly as 1/e; if it is not closure
convex, the sample complexity grows roughly as 1/€2, and no other rates
are possible (ignoring log factors).

To understand the intuition behind these results, consider a domain
X of cardinality one. In this case, a function class is equivalent to a
bounded subset of the real numbers, and the learning problem is equiv-
alent to finding the best approximation from that subset to the expecta-
tion of a bounded random variable. It is a standard result of probability
theory that the squared difference between the sample average and the
expectation of such a random variable decreases as 1/m. If the function
class is a closed interval in R, then clearly the excess error of the value
returned by a sample error minimization algorithm (which returns the
best approximation in the class to the sample average) also decreases
as 1/m, and so the sample complexity is O(1/€). On the other hand,

269
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if the function class consists of two disjoint closed intervals and the ex-
pectation of the random variable falls between the intervals, a learning
algorithm is forced to choose an estimate from one or other of the in-
tervals. If the expectation is € away from the centre of the gap between
the two intervals, the additional squared error that arises from choosing
the wrong interval is linear in ¢. For a suitably chosen probability distri-
bution, this learning problem is equivalent to the problem of estimating
the expectation of a Bernoulli random variable, and the lower bound
result of Lemma 5.1 shows that €(1/€%) examples are necessary.

The results in this chapter generalize these observations. The single
closed interval is an example of a convex function class, and the sample
complexity of this class is of order 1/e. (Recall that a function class F
is convex if, for all fi, fo in F' and 0 < a < 1, the convex combination
afi + (1 — a)f, is also in F.) The union of two disjoint closed intervals
is an example of a non-convex function class, and the sample complexity
in this case is of order at least 1/¢2.

20.2 Lower Bounds for Non-Convex Classes

For the sample complexity results in this chapter, we make use of the
notion of ‘closure convexity’, a slightly weaker condition than convexity.
To understand why a modification of convexity will be relevant, consider
again a function class F' defined on a domain X of cardinality one (so
that F is equivalent to a subset of R). If the class F is the union of
the intervals [0,1/2) and (1/2, 1], then it is not convex, but it is clear
that the learning problem is equivalent to that involving the convex class
[0,1], since F contains arbitrarily good approximations to the missing
point. This example suggests that we do not need convexity in order
to obtain fast estimation rates; rather, convexity of the closure of the
class might suffice. The appropriate topology in which to define the
closure depends on the probability distribution on the domain X, as the
following definition demonstrates.

Definition 20.1 For a probability distribution Px on X, define the
norm induced by Px on the set of functions f : X =+ R as

7Nl = ( /X fA(z)dPx (a:)) v .

For a class F of real-valued functions defined on a set X and a probability
distribution Px on X, let F denote the closure of F with respect to this
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norm. We say that such a class F is closure convex if, for all probability
distributions Px on X, F is convez.

The following theorem is the main result of this section. It shows that
the sample complexity of a class that is not closure convex is Q(1/€?).

Theorem 20.2 For every class F that is not closure convez, there is
a positive constant k and a bound B’ such that for all 0 < § < 1, all
sufficiently small ¢ > 0, all B > B’, and all learning algorithms L for
F, the sample complezity satisfies

mL(Ea 61 B) 2 @S’ﬁ

The proof of the theorem involves two lemmas. In the first lemma,
we think of the function class F' as a subset of the Hilbert space of
real-valued functions equipped with the scalar product

(f,9) = /X #(@)9(z) dPx (),

where Py is the probability distribution on X. This lemma shows that
we may assume that the closure of F is compact (that is, every open
cover of F' has a finite subcover). The lemma, follows from Theorem 19.5,
the fact (Theorem 18.8) that finiteness of the fat-shattering dimension
implies total boundedness in Lo(P), and the fact that every closed, to-
tally bounded subset of a Hilbert space is compact.

Lemma 20.3 If a class F of real-valued functions is learnable, then for
any probability distribution Px on X, F is compact.

The next lemma shows that if F' is not closure convex, then we can
find an open ball in Hilbert space that does not intersect the class, and
whose surface intersects F in at least two points. Figure 20.1 illustrates
the functions defined in the lemma.

Lemma 20.4 If F is compact and not conver, then there is a bounded
interval Y C R, a function c: X = Y, and two functions fi,f> € F,
such that for all f in F, |lc= fll 2 llc — fill = lic = f2ll.

Proof Since F is not convex, there are functions g, h € F and a constant
a € (0,1) for which the function f = ag + (1 — a)h is not in F. (See
Figure 20.1.) To show that the desired functions ¢, f;, and f; exist, we
consider the smallest ball around f that touches a point in F. (This is
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Fig. 20.1. A two-dimensional slice through Hilbert space, illustrating the func-
tion class F, the functions fi, f2, and c defined in Lemma 20.4, and the con-
struction used in the proof of that lemma. (Notice that g and h need not lie
in the same plane as f, f1, and f2.)

represented by the small circle in Figure 20.1.) Thus, the radius of this
ball is § = min{||f' — f|| : f' € F}. (Notice that the minimum exists
and is positive because F is compact.) If the set {f' € F: ||f' - f|| = &}
contains more than one function, the lemma is proved, with ¢ = f. If
the set contains only one function f;, we consider the smallest ball that
touches ' at f; and some other point, and has its centre on the ray
from f, that passes through f. That is, we set ¢ = (1 + 8)f — B/
with the smallest 8 > 0 such that some f' in F has ||f' - fi|| > 0 and
Wf —cll = Ifi = cll- (The set of suitable points c is represented by the
dotted line in Figure 20.1.) We show that such a 3 exists by showing
that, for sufficiently large 8, the ball includes either g or h.
Now,

WA =ci? - llg - clf?
= A=fIP+If =P +2(fi-f,f-¢)
~(lg=fIP+Nf-clP+2(9—f.f )
= lA-AP-llg-fIP+2(fi-9.f -0

A similar calculation with h replacing g shows that

a(llfs = el = llg = *) + (1 = @) (Ilfr = cll? - I - cll”)
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= fI?~allg=fIP - - a)llh— fIP+2(fr - f,f - )
I = £II? = ellg - £I? - (1 - )lih - £II? + 2811 - FII-
For sufficiently large 8, this is greater than zero, so one of the terms on

the left hand side is greater than zero. In that case, ¢ is closer to either
g or h than to fi. O

These lemmas establish that for every non-convex class, we can find
a ball in Hilbert space whose interior does not intersect the class, but
whose surface touches the class in at least two distinct places. This is
enough to show that, by positioning the conditional expectation func-
tion E(y|z) inside the ball approximately equidistant from these two
functions, we can make the learning problem as difficult as the problem
of estimating the probability of a Bernoulli random variable. That is
the idea behind the proof of Theorem 20.2. We omit some details of the
proof; they are tedious but straightforward to verify.

Proof (of Theorem 20.2) We show that the problem can be reduced to
the Bernoulli random variable decision problem described in Lemma 5.1.
Let (1,...,&m) in {0,1}™ be a sequence of m i.i.d. random variables
with Pr(§; = 1) = o and a € {a-,ay}, where a_ = 1/2 — v/2 and
a4 =1/2+4v/2. A learning algorithm for F can be used to construct a
randomized decision rule (that is, a function A mapping from sequences
in {0,1}™ to random variables in {a_,a4}) for this problem. The idea
is to pick two uniformly bounded functions f{ and f; with certain prop-
erties. For an input sequence (¢1,...,&m) € {0,1}™, A(&,...,ém) is
computed by first choosing zy,...,Z, € X i.i.d. according to the prob-
ability distribution Px. Then, for each 4, if & = 1, A passes (z;, f1(z:))
to the learning algorithm, otherwise it passes (z;, f3(z;)). If the learning
algorithm returns f € F with [|f — fi]| < ||f — fll, A returns 1/2+ /2,
otherwise it returns 1/2 — /2.

The functions we construct are illustrated in Figure 20.2. The details
are omitted, but it is possible to choose functions f] and f; so that the
following conditions are satisfied.

(i) Define the functions f{ and f; as the conditional expectation
of the label passed to the learning algorithm when o = a4 and
when a = a_ respectively,

ff = a+f{+(1"a+)f£a
i = a-fi+(1-al)fs
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h fa

Fig. 20.2. A two-dimensional slice through Hilbert space, illustrating the func-
tions used in the proof of Theorém 20.2.

(i) We can write

fi
f3
for some constant 0 < p < 1, and hence when a@ = ay, f; is
the function in F that gives the minimal error, ||fy — f7|I?
infrer ||f — f{1?, and similarly when a = a_, ||fo ~ f3]]* =
infrer ||f - f21I.
(iii) For € = ¢17y (where ¢; depends only on the class F), every f € F
satisfies

I =AIP<li-fIP+e = If-Al<If- £l
If =B <lfe-FHIP+e = If =Ll <If - Al
So, if the learning algorithm returns a function f € F with

erp(f) < optp(F)+e, then the decision rule A returns the correct
answer for the Bernoulli problem.

pfl + (1 —p)C,
pf2 + (1 -p)e,

These conditions, together with the lower bound of Lemma 5.1, show
that to find a function in F' with erp(f) < optp(F) + ¢, a learning
algorithm requires Q(In(1/8)/e?) examples.

To see that the labels passed to the learning algorithm lie in a bounded
interval in R, first observe that the functions f;, fo and ¢ are uniformly
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bounded, and the bound depends only on the function class F. Fur-
thermore, we can write f; and f; as convex combinations (where the
coefficients depend on ¢) of fixed linear combinations of the functions
f 1, f 2y and c. a

As an example, consider the class Fj of two-layer networks, with a
linear output unit and k first-layer computation units, each with the
standard sigmoid activation function, o(a) = 1/(1 + ™).

Theorem 20.5 For any k € N, the class F}, is not convez, even if the
input space is X = R.

As a result, if the parameters are restricted to any compact set, it is
immediate that the class F}, is not closure convex. From Theorems 8.13
and 14.1, the pseudo-dimension of F}, is finite, so the sample complexity
of this class grows as In(1/8)/e2, ignoring log factors.

The proof of Theorem 20.5 uses the following result, which shows that
the functions computed by the first-layer units are linearly independent.
The proof uses ideas from complex analysis, and can be skipped without
loss of continuity.

Lemma 20.6 Let 0 : R — R be the standard sigmoid function. Choose
k € N and wy, w1 0,w2,w20,..., Wk, wro € R, such that w; # 0 and
(wj,wj0) # £(wj, wj o) for all j and all j' # j. Then the set

{zr o(wjz+we):1<j<k}u{z— 1}

of real functions defined on R is linearly independent.

Proof We use i to denote the square root of —1. Consider the complex
function defined by o(2) = 1/(1+e™*) for z € C. This function has poles
at tnni for all odd n, and is analytic in the strip {z € C: |¥(z)| < 7},
(where $(z) denotes the imaginary part of z). Hence, for a sequence of
values of z contained in this strip and converging to =i, the product (2 —
wi)o(2) converges to a constant, the residue of the pole at 7i. The proof
uses this fact to “isolate” functions and show that the corresponding
coefficient is zero.

Now, suppose that ap + ;7=1 ajo(w;z + wjp) = 0 for all z € R
Without loss of generality, assume that 0 < |w;| < jwa| < -+ < |wil.
Then if we consider the analytic continuation of this function in the
complex plane, it is identically zero on the strip {z € C : |S(wiz)| < 7}.
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It follows that the limit as z approaches (mi — wg0)/wg of

. k
i~ w
(:c - -(————k'o—)) ap + E ajo(w;z + wj0)

Wk j=1

is 0. Now, |w;| < |wg| for all § < k, and if some j < k has |w;| = |ws]
then wj0 # wk,0, so the limit of w;z + wj is in the analytic region of
o. This implies

. k
. (7% — wg0)
z—-)(‘lri!'lﬂrﬁ,o)/wh (22 W ap + Z aJa(wa + w]»o)

i=1
M —w

; gt k,0)

z—+(mi—wi,0)/wa Wi

= 0,

) aka(wkx + ’wk,o)

and hence o = 0. A similar argument shows that a; = 0 for j =
1,...,k -1, and so the set is linearly independent. O

Proof (of Theorem 20.5) Suppose that the class Fi of functions de-
fined on X = R is convex. Then choose two functions fy, fo € F defined
by

k
f@) = ) vio(wz +wj),
j=t1
2k
fo(z) = 2 vjo(w;jz + wjo),
j=k+1

and suppose that v; # 0, w; # 0 and (wj;,wj0) # £(wj, wj o) for
all j and all j' # j. Since Fj is convex, there must be parameters
Wy, 01,0, - - » Wk, Wk,0 and ¥y,...,0; such that
k 1 2k

Z vjo(Wjz + Wj0) — 3 Z vjo(w;z + wjo)

j=1 J=1
is identically zero. An easy inductive argument using Lemma 20.6 shows
that for all j € {1,...,k} either w; = 0 or there is a j' € {1,...,2k}
such that (@;,W;0) = £(wj,wj o). It follows that there are coefficients
vg, - . - y Upy, Ot all zero, for which

2k

v + Y vio(wiz + wjo)
=1
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is identically zero, which contradicts Lemma 20.6. Thus Fj}, is not convex.
O

20.3 Upper Bounds for Convex Classes

The following theorem is a strong converse to Theorem 20.2. It shows
that closure convexity leads to a smaller sample complexity.

Theorem 20.7 Suppose F is a closure convez class of functions that
map to the interval [0,1], A is an approzimate-SEM algorithm for F,
and L(z) = A(z,1/m) for z € Z™. Suppose that the distribution P on
X xR is such that | f(z) — y| < B almost surely. Then

pm {erp(L(z)) > filel%el‘p(f) + e}

€ em
< M (———9633,F,2m) exp (-—521634) .
Hence, if F has finite fat-shattering dimension, then L is a learning
algorithm with

mi(e,8) =0 (B% <dln2 (g) +In (%))) ,

where d = fatp (¢/(768B%)). Furthermore, if d = Pdim(F) is finite, L
is a learning algorithm, and

wie=0(2 (%) en (1)

The classes of functions defined in Section 14.4 (see, for example, The-
orems 14.14 and 14.17) are examples of closure convex function classes.
In fact, each of these classes can be represented as the convex combi-
nation of an arbitrary number of functions from a certain class. For
example, a two-layer network with a bound V on the sum of the magni-
tudes of the output weights can be thought of as a convex combination
of an arbitrary number of first-layer unit functions (scaled by the bound
V). Clearly, this class is convex, since a convex combination of two such
functions is also in the class.

The remainder of this section gives an outline of the proof of Theo-
rem 20.7. The following lemma is the key uniform convergence result.
It uses information on the variances of the random variables it considers
to give a faster convergence rate than earlier results.
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Lemma 20.8 Fiz constants K; > 0 and Ko > 1. Consider a class G
of real functions defined on a set Z, and suppose that for every g € G
and every z € Z, |g(z)| < Ki. Let P be a probability distribution on Z
for which Eg(z) > 0 and E(g(2))? < K,Eg(2) for all g in G. Then for
€>0,0< a<1/2 end m > max {4(K; + K3)/(a%€), Ki/(a%e)},

m Eg—E,g
_— >
P {BgGG, Fgte _a}

ae 3a%em
< 2N (— —_
= 1(8 ’G’zm)e"p( 8K1+324K2) +

ae a’em
4N] (m,G,zm) exp (—W) ,
where B, = L Y7 9(z) for 2= (21,...,2m)-

The proof of this lemma is similar to that of Theorem 19.8, except
that Bernstein’s inequality is used in the place of Hoeffding’s inequality
(see (1.21) in Appendix 1) to give tighter bounds when the random
variables have small variance. To prove Theorem 20.7, we apply this
lemma to the class G of excess quadratic loss, G = {{; — ¢y, : f € F},
where £, is the best approximation in F' to the conditional expectation
E(y|z), and £4(z,y) = (y — f(z))? is the quadratic loss function. (We
need to allow f, € F in case the infimum of the quadratic loss is not
achieved in F.) The following lemma shows that the class G satisfies
the variance condition of Lemma 20.8 if F is closure convex.

Lemma 20.9 Suppose that a class F of functions mapping from X to
[0,1] is closure convez. If f is in F and P is such that |y — f(z)| < B
almost surely, then for f, € F satisfying E(y — fa(2))? = infser E(y —
f(2))?, we have

E[W- f@) - ¥ - fo(@)?]’

< 4B%E(f(2) - fa(2))®
< 4B’E[(y- f@) - (v - ful@))?].

Proof It is easy to show that

E [(y - f(2))* - (v - ful@))*]?
E [(y - fu(2) + ¥ - £@)*(fal2) - £(2))?]
< 4BE(f,(2) - f(2))?,
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Fig. 20.3. A two-dimensional slice through Hilbert space, illustrating why the
inner product between the vectors f* — f, and fa — f is always nonnegative
for a convex class F. See Lemma 20.9.

which is the first inequality. To see the second inequality, notice that

E[(y - f(2)) - 4y - fa(2))?]
= E[(fa(2) - £(@)* + 2y - fa(2))(fa(2) - f(2))]
= |lfo=fIP+2(f* = far fa = ),
where f*(z) = E(y|r) and, as always, the inner product is defined by
(f,9) = [ f(z)g(z) dP(z), Hence, we need to show that the inner prod-
uct (f* ~ fa, fo— f) is nonnegative. It is clear from Figure 20.3 why this
should be true. By definition of f,, for all g € P, ||f*~ £,]|2 < [|f* = g]|2.

In particular, since F is convex, we can take g = af + (1 —a)f, for
a € [0,1] to obtain

If* = fall® S 1F* = fo + a(fa = £)II2,
from which it follows that
20(f* = far fa = f) 2 —®| fa - fIP,
and hence
(" = farfa= D 2 =Slfa - I

But for this to hold for all @ > 0, (f* - f,, f, — f) must be nonnegative.
The second inequality follows. O
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Proof (of Theorem 20.7) We use Lemma 17.6 to give bounds on
the covering numbers of the class G = {€y — £y, : f € F}, in terms
of the covering numbers of F. The definitions imply that K; < B2,
and Lemma 20.9 shows that K; < 4B2. It is easy to see that the
function f = L(z) returned by the approximate-SEM algorithm has
B, (¢; - ¢;,) < 1/m, since

}IEI%EZ (ef - efa) S— EZ (efo - e.fo) = 0‘

Now, either m is so small that the upper bound of the theorem is larger
than one, or 1/m < ¢ and so E, (¢; — £;,) < €. Setting & = 1/2 and
scaling e appropriately in Lemma 20.8 gives the first inequality of the
theorem. (If the upper bound of the theorem is less than one, the con-
dition on m in Lemma 20.8 is satisfied.) The pseudo-dimension and
fat-shattering dimension results follow immediately from the covering
number bounds of Theorems 18.4 and 18.2, O

20.4 Remarks
Uniqueness of parameterization

For any parameterized function class, it is natural to ask whether the
parameterization is unique; that is, whether for every distinct pair of
parameter settings, the corresponding functions are distinct. (This ques-
tion is important in the design of gradient-based optimization schemes,
since non-uniqueness can lead to numerical difficulties.) Lemma 20.6 was
used to show that the class of functions computed by two-layer sigmoid
networks with a fixed number of first-layer units,

k
Fp = {a: - Ev;a(w.- -z +wip) + Vo : Vi, Wi € ]R} ,
i=1
is not convex. In fact, it also tells us something about the uniqueness of
the parameterization of this function class. Clearly, the parameteriza-
tion is not unique: if the output weight v; of first-layer unit ¢ is zero, we
can arbitrarily change the values of the input weights w;,w; o associated
with first-layer unit ¢, without changing the function computed. Simi-
larly, if we swap the labels of the input weights and output weights as-
sociated with two first-layer units, the function computed is unchanged.
Also, by exploiting the fact that o(a) = 1 — o(—a), we can negate the
input weights and output weight of a first-layer unit and add one to
the output bias vg, and the function computed is unchanged. However,
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Lemma 20.6 can be used in an easy inductive proof to show that, apart
from these obvious invariances, the parameterization is unique. More
precisely, these invariances define equivalence classes over the set of net-
work states, and any two states that are in distinct equivalence classes
correspond to different functions.

Restricted model

Section 19.6 discussed the restricted version of the real prediction prob-
lem. In that section, we observed that unnatural phenomena can occur
unless the amount of information passed to the learning algorithm is
limited, for example by observation noise in the labels. The following
theorem shows that, for any function class F', if the noise has zero mean,
so that the conditional expectation E(y|z) is in F, the rate of uniform
convergence is the same as the fast rate achieved by convex classes (see
Theorem 20.7).

Theorem 20.10 Suppose that F is a class of functions that map to
the interval [0,1], A is an approzimate-SEM algorithm for F, L(z) =
A(z,1/m) for z € Z™, and the distribution P on X x R is such that
|f(z) — y| < B almost surely and E(y|z) is in F. Then

™ {erp(L(z)) > }g%el‘p(f) + e}
€ em
< 6 (gopm Fram) e (~g5ia5)-

Clearly, the sample complexity bounds in Theorem 20.7 that are ex-
pressed in terms of pseudo-dimension and fat-shattering function are
also valid in this case.

