Final Exam

Instructions: Three of the following questions will be on the Final Exam.

1. [Joint, Marginal and Conditional Probabilities]. Let

$$
f_{X \mid Y}(x \mid y)= \begin{cases}c_{1} x / y^{2}, & 0<x<y<1, \\ 0, & \text { otherwise },\end{cases}
$$

be the conditional p.d.f of $X \mid Y$ and

$$
f_{Y}(y)= \begin{cases}c_{2} y^{4}, & 0<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

be the marginal p.d.f of Y. Determine
(a) The constants c_{1} and c_{2}.
(b) The joint p.d.f of X and Y.
(c) $\operatorname{Pr}\left(\left.\frac{1}{4}<X<\frac{1}{2} \right\rvert\, Y=\frac{5}{8}\right)$
(d) $\operatorname{Pr}\left(\frac{1}{4}<X<\frac{1}{2}\right)$
(e) $E(X \mid Y)$.
(f) The cdf and pdf of $Z=E(X \mid Y), F_{Z}$ and f_{z}, respectively.
2. [Joint, Marginal and Conditional Probabilities]. Let

$$
f_{X Y}(x, y)=c x^{3} y^{2}, \quad 0<x<1,0<y<2 .
$$

be the joint probability density function of X and Y.
(a) Find c that makes $f(x, y)$ a valid probability density function.
(b) Find $g_{Y \mid X}(y \mid x)$, the conditional probability density function of $Y \mid X$.
(c) $\operatorname{Pr}\left(\left.\frac{1}{3}<X<\frac{2}{3} \right\rvert\, Y=\frac{2}{3}\right)$.
(d) Find $\operatorname{Cov}(X, Y)$, the covariance of X and Y.
(e) Are X and Y stochastically independent? Justify your answer.
(f) Let $Z=X^{2}+Y^{2}$. Find $E(Z)$, the expected value of Z.
3. [Least Squares Identities]. Prove that in the linear regression model $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{u}$ where \boldsymbol{X} includes an intercept (a column of 1's as the first regressor), the OLS plane $\widehat{\boldsymbol{y}}=\boldsymbol{X} \widehat{\boldsymbol{\beta}}$ has the following mathematical properties:
(a)

$$
\overline{\boldsymbol{x}}^{\prime} \widehat{\boldsymbol{\beta}}=\bar{y}
$$

where $\overline{\boldsymbol{x}}=\left(1, \bar{x}_{1}, \ldots, \bar{x}_{k}\right)^{\prime}$ is the $k \times 1$ vector of means of the independent variables $x_{j}, j=1, \ldots, k$. This means that the point $(\bar{y}, \overline{\boldsymbol{x}}) \in \mathbb{R}^{k+1}$ satisfies the normal equations, and therefore the OLS plane always passes through the sample means when the regression includes a conscant term. We say that OLS passes through the "center-of-gravity" $(\bar{y}, \overline{\boldsymbol{x}})$ of the sample.
(b)

$$
\overline{\widehat{y}}=\bar{y}
$$

that is, the mean of the fitted values $\widehat{\boldsymbol{y}}$ equals the mean of \boldsymbol{y}.
(c)

$$
\mathbf{1}^{\prime} \widehat{\boldsymbol{u}}=\bar{u}=0,
$$

that is, the sum and the mean of the OLS residuals is zero.
(d)

$$
\widehat{\boldsymbol{y}}^{\prime} \widehat{\boldsymbol{u}}=0 \quad \text { or } \quad \widehat{\boldsymbol{y}} \perp \widehat{\boldsymbol{u}}
$$

that is, the OLS fitted values $\widehat{\boldsymbol{y}}$ and the OLS residulas $\widehat{\boldsymbol{u}}$ are orthogonal vectors. [Hint: See Stavrinos, ch.3.]
4. [Linear Regression Model under Endogeneity]. Consider the linear regression model

$$
y=X \beta+u
$$

where, y is an $n \times 1$ vector, X is an $n \times k$ matrix of regressors (including an intercept), β is a $k \times 1$ vector of coefficients, and u is an $n \times 1$ vector of errors.
(a) State the classical assumptions and briefly explain them.
(b) Which of the above assumptions is violated when a regressor is endogenous? Give an example of a regression in which the problem is likely to arise.
(c) What are the properties of the OLS estimates under endogeneity?
(d) Which estimator should you use in this case, and what are its properties?