The proof is essentially identical to the proof of Theorem 20.7, except
that the last step of the proof of Lemma 20.9, where we used convexity
to show that (f* — fs,fa — f) > 0, is immediate in this case, since

fa= T

Subsets of a closure convezx set

The proof of Theorem 20.7 implies the following slightly stronger result.
This shows that we can achieve the same fast rate of convergence of
empirical averages to expected values in the class G = {€;—¢;, : f € F},
even when the class F is not closure convex, as long as F is contained in
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a closure convex class F', and the best approximation f, is chosen from
P,

Lemma 20.11 Suppose that F' is a closure convex class of functions
that map from X to the interval [0,1), and that F C F'. Let P be
a probability distribution on X x R for which almost surely |f(z) —
y| < B for all f € F'. Then fore > 0,0 < a < 1/2 and m >
max {5B2/(a%¢), B*/(e%)},

ng—Ezgf

m

—_— >
P {afeF’ Egs+e -0

ae 3alem
< 2 ({5 F2m) exp (' 130432) +
2

ac a“em
4M (TG'E:,:',F, 2m) €xp (__‘I—BT) ,

where gy = £y — Uy, and f, € F' satisfies E(y — fo(z)) = infsep E(y -
f(=)).
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the proof of Lemma 20.8 extends ideas from these proofs, which also
used Bernstein’s inequality to take advantage of the small variance of
the estimates.



21
Other Learning Problems

21.1 Loss Functions in General

In Chapter 16, we made the observation that in the context of learning
real function classes, it is inappropriate simply to define the error of
a function f as the probability that f(z) # y for a randomly drawn
(z,y). Instead, we defined the error of f to be the expected value of
(f(z) — y)®. The quantity (f(z) — y)*> may be thought of as the ‘loss’ of
f on (z,y). It might have occurred to the reader that there would be
other approaches, based on different methods of measuring such a loss.
One straightforward variant comes, for instance, when we instead define
the error of f to be the expected value of |f(z) — y|. In order to discuss
the use of different ‘loss functions’ in some more generality, we shall
assume that our function class F maps from a set X into the interval
[0,1], and that the label y is chosen from some set ¥ C R. (Usually,
as before, Y will be the interval [0,1].) A bounded loss function is a
function £ : [0,1) x Y — Rt for which there is a B > 0 such that
£(y1,y2) < B for all y; € [0,1] and y, € Y. In what follows, we shall
assume that £ maps to the interval [0,1). Two examples of loss functions
are the quadratic loss given by £(y,y") = (y —y')?, and the absolute loss
given by £(y,¢") = |y — |

Given a particular loss function ¢, we define, for f € F, the function
£y X xY = [0,1] by

L (z,y) = Uf(2),y),

and we let {p = {€; : f € F} be the corresponding loss class. The
L-error of f € F with respect to a distribution P on Z = X x Y is the
expected value of ¢; with respect to P,

erf:(f) =E{; =EL{(f(z),y),

284
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and, for z € Z™, the ¢-sample error €r;(f) is

aL(f) = = Y o) = — S UF(),w)
i=1

i=1

21.2 Convergence for General Loss Functions

As in Chapter 17, we can bound the rate at which sample errors converge
to errors in terms of covering numbers. As is clear from its proof, the
symmetrization result of Lemma 17.2 still holds when we replace the er-
ror erp(f) by erb(f) and the sample error ér,(f) by e‘rﬁ(f). Lemma 17.3
and Lemma 17.4 relate the covering numbers of the loss class {F to those
of F itself. The proof of Theorem 17.1 contains the following result,
which holds for any loss function.

Theorem 21.1 Suppose that F' is a class of functions mapping into the
interval [0,1], and that £ : [0,1) x Y — [0,1] is a loss function. Let P
be any probability distribution on Z = X xY,0 < € < 1, and m any
positive integer. Then

pm {lerf;(h) — érl(h)| > e for some b € F}

< 4M (g—,ep,2m) exp (_e;_;n) .

To move from this general ‘uniform convergence’ result to more useful
results, we might want to bound the rate of convergence in terms of
the pseudo-dimension or fat-shattering dimension of the class F. One
approach would be to use the results of previous chapters to bound the
covering numbers of the loss class in terms of its pseudo-dimension or
fat-shattering dimension, and then to relate these dimensions to those
of F itself. Another approach is to obtain a direct relationship between
the covering numbers of {r and the covering numbers of F' and then
apply the results of earlier chapters. This is the approach that was
taken in Chapter 17 for the quadratic loss function. Lemma 17.6 shows
that this approach is suitable for any bounded loss function satisfying
a Lipschitz condition. The triangle inequality implies the appropriate
Lipschitz condition for the absolute loss, which leads to the following
result.
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Corollary 21.2 Let £ denote the absolute loss function. Then, for all
positive integers k and for all positive numbers ¢,

Nl (€:£F1k) SM (G)F3 k)

Having related the covering numbers of £r to those of F, the rate of
convergence of sample errors to errors may be bounded in terms of the
dimensions of F. One can, in a manner similar to Chapter 19, devise
learning algorithms derived from approximate sample error minimization
algorithms (where the sample error is that corresponding to the loss
function). The details are omitted in this discussion.

21.3 Learning in Multiple-Output Networks
A general approach

The types of problems considered so far—and the loss functions used—
deal with the case in which the set of functions under consideration maps
into some subset of the real numbers. But the context of loss functions
is more general than this and, in particular, will allow us to analyse
learnability for function classes that map into a subset of R® where
s > 1. This encompasses, for instance, the sets of functions computed
by neural networks with s output units.

Suppose that F maps from a set X into R*. How should we define a
suitable loss function on F'? If we were to use the bounded loss function
£ for a class mapping into R, then it would seem appropriate to use the
loss function £¢ : R* x R® — [0, 1), defined as follows:

1 8
Cwy) =5 Uy v)-

i=1

For instance, if the class F is the set of functions computed by an s-
output neural network, and ¢ is the quadratic loss function, then £°
measures the loss as the average quadratic loss over the outputs,

1 8
Cwy) =2 - ).
f=1

For a given ¢ between 1 and s and f € F, let f; denote the projection
of f on the ith co-ordinate, defined by

file) = (f(@))s,
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the ith entry of f(z) € R®, and let F; = {f; : f € F}. For f € F, we
define ¢z, : R® x R* — [0, 1] by
ef-‘ (27, y) = z(.f‘l(:l’.)a:l/t)

and we let £, = {{;, : f € F}. Then we have the following useful
relationship between the covering numbers for the loss class £% and the
covering numbers for the loss classes £p,.

Theorem 21.3 With the above notations,
Nl (eve;"rk) < Nl (eveka)Nl (e’ng’k) * ”Nl (G’KF.’k)
8
= HNI (¢, €F;, k),

i=1

for all positive integers k and all € > 0.

Proof Let z € Z* be given, and suppose that for each i between 1 and
s, C; is an e-cover for £ Fi|,- Suppose that f € F and that, for 1 < j <s,
v; € Cj is such that dy (£;(2),v;) < €. (Such a v; exists since Cj is an
e-cover for £p,|,.) Then

( (2), - ]Z_:lv,) = k; l}(zi)—( Ev,).

J=1

k s
S e -1 w),
i=1 j=1 j=1
1 k
= (Z ler,(z0) - (vj),-|)
1

i=1

]:
= Z gf, (Z), 'UJ

<e.

ol e

It follows that

j=1

is an e-cover for £%. Observing that |C| < |C1]||Ca}: - -|Cs|, the result
follows. a
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Relating the covering numbers of the loss spaces £, to those of Fj,
we obtain the following corollary.

Corollary 21.4 If { is the quadratic loss function then

M (e, 8p, k) < M(E,Fl, )Nl( Fz,) Nl( Fs,)

= HN1 (2,E,k)

i=1

for all positive integers k and all € > 0. If £ is the absolute loss function,
then

Nl (E,f;-‘,k) S HNI (C’Fiak)

=1

for all € and k.

Application to specific neural networks

We can define the sample complexity of a learning algorithm for a class
of vector-valued functions in the obvious way, with the loss function
£* replacing the quadratic loss £ in Definition 16.1. We can define an
approximate-SEM algorithm for such a class by extending Definition 16.4
in the same way. Then combining Theorem 21.1, Corollary 21.4, and the
bounds on covering numbers for neural networks given in Chapter 18,
and using the same arguments as in the proof of Theorem 19.1 gives up-
per bounds on the sample complexity of learning algorithms for neural
networks with s outputs. These bounds are no more than s times the cor-
responding upper bounds for a network with one output. For instance,
the following results give bounds for networks with few parameters and
networks with small parameters. These bounds are a factor of s larger
than the corresponding bounds described in Corollaries 19.3 and 19.4.

Theorem 21.5 Suppose that a feed-forward network N has W weights
and k computation units arranged in L layers, where s of these compu-
tation units are output units. Suppose that each computation unit has a
fized piecewise-polynomial activation function with p pieces and degree
no more than l. Let F be the class of functions computed by N. Then
any approzimate-SEM algorithm for F can be used to define a learning
algorithm for F, and for fized p and l, the sample complexity of this
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algorithm is

0 (612 (s (WLInW + WL?)In (%) +In (%))) .

Theorem 21.6 Consider the class of two-layer networks defined in
Corollary 14.16, but with s output units. These networks have inputs
in [—A, A]*, and each computation unit has a bound V on the sum of
the magnitudes of the associated parameters, and an activation function
that is bounded and satisfies a Lipschitz constraint. Let F' be the class
of vector-valued functions computed by this network. Any approzimate-
SEM algorithm can be used to define a learning algorithm L for F that
has sample complezity satisfying

1 [sV6A? 1
mL(e,6)=O<€—2( = lnn+ln<3))).

21.4 Interpolation Models
Learning and approximate interpolation

In this section, we take a fresh approach to the question of how to
extend the basic learning model of Part I for binary classification to
models of learning applicable to real-valued function classes. Specifically,
we extend in two different ways the restricted model of learning for
{0,1}-classes. Recall that in this restricted model of learning, we have
a class of functions H mapping from X to {0,1}, a fixed (but unknown)
probability distribution g on the set X of all possible examples, and some
target functiont € H. The error of h € H is then the py-probability that
h(z) # t(z), and the aim is to guarantee that with high probability (at
least 1 — 4, in the usual notation), the error is small (at most €). This
could be extended to classes of real-valued functions using absolute or
quadratic loss functions in the obvious manner, but a different approach
can be taken, as follows. Suppose F is a class of functions mapping
from X to the interval [0,1], that ¢ is any function from X to [0, 1] (not
necessarily in the class F), and that p is a probability distribution on X.
Let us suppose that we have a learning algorithm that, given a sample

z = (21,%2,...,%m), produces a function f € F that approzimately
interpolates the target function ¢ on the sample, in the sense that | f(z;)—
t(zi)| <nfori=1,2,...,m, where is a small positive number (perhaps

prescribed in advance). What performance might we reasonably demand
of such an output hypothesis? It is clear that since the values of f match
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those of ¢ very closely on each example in the sample, the sample error
with respect to either the absolute or quadratic loss function is small and
therefore we might expect that our algorithm produces hypotheses that,
with high probability, have small absolute or quadratic loss. However,
we might be able to ask for more. To see why, let us concentrate on the
absolute loss. The fact that |f(z;) — t(z;)| <nfori=1,2,...,m means
that the absolute loss on the sample is the average of m numbers, each of
which is less than 5, and hence is itself less than 1. However, one could
not, conversely, deduce from the fact that the sample error is small that
all the differences |f(z;) — t(z;)| were very small: indeed, if all we knew
was that the sample error was at most 7, then the only general bound
we could place on each of these differences would be m#. In this sense,
therefore, the condition that |f(z;) — t(x;)| < n for each i is stronger
than the condition that the sample error is less than 5. Consequently, we
might be able to demand more of such functions f. We shall ask, roughly
speaking, that, with high probability the output hypothesis f is such
that the values f(z) and t(z) are close almost everywhere (rather than
simply close ‘on average’, which would be what the usual approach-—a
bound on the error with respect to absolute loss—would entail). We
shall take two distinct approaches to what we mean by ‘close almost
everywhere’. First, we shall ask that f approximates to ¢ as well as
it does on the sample, almost everywhere, in the sense that, for all z,
except for those from a set of probability at most ¢, |f(z) — t(z)| < 7.
This is analogous to the restricted model of learning a binary-valued
class: there, from the fact that h equals ¢ on a sample, we demand that
(with high probability) k equals ¢ almost everywhere on X. To obtain
the present model, we simply replace ‘equals’ by ‘is within # of’.

Definition 21.7 Suppose that F is a class of functions mapping from
a set X to the interval [0,1]. Then F strongly generalizes from approx-
imate interpolation if for any ¢,6,n € (0,1), there is mo(e,8,n) such
that for m > mg(e,68,n), for any probability distribution p in X and
any function t : X — [0,1), the following holds: with probability at least
1-4, ifz = (z1,22,...,Zm) € X™, then for any f € F satisfying
|f(z:) — t(z:)] <7 fori=1,2,...,m, we have

plz:|f(@) -tz) <n}>1-e

‘We now turn to our second way of thinking about what ‘close almost
everywhere’ should mean. It might at first appear that strong general-
ization from interpolation is a rather demanding condition: simply from
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the fact that |f(z;) — t(z;)| < n for each z; in the sample, we want that
(for most samples =), f(z) is at least as accurate an estimate of ¢(x) on
almost all of the examples X. That is, we expect the same high level of
approximation almost everywhere. Clearly—and as might have been an-
ticipated from the use of the word ‘strongly’ in Definition 21.7—we can
weaken the definition by requiring a less accurate level of approximation.
Specifically, instead of requiring |f(z) — t(z)| <  for almost all z, we
might instead relax the condition a little and ask that | f(z)-t(z)| < n+7v
for almost all z, where 7 is a small, positive, number. In this new model,
therefore, with high probability, from approximate interpolation to ac-
curacy 7 on a sample, we expect to deduce approximation within the
slightly larger ‘margin’ of n + - on almost all of X (that is, on all but
a subset of X of probability less than ¢). We arrive at the following
definition.

Definition 21.8 Suppose that F is a class of functions mapping from
a set X to the interval [0,1]. Then F generalizes from approximate
interpolation if for any €,4,n,7 € (0,1), there is mo(e, 6,7m,7) such that
Jor m > mo(c,d,7,7), for any probability distribution p in X and any
function t : X — [0,1], the following holds: with probability at least
1-4, if z = (21,%2,...,Zm) € X™, then for any f € F -satisfying
|f () — t(zs)| < fori=1,2,...,m, we have

piz:|f(z) -t <n+v}>1-e

Characterizing strong generalization from interpolation

The problem of strong generalization from approximate interpolation
may be considered within the loss functions framework. To see this, let
us fix n € (0,1) and take £7 to be the loss function given by

no 0 ifly-yI<n,

Owy) = { 1 otherwise.
Then, for fized 7, strong generalization from interpolation follows from
convergence of sample errors to errors for the loss function £7. We know
from previous results that we have such convergence if the fat-shattering
dimension of the loss class is finite. In this case, the loss class ¢}, is {0,1}-
valued, so its fat-shattering dimension is precisely its VC-dimension,
which depends on 7. We therefore find the following scale-sensitive di-
mension relevant.
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Definition 21.9 For a class of functions mapping from a set X into
[0,1], and for n € (0,1), let the band dimension be

band(F,n) = VCdim(¢}).

The following characterization of strong generalization from approx-
imate interpolation can be obtained. The proof is omitted (but note

that the upper bound on sample complexity follows immediately from
Theorem 4.8).

Theorem 21.10 Let F be a set of functions from X to [0,1]. Then
F strongly generalizes from approzimate interpolation if and only if
band(F,n) is finite for all n € (0,1). When this condition holds, e
suitable mo(e, 8,7) is

;: (band(F, n)n (?) +lo (%)) ‘

Furthermore, we must have

mo(e,6,n) > max (? In (%) , 5‘1?-6- (band(F,n) — 2))

when § < 1/6 and band(F,7n) > 4.

This theorem provides a characterization of strong generalization form
approximate interpolation in terms of the the scale-sensitive band dimen-
sion, and furthermore it shows that the sample size mg is quantified fairly
precisely by this dimension. However, the band dimension is not one of
the standard dimensions we have encountered thus far. The following
result relates it to the more familiar pseudo-dimension. The (non-trivial,
technical) proof is omitted.

Theorem 21.11 Suppose that F is a class of functions mapping into
[0,1). Then F has finite band dimension if and only if it has finite
pseudo-dimension. Furthermore, for all 1 € (0,1),

Pdim(F) .
0mE/7) < band(F,~) < 15 Pdim(F).

We therefore have the following, more appealing, characterization of
strong generalization from approximate interpolation.

Theorem 21.12
Suppose that F is a set of functions from a set X to [0,1). Then F
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strongly generalizes from approzimate interpolation if and only if F has
finite pseudo-dimension. Furthermore, if F' has finite pseudo-dimension
Pdim(F) then a sufficient sample length function for generalization from
approzimate interpolation is

mole, 6,m) = % (15 Pdim(F)In (%) +In (%)) ,

and any suitable sample length function must satisfy

mo(e, 6,m) > 2%6 (% ~1+6In (%))

foralln>0,¢e€(0,1/2) and § € (0,1).

Thus, although it looks like a very difficult definition to satisfy, strong
generalization from approximate interpolation holds for all classes of
finite pseudo-dimension. The fact that finite pseudo-dimension is neces-
sary is in contrast to the learnability results of previous chapters, where
it is enough to have finite fat-shattering dimension.

Characterizing generalization from interpolation

Since finite pseudo-dimension is a sufficient condition for strong gener-
alization from approximate interpolation, it is also a sufficient condi-
tion for (the weaker) generalization from approximate interpolation. It
should be noted that in analysing generalization from interpolation, we
cannot express the problem within the loss functions framework, since
the ‘sample-based’ condition |f(z;) — t(z;)| < 7 is a statement about
the sample error for the loss function £7 (explicitly, the sample error
with respect to £ is zero), whereas the required approximation condi-
tion, p {z : |f(z) — t(z)| < n + 7} is a statement about the different loss
function £7+7. It is, however, possible to obtain the following ‘conver-
gence result’.

Theorem 21.13 Suppose that F is a class of functions mapping from a
domain X to the real interval [0,1] and that F has finite fat-shattering
dimension. Let t be any function from X to R and let v,1,¢ € (0,1).
Let p be any probability distribution on X and m any positive integer.
Define Pyag to be the probability of x € X™ for which there exists f € F
with

n{ec € X :|f(x) -t)| >2n+7}>e¢
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and

|f(z:) — t{z:)l <n, (1 < i < m).
Then

Poad < 2Noo (3, F,2m) 272,

We then have the following characterization of generalization from
approximate interpolation. The sufficiency follows from Theorem 21.13;
the proof of necessity is omitted.

Theorem 21.14 Suppose that F is a class of functions mapping into
[0,1]. Then F generalizes from approzimate interpolation if and only if
F has finite fat-shattering dimension. Furthermore, there is a constant
¢ such that if F has finite fat-shattering dimension, then a sufficient
sample length for generalization from approzimate interpolation is

mo(e,d,7,n) = E (ln <%) + fatp (%) In? (@%ﬁg_@)) .

It should be noted that for generalization from interpolation, it suffices
to have finite fat-shattering dimension, whereas the stronger condition
of finite pseudo-dimension must hold for strong generalization. The two
models therefore turn out to be quite different.

A result on large margin classification

It is useful to compare some earlier results with those just given. In
particular, it is possible to use our results on generalization from ap-
proximate interpolation to derive a result useful for a restricted form of
the classification learning model of Part 2. Recall that in this frame-
work, we consider a real function class F that is used for classification.
For a probability distribution P on X x {0, 1}, a positive number -y, and
f € F, we define

erp(f) = P{(z,y) : margin(f(z),y) <}

In Chapter 10, we proved the following convergence result: with the
usual notation,

P™ {some f in F has erp(f) > €r](f) + €}

< 2N (%,F, 2m) exp (—58ﬂ> .
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The following result is similar to this, but is more specialized in two
ways: first, it concerns only distributions P that correspond to a target
function ¢t : X — {0,1} together with a probability distribution x on
X (rather than some arbitrary distribution on X x {0,1}); secondly, it
bounds the probability that erp(f) > € and ér)(f) = 0, rather than
providing a bound on the probability that these two quantities differ by
a certain amount (where the latter can be non-zero).

Theorem 21.15 Suppose that F is a set of functions mapping from a
set X to[0,1], thatt : X — {0,1}, and that pu is a probability distribution
on X. Let v € (0,1/2] and € € (0,1). For f € F, define er,(f,t) to be
pi{z : sgn(f(z) — 1/2) # t(z)}, the error incurred in using the function
f for binary classification. Let Pyoq be the probability of € X™ for
which some f € F has margin(f(z;),t(x;)) > v fori =1,...,m, but
ery(f,t) > €. Then Poad < 2Noo (7/2, F,2m) 27¢™/2,

Proof To prove this, we use the result of Theorem 21.13, which states
that for a,y € (0,1), if @ € X™ is the set of = for which there exists
f € F with

plre X :|f(@x)-t@)| 2a+}>e
and
|f(zi) - t(z:)| < @, (1 < i <m),
then p™(Q) < 2N (7/2, F,2m)27¢™/2, For a fixed v, we take a =
1/2—-+~. Then a+v = 1/2 and |f(z) — t(z)| < a + v if and only if
sgn(f(z) — 1/2) = t(z). Therefore,
piz € X :|f(z) - tz)| 2 a+ 7} =eru(f,1).
Furthermore, | f(z;) — t(z;)] < @ = 1/2 — « is equivalent to

margin(f(z:), ¢(z:)) >,

so it follows that Q is the set of z for which thereis f € F with er,(f,t) >
¢ and such that margin(f(z;),t(z;)) > v for i = 1,2,...,m. The result
follows immediately from this. a

21.5 Remarks

Theorem 21.1 gives an upper bound on estimation error that decreases
no faster than 1//m, with any suitable loss function. In Chapter 20,
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we proved faster convergence rates for convex function classes with
quadratic loss. Unfortunately, this result relied on properties of Hilbert
spaces that do not extend to arbitrary loss functions. The following ex-
ample shows that simple convex classes can exhibit this slow convergence
rate with the absolute loss function.

Example 21.16 Consider the problem of learning the (convez) class
of all [0, 1]-valued functions defined on a single point z, with respect to
the absolute loss. This problem is equivalent to estimating a random
y € [0,1] by choosing a number § € [0,1] that approzimately minimizes
the expected absolute difference E|j — y|. Let the probability distribution
of y satisfy Pr(y = 0) = a and Pr(y = 1) = 1 — o, where a is chosen
uniformly at random from the set {1/2+e}. It is easy to see that unless
i is to the same side of 1/2 as a, then E|j—y| is at least € bigger than its
optimal value. But Lemma 5.1 shows that this requires Q((1/€2)In(1/4))
ezamples.

21.6 Bibliographical Notes

The powerful loss function framework described in Section 21.1 is pre-
sented, for example, in (Vapnik, 1989). Haussler (1992) gives a lucid
decision-theoretic description of this approach.

The results on interpolation and approximate interpolation are from
(Anthony and Shawe-Taylor, 1994; Anthony and Bartlett, 1995; An-
thony, Bartlett, Ishai and Shawe-Taylor, 1996). The connection between
approximate interpolation and real classification learning was observed
in (Shawe-Taylor et al., 1998).

We conjecture that Theorem 21.5, the sample complexity bound for
multiple output networks, can be improved, since the proof of that the-
orem ignores the fact that the functions computed by different network
outputs share common computation units. Certainly the result can-
not be improved significantly for the case of a single network output.
However it seems likely that the dependence on s given in that theo-
rem is too strong. This conjecture is motivated by an analogous result
when the network output units are linear threshold units and the loss
function is the discrete loss (for which £(y,y2) takes the value 0 when
¥1 = Y2, and 1 otherwise); see (Natarajan, 1989; Shawe-Taylor and An-
thony, 1991; Anthony and Shawe-Taylor, 1993b).



Part four
Algorithmics






22
Efficient Learning

22.1 Introduction

In this part of the book, we turn our attention to aspects of the time
complexity, or computational complezily of learning. Until now we have
discussed only the sample complexity of learning, and we have been using
the phrase ‘learning algorithm’ without any reference to algorithmics.
But issues of running time are crucial. If a learning algorithm is to be
of practical value, it must, first, be possible to implement the learning
algorithm on a computer; that is, it must be computable and therefore,
in a real sense, an algorithm, not merely a function. Furthermore, it
should be possible to produce a good output hypothesis ‘quickly’.

One subtlety that we have not so far explicitly dealt with is that a
practical learning algorithm does not really output a hypothesis; rather,
it outputs a representation of a hypothesis. In the context of neural
networks, such a representation consists of a state of the network; that is,
an assignment of weights and thresholds. In studying the computational
complexity of a learning algorithm, one therefore might take into account
the ‘complexity’ of the representation output by the learning algorithm.
However, this will not be necessary in the approach taken here. For
convenience, we shall continue to use notation suggesting that the output
of a learning algorithm is a function from a class of hypotheses, but the
reader should be aware that, formally, the output is a representation of
such a function.

22.2 Graded Function Classes

Clearly, we have to be more precise about what we mean by a learning
algorithm working ‘quickly’. Suppose we have a learning algorithm for
a general class of neural networks, such as, say, the class of perceptrons.
If the algorithm is to be useful, then the time taken to learn using

299
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the algorithm should scale fairly modestly with the size of the network,
which in this case can be measured by the number of inputs. Otherwise
the algorithm may work quickly enough on the smallest networks but
impossibly slowly on the larger networks and would, arguably, be useful
only for ‘toy problems’.

To formalize this notion of ‘scaling’ with respect to the number of
inputs, we use the idea of a graded function class. First, we assume
that X,, is a subset of R®: usually, X, will equal R* or {0,1}". (In
the above example, X,, would be the set of all possible inputs = to the
n-input network in the class.) Furthermore, F,, will denote a set of real
functions defined on X,,. (In the above example, this would be the set of
functions computable by the network with n inputs.) In many cases, F,
will map just into {0,1}, in which case we call it a binary function class.
(We shall often use the notation H,, for such classes.) Given a function
class F,, for each positive integer n, we say that the union F = |J F,,
is a graded function class. Using the graded function class framework
will enable us to introduce some generality in our description of learning
algorithms and, furthermore, it will allow us to address issues of scaling
for learning algorithms.

Suppose that we have a family of neural networks {N,}, one for each
positive integer n, where NV, is a network on n inputs. Here, the appro-
priate graded function class is F = | J F,, where F,, is the set of functions
computable by network N,,. We may want to consider what might be
termed a ‘general’ learning algorithm for the class. This is an algorithm
that works in essentially the same manner on each of the networks NV,,.
For example, as we shall demonstrate shortly, there is a learning al-
gorithm for the perceptron that operates by solving a linear program.
The only essential difference between its actions on, say, the perceptron
with 17 inputs and the one with 25 inputs lies in the size of the linear
program; the method is fundamentally the same.

To formalize these notions, we need to define what we mean by a
learning algorithm for a graded function class. It is easy to modify
the definitions of a learning algorithm for a binary function class in the
model of Part 1, and of a learning algorithm for a real function class

the model of Part 3. (We shall not discuss the classification learning
model of Part 2.) For a graded binary function class H = |J H,, we let
Zyp = Xp % {0,1}. Then a learning algorithm for H is a mapping

o0 0 L
L:|yyzr-Hn
1

n=1m= n=1
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such that if z € Z7*, then L(z) € H,, and for each n, L is a learning
algorithm for Hy, in the sense of Definition 2.1.

The only difference between this definition and the basic notion of a
learning algorithm for an ungraded class is that we have now encapsu-
lated some sense of the ‘generality’ of the algorithm in its action over
all the H,,. We define a learning algorithm for a graded real function
class F = |JF, in the same way. It is now possible to study how the
‘complexity’ of a learning algorithm scales with n, and this is one of the
topics of the next section.

22.3 Efficient Learning

We now assume that learning algorithms are algorithms in the proper
sense (that is, that they are computable functions). We shall implicitly
use the ‘bit cost’ model of computation, in which it is assumed that
operations are performed on a fixed number of bits in one unit of time,
and that a single bit can be read or written in one unit of time. Thus,
even though we shall consider real-valued inputs and outputs, it is as-
sumed that those values are represented using a finite number of bits.
We would like the computation time of learning algorithms to grow only
slowly as the difficulty of the problem is increased. For instance, we
shall require that the computation time is polynomial in the input size.
By this we mean that as the number of input bits increases, the com-
putation time is no more than some fixed polynomial function of that
number. For convenience, we shall assume that the number of bits used
to represent each real number in the input is fixed, and consider how
the computation time grows with the number of real number inputs.
Suppose that L is a learning algorithm for a graded real function class
F = |JF,. (The same comments apply in the special case that F is
a graded binary function class.) An input to L is a training sample,
which consists of m labelled real vectors of length n (that is, m elements
of R*). It would be possible to use the total number of binary digits
in the input as the measure of input size, but there is some advantage
in keeping track of m and n separately and assuming that each real
number is represented with a constant number of bits. We shall use
the notation Rr(m,n) to denote the worst-case running time of L on a
training sample of m labelled examples, each of ‘size’ n. Thus, Ry(m,n)
is the maximum number of computation steps required for L to produce
an output hypothesis in F,, given a sample in Z*. (Notice that this
notation hides the dependence of running time on the precision of the
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real number inputs.) Clearly, n is not the only parameter with which the
running time of the learning procedure as a whole should be allowed to
vary, since decreasing either the confidence parameter § or the accuracy
parameter € makes the learning task more difficult. The total time taken
to produce an output hypothesis of accuracy ¢, with confidence given by
d, should vary in some appropriate way as 1/d and 1/e increase, but we
should not want a decrease in either € or § to result in too dramatic an
increase in the time taken for the learning task. We could simply ask
that the running time increases polynomially with 1/8 and 1/¢, but it is
reasonable for us to be more stringent about the dependence on 1/4 for
the following reason. If the length of training sample input to an efficient
learning algorithm is doubled, we might expect the probability that the
output hypothesis is ‘bad’ to be approximately squared. Motivated by
this, we shall ask that the running time of a learning algorithm L be
polynomial in m, and that the sample complexity mg(n,d,€) depend
polynomially on In (1/6). In the case of the accuracy parameter, we shall
ask that the running time of L be polynomial in m, and that its sample
complexity depend polynomially on 1/e. If both these conditions hold,
then the running time required to produce a ‘good’ output hypothesis
is polynomial in n, In(1/4) and 1/e.

Combining these three notions of efficiency together, we can now for-
mally define what we mean by an efficient learning algorithm for a
graded function class.

Definition 22.1 Let F = |J F,, be a graded class of functions and sup-
pose that L is a learning algorithm for F. We say that L is efficient
if:

(i) the worst-case running time Ry(m,n) of L on samples z € Z™
is polynomial in m and n, and

(ii) the sample complezity mp(n,e,8) of L on Fy, is polynomial in
n,1/e and In(1/6).

22.4 General Classes of Efficient Learning Algorithms

In earlier chapters, much emphasis was placed on SEM (sample error
minimization) and approximate-SEM algorithms. One can define a SEM
algorithm for a graded binary class H in the obvious manner, as an
algorithm that given any sample z € ZT*, returns a function h € H,, that
has minimal sample error €r,(h) on z. An approximate-SEM algorithm
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for a graded real function class F' = |J F, takes as input z € Z™ and
€ € (0,1) and returns f € F, suchthat ér,(f) < infyer, €r,(g)+e. Aswe.
noted earlier, it will not be possible in general to have a SEM algorithm
for a real function class, as the infimum may not be a minimum. It
is quite possible to consider approximate-SEM algorithms for binary
function classes, but given an approximate-SEM algorithm .4 for such a
class, we can readily construct a SEM algorithm. To see this, suppose we
are given a sample z € Z7 of length m, and that we take € in the input
to the approximate-SEM algorithm to be 1/m. Then, the algorithm
returns h € H,, such that

- . . 1
ér.(h) < glel}i éry(g) + —

But, since ér,(h) is 1/m times the number of z; on which 4 is ‘wrong’,
this means that

ér,(h) = glel}g ér,(g)-

In other words, given a sample 2, the algorithm L given by L(z) =
A(z,1/m), for z of length m, is a SEM algorithm. Thus the notion of
an approximate-SEM algorithm is crucial only for real function classes.

The following results show that the rate of growth with n of the ‘ex-
pressive power’—which, for a binary class, is the VC-dimension and,
for a real class is the fat-shattering dimension—determines the sample
complexity of learning algorithms. These theorems are immediate conse-
quences of the corresponding results for each subclass, H,, (Theorems 4.2
and 5.2) or F,, (Theorems 19.1 and 19.5).

Theorem 22.2 Let H = | H,, be a graded binary function class.

(i) If VCdim(H,) is polynomial inn, then any SEM algorithm for H
is a learning algorithm with sample complezity mr(n,e,d) poly-
nomial in n,1/e and In(1/6).

(ii) If there is an efficient learning algorithm for H, then VCdim(H,)
is polynomial in n.

Theorem 22.3 Let F = |J F,, be a graded real function class.

(i) If the fat-shattering dimension fatp, (a) is polynomial in n and
1/a, and L is the learning algorithm based on any approzimate-
SEM algorithm A (as in Theorem 19.1), then L has sample com-
plezity m(n,¢,8) polynomial in n, 1/e and In(1/6).
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(ii) If there is an efficient learning algorithm for F, then fatp, (a) is
polynomial in n and 1/a.

We now turn our attention to the running time of SEM algorithms and
approximate-SEM algorithms. Having seen that, in many circumstances,
such algorithms yield learning algorithms, we now investigate the effi-
ciency of these derived learning algorithms. Theorem 22.5 below shows
that the following definition of efficiency of SEM and approximate-SEM
algorithms is sufficient.

Definition 22.4 An efficient approximate-SEM algorithm for the graded
real function class F = |J F, is an algorithm that takes as input z € Z™
and ¢ € (0,1) and, in time polynomial in m,n and 1/e, produces an
output hypothesis f € F,, such that

ér.(f) < giEan,. €r (g) +e.

An efficient SEM algorithm for the graded binary function class H =
U H,, is an algorithm that takes as input z € Z* and, in time polynomial
in m and n, returns h € H, such that

ér;(h) = grg}? ér,(g).

Theorem 22.5 (i) Suppose that H = J H,, is a graded binary function
class and that VCdim(H,,) is polynomial in n. Then, any efficient SEM
algorithm for H is an efficient learning algorithm for H.

(i) Suppose that F = |JF, is a graded real function class and that
fatp, (a) is polynomial in n and 1/a. Then any learning algorithm for
F based on an efficient approzimate-SEM algorithm is efficient.

Proof We prove the second part of the theorem, the proof of the first
part being similar (and more straightforward). Suppose A is an efficient
approximate-SEM algorithm for the graded real class F = |J F,, and that
fat g, () is polynomial in n and 1/a. Let L be the learning algorithm
based on A (as described in Theorem 19.1). Theorem 22.3 shows that
the sample complexity mg(n,¢,d) is polynomial in n,1/e and In(1/4).
Given z € Z™, L computes A(z,€g), where ¢g = 16//m. Since A is
efficient, the time taken to produce A(z, €o) is polynomial in m,n and
1/€o = /m/16; thus, Rr(m,n) is polynomial in m and n. a
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22.5 Efficient Learning in the Restricted Model

We now briefly describe how the preceding approach can be modified to
enable us to discuss efficient learnability of binary classes in the restricted
model - of learning. Suppose that we have, as usual, a graded binary
function class H = |J H,,, where H, is defined on some subset X,, of
RR™. Recall that, in the restricted model of learning, rather than having
labelled examples generated according to some distribution on one of the
sets Z, = X, x {0,1}, we instead have some target function t, belonging
to Hy,, together with a probability distribution x on X,,. The error of
h € H,, with respect to t and p is then defined to be

er,(h,t) = p{z € X, : h(z) # t(z)}.

The training samples (rather than being arbitrary members of ZI*) are
of the form

z= ((zl, t(wl))a (.’B2, t(:tz)), ceey (mma t(wm))) »

which we call the training sample corresponding to z and ¢. A learning
algorithm L for the graded class (in the restricted model) maps from
such training samples to H, and satisfies the following conditions for
2€ZP.

(i) L(z) € Hy,, and
(i) L is a learning algorithm for H,, (in the restricted model).

As described earlier, the restricted model may be regarded as a straight-
forward special case of the standard model of learning of Part 1. In the
restricted model, a learning algorithm is said to be efficient if its sample
complexity mp(n,¢,8) (the least sufficient value of mo(n, ¢, d) for learn-
ing) is polynomial in n,1/e and In(1/4), and its worst-case running time
R (m,n) on training samples of length m for target functions in H,, is
polynomial in m and n.

Given that the training samples arise from functions in H, for any
training sample z in the restricted model, there will always be a function
in H with zero sample error on z; in other words, there will always
be some function h consistent with 2. Efficient consistent-hypothesis-
finders are the natural counterpart in the restricted model to the SEM
algorithms for general learning of binary classes.

Definition 22.6 An algorithm L is an efficient consistent-hypothesis-
finder for the graded binary class H = |J H, if, given any training sample
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z of length m for a target function in H,,, L halts in time polynomial in
m and n and returns h = L(2) € H,, such that ér,(h) = 0.

Theorem 22.7 Suppose that H = |J H,, is a binary graded function
class and that VCdim(H,,) is polynomial in n. Then any algorithm that
is an efficient consistent-hypothesis-finder for H is an efficient learning
algorithm for H.

Proof Suppose L is an efficient consistent-hypothesis-finder for H. Then,
by Theorem 4.8, L is a learning algorithm for H and its sample com-
plexity on H,, is bounded by

% (vcdim(H,,) In (-163) +In (%)) ,

which is polynomial in n,1/e and In(1/48). Furthermore, from the defi-
nition, its worst-case running time Ry (m,n) is polynomial. O
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we have termed the restricted model), placed great emphasis on con-
siderations of computational complexity. The efficiency of learning in
the restricted model was further investigated by Blumer et al. (1989).
(See also (Haussler et al., 1991).) The definitions we give of efficient
learning algorithms, where the running time of the algorithm and its
sample complexity are separated, are standard or based on standard
definitions: other definitions are possible, but they are-all, in a sense,
equivalent; see (Haussler et al., 1991) for the case of the restricted model.
For a detailed treatment of the bit cost model of computing, see (Aho
and Ullman, 1992).
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Learning as Optimization

23.1 Introduction

The previous chapter demonstrated that efficient SEM and approximate-
SEM algorithms for graded classes F = |J F,, give rise to efficient learn-
ing algorithms, provided the expressive power of F,, grows polynomially
with n (in, respectively, the binary classification and real prediction
learning models). In this chapter we show that randomized SEM and
approximate-SEM algorithms suffice, and that a converse result then
holds: if efficient learning is possible then there must exist an efficient
randomized approximate-SEM algorithm. (Hence, for the case of a bi-
nary function class, there must be an efficient randomized SEM algo-
rithm.) This will establish that, in both models of learning, efficient
learning is intimately related to the optimization problem of finding a
hypothesis with small sample error.

23.2 Randomized Algorithms

For our purposes, a randomized algorithm has available to it a random
number generator that produces a sequence of independent, uniformly
distributed bits. We shall assume that examining one bit of this random
sequence takes one unit of time. (It is sometimes convenient to assume
that the algorithm has access to a sequence of independent uniformly
distributed integers in the set {0,1,...,I}, for some I > 1; it is easy to
construct such a sequence from a sequence of random bits.) The ran-
domized algorithm .4 uses these random bits as part of its input, but it is
useful to think of this input as somehow ‘internal’ to the algorithm, and
to think of the algorithm as defining a mapping from an ‘external’ input
to a probability distribution over outputs. The computation carried out
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by the algorithm is, of course, determined by its input, so that, in par-
ticular, it depends on the particular sequence produced by the random
number generator, as well as on the ‘external’ input. When we speak of
the ‘probability’ that A has a given outcome on an (external) input z,
we mean the probability that the stream of random numbers gives rise
to that outcome when the external input to the algorithm is z.

The following definition is really two definitions in one. It describes
both what is meant by an efficient randomized learning algorithm for a
graded binary class in the model of Part 1, and for a graded real function
class in the model of Part 3. In order to simplify the notation, we shall
let Z, = X, x {0,1} if H = |JH, is a graded binary function class,
and Z, = X, x [0,1] if F = | F, is a graded class of real functions.
Generally, it will be clear from the context which of these is intended.
A training sample of length m is then an element of Z7* for some pos-
itive integer n. Notice that the meaning of the input space Z, and the
measure of error are different in the two cases.

Definition 23.1 With the above notation, a randomized learning algo-
rithm for the graded class F = | F,, is a mapping

[o <] [> o0
L:fopxyUzr-Ur

n=1m=1 n=1
such that if z € Z*, then L(b,z) € F,,, and:

e given any € € (0,1),
e given any d € (0,1),
o for any positive integer n,

there is an integer mo(n,¢€,d) such that if m > mo(n,¢,8) then
o for any probability distribution P on Z,,

if z is a training sample of length m, drawn randomly according to the
product probability distribution P™, and b is a sequence of independent,
uniformly chosen bits, then with probability at least 1 — 4, the hypothesis
L(z) output by L satisfies

erp(L(b,2)) < optp(Fy) +e.
That is, for m > mo(n,¢,9),
EP™ {erp(L(b,2)) < optp(Fp) +€} > 1-4.

We say that F = |J F,, is learnable if there is a learning algorithm for
F.
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We shall be interested in randomized SEM and approximate-SEM
algorithms.

Definition 23.2 (i) A randomized algorithm A is an efficient random-
ized SEM algorithm for the graded binary function class H = |JH,, if
given any z € Z, A halts in time polynomial in n and m and outputs
h € H, which, with probability at least 1/2, satisfies

ér,(h) = grél}{n ér,(g).

(i) A randomized algorithm A is an efficient randomized approximate-
SEM algorithm for the graded function class F = |J F;, if the following
holds: given any z € Z7*, and any € € (0,1), A halts in time polynomial
inn, m and 1/¢ and outputs f € F, which, with probability at least 1/2,
satisfies

ér.(f) < giean'.. éry(g) +e

Suppose we run a randomized approximate-SEM algorithm & times
on a fixed input (z,¢€), keeping the output hypothesis f*) with mini-
mal sample error among all the k hypotheses returned. In other words,
we take the best of k iterations of the algorithm. Then the probabil-
ity that f(® has error that is not within e of the optimal is at most
(1/2)*, since the algorithm will have ‘“failed’ k times to find a good hy-
pothesis. This is the basis of the following result, which shows that, as
far as its applications to learning are concerned, an efficient randomized
approximate-SEM algorithm is as useful as its deterministic counterpart.

Theorem 23.3 (i) Suppose that H = ) Hy, is a graded binary function
class and that VCdim(H,) is polynomial in n. If there is an efficient
randomized SEM algorithm A for H, then there is an efficient learning
algorithm for H that uses A as a subroutine.

(ii) Suppose that F = |J F, is a graded real function class with fatr, (a)
polynomial inn and 1/a. If there is an efficient randomized approzimate
SEM algorithm A for H, then there is an efficient learning algorithm for
F that uses A as a subroutine.