5. [Long and Short Regressions].

(a) Assume that the true linear regression model explaining y is given by

$$
y=X_{1} \beta_{1}+X_{2} \beta_{2}+u
$$

where, y is an $n \times 1$ vector, X_{1} is a $n \times k_{1}$ matrix of regressors (including an intercept), X_{2} is a $n \times k_{2}$ matrix of regressors, β_{1} is a $k_{1} \times 1$ vector of coefficients, β_{2} is a $k_{2} \times 1$ vector of coefficients, and u is an $n \times 1$ vector of errors. Instead of estimating the true model, we estimate by OLS the short model

$$
y=X_{1} \beta_{1}+u
$$

What are the properties of the OLS estimate $\widehat{\beta}_{1}$?
[Hint: Write the OLS estimator for β_{1} and compute its expectation using the true model for y. See Stavrinos, section 4.4, p.143-146].
(b) Now consider the opposite situation where the true model for y is given by

$$
y=X_{1} \beta_{1}+u
$$

we estimate by OLS the long model

$$
y=X_{1} \beta_{1}+X_{2} \beta_{2}+u
$$

What are the properties of the OLS estimate $\widehat{\beta}_{1}$ in this case?
[Hint: We can write $\widehat{\beta}_{1}=\left(X_{1}^{\prime} M_{2} X\right)^{-1} X_{1} M_{2} y$, where $M_{2}=I-X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime}$ is an indempotent matrix that projects into the space of X_{2} residuals, $S^{\perp}\left(X_{2}\right)$. Now take the expectation using the true model for y. See Stavrinos, section 4.4, p.143-146]
6. [Structural Change]. Consider the classical time-series linear regression model

$$
y=X \beta+u, \quad u \sim \operatorname{iid} N\left(0, \sigma^{2} I\right)
$$

where y is an n vector, X is a $n \times k$ matrix of order k (full order), β is a k vector of coefficients, and u is a homoskedastic normal error term.

Recall that the general linear hypothesis may be written as

$$
H_{0}: R \beta=r
$$

where R is a $q \times k$ restriction matrix (with $q<k$), and r is a q vector of known constants.
(a) Starting from the fact that in this model the OLS estimate b is distributed as

$$
b \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)
$$

(explain why) show that under the null

$$
(R b-r)^{\prime}\left[\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R b-r) \sim \chi^{2}(q)
$$

(b)) Using the fact that (explain why)

$$
\frac{u^{\prime} u}{\sigma^{2}} \sim \chi^{2}(n-k)
$$

determine the distribution of the statistic

$$
D=\frac{(R b-r)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R b-r) / q}{u^{\prime} u /(n-k)}
$$

Now consider OLS estimation under the constraint. The restricted least squares (ROLS) estimator b_{*} minimizes the Lagrangian

$$
(y-X b)^{\prime}(y-X b)-2 \lambda^{\prime}(R b-r)
$$

where λ is a q vector of Lagrange multipliers.
(c) Show that the ROLS estimator is given by

$$
b_{*}=b+\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(r-R b) .
$$

(d) Writing u for the OLS residuals and u_{*} for the ROLS residuals first show that

$$
u_{*}^{\prime} u_{*}=u^{\prime} u+\left(b_{*}-b\right)^{\prime} X^{\prime} X\left(b_{*}-b\right)
$$

and then that

$$
u_{*}^{\prime} u_{*}-u^{\prime} u=(r-R b)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(r-R b)
$$

Thus, our statistic above may be written as

$$
D=\frac{\left(u_{*}^{\prime} u_{*}-u^{\prime} u\right) / q}{u^{\prime} u /(n-k)} .
$$

Explain briefly the intuition for this statistic and give its theoretical distribution under the null.