Proof We first prove (i). The key idea is that we take the best of k
iterations of A for a suitable k, absorbing the randomness in the action
of A into the ‘4’ of learning. Suppose then that A is a randomized SEM
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algorithm. Theorem 4.3 shows that, for any probability distribution P
on Zy,, we have

lerp(h) —é€r,(h)] <e forallhe H, (23.1)

with probability at least 1 — 4T1;(2m)exp (—€2m/8). If (23.1) holds
and h € H,, has

érz(h) = grg}}l ér.(9),

then, as in the proof of Theorem 4.2, we have erp(h) < optp(Hp) + 2¢.
Now, given a random sample z € Z7, we take z as the input to the
randomized SEM algorithm 4, and run A4 a total of k times on this
input, taking h(*¥) to be the best of these k iterations. Because A is a
randomized SEM algorithm, the probability that h(¥) satisfies

s (Y = min &
érz(h'") Jnin €. (9)
is at least 1 — 1/2%. Hence,

EP™ {erp(h(")) > optp(Hy) + 2e}

IA

EP™ {erp(h<'°)) > optp(Hy) + 2¢

ér: (k) = min e‘rz(g)}
g n

+1/2F

IN

415 (2m) exp (—€>m/8) + 1/2%.
If we choose k such that 1/2* < §/2, we have

EP™ {erp(h(")) > optp(H,) + \/ % In (8 115 (2m) /5)} <.

Define
mo(n,€,68) = S:; (VCdim(H,) In(128/€?) + In(8/4)) ,

and choose k = m/32+1. Then for m > mo(n, ¢, 8), we have 1/2% < §/2,
and so

EpP™ {erp(h(")) > optp(Hy) + e} <é.

Thus, the algorithm L that iterates the randomized SEM algorithm
k = m/32 + 1 times and takes the best of k iterations is a learning al-
gorithm. Its sample complexity is no more than me. Since VCdim(H,)
is polynomial in n, mg(n, €, d) is polynomial in n,1/e and In(1/4). Fur-
thermore, its worst-case running time on a sample in Z7* is at most k
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times the worst-case running time of A. Since k is linear in m, and since
the running time of A4 is polynomial in m and n, the running time of L
is polynomial in m and n.

The proof of (ii) is similar, and makes use of Theorem 19.1. O

23.3 Learning as Randomized Optimization

We have seen that efficient approximate-SEM and SEM algorithms (both
deterministic and randomized) can in many cases be used to construct
efficient learning algorithms. The next result proves, as a converse,
that if there is an efficient learning algorithm for a graded class then
necessarily there is an efficient randomized SEM or approximate-SEM
algorithm (depending on whether the class is real or binary).

Theorem 23.4 (i) If there is an efficient learning algorithm for the
graded binary class H = |J Hy, then there is an efficient randomized
SEM algorithm.

(i) If there is an efficient learning algorithm for the graded real function
class F = |J F,, then there is an efficient randomized approzimate-SEM
algorithm.

Proof (i) is implied by (ii) and the observation that the existence of
an efficient approximate-SEM algorithm for a binary class implies the
existence of an efficient SEM algorithm for the class. Hence, we need
only prove (ii). Suppose that L is an efficient learning algorithm for the
real class F' = |J F,,. We construct the following randomized algorithm
A, which we shall prove is an efficient randomized approximate-SEM
algorithm. Given as input to A the sample z € Z7* and the number
e € (0,1), we use the randomization allowed in A4 to form a sample
of length m* = mg(n,¢,1/2), in which each labelled example is drawn
according to the distribution P that is uniform on the labelled examples
in z and zero elsewhere on X, x [0, 1]. (This probability is defined with
multiplicity; that is, for instance, if there are two labelled examples in 2
each equal to z, we assign the labelled example z probability 2/m rather
than 1/m.) Let z* denote the resulting sample. Feeding z* into the
learning algorithm, we receive as output f* = L(z*) and we take this to
be the output of the algorithm A; that is, A(z,€) = f* = L(2*). With
probability at least 1/2 (since we took ‘6 = 1/2’ when determining the
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length m* of 2*),
erp(f*) < optp(F) +e.

But for any f, by the definition of P, erp(f) = €r,(f). So with proba-
bility at least 1/2,

€r:(f*) =erp(f*) < optp(F)+e
= g‘enl«f.. erp(g) +¢
= glEann ér(g) +e.

This means that A is a randomized approximate-SEM algorithm. Be-
cause L is efficient, m* = mr(n,¢€,1/2) is polynomial in  and 1/¢. Since
the sample z* has length m*, and since L is efficient, the time taken by L
to produce f* is polynomial in m*,n and 1/e, and hence A has running
time polynomial in n,m and 1/e, as required. O

23.4 A Characterization of Efficient Learning

We may summarize the results of this and the previous chapter in the
following theorem.

Theorem 23.5 Suppose that F = | J F,, is a graded function class. Then
F i3 efficiently learnable if and only if fatp, (a) is polynomial in n and
1/a and there is an efficient randomized approrimate-SEM algorithm
for F.

A special case of this result applies to binary classes.

Theorem 23.8 Suppose that H = |JH,, is a graded binary function
class. Then H is efficiently learnable if and only if VCdim(H,,) is poly-
nomial in n and there is an efficient randomized SEM algorithm for
H.

23.5 The Hardness of Learning

We concentrate now on graded binary function classes. In order to dis-
cuss further the computational complexity of learning, we shall assume
that the reader has a rudimentary understanding of the basic concepts of
computational complexity theory—in particular, the notion of an ‘NP-
hard’ problem. (Loosely speaking, a problem is NP-hard if it is at least
as hard as one of a number of standard problems that are thought not to
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be solvable by a polynomial-time algorithm.) We have seen that H can
be efficiently learned only if there is an efficient randomized SEM algo-
rithm for H. In order to prove that it is unlikely that such an algorithm
exists, it is enough to show that a certain decision problem associated
with H is NP-hard. To this end, we define the following decision prob-
lems. The first asks if there is a function h in H achieving a certain
fit to the sample—that is, disagreeing on at most a specified number
of entries of the sample. The second asks if there is a function in H
consistent with the sample.

H-F1T
Instance: z € (R* x {0,1})™ and an integer k between 1 and m.
Question: Is there k € H, such that ér.(h) < k/m?

H-CONSISTENCY
Instance: z € (R® x {0,1})™.
Question: Is there k € H, such that ér.(h) = 0?

Clearly H-CONSISTENCY is a sub-problem of H-FIT, obtained by set-
ting k = 0. Thus, any algorithm for H-FIT can be used also to solve
H-CONSISTENCY.

To obtain hardness results for learning, we need some more standard
notions from computational complexity theory. We say that a random-
ized algorithm .4 solves a decision problem II if the algorithm always
halts and produces an output—either ‘yes’ or ‘no’—such that if the an-
swer to II on the given instance is ‘no’, the output of A is ‘no’, and if
the answer to II on the given instance is ‘yes’ then, with probability at
least 1/2, the output of A is ‘yes’. A randomized algorithm is said to
be polynomial-time if its worst-case running time (over all instances) is
polynomial in the size of its input. (In both of the decision problems
defined above, the size of the input is m.) The class of decision prob-
lems II that can be solved by a polynomial-time randomized algorithm
is denoted by RP.

Theorem 23.7 Let H = |J Hy, be a graded binary function class. If
there is an efficient learning algorithm for H then there is a polynomial-
time randomized algorithm for H-FIT; in other words, H-FIT is in RP.

Proof If H is efficiently learnable then, by Theorem 23.4, there exists an
efficient randomized SEM algorithm .4 for H. Using A, we construct a
polynomial-time randomized algorithm B for H-FIT as follows. Suppose
that z € (R x {0,1})™ and k together constitute an instance of H-FIT,
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and hence an input to B. The first step of the algorithm B is to compute
h = A(2), the output of A on 2. This function belongs to H, and, with
probability at least 1/2, €r,(h) is minimal among all functions in H,.
The next step in B is to check whether €r,(h) < k/m. If so, then the
output of B is ‘yes’ and, if not, the output is ‘no’. It is clear that B is
a randomized algorithm for H-FIT. Furthermore, since A runs in time
polynomial in m and n, and since the time taken for B to calculate ér,(h)
is linear in the size of 2, B is a polynomial-time algorithm. O

Of course, this result also shows that if H is efficiently learnable then
there is a polynomial-time randomized algorithm for H-CONSISTENCY.
If we believe that RP # NP—and this is widely held to be the case—
then the following two immediate results will enable us to prove that in
some cases efficient learning is impossible, as we shall see in the next
two chapters.

Theorem 23.8 Suppose RP # NP and that H is a graded class of
binary functions. If H-FIT is NP-hard then there is no efficient learning
algorithm for H.

Corollary 23.9 Suppose RP # NP and that H is a graded class of bi-
nary functions. If H-CONSISTENCY is NP-hard then there is no efficient
learning algorithm for H.

23.6 Remarks

For a class F of real-valued functions, it is easy to show that the following
‘multiple choice’ decision problem can be efficiently solved if and only if
the class is efficiently learnable.

APPROX-F-FIT

Instance: z € (R” x {0,1})™, and a, ¢ € [0,1].
Question: Choose one of

(a) infrerér:(f) > o,

(b) infrerér.(f) <a+e

We require that a randomized algorithm produces a correct response
with probability at least 1/2 in time polynomial in 1/¢ and the input
size. Notice that, in contrast with H-FIT (the corresponding problem for
binary classes), sometimes both responses to the decision problem are
correct. This arises because in this case we only need to solve an approz-
imate SEM problem. We do not consider the APPROX-F-FIT problem
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further; in what follows, it is convenient to deal with the approximate-
SEM problem directly.

The restricted model

Just as efficient learning of binary classes is linked to the existence of an
efficient SEM algorithm, it can be shown that in the restricted model
of learning binary classes, efficient learning is related to the existence of
an efficient consistent-hypothesis-finder, as the following result shows.
Here, the notion of an efficient randomized consistent-hypothesis-finder
is the obvious one, obtained from the definition of a (deterministic)
consistent-hypothesis-finder in the same way that the definition of an
efficient randomized SEM algorithm is obtained from that of an efficient
SEM algorithm. Also, the definition of a randomized learning algorithm
is the obvious generalization of the definition in Section 2.4. The re-
sult can be proved in a way analogous to the proofs of Theorems 23.3
and 23.4.

Theorem 23.10 Suppose that H = |J H,, is a graded binary function
class. Then H is efficiently learnable in the restricted model if and only
if VCdim(H,,) is polynomial in n and there is an efficient randomized
consistent-hypothesis-finder for H.

In particular, therefore, if the H-CONSISTENCY problem is NP-hard,
and RP # NP, then H is not efficiently learnable even in the restricted
model, an observation that strengthens Corollary 23.9.

23.7 Bibliographical Notes

The importance of consistent-hypothesis-finders in the restricted model
of learning was demonstrated by Blumer et al. (1989) and Pitt and
Valiant (1988). The link between the consistency problem and efficient
learning in the restricted model was also discussed in (Natarajan, 1989).
The classic book on complexity theory is (Garey and Johnson, 1979);
there have been many more recent books, including that of Cormen,
Leiserson and Rivest (1990).
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The Boolean Perceptron

24.1 Introduction

In this chapter, we consider the computational complexity of learning
the class of functions computed by the boolean perceptron (the simple
perceptron with binary inputs). Section 24.2 shows that learning with
this class is difficult, and so we consider two relaxations of this learning
problem: learning the subclass of simple perceptrons that have fixed fan-
in (that is, those in which the number of non-zero weights is constrained),
and learning in the restricted model. In both cases, there are efficient
learning algorithms.

24.2 Learning is Hard for the Simple Perceptron

Let BP, denote the set of boolean functions from {0,1}" to {0,1} com-
puted by the boolean perceptron, and let BP = |JBP, be the corre-
sponding graded function class. The BP-FIT problem is as follows.

BP-FIT
Instance: z € ({0,1}" x {0,1})™ and an integer k between 1 and m.
Question: Is there h € BP, such that ér.(h) < k/m?

In this section, we show that this problem is NP-hard by establishing
that it is at least as hard as a well-known NP-hard problem in graph
theory.

A graph G = (V,E) consists of a set V of vertices and a set E of
unordered pairs of vertices. Thus, if the vertices are labelled with the
numbers 1,2,...,n, then a typical edge is a 2-set {i, j}. For convenience,
we denote this simply by i (which, it should be realized, means the same
as ji). A vertez cover of the graph is a set U of vertices such that for

316
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each edge ij of the graph, at least one of the vertices ¢, § belongs to U.
The following decision problem is known to be NP-hard.

VERTEX COVER
Instance: A graph G = (V, E) and an integer k < |V|.
Question: Is there a vertex cover U C V such that |U| < k?

Note that if the graph has r edges and the vertex set V has cardinality
n, then the size of an instance of this problem is O(rn).

Our proof that BP-FIT is NP-hard is a standard reduction argument:
we show that, given an instance of the VERTEX COVER problem, we can
construct (in polynomial time) an instance of BP-FIT (of a size polyno-
mially related to that of the instance of the vertex covering problem) in
such a way that the answer to BP-FIT on this constructed instance is
the same as the answer to VERTEX COVER on the original instance. This
establishes that, if there was a polynomial-time algorithm for BP-FIT,
then we could solve VERTEX COVER in polynomial time by transforming
any instance of this problem to one of BP-FIT and applying the algo-
rithm for BP-FIT. The details of this transformation are given below.

A typical instance of VERTEX COVER is a graph G = (V, E) together
with an integer £ < |V|. We shall assume, for simplicity, that V =
{1,2,...,n} and we shall denote the number of edges, |E|, by r. Notice
that the size of an instance of VERTEX COVER is Q(r +n). We construct
z = 2(G) € ({0,1}>" x {0,1})%>"+" as follows. For any two distinct
integers i, j between 1 and 2n, let e; ; denote the binary vector of length
2n with ones in positions ¢ and j and zeroes elsewhere. The sample 2(G)
consists of the labelled examples (e;n+i,1) for i = 1,2,...,n and, for
each edge ij € E, the labelled examples (e;,j,0) and (€p+in+j,0). Note
that the ‘size’ of z is (2r +n)(2n + 1), which is polynomial in the size of
the original instance of VERTEX COVER, and that z(G) can be computed
in polynomial time.

For example, if a graph G has vertex set V = {1,2, 3,4} and edge set
E = {12,23,14,13}, then the sample 2(G) consists of the following 12
labelled examples:

(10001000, 1), (01000100, 1), (00100010, 1), (00010001, 1),
(11000000, 0), (00001100, 0), (01100000, 0), (00000110, 0),
(10100000, 0), (00001010, 0), (10010000, 0), (00001001, 0).

Lemma 24.1 Given any graph G = (V, E) with n vertices, and any
integer k < n, let z = z(G) be as defined above. Then, there ish € BP,,
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such that €r,(h) < k/(2n) if and only if there is a vertez cover of G of
cardinality at most k.

Proof Suppose first that there is such an h and that this is represented
by the state w = (wy,ws,...,wsy,,0) of the boolean perceptron on 2n
inputs. (Thus w = (wy,ws,...,ws,) € R?" is a weight vector and 4 a
threshold.) We construct a subset U of V' as follows. If h(e;n+:) = 0,
then we include ¢ in U; if, for ¢ # j, h(eij) = 1 or h(entin+j) = 1 then
we include either one of i,j in U. Because h is ‘wrong’ on at most k of
the examples in z, the set U consists of at most k vertices. We claim
that U is a vertex cover. To show this, we need to verify that given
any edge ij € E, at least one of 4,7 belongs to U. It is clear from the
manner in which U is constructed that this is true if either h(e; n+i) =0
or h(ejn+j) = 0, so suppose that neither of these holds; in other words,
suppose that h(e;n+i) =1 = h(ej,n+;). Then we may deduce that

Wi + Wni > 0, W5 + wnyj 26,
and so
Wi + Wj + Wnyi + Wnyj > 26;
that is,
(wi + wj) + (Wi + Wnyj) > 26.

From this, we see that either w; +w; > 0 or Wn4i +wny; > 6 (or both);
thus, h(e; ;) = 1 or h(entin+j) = 1, or both. Because of the way in
which U is constructed, it follows that at least one of the vertices i, j
belongs to U. Since ij was an arbitrary edge of the graph, this shows
that U is indeed a vertex cover.

‘We now show, conversely, that if there is a vertex cover of G consisting
of at most k vertices, then there is a function in BP»,, with sample error
at most k/(2n) on 2(G). Suppose U is a vertex cover and |U| < k. Define
a state w = (wy,ws,...,Wsn,0) of the boolean perceptron as follows: let
#=1and, fori=12,...,n,

U (s i £ -1

P e 1 ifigU.
We claim that €r,(h) < k/(2n). Observe that if ij € E, then, since U
is a vertex cover, at least one of i,j belongs to U and hence the inner

products wTe; ; and wTep4inyj are both either 0 or —2, less than 6,
80 h(e;j) = h(entin+;) = 0. The function h is therefore correct on all
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the examples in z(G) arising from the edges of G. We now consider the
other types of labelled example in z(G): those of the form (e;n+i,1).
Now, wTe; nt4 is =2 if i € U and is 2 otherwise, so h(e; n4i) = 0if i € U
and h(e;n+i) = 1 otherwise. It follows that h is ‘wrong’ only on the
examples e; ,+; for i € U and hence
U

. k
el’z(h) = '_n < 5;,

as claimed. O

This result shows that the answer to BP-FIT on the instance (2(G), k)
is the same as the answer to VERTEX COVER on instance (G, k). Given
that 2(G) can be computed from G in time polynomial in the size of G,
we therefore establish the following hardness result.

Theorem 24.2 BP-FIT is NP-hard.

Corollary 24.3 IfRP # NP then there is no efficient learning algorithm
for BP =) BP,.

24.3 Learning is Easy for Fixed Fan-In Perceptrons

Since Theorem 24.2 shows that learning the simple perceptron is diffi-
cult, it is natural to seek easier versions of this learning problem, so that
we can determine what features of the problem make it difficult. In this
section, we consider simple perceptrons in which the number of non-zero
weights is constrained.

We say that a simple perceptron with weights w € R® and threshold
# € R has fan-in k if the number of non-zero components of w is no more
than k. An easy VC-dimension argument shows that such functions can
compute no more than

(em/(k + 1))*+! (Z) = O(m**+1nk)

dichotomies of m > k points in R®. For fixed k, this is polynomial in m
and n, so an obvious candidate for an efficient learning algorithm is an
algorithm that enumerates all dichotomies that fixed fan-in perceptrons
can compute, and returns the one with minimal sample error. It turns
out that, for fixed k, there is such an efficient learning algorithm.
Figure 24.1 shows pseudocode for the procedure Splitting which,
given a training set S of size m, returns a set of dichotomies of S.
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argument: Training set, S = {zi1,...,zm} CR"
returns: Set of weights and thresholds, W = {(w,#8)}

function Splitting(S)
wW:=0
P:=0
for all t; <--- <t from {1,...,n}
for all ! from {1,...,k+1}
for all ry <. .- <r; from {1,...,m}
for all ay,---, 1 from {1}
if there is a solution (w,#) to the system
of linear equations

Ty, w+0=q; i=1,...,1
satisfying
{i cwi # 0} = {tl,tz,...,tk}

then

S={reS:w-z2-6<0}
S"={z€S:w-2-6>0}

if {§',58"}¢P
then
W =W U {(w,8)}
P:=PuU{s, Ss"}
endif
endif
endfor
endfor
endfor
endfor
return W

end

Fig. 24.1. Pseudocode for the Splitting procedure.

Theorem 24.4 The procedure Splitting returns all dichotomies of its
argument S C R™ that can be computed by some simple perceptron with
fan-in no more than k. For |S| = m, it takes time O(n?*2km2k+3),

Proof We first show that the procedure returns all dichotomies. Notice
that any dichotomy computed by a perceptron with fewer than & non-
zero weights can be computed by one with exactly k non-zero weights.
Since Splitting enumerates all possible k-subsets of the n weights, we
need only show that, for any dichotomy {S’,S"} of m points in § C R¥
that can be computed by a simple perceptron (that is, a perceptron
with k inputs), there is a subset of the m points {z,,, ...,z } of size no
more than k + 1, and a sequence (a,...,0;) € {£1}, so that for every
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solution (w, ) to the equations
T wt 0 =0y i=1,...,1

the simple perceptron with weights w and threshold 6 computes the
dichotomy. To see this, consider a dichotomy {S’,S"} computed by a
simple perceptron. By suitably shifting and scaling § and w, we can
obtain a pair (w,6) for which

>1 ifz; €9,

‘”"""*o{ <-1 ifz; €8".

These m inequalities define a closed nonempty polyhedron in the space
RF+1 of parameters (w, ). It is well known that every closed nonempty
polyhedron in R¥+! contains the nonempty intersection of some number
8 < k + 1 of the hyperplanes that make up its surfaces. Hence, we can
choose some set of s < k + 1 equations of the form

w-z;+60 =0

(for a; € {£1}), and for all solutions (w,8), the simple perceptron
with those parameters computes the dichotomy {S’,S"”} of S. Hence,
Splitting enumerates all possible dichotomies.