Now consider the situation where a researcher is worried that at some specified moment of time a structural change has occurred, that resulted in a shift in β. Let $y_{i}, X_{i}, i=1,2$ indicate the partitioning of the data into the two subperiods, which we will call peace time and war time, and consider the model

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]+\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

where $\beta_{i}, i=1,2$ are the relevant k vectors of coefficients for the subperiods and $u_{i}, i=1,2$ are also iid with common variance σ^{2}. We also assume that the X_{i} 's are of full order too. We are interested in testing the null hypothesis

$$
H_{0}: \beta_{1}=\beta_{2}
$$

(e) Specify R and r for this hypothesis.
(f) Describe the process you would use to test this hypothesis given a sample of $n=n_{1}+n_{2}$ observations, and give the test statistic and its theoretical distribution under the null.
[Hint: This the Chow Test for Structural Change. See Stavrinos, sec. 3.13, p. 104]
7. Consider the logit model for the survival of the passengers on the Titanic, as we discussed it in class.

Table 1. Logit Model 1

Variable	Coefficient	Std. Error	Odds Ratio	Std. Error
Child	1.062	.277	2.8908	.705
Female	2.420	.136	11.247	1.579
1st Class	-0.376	.126	0.6864	.093
2nd Class	-1.394	.129	0.2480	.039
3rd Class	-2.154	.144	0.1160	.015
Crew	-1.234	.080	0.2912	.023

(a) Based on the model in the lecture notes, compute the survival odds of a passenger traveling 1st class relative to a passenger traveling 3rd class. Prove any formulas you use.
(b) Give a 95% CI for the survival odds estimate in (a) (Hint: Use the bootstrap.)
8. Let $X \sim U[0,1]$ be uniformly distributed on the interval $[0,1]$.
(a) Find the probability distribution function, the cumulative distribution function, and the quantile function of $Y=-b \log X$.
(b) Find the median of the distribution in (a).
(c) Find the moment generating function of the distribution in (a).
(d) Let $\left(Y_{1}, \ldots, Y_{n}\right)$ be a random sample from the distribution in (a). Find the mle of b and its asymptotic distribution.
9. Consider a random variable X from the $\operatorname{Pareto}(a, c)$ distribution with pdf

$$
f(x)=\frac{c a^{c}}{x^{c+1}}, \quad x \geq a
$$

where, $a>0$ is a location parameter, and $c>0$ is a shape paramater.
(a) Plot the pdf for $(a, c)=(1,1),(a, c)=(1,2)$, and $(a, c)=(1,3)$.
(b) Find the cdf and quantile function (qf) of X.
(c) Find $E(X)$ and $\operatorname{Var}(X)$. Show that $E(X)$ exists only for $c>1$, and $\operatorname{Var}(X)$ exists only for $c>2$.
(c) Justify your findings in (c) in terms of the fatness of the right tail (see Lecture 3)
(d) Let X_{1}, \ldots, X_{n} be random sample from the $\operatorname{Pareto}(a, c)$ distribution. Find the mles for c and a. Is the asymptotic distribution of these mles normal? Justify your answer.
10. Consider the IV model used in THOMAS G. HANSFORD and BRAD T. GOMEZ, "Estimating the Electoral Effects of Voter Turnout", The American Political Science Review, Vol. 104, No. 2 (May 2010), pp. 268-288. The paper examines the electoral consequences of variation in voter turnout in the United States. The authors examine several hypotheses about the behavior of US voters but we will focus in the:

Partisan Effect Hypothesis: Increases in turnout lead to increases in the Democratic candidate's vote share.