We now prove the bound on the computation time of the algorithm.
Clearly, the innermost loop (searching for a solution to the system of
linear equations) is executed

k+1
(7’:) Z (’7) 9! < pkok+lpk+l
=1

times. Each iteration involves the solution of no more than k + 1 lin-
ear equations in no more than k + 1 variables, and so takes time O(k®)
(using, for instance, Gaussian elimination). Since P contains distinct di-
chotomies of S, it has size O(m*+1n*), and so checking whether {S’, S"'}
is in P takes time O(|P|m) = O(m**+2n*). So the total time is

O(n*2EH I mk+1 (k3 + mh+2nk)) = O(n?k2km2k+3),
a

Corollary 24.5 For fized k, define the graded class H* = | J,, HE, where
HE is the class of simple perceptrons defined on R™ with fan-in no more
than k. The class H* is efficiently learnable.
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24.4 Perceptron Learning in the Restricted Model

We now turn our attention to the learnability of the boolean perceptron
in the restricted model of learning. As we shall see, there is an efficient
learning algorithm in the restricted model, in contrast to the results of
Section 24.2. By Theorem 22.7, since VCdim(BP,) = n + 1, which is
certainly polynomial in n, any efficient consistent-hypothesis-finder for
BP, will constitute an efficient learning algorithm. We discuss here
two distinct consistent-hypothesis-finders for BP,; one based on linear
programming and one based on the perceptron learning algorithm (as
described in Chapter 1).

Using linear programming

Suppose that 2 = ((£1,%1),-- -, (€m,¥m)) is a training sample for some
function in BP,. For a weight vector w € R", threshold & € R and real
number v, define the column vector

w
w=| 6 |,
y

and the row vectors
v = ((2y1 - 1)‘”?7 1- 23/:‘, _1) ’
fori=1,...,m. Then v;w > 0 is equivalent to

zTw—-0>~ if y;=1, and (24.1)
Tw-0< -y if g =0. (24.2)

Hence, a solution @ to the linear program

n
U2
maximize 7 subject to ) w>0

Um

that has v > 0 corresponds to a consistent hypothesis. Clearly, the
feasible region is nonempty, since @ = 0 satisfies the constraints. (Notice
that, if there is a solution with v > 0, the feasible region is unbounded.
This is easy to remedy, by adding the condition ) ., |wi| + (8] < 1,
which can be represented with the addition of n» + 1 slack variables and
another 2n + 3 linear constraints.)
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It is known that there are algorithms for linear programming that
are efficient. For instance, interior point methods such as Karmarkar’s
algorithm have polynomial running time. We have therefore established
the following result.

Theorem 24.8 The consistent-hypothesis-finder described above, using
any efficient algorithm for linear programming (such as Karmarkar’s al-
gorithm), constitutes an efficient consistent-hypothesis-finder (and hence
is an efficient learning algorithm in the restricted model) for the boolean
perceptron.

Using the perceptron learning algorithm

The well-known perceptron learning algorithm (discussed in Chapter 1)
was originally motivated by biological considerations and is ‘incremen-
tal’, in the sense that small changes are made to the weight vector in
response to each labelled example in turn. For any learning constant
n > 0, the perceptron learning algorithm L, acts sequentially as follows.
Suppose that z € Z is a training sample. The algorithm L, maintains
a current state, w = (w,8), where w € R* and 8 € R, which initially has
the all-0 vector as weight vector, and threshold 0. The state is updated
sequentially as the algorithm cycles through each of the labelled exam-
ples in the training sample. When the algorithm considers a labelled
example (z,y), where z € R* and y € {0,1}, it calculates the label
h(z) = sgn(w - z — @) assigned to by the perceptron in state w (where,
as before, w - £ = wTz, the inner product of w and z) and it updates
the state to the new state, w' = (w',8') given by

!

w = w+n(y - h(z))z,
¢ = 6-n(y—h(z)).

Notice that the state w is only updated on a labelled example if the
perceptron in state w misclassifies the example. It is convenient to think
of the algorithm L,, as maintaining the hypothesis h, which is updated
each time it misclassifies an example. The algorithm operates on a train-
ing sample by repeatedly cycling through the m examples, and when it
has completed a cycle through the training data without updating its
hypothesis, it returns that hypothesis. The following result, the Percep-
tron Convergence Theorem shows that if the training sample is consistent
with some simple perceptron, then this algorithm converges after a finite
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number of iterations. Since the theorem allows examples in R", it im-
plies the corresponding result for examples in {0, 1}" that are consistent
with some t € BP,.

Theorem 24.7 Define Z, = R® x {0,1}, and fiz a training sample
z2=((z1,41).++»(Tm,Ym)) € Z'. Suppose that there is a weight vec-
tor w* and threshold 0* satisfying ||w*||* + 6*% = 1 for which y; =
sgn(w* -z; —8*) fori=1,...,m. Define

vy =min{|w* -z; - 6*|:i=1,...,m},

and suppose v > 0. Then for all n > 0, the hypothesis maintained by
the perceptron algorithm L, converges after no more than (RZ + 1)/+2
updates, where R = max; ||z;||, and the limiting hypothesis is consistent
with the training data 2.

Proof Let (w;,0;) be the state maintained by L, immediately before
the ith update. Suppose that the ith update occurs on example (z;,y;).
This example must have been misclassified by the perceptron with state
(wi,8;), so sgn(w; - z; — 6;) =1 —y;, and hence

w1 = w;+1(y; —sgn(w; - z; — 0:)) z;
w; + (2y; - 1)nz;.

Simila.rly, 0,'4.1 = 0,' - (2y,- - 1)’)7.

Now, to measure the progress of the algorithm, we consider the evo-
lution of the squared norm, ||w;||* + 6%, and observe that it grows with
each mistake. In particular,

w*  wipy + 00 = w'owi +60%0; + 2y; - Vn(w* - z; —0%)
> wew; +60%0; + 1,

and so w* -wiy1 +8*0;41 > iny. Since ||w*||? +6*2 = 1, this implies—by
the Cauchy-Schwarz inequality (Inequality (1.7) in Appendix 1)—that
lwisr || + 67 > (in)*.
On the other hand, this squared norm cannot be too large, since
wisaI? + 624,
= Jlwill® + 67 +7* (llzs11* + 1) + 2(2y; — L) (w; - =5 - 65)
< llwill? + 62 + 7 (lls11* + 1)

and s0 ||lwi41||? + 67 < in?(R? +1). Combining these inequalities shows
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that
(#m)? < Nlwisall® + 6} < in(R? + 1),
and so i < (R? + 1)/+? as required. O

Since the perceptron algorithm makes an update at least once in ev-
ery cycle through the training data, and each iteration involves O(n)
computation steps, this theorem implies that L, has time complexity
O((R? + 1)mn/~?).

A natural question is whether this consistent-hypothesis-finder is ef-
ficient. Clearly, if the margin + is sufficiently large (for instance, if 1/
is no larger than some polynomial in n), then the algorithm would be
efficient. However, for samples of size polynomial in n, the margin v can
be exponentially small in n. We shall show that, in fact, the algorithm
is not efficient by proving that for a sample of size polynomial in n, the
number of complete cycles required can be exponential in n.

In order to show that this procedure is inefficient, we consider the
boolean function fs,, of 2n variables that has formula

fon = u2n A (U2n_1 \' (U2n_2 A (u2n_3 \% ( S(uz Aug)). ).

Here, we use the standard notation for describing boolean functions
in terms of the literals u;,us,..., the OR connective vV and the AND
connective A. We shall use the following two lemmas.

Lemma 24.8 Let the set Sy, C {0,1}2" of cardinality 2n + 1 be defined
for each positive integer n as follows. Sy = {01,10,11}, and, forn > 1,

Snt1 = {z01:z € S,} U{11...10,00...011}.
Then the only function h € BP,, consistent with fan on Sy, 18 fon itself.

Proof We prove by induction that the only h € BP», consistent with
fon on Sy, is fon itself and that, if fs, is represented by the state (w,6).
of the perceptron, then each weight w; is positive. This is easily seen to
be true for n = 1. For, suppose that h € BP; is such that h agrees with
f2 on S;. If h is represented by weight vector (w,w:) and threshold 6
then, since h(10) = f2(10) = 0 and h(01) = f2(01) = 0, we have w; < 6
and w; < 0. But we also know that h(11) = f5(11) = 1, so wy +w2 > 6.
It follows that w;,ws > 0 and hence § > 0. Therefore h(00) = 0 =
£2(00). Since A(z) = fo(z) for all four elements of {0,1}2, h equals fs,
as required. Let us now make the inductive hypothesis that n > 1 and
that if h € BP,, agrees with f5, on S,, then h = fa, (in other words,



326 The Boolean Perceptron

Sp specifies far,) and, furthermore, that any weight vector representing
fon has all its weights positive. Now suppose that h € BP,, o agrees
with font+o on Spy1. Suppose also that h is represented by weight vector
(w1,w2,. .., Wan, Want1,Wanys2) and threshold . The examples z01, for
T € Sy,, are in S,+1 and so h agrees with fa,,4.2 on all such examples.
But, since fon4+2(y01) = fon(y) for all y, and since S, specifies for, the
function g defined by g(y) = h(y01) must equal fo,. Therefore, for all
y € {0,1}°",
h(y01) = fan(y) = fon+2(y01).

Now, for y € {0,1}?",

2n
fan(y) = 9(y) = h(y01) = sgn (Z WiYi + Wany2 — 0) ,

i=1
and so f,y, is represented by weight vector (w;,ws,...,ws,) and thresh-
old 8 — wapn42. Given the inductive hypothesis, we deduce that
w1, Wa,...,Wsn > 0.

This, coupled with the fact that h(11...10) = fon42(11...10) = 0,
implies that for all y € {0,1}%",

h(y10) = 0 = fon42(y10),
because for any y € {0,1}?", we have
®10) - w < (11---10) - w < 6.
Similarly, since h(00...011) = fon42(00...011) =1,

h(yll) = 1 = fan42(yll)
for all y € {0,1}2". Let z be any element of {0,1}?" such that fo,(2) =
0. From the fact (established above) that h(y01) = fon(y) for all y, we
have h(201) = fan(z) = 0; furthermore, h(z11) = 1, as just shown. Since
changing z,+1 from 0 to 1 changes h(zzn4+11) from 0 to 1, weney > 0
and hence, since h(11...10) = 0, we have that for all y € {0,1}?",

h(y00) = 0 = fan42(y00).

We have now shown that h(z) = fani2(z) for all z € {0,1}>**2, and
hence h = fon+2, and we have also established that w; > 0 for i =
1,2,...,2n + 1. Since h(11...10) = 0 and h(00...011) = 1, we have
2n
Wan42 + Want1 2 6> ) wi + Wanp

i=1
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and hence
2n
Wontz > Zwi >0,
i=1
completing the proof. O

Lemma 24.9 Let n be any positive integer and suppose fa,, is repre-
sented by the state w = (w,8) of the boolean perceptron, where w € R*"

and 0 € R. Then wa, > (\/ﬁ)n_1 min(w;, ws).

Proof We prove the result by induction on n. It is clearly true when
n = 1. For n = 2, since f4((0011)) = 1 and f£,((1110)) = 0, we have
wy + w3 > 6 and w3 + we + wy < 8. Combining these inequalities gives

wy > we + wy > 2min(w;, ws).

Suppose the result is true for n = s and consider n = s + 1. Now, if
fas+2 is represented by (w, @) then fo, is represented by weight vector

(wy,...,wys) and threshold @ — wos43. To see this, observe that
28 28
Y wimi>0-wrep = ) wii+wze >0
i=1 i=1

= f2s+2($1’m27-"1m28’0) 1) = 1’

and this last condition holds precisely when fo,(z1,...,z,) = 1. So, by
the induction hypothesis, for each k < s, wyr > \/§k_l min(w , we).
Now, for each j < s, there are z,y such that fo,+2(z) =0, fas42(y) =1
and such that z,y differ only in entries 25 and 2j +1, with (z)2j41 =0 =
(¥)2;, and (z)2; =1 = (y)2j41. Hence w-z < § < w -y, so that waj4y >
wa;. Also, since fa,42((110101...101)) = 1 and fas42 ((111...10)) = 0,
we have

wy +wy+ w3+ -+ w1 <O Swy+we +wy ke + W2,
so that
Wogq2 > W3 + W5 + -+ + Wos—1 + Wast1 > W2 + Wy + -+ - + Wy,

this last inequality since wgj41 > wa;. Consider the case s = 2: here,
using the fact that w, > 2min(w;,w,), we obtain

we > min(wy, w2)(1 +2) = \/53_1 min{w; , ws),
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as required. For general s > 2, by the inductive hypothesis,

Woepe > min(wy,ws)(1+ V3 + N \/58_1)
= min(w;,w)(V3 —1)/(vV3-1),
and the result follows from the fact that
V3 -1)/(V3-1)> V3,
for s > 3. O

Combining these two results, we obtain the following result, which
shows that the consistent-hypothesis-finder is inefficient.

Theorem 24.10 For any fized > 0, the consistent-hypothesis-finder
arising from the perceptron learning algorithm L, is not efficient.

Proof Suppose we take the target ¢ to be fo,, and we take as the input to
the consistent-hypothesis-finder a sample z(™ consisting of the members
of Sy, labelled by their classifications according to fo, . Suppose the
initial state of the perceptron is ((00,...,0),0). Let u be the number of
updates made before a function h, consistent with the sample, is pro-
duced. By Lemma 24.8, this consistent function & must be f3, itself.
Therefore, if it is represented by the state (w,8), w;, w2 > 0 and, by
Lemma 24.9, ws,, > (\/5)“-l min(w;,ws). After 4 updates, the maxi-
mum entry in the new weight vector w' is at most un and the minimum
non-zero entry is certainly at least 7. Hence the ratio of maximum entry
to minimum non-zero entry is at most u. But, since in the final output
weight vector this ratio is at least wa,/ min(wy,ws) > (\/5)"_1, it fol-
lows that u > (\/§)n_1, which is exponential in n, and hence in the size
of the sample 2. O

This result also holds if # = 5(n) is any function of n, and also if the
initial state of the perceptron is chosen differently.

24.5 Remarks

The perceptron convergence theorem (Theorem 24.7) tells us something
about the computational cost of learning simple perceptrons in a re-
stricted version of the real classification problem defined in Chapter 9.
(In this restricted model, we assume that there is some target function
in the class of simple perceptrons that classifies all examples correctly,
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with some positive margin 4.) We can define efficient learning in this
model in the obvious way. Since a simple perceptron is a thresholded
linear function, the graded class BP is equivalent to the family of thresh-
olded versions of functions in F = |J,, F;,, where the linear functions in
F,, satisfy

f@)=w-z-06
for some w € R* and 0 € R and any z € {0,1}", and
llw||* + 6% = 1. (24.3)

The perceptron convergence theorem implies that there is a polynomial-
time classification learning algorithm for F' (in this restricted sense).

Instead of restricting the functions in F;, with (24.3) so that the Eu-
clidean norm of the augmented weight vector is bounded by 1, we could
insist that the 1-norm is bounded by 1, that is,

n
>l +16) = 1.
i=1
In this case, the linear programming approach shows that there is a
polynomial-time classification learning algorithm for F in this restricted
sense.

24.6 Bibliographical Notes

The problem of finding a half-space that best matches an arbitrary di-
chotomy of a set of points in {0,1}" is listed in (Garey and Johnson,
1979) as an NP-complete problem; see (Johnson and Preparata, 1978)
and (Hoffgen, Simon and Horn, 1995). (However, modified versions of
the perceptron algorithm perform reasonably well in practice; see, for
example, (Gallant, 1990).)

The procedure Splitting for enumerating dichotomies computed by
perceptrons with bounded fan-in was presented in (Lee et al., 1996). It
is similar to an algorithm earlier proposed by Faragé and Lugosi (1993).
For details on Gaussian elimination, see (Watkins, 1991). The simple
general approach of constructing learning algorithms that enumerate all
dichotomies of the training examples was discussed by Blumer et al.
(1989).

The linear programming approach to finding a consistent perceptron
is well-known. Polynomial-time algorithms for linear programming are
described in (Karmarkar, 1984). In fact, the time grows polynomially
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in the number of bits required to represent the solution. Thus, the
boolean perceptron is efficiently learnable in the restricted model only if
the weights and threshold of some perceptron consistent with the data
can be represented in only polynomially many bits. Fortunately, any
boolean perceptron can be represented by another with integer weights
in which the ratio of the largest to the smallest weight is no more than
20(nInn) - (See (Muroga, 1965; Muroga, 1971).)

Pitt and Valiant (1988) showed that, if the weights of a boolean per-
ceptron are restricted to the set {0,1}, then even in the restricted case,
learning is hard.

Rosenblatt (1958) gives a proof of the perceptron convergence theo-
rem; see also (Block, 1962; Nilsson, 1965).

The fact that the perceptron algorithm can be inefficient is shown in
(Anthony and Shawe-Taylor, 1993c; Anthony and Shawe-Taylor, 1993a)
(see also (Anthony et al., 1995)). Baum (1990a) has shown that the
algorithm is efficient in the restricted model when the training data is
uniformly distributed on the unit sphere in R". Bylander (1994; 1997)
shows that modifications of the algorithm can be efficient for certain dis-
tributions, even in the presence of certain types of random classification
noise.
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Hardness Results for Feed-Forward Networks

25.1 Introduction

In this chapter we show that the consistency problem can be hard for
some very simple feed-forward neural networks. In Section 25.2, we show
that, for certain graded spaces of feed-forward linear threshold networks
with binary inputs, the consistency problem is NP-hard. This shows
that for each such family of networks, unless RP = NP, there can be no
efficient learning algorithm in the restricted learning model and hence,
in particular, no efficient learning algorithm in the standard model of
Part 1. These networks are somewhat unusual in that the output unit
is constrained to compute a conjunction. In Section 25.3, we extend the
hardness result to networks with an arbitrary linear threshold output
unit, but with real inputs. In Section 25.4, we describe similar results
for graded classes of feed-forward sigmoid networks with linear output
units, showing that approximately minimizing sample error is NP-hard
for these classes. Unless RP = NP, this shows that there can be no
efficient learning algorithm in the restricted learning model of Part 3.

25.2 Linear Threshold Networks with Binary Inputs

For each positive integer n, we define a neural network on n inputs as
follows. The network has n binary inputs and k+1 linear threshold units
(k > 1). It has two layers of computation units, the first consisting of k
linear threshold units, each connected to all of the inputs. The output
unit is also a linear threshold unit, with a connection of fixed weight
1 from each of the other k threshold units. The output unit has fixed
threshold k. The effect of this arrangement is that the output unit
computes the conjunction of the first-layer linear threshold units. We

331



332 Hardness Results for Feed-Forward Networks

n input units

k first-layer units

1 output unit

Fig. 25.1. The feed-forward two-layer linear threshold network that computes
the function class N} ,,.

shall refer to this network (and the set of functions it computes) as NX .
The network is illustrated in Figure 25.1.

The consistency problem for the graded space Nf = |J, N X o 18 as
follows.

NE-CONSISTENCY
Instance: z € ({0,1}" x {0,1})™.
Question: Is there h € NX ,, such that é, (k) = 07

We shall prove that N%-CONSISTENCY is NP-hard (provided k > 3), by
relating the problem to a well-known NP-hard problem in graph theory.
Let G be a graph with vertex set V and edge set E. For a positive
integer k, a k-colouring of G is a function x : V = {1,2,...,k} with
the property that, whenever ij € E, then x(i) # x(j). The following
decision problem for k-colourings is known to be NP-hard for each k > 3.

k-COLOURING
Instance: A graph G.
Question: Does G have a k-colouring?
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Note that the integer k is not part of the instance. The assertion
that k-COLOURING is NP-hard for £ > 3 therefore means that, for each
fized k > 3, it is NP-hard to determine whether a given graph has a
k-colouring. Thus, for example, it is NP-hard to determine whether a
given graph is 3-colourable.

Let G be a graph with vertex set V = {1,2,...,n} and edge set E,
with r = [E|. We construct a training sample

z=2(G) € ({0,1}" x {0,1})™+"*+

as follows. Denoting by e; the vector in {0,1}" with a 1 in position ¢ and
0 elsewhere, the sample z consists of the following labelled examples:

o (e;,0),fori=1,2,...,n;
e (e; +ej,1) for each edge ij € E;
¢ (0,1), where 0 is the all-0 vector.

For example, suppose that G is the graph on vertex set {1,2,3,4,5},
with edge set {12,14,15,23,34,45}. Then the corresponding training
sample z(G) consists of the 12 labelled examples

(10000, 0), (01000, 0), (00100, 0), (00010, 0), (00001, 0),
(11000, 1), (10010, 1), (10001, 1), (01100, 1), (00110, 1), (00011, 1),
(00000, 1).

The following result establishes the link between the consistency prob-
lem for the neural network and the graph colouring problem.

Theorem 25.1 There is a function in N} . that is consistent with z(G)
if and only if the graph G is k-colourable.

Proof A state w of N ,’ﬁ,,, is described completely by the thresholds on
each of the first-layer units and by the weights on the connections be-
tween each of these and each of the input units. We shall denote by w;
and 6; the weight vector and threshold of the Ith unit in the first layer,
forl =1,2,...,k, so that w; ; is the weight on the connection from input
unit % to first-layer unit [.

Consider a function h € N}, and let hy, hs,..., ke : R* = {0,1}
be the k functions computed by the units in the first layer. By the
construction of the network, h is the conjunction h = hy Aha A--- A hg
of these functions. Suppose that h is consistent with the training sample.
This means that there are weight vectors w;,ws,...,w; and thresholds
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61,0,,...,0; such that, for all ! between 1 and k, hy(z) = 1 if and only
if the inner product w,Ta: is at least 6;. Note that, since 0 is labelled as
a positive example, we have 8; < 0 for each [ between 1 and k. For each
vertex ¢ in G, h(e;) = 0, and so there is at least one function h,, (1 <
m < k) for which hp,(e;) = 0. Thus we may define x : V — {1,2,...,k}
by

x(i) = min{m : hp,(e;) = 0}.

It remains to prove that x is a colouring of G. Suppose that x(¢) =
x(j) = m, so that hp(e;) = hm(e;) = 0. Then,

w?,;e,- <0, wgej <bpn
and so, recalling that 8,, < 0, we have
T, R T
wh(ei +e;j) =w, e + wpej < O + 0 < Op.

It follows that hy,(e; +e;) = 0 and, hence, h(e; +e;) = 0. Now if ij were
an edge of G, then we should have h(e; + ¢;) = 1, because we assumed
that h is consistent with the training sample. Thus ij is not an edge of
G, and x is a colouring, as claimed.

Conversely, suppose we are given a colouring x : V — {1,2,...,k}.
For I between 1 and k, define the weight vector w; as follows:

-1, ifxG) =1,
Wi —{ 1, otherwise,

and take the threshold 6; to be —1/2. Let hy,hs,...,h; be the corre-
sponding linear threshold functions, and h their conjunction (which is
computable by N ,’\"n). We claim that h is consistent with z(G). Since
0 > 6, = —1/2 it follows that h;(0) = 1 for each I, and so h(0) = 1. In
order to evaluate h(e;), note that if x(¢) = m then
whe; = wpi=-1< ‘-';-,

80 hy,(e;) = 0 and h(e;) = 0, as required. Finally, for any ! between 1
and k, and for any edge ij, we know that at least one of x(i) and x(j)
is not I. Therefore, for any I,

T
wy (e; + ;) = wy,i + w,j,

where either both of the terms on the right-hand side are 1, or one is
1 and the other is —1. In either case, the inner product exceeds the
threshold —1/2, and hy(e; +¢;) = 1for each I. Thus h(e;+e;) =1. O
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Given the NP-hardness of k-COLOURING, and the fact that z(G) can
be computed in polynomial time, this reduction establishes the hardness
of the consistency problem.

Corollary 25.2 Let k > 3 be any fized integer. Then NX-CONSISTENCY
is NP-hard.

Having established that the. consistency problem is NP-hard for each
of the classes of networks, we now have the following hardness result for
learning.

Corollary 25.3 Let k be any fized integer, k > 3. Suppose that N, /’\‘,n is
the network described above and let H,, be the set of functions computable
by N k’n. Then, unless RP = NP, there is no efficient learning algorithm
for the graded class H = |J H,,.

25.3 Linear Threshold Networks with Real Inputs

The result of the previous section is limited, since it shows that learning
is difficult for a rather unusual network class, that of two-layer linear
threshold networks in which the output unit is constrained to compute
a conjunction. In this section, we extend the result to linear threshold
networks with an arbitrary linear threshold output unit.

For each k > 3 and n > 1, define the class N,’f of two-layer linear
threshold networks as follows. A network in N¥ has n real inputs, k
linear threshold units in the first layer, and one linear threshold output
unit. The following result extends Corollary 25.3 from the class N} to
the class N¥ = J,, NE.

Theorem 25.4 Let k be any fized integer that is at least 3. Suppose
that Nk is the network described above and let H, be the set of functions
computable by NX. Then, unless RP = NP, there is no efficient learning
algorithm for the graded class H = |J Hy,.

Proof We use the reduction of Theorem 25.1, and augment the inputs
with two extra (real) components, which we use to force the output unit
to compute a conjunction.

Specifically, given a graph G with n > 3 vertices, we show that there
is a training sample #(G) that is consistent with a function in N¥ if
and only if G is k-colourable. Furthermore, 2(G) can be computed in



336 Hardness Results for Feed-Forward Networks

Fig. 25.2. The sets Sin and Sout used in the proof of Theorem 25.4, for the
case k = 5. The points in S, are marked as crosses; those in S,u¢ are marked
as circles.

polynomial time. The sample Z = Z(G) consists of the following labelled
examples:

¢ ((0,0,e;),0), fori=1,2,...,n;

¢ ((0,0,e; + €;),1) for each edge ij € E;
¢ (0,1), where 0 is the all-0 vector;

e ((s,0),1), for s € Siy C R?; and

e ((s,0),0), for s € Sou C R?,

where S;;, and Sy Wwill be defined shortly. Here, the first three types of
labelled examples are those used in the reduction described in the proof
of Theorem 25.1, augmented with two real inputs set to zero. The sets
Sin and Soy both have cardinality 3k. Each point in Sj, is paired with
a point in S,y¢, and this pair straddles some edge of a regular k-sided
polygon in R? that has vertices on the unit circle centred at the origin,
as shown in Figure 25.2. (We call this pair of points a ‘straddling pair’.)
The midpoint of each pair lies on some edge of the polygon, and the
line passing through the pair is perpendicular to that edge. The set of
3k midpoints (one for each pair) and the k vertices of the polygon are
equally spaced around the polygon. Let a denote the distance between
a point in Sj,; U Sy and its associated edge. Clearly, since the points
in {(s,0) : 8 € Sin} are labelled 1 and those in {(s,0) : 8 € Sout}
are labelled 0, for every straddling pair described above, any consistent
function in N has some hidden unit whose decision boundary separates
the pair. It is easy to show using elementary trigonometry that there is
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a constant ¢ such that, if @ < c/k, no line in R? can pass between more
than three of these pairs, and no line can pass between three unless they
all straddle the same edge of the polygon. Since k lines must separate
3k straddling pairs, and the origin must be classified as 1, any function
in N¥ that is consistent with # can be represented as a conjunction of
k linear threshold functions. Clearly, the extra input components do
not affect the reduction from the proof of Theorem 25.1. Thus, there
is a function in N¥ consistent with #(G) if and only if the graph G is
k-colourable. One can show fairly directly that this is also true if the
components of vectors in Sj, and Syt must be ratios of integers, provided
the integers are allowed to be as large as ck?, for some constant ¢ (the
proof is omitted). Hence, for each k, the number of bits in Z(G) is linear
in the size of the graph G. 0O

It is clear from the proof that the same result is true if the output unit
is chosen from any class of boolean functions that contains conjunction.

25.4 Sigmoid Networks

Fix a positive constant K and let o : R — [0, 1] be a monotone function
satisfying the Lipschitz constraint

lo(a1) — (@) < lo — e

for all a;,a2 € R Then define N2, as the class of two-layer sigmoid
network with n real inputs, two units in the first layer, each with the acti-
vation function o, and a single linear output unit, with weights bounded
by K and no threshold. That is, N2, computes the class

F = {:D 2 wla(vl °27+’v1,o) +w20(v2 °$+‘l}2,o) :
|wil, lwe| < K, v1,v2 € R®, vy 0,020 € R} .

Consider the following approximate-SEM problem for the graded space
N2 =U, NC o
NZ2-apPrROX-SEM

Instance: z = ((z1,41),. .-, (Tm,ym)) € (R* x {0,1})™.
Problem: Find f € N7, such that

& (f) = 13 (fl) - ) < inf &) + g

t=1
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The following theorem implies that the class N2 is not efficiently learn-
able in the restricted model of Part 3, unless RP = NP. We omit the
proof.

Theorem 25.5 The problem N2?-APPROX-SEM is NP-hard.

A similar result applies to larger networks. Let o : R = [0,1] be a
monotone function, and define N}, as the class of two-layer sigmoid
network with n real inputs, k units in the first layer, each with the acti-
vation function o, and a single linear output unit, with positive weights
summing to one, and no threshold. That is, N,';,,, computes the class

k
F = {xt—) nga(v,--x+vi,o):

i=1

k
viER",vi,OGR,WgZO,Zw,~=1}.
i=1
Consider the followmg approximate-SEM problem for the graded space
Ne=U, NP | where p is some polynomial.

NP-APPROX-SEM
Instance: z = ((z1,11),.-., (Tm,ym)) € (R* x {0,1})™.
Question: Find § € N2 such that

1

é.(f) = Z(f(m.) ¥)’ < mf erz(f) + m——— 6p(n)om’

l—l

The following theorem shows that, unless RP = NP, N? is not efficiently
learnable in the restricted model of Part 3. We omit the proof.

Theorem 25.6 There is a polynomial p such that NP-APPROX-SEM is
NP-hard.

25.5 Remarks
Two hidden unit linear threshold networks

Corollary 25.2 shows that N*-CONSISTENCY is NP-hard for k¥ > 3. In
fact, this problem is also NP-hard for k = 2, but the graph-colouring
reduction does not establish this (since 2-colouring is easy). Instead, we
show that N2-CONSISTENCY is at least as hard as the SET-SPLITTING
decision problem, defined as follows:
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SET-SPLITTING

Instance: A set S = {£1,%2,...,%Z.} and a collection A = {4, As,..., A}
of subsets of S.

Question: Are there subsets S1,5: of S such that § = §1US2 and such that,
for each i between 1 and I, A; does not lie entirely within $; or S2?

In fact, the set-splitting problem is a generalization of 2-colouring.
The pair (S, A) is a hypergraph—a graph in which edges are sets of
vertices of arbitrary size—and the set-splitting problem is equivalent to
finding a 2-colouring of this hypergraph so that no edge in .4 has all
vertices of the same colour.

For a given instance of SET-SPLITTING, let us define a training sample
z(A) € ({0,1}" x {0,1})** as follows. The negative examples in z(.A)
are v;,vs,...,Vn, where, for ¢ between 1 and n, v; has a 1 in position
i and O in every other position. The positive examples in z(A) are
a3, az,...,a; where, for i between 1 and l, a; has a 1 in position j if
z; € A; and a 0 in position j if z; € A;. It can be shown that the
answer to the SET-SPLITTING problem in instance A is ‘yes’ if and only
if the answer to N2-CONSISTENCY on instance sample z(.A) is ‘yes’.
From this, the NP-hardness of N2-CONSISTENCY follows.

25.6 Bibliographical Notes

The reduction used to prove Theorem 25.1 and the corresponding result
for networks with two units in the first layer (described in Section 25.5)
are due to Blum and Rivest (1992) (see also (Anthony and Biggs, 1992)).
The proof is based on a proof due to Pitt and Valiant (1988) that learning
k-term DNF is hard in the restricted model. Blum and Rivest also gave
an extension to networks with two hidden units and an arbitrary linear
threshold unit at the output. The extension of Theorem 25.4, using real
inputs, is from (Bartlett and Ben-David, 1999).

Earlier, Judd (1990) proved NP-hardness results for an approximate-
SEM problem for certain linear threshold networks. DasGupta, Siegel-
mann and Sontag (1995) proved NP-hardness of binary classification
learning with two layer networks of units in which the first-layer units’
activation function is a certain piecewise-linear function.

It has long been known that gradient descent algorithms for sigmoid
networks can fail because of local minima (see, for example, (Sontag and
Sussmann, 1989)). In fact, Auer, Herbster and Warmuth (1996) have
shown that the number of local minima can be exponentially large in
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the number of network parameters. See also (Sontag, 1995), which gives
upper bounds on the number of such local minima.

The results of Section 25.4, and the proofs of Theorems 25.5 and 25.6
are due to Jones (1997). Vu (1998) presents stronger results for sigmoid
networks with an additional condition on the rate at which the activation
function o approaches its asymptotic values. In that case, he shows that
approximate sample error minimization over N¥ is hard for all k > 3,
provided the approximation error is smaller than some threshold that de-
pends only on k and n, and not on the sample size m. Vu also gives hard-
ness results for approximate sample error minimization over two-layer
networks with linear threshold hidden units and a linear output unit.
Related results are given in (Bartlett and Ben-David, 1999). Bartlett
and Ben-David (1999) also show that approximate sample error mini-
mization over certain classes of linear threshold network is hard. (The
approximate sample error minimization problem is defined for binary-
valued function classes in the obvious way, although it is not sufficient
for the pattern classification problem studied in Part 1.)

The results of this chapter do not rule out the possibility that we
can efficiently choose a function with error near-minimal over a certain
neural network class, provided that the function is not restricted to
the same class. For instance, if we use the class of linear threshold
networks with two units in the first hidden layer as our touchstone class
(see Section 2.5), it may be possible to efficiently choose a function
that has error not much worse than that of the best network in the
touchstone class. Baum (1990b) has shown that this is possible with a
fixed input dimension, and with arbitrary input dimension provided the
distribution is spherically symmetric. Another approach is to allow the
training algorithm to also determine the.size of the network; a number
of algorithms of this kind have been proposed (see, for example, (Frean,
1990; Brent, 1991)), and we shall see two such algorithms in the next
chapter.

Another way to make the learning problem easier is to give the learn-
ing algorithm more power. For instance, if we allow the algorithm to
ask an expert for the labels associated with points in the input space of
its choosing, this can significantly simplify the learning problem. There
are a number of positive results for neural networks in models that al-
low membership queries (see (Angluin, 1988; Angluin, 1992; Kearns and
Vazirani, 1995)) of this kind. For instance, Hancock, Golea and Marc-
hand (1994) have proved such a result for two-layer linear threshold
networks in which each input unit is connected to no more than one



25.6 Bibliographical notes 341

first-layer unit, and Baum (1990c; 1991) has proved a result of this kind
for linear threshold networks with up to four hidden units.



26

Constructive Learning Algorithms for
Two-Layer Networks

26.1 Introduction

In this chapter, we consider learning algorithms for classes F' of real-
valued functions that can be expressed as convex combinations of func-
tions from some class G of basis functions. The key example of such a
class is that of feed-forward networks with a linear output unit in which
the sum of the magnitudes of the output weights is bounded by some
constant B. In this case, the basis function class G is the set of functions
that can be computed by any non-output unit in the network, and their
negations, scaled by B. We investigate two algorithms. Section 26.2
describes Construct, an algorithm for the real prediction problem, and
Section 26.3 describes Adaboost, an algorithm for the restricted version
of the real classification problem. Both algorithms use a learning algo-
rithm for the basis function class to iteratively add basis functions to a
convex combination, leaving previous basis functions fixed.

26.2 Real Estimation with Convex Combinations of Basis
Functions

Theorem 14.10 (Section 14.4) shows that any convex combination of
bounded basis functions can be accurately approximated (with respect to
the distance d,(p), for instance) using a small convex combination. This
shows that the approximate-SEM problem for the class co(G) can be
solved by considering only small convex combinations of functions from
G. In fact, the problem can be simplified even further. The following
theorem shows that we can construct a small convex combination in
an iterative way, by greedily minimizing error as each basis function is
added.

342
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Theorem 26.1 Let V be a vector space with an inner product, and let
£l = V/(f, ) be the induced norm on V. Suppose that G C V and
that, for some B > 0, |lg|| < B forallg€ G. Fix f € V, k€N, and
¢ > B?, and define fo = 0. Then fori =1,...,k, choose g; € G such
that

1f - £ < inE NS = (@ - @) fics + asg)|P + e

where a; =2/(i + 1), &; < 4(c - B%)/(i + 1)?, and we define

fi= Q- a)fio1 + aigs.
Then

R . 2 4c
1f = Full < i€ I1f - fIP+ -
feco(G)

Proof Let dy = infje o If = fll. Given & > 0, let f5 be a point in
the convex hull of G with ||f5 — f|| < d; +4. Thus f5 = )., vjg; with

9; €G,v; 20and Zf;l v; = 1 for some sufficiently large N. Then for
all 1 <i<kandq; €[0,1),

(1 - ) ficy + cug — fII?
(1 = @) fier + cig — f5 + f5 — fII?
= (1 - ) fic1 + aig = S5l + 1f5 = fIP
+2((1 - @) fi1 + cig — f5, fs — f).

Thus,

(1 - as) fiz1 + aig — £FI? = 115 — £I
= (1 - i) ficr + asg = f5lI* +2((1 — @) fimr + 9 = f5, f5— f)
= (1 - a)(fi-1 = f5) + ailg = f5)I
+2((1 — @) fic1 + @9 = f5, f5 — )
(1= 0a)?l|fi-1 = fsl* + oFllg — £l
+2(1 - ei)ailfimi — f5,9— fs)
+2(Q1 - &) fimy + 09 = s, f5 = f).

Let g be independently drawn from the set {g1,...,gn} with Pr(g =
9j) = 7. Recall that f; = Z;.‘;l vjg;. Hence, the average value of
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(1 = @) ficy + cig — I = I fs — fII? is

N

> (- @)l fios = foll* +2llg; = foll

Jj=1
+2(1 - ai)oi(fic1 — 5,95 ~ f5)

+2((1 = @) fim1 + @95 — f5, f5 — f))
N
= (=) fier = foll? + o Z'Yj”gj - fsll?

j=1
+2((1 — ) fiey +0ifs = f5,f5— f)
(1 = )|\ fi1 — f5lI?

N
+af (Z 7 (g;11? = 2(g5, f5) + ||f5||2))

j=1

+2(1 = o) (fie1 — f5, f5 - f)

N
(1 - @)’ fier = f5lI* + o (Z rillgsll* - |If5|l2)
i=1

+2(1 - &) (fi1 — f. f5 = )
< (1 -a)?|fics = f5lI> + &2 B% + 2(1 — i) (fie1 = f5: f5 — f)

Since the average is bounded in this way, there must be some ¢
{g1,--.,9n} such that

(1 - i) fica + aig = fII* - lfs - £
< (L-)’llfics - follP + 2B +2(1 - @) (i1 — f5. f5 = f)
= (1-a) (- a)llfics = Sl + 2fict = f5, f5 - ) +oIB
< (- (fier - follP +20Fics - fo, fs - D) +oiB%, (26
where the last inequality holds since a; > 0. Noting that
Nfict = FIP = Wfier = Fl® + 1fs = £ + 2(fica — f5, 5 = £),

we get

I fim1 = FIP = s = FIP = 1 fim1 = fol® + 2(fim1 = fo. 5 = f)-
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Substituting into Inequality (26.1) and taking the limit as § goes to 0,
we get
inf [I(L-a)fis +aug = FIP -} < (1-) (Ife-1 = FIP ~ &) +a2B2.

. (26.2)
Setting i =1, a; = 1 and fp = 0, we see that

inf |lg - f|I* - d§ < B%.
infllg-fI*-dj<B

Hence the theorem is true for k = 1. Assume, as an inductive hypothesis,
that

: 4c
. — 2— A ———————
"fz—-l f" d% < (2 — 1).
Then (26.2) implies that
i 11— @) fioy +cig— FIE - 4e; < L=@)4C | apa  4c— BY)
gnelgll(l o) ficr+osg—fIP-di+e < ) +aiB*+ R

Setting a; = 2/(i + 1) gives
glgg, I(1-a)fior +aig— fIP - + &

< 4c ( 2 ) 4B? +4(c-—B2)
i—1 i+1 (i41)2 (1 +1)2
_ 4c 4c
= et Ere
_ dc(i2 + 2i)
T 242+ 1)i
4c
< -
i
The theorem follows. 0

As always, we are concerned with a vector space of functions, and we
interpret the squared norm || f — fi||? as the error of f; in approximating
a target function f. Theorem 26.1 improves Theorem 14.10 in two ways.
First, it shows how to iteratively construct an approximating function
fx, whereas Theorem 14.10 proved only the existence of such a function.
Second, it is concerned with approximating any function f, not just a
function in the convex hull of G. It gives the same rate as Theorem 14.10.
That is, the error of a convex combination of k functions from G in
approximating any function f decreases to the error of an arbitrary
convex combination at the same rate as it would if f were itself a convex
combination.
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The algorithm Construct

At step i of the construction described by Theorem 26.1, the basis func-
tion g; is chosen to approximately minimize

If = (1 - @) fim1 + cug)|I%.

Notice that we can express this as approximately minimizing || f; —g]|2,
where . )
-~ -— ai a
fi= a_;f i fim1.
This observation suggests a constructive algorithm that uses an approxi-
mate-SEM algorithm for a class G to approximately minimize sample
error over the class co(G). To apply Theorem 26.1, we define the inner
product of functions f; and f; to be

(fr. o) = %Z fr(wi) fa(zi).

i=1

For z = ((z1,11),---+(Zm,¥m)), we define f* as the empirical condi-
tional expectation of y given some z;,

* & Z {yj Fx; = mi}
V=F = &L\ 7 = i)
JF*(zs) z [y'zt] 15 1T = zi)|
Then we have

é.(f) = 511-2(111-—)'(:::.-))2

i=1

= |If -1+ % D s = £*(2:)) (Fl@s) = £ (=)

i=1

+ 1SS - e

i=1

1 m
= W -FP+ = - 1)’
i=1
Since the choice of f cannot affect the second term, choosing f to min-
imize the first term corresponds to minimizing €r,(f). ,
Figure 26.1 shows pseudocode for the algorithm Constructy, which
makes use of an approximate-SEM algorithm L for the basis function
class G.

Corollary 26.2 Suppose that G = |J,Gn s a graded class of real-
valued functions that map to some bounded interval, and L is an efficient
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arguments: Training set, S = {(z1,41),...,(Zm,ym)} C(X xR)™
Number of iterations, k
Bound, B, on range of functions in G

returns: Convex combination of functions from G, fk = ELI Yr gk

fumition Constructy (S, k, B)
fo = 0
for i:=1 to k
;= 2/(i+1)
for j:=1tom
3 = (1/as) (3 - (1 - a)fima(2y))
end for

S’ = {(xl‘., gl), ceey (zm,ﬂm)}
gi := L(S, B?)

fir= (1= ai)fimr + oigs
endfor

return fk
end

Fig. 26.1. Pseudocode for the Constructy algorithm. (L is an approximate-
SEM algorithm for G C [-B, B]*.)

approzimate-SEM algorithm for G, with running time O(p(m,n,1/e))
for some polynomial p. Then the algorithm Construct; can be used
as the basis of an efficient approzimate-SEM algorithm for co(G) =
U, co(Gr), and this algorithm has running time O(p(m,n,1/€?)/e).