A simplified model of their analysis is given by

$$
\text { DemoShare }_{i t}=\beta_{0}+\beta_{1} \text { Turnout }_{i t}+\mu_{t}+u_{i t}
$$

where,

- Demoshare $i_{i t}$: Two-party vote share for Democratic candidate in county i in the presidential election in year t.
- Turnout ${ }_{i t}$: Turnout rate in county i in the presidential election in year t.
- μ_{t} : Year fixed effects. Time dummies for each presidential election year.
- $u_{i t}$: iid error term.
(a) What would you expect about the coefficients in this regression if the Partisan Effect Hypothesis is true?
(b) Why would one suspect the variable Turnout to be endogenous (i.e., correlated with the error term)? [Hint: see paper]
(c) In the paper, the authors instrument Turnout with the variable Rain (DNormPrcp_KRIG) which measures the precipitation above the expected (average) amount for the day of the election. Justify this choice of instrument. [Hint: see paper]
(d) Run the OLS and IV regression to obtain the results below. Describe what we find.

```
> # Load packages we will use (install first if not already installed)
> # install.packages("AER")
> # install.packages("readr")
> # install.packages("stargazer")
> library(AER)
> library(readr)
```

> \# Read csv datafile					
> HGdata <- read_csv("HansfordGomez_Data.csv")					
```> # Inspect the data - sample stats > stargazer::stargazer(as.data.frame(HGdata), type="text")```					
Statistic	N	Mean	St. Dev.	Min	Max
Year	27,401	1,973.972	16.111	1,948	2,000
FIPS_County	27,401	29,985.500	13,081.250	4,001	56,045
Turnout	27,401	65.562	10.514	20.366	100.000
Closing2	27,401	23.053	13.042	0.000	125.000
Literacy	27,401	0.058	0.234	0	1
PollTax	27,401	0.001	0.023	0	1
Motor	27,401	0.211	0.408	0	1
GubElection	27,401	0.434	0.496	0	1
SenElection	27,401	0.680	0.467	0	1
GOP_Inc	27,401	0.501	0.500	0	1
Yr52	27,401	0.071	0.258	0	1
Yr56	27,401	0.071	0.258	0	1
Yr60	27,401	0.071	0.258	0	1
Yr64	27,401	0.071	0.258	0	1
Yr68	27,401	0.071	0.258	0	1
Yr72	27,401	0.071	0.258	0	1
Yr76	27,401	0.071	0.258	0	1
Yr80	27,401	0.071	0.258	0	1
Yr84	27,401	0.072	0.258	0	1
Yr88	27,401	0.072	0.258	0	1
Yr92	27,401	0.072	0.258	0	1
Yr96	27,401	0.072	0.258	0	1
Yr2000	27,401	0.070	0.256	0	1
DNormPrcp_KRIG	27,401	0.005	0.208	-0.419	2.627
GOPIT	27,401	33.282	34.066	0.000	100.000
DemVoteShare2_3MA	27,401	44.250	10.606	10.145	88.982
DemVoteShare2	27,401	43.622	12.415	6.420	97.669
RainGOPI	27,401	0.007	0.142	-0.407	2.234
TO_DVS23MA	27,401	2,886.877	792.530	473.161	8,526.616
Rain_DVS23MA	27,401	0.355	10.188	-25.054	144.257
dph	27,401	0.021	0.145	0	1
dvph	27,401	0.018	0.133	0	1
rph	27,401	0.025	0.155	0	1
rvph	27,401	0.025	0.155	0	1
state_del	27,401	0.037	0.187	-0.821	0.619
dph_StateVAP	27,401	77,525.150	597,474.000	0	6,150,988
dvph_StateVAP	27,401	63,138.400	663,707.600	0	12,700,000
rph_StateVAP	27,401	243,707.900	1,720,659.000	0.000	18,300,000.000
rvph_StateVAP	27,401	142,166.500	1,071,445.000	0	12,800,000
State_DVS_lag	27,401	46.896	8.317	22.035	80.872
State_DVS_lag2	27,401	2,268.381	786.199	485.533	6,540.244