Proof Suppose that functions in G map to [-B, B]. Given a training
set S and desired error ¢, if we set k = [8B2/e] and call the algorithm
Construct (S, k, B), then Theorem 26.1 implies that the function f €
co(G) returned by the algorithm satisfies

-~ 2 -
ér,(f) < inf ér,(f) + 85° < inf € (f) +e
feco(G) k= feco(a)

so this is an approximate-SEM algorithm for co(G). It is easy to check
that the running time of the algorithm is O(p(m,n,1/€?)/e). ()

Sample complezity

We have seen that, if there is a learning algorithm L for a class G of
bounded real-valued functions, then Constructy can be used to give a
learning algorithm for the convex hull co(G) of the class. If we appeal to
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the error bounds for convex classes given in Theorem 20.7, together with
the covering number bounds for convex combinations of functions that
follow from Theorems 14.11 and 12.8, we obtain the following sample
complexity bound for this learning algorithm.

Theorem 26.3 There is a constant ¢ such that for any class G of
[-B, B)-valued functions with finite fat-shattering dimension, if there
is an approzimate-SEM algorithm for G then it can be used to construct
a learning algorithm L for co(G) that has sample complezity

mi(e,8) = O (P; (-?jfatg (ce/ B%) In? (-’?) +In (%))) :

In some cases, it is possible to obtain a better sample complexity
bound by using the approximation result of Theorem 26.1 more directly.

Theorem 26.4 Let G be a class of [- B, B)-valued functions, and define
the set cor{G) of convez combinations of k functions from G,

k k
cox(G) = {Zaigi 19 € G0 zo,za,. = 1} .

i=1 =1

If there is a learning algorithm L for G, then the algorithm Constructy
can be used as the basis of a learning algorithm for co(G). There is a
constant ¢ such that the sample complezity m of this learning algorithm
satisfies

m< B (M (e/(6433)6, co,,(c:),zm)) ’
€
where k = [16B%/¢].

. Proof Fix a probability distribution P and suppose that f, € co(G)
satisfies E(y — fa(z)) = infsep E(y — f(z)). Lemma 20.11 shows that

E.
{3f € cox(G), T_-I-T!;f > 2}

Jem
M (64_B’c°’°(G)’2m) P (" 1043232)

+4M (64B3’cok(G) 2m) exp( 3234) (26.3)

IA
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where gy = £; — {;,. The inequality inside the probability statement is
true for some f € cox(G) precisely when

E((y - f(@))* - (y - fa(2))?) 2 2B.((y - f(®))® - (v - fu(@))?) + /2.
Now, the algorithm ensures that

4B

z(y fk(m))2<Ez(y fa(‘l:))2 k

so the probability that some f € cox(G) has

E((y - f(=))* - (y - f,,<x))2)>£+§

is no more than the quantity on the right hand side of Inequality (26.3).
Choosing k = [16B2 /€] and rearranging gives the result. O

Neural networks

Theorem 26.4 has an immediate corollary for two-layer neural networks.
Let G be the class of scaled and possibly negated linear threshold func-
tions defined on R®, G = BH U —BH, with

H={z+ sgn(wTz+w):weR", wy €R},

and BH = {Bh : h € H}. Then F = co(G) is the class of two-layer
networks with linear threshold units in the first layer and a linear output

unit with the constraint that the magnitudes of the output weights sum
to B.

Theorem 26.5 There is a learning algorithm L for the class F of two-
layer networks defined above, and L has sample complezity

mi(e,8) = 0 (B; (ﬁ?m (B) +1n (;))) .

Proof The algorithm Splitting described in Figure 24.1 enumerates
all restrictions to the training sample of linear threshold functions with
fan-in bounded by k. Clearly, this can be used as the basis of a SEM
algorithm for this class. If k = n, it leads to a SEM algorithm for
the class H of linear threshold functions (although the algorithm takes
time exponential in n in that case). By separately enumerating the
restriction to the sample of all functions in BH and —BH and returning
the function with minimum sample error, we can use Splitting as the
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basis of a SEM algorithm, and hence learning algorithm L for G. Then

the algorithm Construct; is an approximate-SEM algorithm for the
class F.

To prove the sample complexity bound, first notice that Theorems 3.4
and 3.7 imply IIg(m) < (em/n)™ for m > n. Hence we have

M (€,c0£(G),m) < (211!2("1))

x max {M (e,co(S),m) : S C G, |S| = k}
(7)™ eesn (%)
- (2i§ (?)”)ice(m 1,

€

IA

where the second inequality follows from Theorem 18.4. Substituting
into Theorem 26.4 and applying Inequality (1.2) from Appendix 1 gives
the result. ]

It is interesting that the algorithm in Theorem 26.5, which minimizes
sample error over some restricted subset of the class, has a better sam-
ple complexity bound than that implied by Theorem 26.3 for a simple
SEM algorithm. In contrast, we saw in Section 5.4 that in the pattern
classification problem, sample error minimization gives optimal sample
complexity.

The learning algorithm L that features in Theorem 26.5 is the al-
gorithm Construct, based on a learning algorithm for linear threshold
functions. Unfortunately, results in Chapter 24 show that the problem
of learning linear threshold functions is computationally difficult. If,
instead of this class, we consider the class H* of linear threshold func-
tions with fan-in bounded by & (see Section 24.3), then the algorithm
Splitting can be used as the basis of an efficient learning algorithm for
this class. Construct, based on this algorithm, then leads to an efficient
learning algorithm for the class of two-layer networks containing linear
threshold units with bounded fan-in in the first layer and a linear output
unit with bounded weights.

Theorem 26.6 Let HE be the set of bounded fan-in linear threshold
functions,

HE = {z 0 sgn(wTz + wo) :w € R, |{i : w; # 0}| < k, wo € R},
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and let F¥ = co(BHX U —~BHY). Then the algorithm Construct, based

on the algorithm Splitting, is an efficient learning algorithm for the
graded class F¥ =), Fk.

Clearly, the sample complexity bound of Theorem 26.5 is also valid in
this case, since F¥ is a subset of the class F considered in that theorem.

26.3 Classification Learning using Boosting

This section describes a learning algorithm for a convex combination of
binary-valued functions from some set H. We show that, provided the
algorithm has access to a learning algorithm for H, it is successful in
the restricted model of classification learning with real functions. In this
model, we assume that for some > 0 the distribution P on X x {0, 1}
is such that for some function f € F' we have margin(f(z),y) > v with
probability 1. (Recall that margin(f(z),y) is f(z) - 1/2if y = 1 and
1/2 — f(z) otherwise.) If F = co(H), the following lemma shows that
this condition implies that some h € H is a weak predictor of the label
vy, in the sense that h(z) disagrees with y slightly less frequently than a
random guess.

Lemma 26.7 Suppose that the sample z = ((z1,41),-..,(Zm,ym)) and
the function f € co(H) are such that margin(f(z;),y;) > v fori =
1,...,m. Then for all distributions D on {(z1,y1),...,(Tm,¥m)}, Some
h € H has

erp(h) S 5~ 7.

Proof We use the probabilistic method. Suppose that f = Z,N=1 a;h;
with h; € H, a; > 0 and Y  &; = 1. Choose h € {hy,...,hn}
randomly with Pr(h = h;) = a;. Then

N m
Eerp(h) = ZaizD(zj’yj)lhe(zs)#w

i=1 j=1
m N
= Z D(z;,y5) Z ®ilh(as)ty; -
j=1 i=1

Consider the inner sum, and suppose first that y; = 0. Clearly, the
indicator function 1p,(z;)%y; = hi(z;) in that case, so the inner sum is
f(z;). Since margin(f(z;),y;) > v, we have f(x;) < 1/2 . Similarly,
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ify; = 1, the inner sum is 1- f(z;) < 1/2—+. Hence, Eerp(h) < 1/2-7,
and the result follows. a

This lemma shows that in the restricted model of classification learn-
ing for a class F = co(H), some function in the basis class H can provide
useful predictions. A converse result is also true: if, for any distribu-
tion on a training set there is a function in H that has error slightly
better than random guessing, then some f € co(H) has large margins.
The proof of this is constructive. We show that we can use a SEM al-
gorithm for H to construct a large margin SEM algorithm for co(H).
Actually, we need something slightly stronger than a SEM algorithm
for H: we need an algorithm that can minimize weighted sample er-
ror. By this, we mean that for any distribution D on a training sam-
ple {(z1,%1),-..,(Zm,ym)}, the algorithm returns A € H minimizing
erp(h). The algorithm Adaboost, illustrated in Figure 26.2, iteratively
combines basis functions returned by a weighted SEM algorithm L. The
idea behind Adaboost is to start with a uniform weighting over the
training sample, and progressively adjust the weights to emphasize the
examples that have been frequently misclassified by the basis functions.
The basis functions returned by the algorithm L are combined, with
convex coefficients that depend on their respective weighted errors. The
following theorem shows that Adaboost is a large margin SEM algo-
rithm.

Recall that the sample error of a function f with respect to v on a
sample z is

&2(f) = % |{i : margin(f (z:), 1) < 7},

where the margin is the amount by which f(z;) is to the correct side of
the threshold value of 1/2.

Theorem 26.8 If L is a weighted sample error minimization algorithm
for H, then Adaboost returns a function f that satisfies

T
&1(f) < [[ 2/ (1 - ey,
t=1

In particular, if ¢, < 1/2 — 4, then
al(f) < -T2,

and this is less than € for T > (2/4%)In(1/e¢).



26.3 Classtfication learning using boosting 353

argument: Training sample, z = ((z1,y1),...,(Tm,¥m)) € (X x{0,1})™
Number of iterations, T
returns: Convex combination of functions from H, f= Z;I‘:x Yihi.
function Adaboost(z,T)
for all i fromi=1,...,m

D1(3) :=1/m
endfor
for all ¢ from {1,...,T}
hg = L(z, Dt)
m
€ = ZDt(i)lht(li)?ﬁw
i=1

a -—.l_ln 1-e
t._2 €t

Zt =2 ég(l —et)

for all : fromi=1,...,m
i Dt(i)e““‘/Zt if g = he(xs)
D =
e41(f) { Di(i)e*t/Z;  otherwise,
endfor
endfor
T
h
return f = -E‘—?lg‘——t- .
i=1 Ot

end

Fig. 26.2. Pseudocode for the Adaboost algorithm. (L is a weighted sample
error minimization algorithm.)

Proof Although the algorithm Adaboost specifies the choice of the co-
efficients a;, for now we leave them unspecified, and at each step choose
Z; as an overall normalization factor so that Dy, is always a distribu-
tion. Later, we shall show that the choice of a; (and Z;) specified in the
algorithm is optimal.

It is convenient to scale the variables y1,. . ., ¥, and the basis functions
hi,...,hm so that they take values in {~1,1}. Define §; = 2y; — 1,
he = 2hy — 1, and f = 2f — 1. Then it is clear that margin(f(z;),v:) <7
if and only if §; f(z;) < 27, which is equivalent to

T T
i) owhe(mi) <2v)_ o,
t=1 t=1
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and this implies

T T
exp (‘ﬂizatht(-’ti) + 2’72%) > 1.

t=1 t=1
It follows that

T T
al(f) £ = Z exp (—ﬂi Y ashi(a) + 27 at)
tz=1

t—l

T
= exp (27 > at) D exp (—17; > atﬁt(ws)) :
t=1

t=1 i=1

it

Now,

Dy(i) exp (~gihe(zi)ox)

D (i) = A ,

and so
T T )
exp (-17.' > atht(fvi)> = Hexp (-ﬁiht(wi)at)
t=1

= 172,
ISR

D1y4(3)
= Zs.
Du(s) tl;Il t
It follows that

&7 (f)

IA

l exp (27 E ag) Z mDr1(i) H A
t=1 t=1

i=1
= exp (2~/Za,) II 2.. (26.4)
t=1 t=1

To minimize this, we choose a; to minimize, at each step, the normal-
ization factor Z;. We have

m
Z, = ) Dii)exp ("ﬁiﬁt(a’i)at)
i=1
= > Df)e™+ D Difi)e™
fiyi=he(zi) Lyi#he (i)
(1= e)e ™™ + e™.
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Differentiating with respect to a4, setting to zero, and solving shows that
a: = (1/2)In((1 — €:)/e:) gives the minimum value Z; = 21/(1 — €;)e;,
and these values of a; and Z; are used in the Adaboost algorithm. Sub-
stituting into (26.4) gives the first inequality of the theorem. O

Theorem 23.4 shows that if there is an efficient learning algorithm for
a binary class, then there is an efficient randomized SEM algorithm. It
is clear that the proof of this theorem can be extended to show that
in that case there is also an efficient randomized weighted sample error
minimization algorithm. This, together with Theorem 26.8, shows that if
a class H of binary-valued functions is learnable, then co(H) is learnable
in the restricted real classification model. It is clear that Adaboost calls
the learning algorithm L for H only T = O((1/9%)In(1/¢)) times, so if
L is an efficient learning algorithm for H, the Adaboost algorithm based
on L is an efficient learning algorithm for co(H) in the restricted real
classification model.

26.4 Bibliographical Notes

The iterative approximation result described in Theorem 26.1 is an im-
provement, due to Lee et al. (1996), of a result of Barron (1993). A
weaker result (with a slower rate) was independently obtained by Koiran
(1994). Darken, Donahue, Gurvits and Sontag (1997) extend the approx-
imation result to non-Hilbert spaces. The algorithm Construct and the
sample complexity bound Theorem 26.5 are also from (Lee et al., 1996)
(see also (Lee et al., 1995b)). A similar result follows from more recent
work of Auer, Kwek, Maass and Warmuth (1996), who consider learning
two-layer networks in an online model.

Boosting algorithms were first proposed by Schapire (1990) to illus-
trate the equivalence of weak binary classification learning (producing a
hypothesis with error slightly better than random guessing) and prob-
ably approximately correct learning (learning a binary class in the re-
stricted model, using some richer class of hypotheses). There were a
number of improvements of this result (see, for example, (Freund, 1995)).
Subsequently, experimental machine learning researchers observed that
this approach can give improvements in pattern classification problems
(see, for instance, (Drucker, Cortes, Jackel, LeCun and Vapnik, 1994)).
The algorithm Adaboost was introduced by Freund and Schapire (1997),
and its experimental properties studied in (Freund and Schapire, 1996).
A number of researchers noticed that this algorithm gave reductions in
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error when more basis functions were introduced, even after the sample
error of the convex combination had been reduced to zero (Drucker and
Cortes, 1996; Quinlan, 1996; Breiman, 1998). Theorem 26.8 suggests
that in these cases Adaboost is increasing the margins of training exam-
ples, and the results of Part 2 show why the estimation error decreases.
Theorem 26.8 is due to Schapire et al. (1998), extending in a straightfor-
ward way a similar result from (Freund and Schapire, 1997) for binary
sample error.

The derivation of the optimal values of oy and Z; in the proof of
Theorem 26:8 can be extended to show that the Adaboost algorithm
chooses the basis functions h; and their coefficients a; to minimize in a
greedy way the sample average of an exponential function of the mar-
gin of the linear combination EtT=1 agh, (see (Breiman, 1999; Frean
and Downs, 1998)). Friedman, Hastie and Tibshirani (1998) inter-
pret Adaboost as an approximate stagewise maximum likelihood algo-
rithm, by viewing the exponential function as an approximate likelihood
cost function. Mason, Bartlett and Baxter (1999) and Mason, Baxter,
Bartlett and Frean (1999) have shown that minimizing the sample av-
erage of other functions of the margin (that do not penalize mistakes so
fiercely) can give significant advantages. Grove and Schuurmans (1998)
give experimental evidence suggesting that maximizing the minimum
margin does not give optimal estimation error.



Appendix 1
Useful Results

This appendix is a collection of various inequalities and technical results
that are useful in a number of places throughout the book.

Al.1 Inequalities
Estimates for natural logarithms

Elementary calculus shows that
1+z<e” for all z € R. (1.1)

Setting = ab — 1 and rearranging shows that

lnaSab+ln%—1 for all a,b > 0, (1.2)

with equality only if ab = 1.
Another useful inequality is the following. For positive numbers a,b
withb<landab>1,

In? a < 6ab+ 3In%(1/b). (1.3)

To prove this, we make use of two facts: first, for x > 1, In® z < 4z and,
secondly, for a,b > 0,

ab In(1/b)
lnagm-(—l/—b)+ln( b )

The first of these can be shown easily, and the second follows from

ab ab
o (lna/b)) = (/)
357
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So, since ab > 1, we have In?(ab) < 4ab, and

In2a < 4ab-In*b-2Inalnbd

= 4ab—In?b+2In(1/b) (E(%% +In (1_“(})_/”)))

< 4ab—1n?b+ 2ab+2In(1/b) (ln (%) +Inln (%))

< 4ab—In?b+ 2ab + 41n? (%)

= 6ab+ 3In?(1/b).

Fuler’s inequality

Elementary calculus shows that (1+1/z)® < e and (1-1/z)* < e~ ! for
all > 0. This implies that, for allz >0 and a € R, if a # 0,

(1+ %), <eé (14)

Stirling’s approrimation
For any n € N,
n"e~"V2rnel/ (1271 <l < nhe~"y/2rnel/ (12, (1.5)

For a proof, see (Feller, 1968), for example.

Binomial theorem
It is easy to prove by induction that, for alla € R and d € N,

1+a)t = i‘ (‘:) a'. (1.6)

i=0

Jensen’s inequality
For a vector space X, a convex function f : X — R is one for which
flaa + (1 - a)b) < af(a) + (1 - a)f(d),

forall a,b € X and 0 < a < 1. If f is a convex function, and x is a
random variable in X, then

E (f(z)) 2 f (E(z)).
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For a proof, see, for example, (Kolmogorov and Fomin, 1975).

Cauchy-Schwarz inequality

For any elements a, b of an inner product space,

(a,) <llallliell, (1.7)

where |a]|2 = (a,a). To see why this is true, notice that the inequality
is trivially true if b = 0, and if b # 0 we can write

>0.

s @B [ (@b
Nell® = "z ‘" ToIE

Holder inequalities

For a,b € R¥, the standard inner product (a,b) may be bounded as
follows:

(a,0) = iaibi < i las]|b:|
i=1 $=lk
< (g Iail) max [bi|
= |lall2{Ibllco- (1.8)

This inequality and the Cauchy-Schwarz inequality are both special cases
of Hélder’s inequality. This states that if p, ¢ are such that 1/p+1/¢=
1 (which is interpreted in the obvious way if one of these numbers is
infinite), then for a,b € R*,

k k 1/p /& 1/q
(a,b) = Zaibi < (E a? ) (Z b:.’)

i=1 =1 i==1

= llaflplIbll,- (1.9)

(See, for example, (Kolmogorov and Fomin, 1975).) The p-norm and
the g-norm are said to be dual.
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A1.2 Tails of Distributions
Markov’s inequality

If a random variable z is almost surely nonnegative, then

Pr(z >a) < _l_i‘,_(;::_:_)_ (1.10)

for all a > 0. To see this, notice that E(z) > E(z|z > a)Pr(z > a) >
aPr(z > a).

Chebyshev inequality

For a random variable z with mean p and variance o2,

2
Pr(z —pl 20) < 5 (111)

for all @ > 0. This follows immediately from Markov’s inequality applied
to the random variable (z — p)?.

Chernoff bounds
Suppose m € N and z3,...,Z, are independent {0,1}-valued random
variables with Pr(z; = 1) = p;, where 0 < p; <1lfori=1,...,m. Let
1 m
p= m ;m

Then for ¢ > 0, we have

Pr (;711— Zzi >+ e)u) < exp(~€e?um/3), (1.12)

i=1
Pr (;11- gwi <(@1- e)p) < exp(—€?um/2). (1.13)

Proofs of these bounds may be found in the original paper of Chernoff
(1952), and in (Hagerup and Rub, 1990).

The special cases of the Chernoff bounds in which all the probabilities
p; are equal is frequently useful. Suppose that each p; equals p. Then
4 = p and the probability on the left-hand-side of Inequality (1.12) is
the probability that the number of z; equal to 1 is at least m(1 +¢€)u =
m(l + €)p. The probability of obtaining at least k¥ ‘successes’ in an
experiment repeated m independent times, in which the probability of
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‘success’ is p, is denoted GE(p,m, k), and the probability of at most k
successes is similarly denoted LE(p,m, k). By the Chernoff bounds, we
immediately have
m
GE(p,m,(1+emp)= (W)p‘(l-p)’"“ < exp (~€’pm/3),
i=[(+eomp]

L(1=€)mp)
LE(p,m,(1-eymp)= ) (?)p‘(l ~p)™* < exp (~e’pm/2) .
i=0
Generally, it follows that
GE(p,m,k) < exp(—(k-pm)?/3pm) (1.14)
for k > pm and
LE (p,m,k) < exp(—(pm - k)?/2pm) (1.15)

for k < pm. See also (Angluin and Valiant, 1979).

Hoeffding’s inequality
Let X be a set, D a probability distribution on X, and fy,..., fi, real-
valued functions defined on X, with f; : X — [a;,b;) for ¢ = 1,...,m,
where a; and b; are real numbers satisfying a; < b;. Then we have the
following inequality (due to Hoeffding (1963)).
2 e)

Pr( (%Zfi(zi)) - (%Z/fi(x)D(‘”))

i=1 i=1
—2¢’m?
where the probability is over the random sequence (z,...,%y,) chosen
according to D™.
Inequality (1.16) follows immediately from the two ‘one-sided’ bounds

Pr ((%Zfi(zi)) - (-j;z / f.-(x)D(x)) > e)

=1
< exp (_:_2_62_"",2—)
- Yimi(bi—ai)?)’