```
> # OLS regression
> hg_ols <- lm(DemVoteShare2 ~ Turnout + factor(Year) , data = HGdata)
> #coeftest(hg_ols, vcov = vcovHC, type = "HC1")
>
> # Iv regression
> hg_ivreg <- ivreg(DemVoteShare2 ~ Turnout + factor(Year) |
+ factor(Year) + DNormPrcp_KRIG, data = HGdata)
> #coeftest(hg_ivreg, vcov = vcovHC, type = "HC1")
>
> # Show result
> stargazer(hg_ols, hg_ivreg, type ="text")
==
```

Dependent variable:

	DemVoteShare2	
	OLS	instrumental
		variable (2)
Turnout	-0.157***	0.363**
	(0.007)	(0.175)
factor(Year)1952	-10.215***	-15.832***
	(0.345)	(1.928)
factor(Year) 1956	-8.756***	-13.656***
	(0.343)	(1.692)
factor(Year)1960	-3.862***	-11.094***
	(0.350)	(2.464)
factor(Year)1964	10.851***	6.837***
	(0.341)	(1.402)
factor(Year) 1968	-6.477***	-8.514***
	(0.338)	(0.780)
factor(Year)1972	-13.749***	-16.473***
	(0.338)	(0.989)
factor(Year)1976	-0.367	-2.111***
	(0.337)	(0.694)
factor(Year) 1980	-10.346***	-11.696***
	(0.337)	(0.586)
factor(Year)1984	-13.134***	-13.515***
	(0.336)	(0.391)
factor(Year) 1988	-5.712***	-4.951***
	(0.337)	(0.450)
factor(Year)1992	-0.327	-1.008**


	(0.337)	(0.435)
factor(Year) 1996	$\begin{gathered} -1.193 * * * \\ (0.337) \end{gathered}$	$\begin{gathered} 0.811 \\ (0.770) \end{gathered}$
factor(Year)2000	$\begin{gathered} -9.013 * * * \\ (0.338) \end{gathered}$	$\begin{gathered} -8.130 * * * \\ (0.476) \end{gathered}$
Constant	$\begin{gathered} 59.085 * * * \\ (0.487) \end{gathered}$	$\begin{gathered} 26.910 * * \\ (10.843) \end{gathered}$
Observations	27,401	27,401
R2	0.281	0.130
Adjusted R2	0.280	0.130
Residual Std. Error ( $\mathrm{df}=27386$ )	10.533	11.582
F Statistic	** (df = 14	

Data description:

Name	Description
Year	Election Year
FIPS_County	FIPS County Code
Turnout	Turnout as Pcnt VAP
Closing2	Days b/w registration closing date and election
Literacy	Literacy Test
PollTax	Poll Tax
Motor	Motor Voter
GubElection	Gubernatorial Election in State
SenElection	U.S. Senate Election in State
GOP_Inc	Republican Incumbent
Yr52	1952 Dummy
Yr56	1956 Dummy
Yr60	1960 Dummy
Yr64	1964 Dummy
Yr68	1968 Dummy
Yr72	1972 Dummy
Yr76	1976 Dummy
Yr80	1980 Dummy


Yr84	1984 Dummy
Yr88	1988 Dummy
Yr92	1992 Dummy
Yr96	1996 Dummy
Yr2000	2000 Dummy
DNormPrcp_KRIG	Election day rainfall - differenced from normal rain for the day
GOPIT	Turnout x Republican Incumbent
DemVoteShare2_3MA	Partisan composition measure $=3$ election moving avg. of Dem Vote Share
DemVoteShare2	Democratic Pres Candidate's Vote Share
RainGOPI	Rainfall measure x Republican Incumbent
TO_DVS23MA	Turnout x Partisan Composition measure
Rain_DVS23MA	Rainfall measure x Partisan composition measure
dph	$=1$ if home state of Dem pres candidate
dvph	$=1$ if home state of Dem vice pres candidate
rph	$=1$ if home state of Rep pres candidate
rvph	$=1$ if home state of Rep vice pres candidate
state_del	avg common space score for the House delegation
dph_StateVAP	$=$ dph*State voting age population
dvph_StateVAP	$=$ dvph*State voting age population
rph_StateVAP	$=r p h * S t a t e ~ v o t i n g ~ a g e ~ p o p u l a t i o n ~$

I was gratified to answer promptly. I said I don't know.

- Mark Twain, Life on the Mississippi.