(1.17)
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1 & 1<
Pr ((; Zfi(wi)) - (;n- ,=Zl / fa-(z)D(w)) < —e)

i=1
< exp (_—_—252m2 )
- Yimi(bi—ai)? )’
To prove Inequality (1.17), we follow the proof in (Devroye et al., 1996;
Lugosi, 1998). (Inequality (1.18) is proved similarly.) Let ¥1,¥2,-..,Ym
be independent random variables, each with mean 0, such that y; €
[ci, d;]. We first note that for any s > 0,

(o) - rlem(£2)2)

=1
E (exp (s Y 1w ¥i))

- eOd

em2e ﬁ E(e"), (1.19)

i=1

(1.18)

where we have used Markov’s inequality and the independence of the
random variables e®¥:. Now choose any ¢ between 1 and m and let
us denote y;, ¢, d; simply by y,c,d. By the convexity of the function
z — e** for s > 0, we have

Yy—¢ .a, d-y
Y < 8 ecc
vyt Tyt
and so (taking expectations and using the fact that Ey = 0),
-c d
V< sd sc _ s(d—c) | o—ps(d—c) . o9(u)
Ee _——d_ce +——d_ce (1 p+pe )e eI\,

where p = —¢/(d — ¢),u = s(d — ¢) and g(u) = —pu + In (1 — p + pe*).
It is easy to verify that g(0) = ¢’(0) =0 and ¢"(u) < 1/4 for u > 0. By
Taylor’s theorem, for some £ € [0, u],

2 2 2(4 _ »\2
o) =Lge <L =0T

Thus E (e®?) < e9™) < e**d-9*/8 and substituting into (1.19) gives

m m
o (Z v > “) e e e, (1.20)

=1 i=1

To apply this result, let f;,z; be as above and define, for each ¢,

v = = (i) ~ B = — 3 filoi) - (% >/ fe(z)D(w)) :

i=1 i=1
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Then Ey; = 0 and, taking d; = (b; — Ef;) /m and ¢; = (a; — Ef;) /m,
we obtain from (1.20) that

Pr ((%f:mm) - (%i / fi(w)D(w)) > e>

i=1 t=1

(5o

=1

exp (—se + f: 82(di8— c,-)’)

i=1

sy (b — ai)z)

IA

exp (—se + s

for any s > 0. Choosing s = 4m?e/ (312, (b — a:)?) yields (1.17).

Bernstein’s inequality

Bernstein’s inequality is more useful than Hoeffding’s inequality when
functions fy,..., fr» and ii.d. random variables z;,...,z,, are such
that the variances var(f;) = E(fi(z) — Efi(z))? are small. "It states
that if |fi(z) ~ Efi(z)] < M for all i with probability 1 and ¢? =
= Lizy var(fi(z:)), then

1< 1 & ‘ e2m
Pr (E ﬁzl f,-(:v.-) e E ;Ef,(m) > 6) S exp (—m) .
(1.21)
See (Bernstein, 1946).

Slud’s inequality

Let B be a binomial (m, p) random variable with p < 1/2, and suppose
that mp < k < m(1-— p). Then

Pr(B>k)>Pr (z > M) , (1.22)

vmp(l - p)

where Z is a normal (0, 1) random variable. (See (Slud, 1977; Devroye
et al., 1996).)
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Normal tail bounds
If Z is a normal (0, 1) random variable and z > 0, then

Pﬂzzx)2%(1-¢1-e4ﬁ. (1.23)

(See (Patel and Read, 1982, p64), (Tate, 1953).)

A1l.3 Sard’s Theorem

We say that a set S C R® has (outer) measure zero if for all € > 0 there
is a sequence B, Bs,... of balls in R® with

o
Ac|B:
i=1

and

o0
Z vol(B;) < e,
i=1
where vol(B;) is the volume (Lebesgue measure) of the ball B;.

For a C! function f : R®* — R™, we say that z € R® is a critical
point of f if rank f'(z) < m. (Recall that for a function f : R® —
R™, if f(x) = (fi(z),..., fm(z)), then the Jacobian of f at z € R,
denoted f'(z), is the n x m matrix with entry 4,j equal to D;f;(z),
the partial derivative of f;(x) with respect to the ith component of
z = (z1,...,%n).) We say that y € R™ is a critical value of f if some
x € R" satisfying f(z) = y is a critical point of f.

Theorem 1.1 (Sard’s Theorem) Forn,m > 1, if f : R* = R™ is
C* and k > max(1,n — m + 1), then the set of critical values of f has
measure zero.

For a proof, see (Sternberg, 1964, Chapter II).
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compactness, 271, 282
complexity
automatic choice of, 219227
of a network, 8
penalty, 8, 221, 222
regularization, 227
theory, 312, 315
computability, 299
computation
bit cost model of, 301
issues in supervised learning, 9
units, 74
computational complexity, 2, 299, 306,
312
conditional expectation
approximating, 232
best approximation, 278
empirical, 346
confidence parameter, 16
connected components, 30
connections, 74
consistent hypotheses, 305
consistent learning algorithms, 24, 27
consistent-hypothesis-finders, 52, 315

efficient, 305
Construct (learning algorithm for
convex combinations), 346, 355
sample complexity, 348
constructive learning algorithms, 340,
342-356
continuous from the right, 195
convex class
sample complexity, 263
convex classes, 269-283
sample complexity, 277
slow convergence with absolute loss,
296
convex combinations
approximation rate, 203, 216
constructive approximation, 342, 355
constructive learning algorithms,
342-351
covering number bounds, 205
large margin SEM algorithm, 352
convex function
Jensen’s inequality, 358
convex hull, 204
covering numbers
and dimensions, 165-183
and uniform convergence, 140-150
as generalization of growth function,
241
bounds, 247-257
pseudo-dimension versus
fat-shattering dimension, 181
bounds in terms of fat-shattering
dimension, 175, 248
di, 241, 247
bounds in terms of
pseudo-dimension, 251
doo, 241, 247, 268
effects of composition with a
Lipschitz function, 206
effects of scaling, 206
lower bound in terms of fat-shattering
dimension, 178
of composition of function classes, 197
of the loss function class, 242
relationship with packing numbers,
166, 183
critical point, 364
critical value, 364

dy covering numbers, see covering
numbers, d)

dy packing numbers, see packing
numbers, d;

doo covering numbers, see covering
numbers, doo

dp,(p) (L1(P) pseudometric), 251
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packing numbers, see packing
numbers, dL;(P)
dr,p) (L2(P) metric), 255
dr., (Loo metric), 197, 236
d%(+,+) (distance between vectors of
elements of a metric space), 197
data generation model, 231
decision boundary, 3, 4
decision problem, 313
decision rule, 60
randomized, 273
decision-theoretic learning models, 296
§ (confidence parameter), 16
dichotomies
counting in parameter space, 30
dim(-) (linear dimension), 37
distribution
changing, 28
distribution-independence, 18

early stopping, 225
efficient learning, 299-306
characterization, 312
efficient learning algorithm, 306
and fat-shattering dimension, 303
and H-FIT, 313
and NP-hardness of the
H-CONSISTENCY decision
problem, 314
and NP-hardness of the H-FIT
decision problem, 314
and VC-dimension, 303
definition, 302
efficient randomized SEM algorithm
is necessary, 311
efficient randomized SEM algorithm
is sufficient, 309
empirical cover, 255
empirical error, 234
entropy, 79, 85
€ (accuracy parameter), 16
e-good hypothesis, 16
e-packing, 165
e-separated, 55, 165
€o(m, &) (estimation error), 17
er(m, é, B) (estimation error), 234
€L (m, 8,7) (estimation error), 137
erh(-) (error of a real-valued function
with respect to P and v), 136
ér)(-) (sample error of a real-valued
function with respect to ), 184
ért(-) (¢-sample error of a real-valued
function), 285
ér,(-) (sample error of a binary-valued
function), 15
ér.(-) (sample error of a real-valued
function), 234

erp(-) (€-error of a real-valued
function), 284
eru(-,t) (error of a binary-valued
function with respect to target t),
24
erp(-) (error of a binary-valued
function), 15
erp(-) (error of a real-valued function),
233
error
and error estimate, 8
convergence rate, 17, 27
expected value of, 26
relationship with the restricted
model, 27
in restricted model of binary
classification, 24
of a binary-valued function, 15
of a real-valued function, 232
estimation error
convergence rate, 18
definition, 17, 18, 137, 234
for classes with finite VC-dimension,
43
for finite classes, 21, 235
inherent, 18
estimation issues in supervised learning,
2,4,9,18
Euler’s inequality, 358

F (closure of F), 270
F, (function class with complexity
parameter n), 300
f* (conditional expectation), 279
fa (best approximation to conditional
expectation), 278
factorial
Stirling’s approximation, 358
fat-shattering dimension, 8, 159-163
and covering numbers, 174, 180, 182,
183
and learnability of real function
classes, 258
and packing numbers, 174
arbitrary rate, 182
characterization of learnability,
262-267
definition, 159
finite, 159
but pseudo-dimension infinite, 162
of parameterized classes
with bounded number of
parameters, 196
with bounded parameters, 203
relationship with pseudo-dimension,
162, 163
fatp () (fat-shattering dimension), 159
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feed-forward networks, 74

finite function classes, 19-22, 234-236

fully connected between adjacent layers,
75

~-dimension, 159
~-shattered, 159
Gaussian elimination, 329
GE(p,m, k) (Chernoff bound), 361
general position, 30

and linear independence, 32
generalization, 5
graded function class, 299
gradient descent, 6, 9, 225, 339
graph colouring, 332
graph theory, 316
growth function, 29-35

and VC-dimension, 39

H (binary-valued function class), 15
H* (functions computed by simple
perceptrons with fan-in no more
than k), 321
Hy (binary function class with
complexity parameter n), 300
H-CONSISTENCY decision problem, 313
H-FIT decision problem, 313
Hamming distance, 80, 178
Hilbert space, 271, 282
Hoeffding’s inequality, 361
bounds on tails of binomial
distribution, 20
in uniform convergence proof, 50, 55
Hélder inequalities, 359
hyperplanes, 31
hypothesis, 15
representation, 299

9(z) (imaginary part of z), 275
independence of training examples, 27
inner product, 3, 343
input, 14

space, 7

units, 74

vector, 2

weights, 5
interior point methods, 214

for linear programming, 323
interpolation, 296
interpolation models, 289-295

Jacobian, 364
Jensen’s inequality, 358

k-COLOURING decision problem, 332
k-plane, 33
Karmarkar’s algorithm, 323

385
Kronecker product, 172

L (learning algorithm), 16
Ly (P) pseudometric, 251
L2(P) covering numbers, 255
Leo covering numbers
sample complexity bounds in terms
of, 237
Lo metric, 196, 236
£; (loss function for f), 233
£F (loss class), 284
£7 (loss function for approximate
interpolation), 291
£* (loss function for s outputs), 286
covering numbers, 287
£-error, 284
£-layer network, 75
£-sample error, 285
labelled examples, 6, 14
labels, 1, 14
noisy, 27
large margin classification, 8, 135
and generalization from approximate
interpolation, 294
law of large numbers, 19
layers, 74
LE(p, m, k) (Chernoff bound), 361
learnability, 17, 234
efficient, 308
learner, 13
learning
as optimization, 307-315
pattern classification, see binary
classification, real classification
real-valued functions, see real
prediction
learning algorithms
based on approximate-SEM
algorithm, 259
definition, 13, 16, 136, 233
enumerative, 329
linear computation units
fat-shattering dimension, 213
pseudo-dimension, 155
linear programming
efficient algorithms, 323
for boolean perceptron learning
algorithms, 322
for BPy, learning algorithms, 329
for classification learning with linear
functions, 329
linear subspace, 33
linear threshold networks, 76
approximate sample error
minimization, 340
feed-forward, 74
growth function, 77
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hardness of learning, 331, 335, 338,
339
simulation with sigmoid network, 84,
85
VC-dimension, 74-85
lower bounds, 80, 82, 85
upper bounds, 77, 85
with bounded fan-in
efficient learning algorithm, 350
Lipschitz condition, 199
local minima, 6, 339
logarithm
inequalities, 357
loss class, 284
covering numbers, 285
loss functions, 233, 284-289, 296
bounded, 284
satisfying a Lipschitz condition, 245,
285

mo(e,d) (sample complexity), 16
mp(e,8) (sample complexity), 234
mp, (¢, 4,7) (sample complexity), 137
M(e, W, d) (e-packing number of W
with respect to d), 165
M; (e, H, k) (uniform packing number
with respect to dy), 165
Ma (¢, H, k) (uniform packing number
with respect to dz), 165
margins, 291, 351
Markov’s inequality, 360
matrix
determinant, 35
row-rank, 37
measurability conditions, 15
measure
Lebesgue, 35, 364
outer, 364
theory, 27
method of sieves, 227
minimum description length principle,
226, 227
minimum message length, 227
misclassification probability, 8
model selection, 218-227
monomials, 171
1 (probability distribution), 24
multi-layer networks, see neural
networks, multi-layer
multisets, 156

N2, N2, (two-layer sigmoid networks
with two first-layer units), 337

N2.ApPROX-SEM problem, 337

NE, NE (two-layer linear threshold
networks with k first-layer units),
335

and graph colouring, 335
Nk, N§ . (conjunctions of k linear
threshold units on binary inputs),
332
and graph colouring, 333, 339
NK-CONsISTENCY decision problem, 332
NP-hardness, 335
Nk, NE . (two-layer sigmoid networks
with k first-layer units), 338
NZP-APPROX-SEM problem, 338
net input, 84
neural networks
architecture, 74
biological, 9
classes with infinite
pseudo-dimension, 265
dimensions, 193-217
general, 7
hardness of learning, 331-341
Lipschitz in parameters
covering number bounds, 199
fat-shattering dimension bounds,
202
multi-layer, 74
sample complexity bounds, 261
state, 13, 76, 299
two-layer
approximate-SEM algorithm, 350
as convex combinations of
functions, 342
VC-dimension, 108-130
with bounded output weights
as convex combination, 277
with bounded parameters
covering number bounds, 207-212
fat-shattering dimension bounds,
212-213
sample complexity, 262, 349
with finite weight set
sample complexity, 236
with multiple outputs, 286-289
sample complexity, 288, 296
with piecewise-linear activation
functions
hardness of learning, 339
with piecewise-polynomial activation
functions
sample complexity, 261
with real-valued output, 231
noise, 14, 231, 266, 268
non-convex classes
sample complexity, 263, 270
normal distribution
tail bounds, 364
norms
dual, 359
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induced by probability distributions,
270
NP-hardness, 312

optp(F) (approximation error of the
class F of real functions), 233
optp (H) (approximation error of the
class H of binary-valued functions),
15
opt}(F) (optimal large margin error of
the class F), 185
orthants of R™, 153
output
space, 7
unit, 75
weights, 5

P (probability distribution), 14
PAC learning, see probably
approximately correct learning
packing, 80
packing numbers, 55, 165-167
and quantized classes, 168
bounds in terms of fat-shattering
dimension, 174
dy
bound in terms of fat-shattering
dimension, 247
dry(p)
bounds in terms of
pseudo-dimension, 251
uniform, 165
parameter space
counting cells, 30, 32, 41
parameterization
uniqueness of, 280
pattern classification, 13
with binary-output networks, 11-130
with real-output networks, 131-227
patterns, 1
Pdim(-) (pseudo-dimension), 153
perceptron, 2, 9, 22, 74, 77
binary-weight, 23
sample complexity, 23
convergence theorem, 323, 330
and real classification, 328
enumerative learning algorithm, 319
estimation error, 51
fan-in, 319
functions computable by, 7
k-bit, 23
sample complexity, 23
learning algorithm, 3, 9, 323, 329
and classification noise, 330
is not efficient, 328, 330
learning in the restricted model,
322-328

387

representational capabilities, 4
sample complexity, 51
shattering and affine independence,
36, 41
with binary inputs, 316
permutations on a double sample, 47,
242
swapping group, 58
symmetric group, 58
$-dimension, 170, 183
&dim(-) (®-dimension), 170, 182
pigeonhole principle, 166
Iy (-) (growth function), 29
P™ (product probability distribution),
15
polynomial transformation, 156, 163
pseudo-dimension, 156
polynomial-time algorithm, 313
predicting a real-valued quantity, see
learning real-valued functions
probabilistic concepts, 192
and fat-shattering dimension, 163
probability distribution, 14
product, 15
probability estimation, 231
probability theory, 13, 27
probably approximately correct
learning, 27, 306
and weak learning, 355
pseudo-dimension, 151-159, 163
and compositions with non-decreasing
functions, 153
and deo-covering numbers, 167, 183
and linear dimension, 154
from VC-dimension bounds, 194, 216
infinite, 265, 267
pseudo-shattered, 152
versus shattered, 152

Qa(-) (quantization operator), 167
Qa(F) (quantized versions of functions
in F), 248

quadratic loss, 231, 245, 267, 278, 284

average over multiple outputs, 286,
288

quadratic optimization, 214, 217

quantization, 167, 248

queries, 28, 340

radial basis function networks, 213
random number generator, 307
randomized algorithm, 307
polynomial-time, 313
rank
of a linear system of equations, 38
of a matrix, 37
real classification, 8, 131-227
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real labels
encoding information in, 265
noisy, 266
quantized, 266, 268
real prediction, 8, 231-296
restricted model, 265, 268, 281
sample complexity, 258-268
regularization
complexity, 227
weight decay, 225
Rp(m,n) (worst-case running time),
301
RP (decision problems solvable in
polynomial time using a
randomized algorithm), 313

sample complexity, 17
bounding with pseudo-dimension, 260
definition, 18, 137, 234
for a class of vector-valued functions,
288
gap between upper and lower bounds,
262, 269
inherent, 18
lower bounds in terms of
fat-shattering dimension, 188,
262
lower bounds in terms of
VC-dimension, 59-73
of a closure convex class, 269
of a finite binary-valued class, 21, 235
restricted model, 25
upper bounds in terms of
fat-shattering dimension, 265
upper bounds in terms of
pseudo-dimension, 265
upper bounds in terms of
VC-dimension, 42-58
sample error
as estimate of error, 19
definition, 15, 234
weighted, 352
sample error minimization algorithms,
19, 42
efficient, 304
efficient randomized, 309
for a graded function class, 302
for finite class of real-valued
functions, 235
estimation error, 235
large margin, 184
estimation error, 187
sample complexity, 187
sample complexity bound involving
pseudo-dimension, 191
sample complexity, 54
weighted, 352

Sard’s Theorem, 364
Sauer’s Lemma, 41
generalization involving
pseudo-dimension, 170, 183
linear algebraic proof, 183
scalar product, 204, 271
scale-gensitive dimension, 159, 291
SEM algorithm, see sample error
minimization algorithms
SET-SPLITTING decision problem, 339
sgn(-) (threshold function), 3, 76
shattering, 35, 41, 151
width of, 159
witness of, 152, 159
o(-) (standard sigmoid function), 83
sigmoid functions
linear independence, 275
standard, 5, 83
sigmoid networks, 83
approximation, estimation,
computation properties, 6
hardness of learning, 337-338, 340
invariances, 281
non-convexity, 275
two-layer, 5
uniqueness of parameterization, 280,
282
VC-dimension lower bounds, 83
VC-dimension upper bounds, 122-128
sigmoid unit, 83
simple perceptron, see perceptron
Slud’s inequality, 363
span(-), 171
spanning set of a vector space, 171
Splitting (enumerative algorithm for
simple perceptrons), 319, 329, 349
squared error, see quadratic loss
squashing function, 5
states, 7
step function, 76
versus sigmoid function, 83
structural risk minimization, 227
subgraph class, 153
supervised learning, 1
applications, 1
definition, 13
support vector machines, 217
symmetrization, 46, 242, 285

tails of distributions, 360

target function, 23

testing sample, 46

@ (threshold of simple perceptron), 2
thresholds, 3, 76

time complexity, 299

topology of function classes, 270, 282
total variation, 160
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touchstone class, 25, 27 Y (output space), 7
and computational complexity, 340 y (label), 14
and sample complexity, 240
of real functions, 240 Z(=XxY), 14
trace number of a set system, 41 z (training sample), 14
training, 1 Zy (= Xn xY), 300
data, 14
samples, 14, 24

uniform convergence
and fat-shattering dimension, 267
for classes with finite VC-dimension,
43, 53
for finite classes, 19
for real functions, 241-246
rate, 266, 282
improved using variance
information, 277
restricted model with zero mean
noise, 281, 282
relative results, 71-72, 191, 266
with general loss functions, 285
uniform distance, 196
union bound, 21
in uniform convergence proof, 50, 55
universal approximation, 6, 10

Vapnik-Chervonenkis dimension, 8,
35-41
lower bounds for smoothly
parameterized function classes,
85
of a vector space of real functions, 37
VC-dimension, see
Vapnik-Chervonenkis dimension
VC-major classes, 163
VC-number, 41
vector space
basis, 37
dimension, 37
pseudo-dimension, 154
spanning set, 171
VERTEX COVER decision problem, 317
vertex cover of a graph, 316

W (number of network parameters), 76
w (weights of simple perceptron), 2
weak binary classification learning, 355
weight decay, 225
weights, 76

of a simple perceptron, 2
worst-case running time, 301

X (input space), 7

z (input vector), 2, 14

Xn (input space with complexity
parameter n), 300
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